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Abstract

It is a challenging computational problem to find mani-
folds M which are invariant under the flow of a dynamical
system. We consider the special case where the system is

partitioned in the form
do/dt = f(8,r)
dr/dt = g(6,r)

and 6 is a vector of periodic variables. Then we ask for
an attracting invariant manifold M parametrized by 6. A
typical example is given by two coupled oscillators where
one asks for an invariant torus in the four dimensional state
space.

There are two different analytical approaches, both lead-
ing to interesting numerical problems. The first approach
uses partial differential equations, the second approach is
based on the Hadamard graph transform. We discuss the
numerical analysis aspects of these two approaches, both
of which lend themselves to concurrent computations.

Each step of the Hadamard graph transform requires
the solution of a large number of ordinary boundary value
problems. These can be solved independently of each
other, but communications are necessary to compute a new
global interpolant after each step of the graph transform.
The new interpolant gives an improved approximation to
the invariant manifold.

The partial differential equations approach leads to
somewhat more standard problems:. After discretization
and linearization one has to solve large linear systems;
these have a special sparsity structure. Concurrency is
exploited in the solution of these systems.

For an efficient treatment of the corresponding systems
on sequential machines we refer to (3].

1 Statement of the Problem

In this paper we present two different approaches for the
numerical computation of an invariant manifold of a dy-
namical system. For simplicity we restrict ourselves to the
following special situation: The dynamical system is given
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in the partitioned form

6§ = f(8,r)
{+ = ¢(8.7) (1)
where
8=(0,,-.0,)T eT?
and
r=(r, --,r)T €RI.
We ask for an invariant manifold which can be

parametrized by the #-variables. Here T? is the p dimen-
sional standard torus, i.e., each variable §; is a 27-periodic
angle variable. The functions

f:T" xR!— IR?
g:T? x R¥ — R

on the right-hand side of Equation 1 are assumed to be
smooth. Let !

S4(6°, %),
where t € R, denote the solution of Equation 1 with initial
data
50(90, rO) = (90,1_0).
For each fixed t € IR the operator S! is a one-to-one map
of the state space T? x R! onto itself. We can formalize
the analytical problem as follows: Determine a smooth
function
R:T? — IR?

so that the manifold

M = {(8,R(0)) : 6 € T?} (2)

is invariant under each operator S'. In other words, if
(6°,7%) are initial data in A, then the whole trajectory
5'(6°,1°), where t € R, lies in M.

2 The PDE Approach

One can show that the manifold defined in Equation 2 is
invariant if and only if the function R : T? — IRY solves

!For simplicity we assume all solutions to exist for all time. This
is true if f and g are bounded. Using a simple cut-off technique, one
can achieve boundedness without affecting the solution in a fixed
bounded region of the state space TP x RY.



the following first-order system of partial differential equa-
tions:
OR dR
—_— .. 6‘ RY— =g¢g(0,R 3
ARG+ + ORI =90R) ()
with 0 € TP. Ve refer to (7] for an account of analytical
aspects. In the numerical treatment of Equation 3 one can

distinguish at least four aspects:
e The discretization scheme; we used leap-frog.
e The nonlinear solver; we used Newton’s method.

e The solution algorithm for linear systems; we used
a concurrent sparse LU-factorization algorithm de-
scribed in more detail in Section 4 and in [8].

e The starting process for the nonlinear solver; in our
example (see Section 5) Equation 3 depends on a pa-
rameter A > 0, and we use arc length continuation.
For A = 0 the problem is linear.

On sequential machines the largest amount of comput-
ing time is usually required for the solution of the linear
systems. At this stage we have used software for concur-
rent computations. Aspects of interest are

e a concurrent sparse LU-factorization;

e a corresponding concurrent back solve;

[ )

a suitable distribution of the matrix elements;

extensions to treat the bordered matrices which typi-
cally occur in continuation steps.

3 The Hadamard Graph Trans-
form

We outline here an alternative analytical approach to ob-
tain an invariant manifold of Equation 1; it is not based on
the PDE formulated in Equation 3. (A perturbation the-
ory of invariant manifolds, which uses the graph transform
technique described below, is developed in [4].) We antici-
pate that this approach is attractive for concurrent compu-
tations, but so far only limited computational experience
has been obtained (2] on sequential machines. For simplic-
ity we assume that the manifold M is locally attracting in
positive time, i.e., if (6%,r%) € T? x R? is sufficiently close
to M , then the distance of S*(6%,r%) to M tends to zero

as t — oco. We use the simple projection operators P and
Q defined by

P@,r)=6 and Q(4,r)=r.

Clearly, P projects the state space T? x IR? onto 7? and
Q projects it onto IR?. Let

RO . T? . R?

denote a known approximation for the unknown function
R = R(6) which determines the invariant manifold (see
Equation 2), and let 7 > 0 denote a chosen time incre-
ment. Hadamard’s operator F7 applied to R(%) is defined
as follows:

1. For any 0 € T" dctermine a € T? such that
P(57(a, R(a))) = 0.

2. Set

(FTR)(6) = Q(S" (e, RO(a))).

The function R() := FTR(9 is, again, an approximation
to R, and, under appropriate assumptions, the iteration
R("*+1) = FT R(™ converges linearly to R; the function R
determining the invariant manifold M is a fixed point of
(Under appropriate assumptions, the function R is
independent of the chosen time increment 7 though the
iteration sequence and the convergence do depend on r.)
For any fixed § € T? the above process of determining
R(M)(8) = (FTR(®)(§) can be reformulated as an ordinary
boundary value problem BVP(4, R(9) :
Solve the Equation 1 for (8(¢),r(t)) in 0 <t < 7 under
the boundary conditions

r(0) = R(®(6(0)), 4(r) =4;

then set

RM(G) := r(7).
In practice, we solve BVP(4, R(9)) for §-values in a discrete
mesh T%,

feT? CT".

It is important to note that all problems BVP(4, R(?)) are
independent of each other and differ only in the §-value of
the right boundary condition.

Let us assume a multicomputer computation with NV
processes. Each process solves problems of the type
BVP(4, R(?). We choose a mesh T} C T? of kN mesh
points. Then we can assign k BVPs to each process. When
solving the BVPs no communication is necessary provided

the functions f, g, and R(%) are available locally. Solution
of the BVPs provides values

RM(E), §eTL.

For the next iteration we need an interpolant of these dis-
crete values, again denoted by R(}). Also, if the BVPs
are to be solved by Newton’s method, we need the first
partial derivatives of R(!). To obtain this interpolant and
its derivatives we can us FFTs. At this stage interprocess"
communication is necessary.

4 Computational Aspects of the
PDE Approach

We attack the problem of solving Equation 3 in the more
general context of solving coupled systems of nonlinear
partial differential equations of the form:

dR OR dR
A 2
tog;, T A2gg, T+ ey, =0 )
where g is a g-dimensional vector and A;,...,4, are g x ¢

matrices that depend smoothly on (8,7) € T? x RY and
on a parameter A, i.e.,

= A1(8,r50),...,4, = Ap(8,r;A), and g = g(.7;A).



Equation t is 2x-periodic in all compouents of 9. The
PDE is discratized on a Ky x K3 x ... x R, grid. At each
grid point one has q scalar unknowns. If D; denotes the
centered divided difference operator in direction 0;, then
the leap-frog discretization leads to a nonlinear algebraic
system of difference equations

AIDiIR+ A2D2R+ ...+ ApDpR=g. (5)
Here R = R*(,1) is the unknown grid function. (The
index A indicates the dependence on the mesh-size of the
grid. We do not discuss the convergence as h — 0.)

We wish to find solutions of Equation 5 as a function
of the parameter A. This computation is done with the
pseudo-arc-length continuation method of Keller, see [5].
To find the solution at a particular, given value of A, one
could apply a straightforward Newton iteration process.
To follow solution paths, more advanced tools are needed
because the paths may have vertical tangents with respect
to the parameter A at folds, or, they may bifurcate into
two or more solution paths. In the neighborhood of such
critical points, straight Newton iterations usually diverge
or converge very slowly.

Given a solution R(Aq) at a particular value \g, an initial
approximation to another solution of the branch is found
through linear extrapolation: a tangent to the solution
path is constructed at (R(Ag), Ao) and astep is taken along
the tangent. This leads to a first approximation of a new
solution; the approximation is subsequently improved by
a Newton iteration for (R,\) in a hyperplane orthogonal
to the tangent direction at (R(\q),Ao). The constraint of
orthogonality to the tangent adds an extra equation to the
system 3; of course, one has the extra unknown A. Thus, in
the continuation procedure systems must be solved which

have the form
S b z|_|vy
T sflel"Ln]

The matrix S is sparse; it results from a straight lineariza-
tion of Equation 5 in R. The vector b results from lineariza-
tion in A. The last equation ensures orthogonality of the
Newton corrections to the previous tangent. The vectors
b and ¢ are usually dense. To avoid excessive fill, it is not
desirable to perform the LU-factorization of the extended
matrix, unless the pivoting strategy is restricted. Using
the bordering algorithm of Keller, see (6], a solution to the
extended system can be found if the LU-factorization of
S is known. This algorithm is applicable at folds, where
the matrix S is singular. The only requirement is that the
extended matrix has full rank.

Particular care is necessary in the selection of a pivot-
ing strategy for the LU-decomposition of a possibly sin-
gular matrix. Complete pivoting, in spite of its cost, may
sometimes be the only alternative. In the majority of the
LU-decompositions of the path following procedure, how-
ever, a more restricted pivoting strategy is sufficient. Our
program uses the LU-decomposition of (8], which can in-
corporate arbitrary pivoting strategies. This allows us to
change the pivoting strategy dynamically during the con-
tinuation. Ve have used this feature in critical Newton

iterations to achieve both cfficiency and numericai stabil-
ity. We note that pivoting is an expensive operation on
sparse matrices because of two reasons: Tirst. the cost of
sparse matrix computations is dominated by the cost of
accessing entries. Second, because arithmetic with super-
fluous zeroes is avoided, the arithmetic cost is decreased
relative to the cost of pivoting. Typically, we perform an
expensive dynamic pivot search in the LU-decomposition
of the matrix S in the first step of a Newton iteration. Cur-
rently, we use either partial or complete pivoting without
taking sparsity into account. (We plan to also incorporate
sparse pivoting techniques in the near future.) In subse-
quent steps of the Newton iteration, the pivot selections of
the first step are used over again. This amortizes the cost
of dynamic pivoting over several LU-decompositions. The
heuristic behind this procedure is simply that the matri-
ces S of subsequent steps in a Newton iteration are nearly
equal. Hence, a good pivoting strategy for the first step is
likely good for the following steps, also. In the event that
the LU-decomposition detects a zero or a very small pivot,
we start the factorization over with complete pivoting. A
matrix is accepted as singular only if the latter strategy
detects a zero or a small pivot.

Concurrent performance of sparse LU-decomposition is
critically dependent on the distribution of the matrix over
the concurrent processes. The best distribution, i.e., the
distribution leading to the smallest execution time, de-
pends on the fill of the matrix during the elimination. The
distribution of the fill over the processes itself is not eas-
ily predictable if dynamic pivoting is used. Therefore, the
best distribution can often be determined only experimen-
tally. We shall show some results in Section 6 below which
demonstrate the dependence of the execution time on the
data distribution. For the calculations we used the LU-
decomposition of (8], which allows a wide range of data
distributions.

5 Example: A System of Two
Coupled Oscillators

A simple example of a single oscillator is described by the
two scalar equations :

{i : ‘:(1-7-2)

where w is a fixed constant. If ~(0) > 0, then r(t) — 1 as
t — co. The one dimensional manifold

{(0,1):0eT!}

is invariant. It describes an attracting limit cycle. As
in (1], we consider two oscillators of the above form which
are coupled. If (8;,r;),j = 1,2, are polar coordinates for
the two oscillators, then the equations considered read

ri(l —r;?')+/\Cj
u+,\C]'~,

rpo=
i = ©

where j = 1,2. Here

Ci = rasin(6y + 02) + cos(8, — 62)) — ri(1 +sin26,)



C, = —cos‘.?!)l-l-;(cos(()l +02) —sin(0y = 02))
1

and C,,C, are obtained by interchanging the indices 1
and 2 on the right-hand sides of the above expressions for
C1,C} . We refer to (1] for a motivation of the specific
form of the coupling.

For the coupling constant A = Q the system has the
attracting invariant 2-torus

MM\ =0)={(4,1,1):0 € T?}.

One can show that the torus persists for small coupling.
More precisely, general theory (7] (4] yields the following
resuit:
For any £ = 1,2,..., there exists A\ > 0 and a C*
function
R:T? x (=, Ae) = R?

such that

M(A) = {(8,R(8,2)): 0 €T?*}, =-de<A<

is invariant under the flow of 6. Here R(6, A = 0) = (1, 1),
and the invariant manifold M(}) is locally unique. With
increasing |A| the torus looses more and more derivatives.
It is not known how exactly the torus disappears if the
coupling gets too large.

6 Numerical and Computational
Results

e treated the above example for w = —0.55 and A > 0.0.
One obtains a system of PDE’s of the general form 3 for
R(6) = R(8,)) with parameter A\. Here p = ¢ =2. It is
convenient to introduce the scaled unknown S(8) = S(4, A)

by
1
R—[l

which leads to a meaningful linear limit problem at A = 0.

Since the two identical oscillators are coupled in a sym-
metric fashion, it is not difficult to show: If R = R(4)
describes an invariant manifold, then

R2(682,6,) ]
R1(62,6,)

]+AS

R(6) =

describes an invariant manifold, also. Thus, as long as the
solution of the PDE for R (or for S) is unique, R must
obey the symmetry

R1(01,62) = Ry(02,61).

Whether one enforces the symmetry or not might, of
course, influence the bifurcation diagram.

6.1 First Study

We discretize the PDE for S with leap-frog and do not en-
force the symmetry on the discrete solution. In Figure I,
we display the execution time of the concurrent sparse LU-
decomposition for the first system of the branch, i.e., at

TIME (MS)

104 — N 2 s -

DIMENSION

Figure 1: Sparse LU-Decomposition With Multirow Piv-
oting.

Multirow Pivoting
| Minimum | Maximum |
| Speed Up 1.9 6.0 |
Efficiency 11.9% 37.2%
Process Grid 16 x 1 16 x 1
Row Distribution linear scatter
Column Distribution

Table 1: Least and the Most Effective 16 Node sparse LU-
Decomposition with Multirow Pivoting.
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Figure 2: Norm of Solution as a Function of the Continu-
ation Parameter A.

A = 0. The system has 2 x 25 x 25 = 1250 unknowns. The
calculations were performed on the Ametek 2010 multi-
computer using different numbers of nodes: a multicom-
puter of dimension d has 29 nodes. For different num-
bers of nodes and different matrix distributions we display
the execution times in a log-log plot. The straight line
corresponds to the ideal speed up, which is not actually
reached. We also connected execution times (for different
values of d) that correspond to comparable distributions
of the matrix. For example, the largest execution times
were obtained for distributions where blocks of consecu-
tive rows were allocated to the processes. The smallest ex-
ecution times were obtained when consecutive rows were
allocated to different processes, i.e., the rows were scat-
tered. Rectangular distributions, i.e., the rows themselves
are also distributed columnwise, performed at a level in
between these two extremes. Table 1 summarizes the best
and worst performance on the 16 node system. Further
performance gains for the solver are to be expected with in-
corporation of fine tuned pivoting strategies. The pivoting
strategy used for this computation was multirow pivoting
(see (8] for details of this strategy).

6.2 Second Study

We discretize the PDE for S with leap-frog and enforce
the symmetry on the discrete solution. With a grid spac-
ing h = Z we obtain a solution branch of discrete solu-
tions. In Figure 2, we display the norm of these solutions
as a function of the coupling parameter A. In Figures 3
through 6, we display the first component R,(0) for a rep-
resentative set of A values along the branch. The solution
above the fold in Figure 6 displays nonsmooth behavior.

A = 0.00000e + 00

Figure 3: The Trivial Solution R, =1 for Zero Coupling.

A = 2.09549¢ — 01

Figure 4: A Solution of the Discrete System below the
Fold.




A = 2.43096e — 01

Figure 3: A Solution of the Discrete System near the Fold.

A =241714e - 01

Figure 6: A Solution of the Discrete System above the
Fold.

Probably, it does not correspond to a solution of the con-
tinuous problem
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