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Abstract

In comparison to symbolic differentiation and numerical differencing, the chain rule
based technique of automatic differentiation is shown to evaluate partial derivatives
accurately and cheaply. In particular it is demonstrated that the reverse mode of
automatic differentiation yields any gradient vector at no more than five times the cost
of evaluating the underlying scalar function. After developing the basic mathematics
we describe several software implementations and briefly discuss the ramifications for
optimization. _
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1 Introduction

In 1982 Phil Wolfe [31] made the following observation regarding the ratio hetween the cost
of evaluating a gradient with n components and the cost of evaluating the underlying scalar
function.

If care is taken in handling quantities which are common to the function and
derivatives, the ratio is usually around 1.5, not n+1. [31]

The main purpose of this article is to demonstrate that Phil Wolfe's observation is in fact
a theorem (with the average 1.5 replaced by an upper bound 5) and that care can be taken
automatically. This remarkable result is achieved by one variant of automatic di [ferentiation
[25], which simply implements the chain rule in a suitable fashion. The same approach can
be used to compute second and higher derivatives. At least since the fifties these techniques
have been developed by computational scientists in various fields, and several software
implementations are now available. Although a theorem confirming Wolfe’s assertion for
rationals was published in 1983 by Baur and Strassen (2], the optimization community took
little notice of these developments. This can be partly explained by a lack of clarity in the
customary terminology.

Automatic differentiation is often confused with symbolic differentiation or even with
the approximation of derivatives by divided differences. For algebraically rather simple
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3D calculations may involve millions of variables, the gradient of the sum of squares can
be obtained at essentially the same cost as an evaluation of the residual vector itself. In
order to avoid any storage and manipulation of matrices the gradient is then utilized in a
conjugate gradient like minimization routine. '

Apparently the first general purpose implementation of the reverse mode was the pre-
compiler JAKE due to Speelpenning. In his unpublished thesis [28] Speelpenning showed
that Wolfe’s assertion is true, but did not state it formally. His original intention was to
optimize the gradient code generated in the forward mode by sharing common expressions.
During this attempt he realized that the optimal gradient code can be obtained directly
without any optimization by (what we call here) the reverse mode of automatic differenti-
ation. Several other papers proposing the reverse or top down mode are referenced in the
survey [17]. This excellent article discusses also the closely related issue of estimating eval-
uation errors. Now let us examine various techniques for evaluating gradients on a couple
of simple problems.

2 Comparisons on two Examples

The use of a cubic equation of state [24] yields the Helmholtz energy of a mixed fluid in a
unit volume at the absolute temperature T as

_ zT Az o 1+(1+ \/2)b7;r;
/8677 BT+ (1-2)0lz

n
Zi
f(z) = RTL_-ZIZ;IOgm

where R is the universal gas constant and
0<z,beR* , A=AT eR™",

During the simulation of an oil reservoir this function and its gradient have to be evaluated
at thousands of points in space and time. Typically the number of fluid components n is
restricted to less than 20, but we will include larger values in our comparative timings.

2.1 MACSYMALI Results on the Helmholtz Energy

First let us examine the results of symbolic differentiation with MACSYMA, version
309, distributed by Symbolics Inc. After entering f(z) and computing its gradient with the
diff conmand one may translate the symbolic representations into FORTRAN using the
fortran command. On the following page we list the resulting code for the evaluation of
f(z) and the first component of its gradient when n = 5. Actually the original code had
to be modified, mainly because it contained more than the maximum of 19 continuation
lines allowed in FORTRAN 77. Due to our familiarity with the function we could break the
expression for the first gradient component g(1) in the middle, but in general that would be
a rather challenging task. Even after this problem and some type conflicts in the original
code were overcome the results are clearly unimpressive. Just imagine this code segment
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functions, the explicit derivative expressions obtained by symbolic differentiation may be
readable to an experienced user and thus provide an extremely useful extension of research
with pencil and paper. However, for functions of any complexity in more than three vari-
ables, the analytic expressions for gradient or Hessian tend to take up several pages and are
unlikely to facilitate any insights.

In this article we will concentrate on the goal of obtaining numerical derivative values
at given arguments. The need for efficient and accurate derivative evaluations arises in par-
ticular during the iterative solution of nonlinear problems and the subsequent sensitivity
analysis. Following several other authors, notably Iri [15], we will argue that for these
numerical purposes the reverse mode of automatic differentiation is far supe-
rior to symbolic differentiation or divided difference approximations. The latter
technique is always less accurate and about as costly as the forward form of automatic
differentiation.

The paper is organized as follows. The remainder of this Section we briefly discuss
the historical development and applications of automatic differentiation. In Section 2 we
“ utilize two simple example functions to illustrate the characteristic properties of various
techniques for evaluating gradients. In Section 3 we develop the two modes of automatic
differentiation for the general case and conclude that the cost of evaluating gradients in the
reverse mode is additive with respect to function composition. As a corollary we obtain
Wolfe’s assertion with 1.5 replaced by the uniform bound 5. Section 4 describes several
implementations of automatic differentiation that require the user to do little more than
provide a subroutine for the evaluation of the underlying function. In the final Section 5
we briefly discuss the implications of automatic differentiation on the design and selection
of optimization algorithms.

The literature relating to automatic differentiation is extensive and very diverse. The
main stream of research and implementation has been concerned with the automatic eval-
uation of gradients ( or more generally truncated Taylor series ) in the forward mode. This
effort goes back at least to Beda et al [3] in the Soviet Union and Wengert [30] in the United
States. Numerous other references are contained in the paper by Kedem [21], the books
by Rall [25] and Kagiwada et al [19], and the recent report by Fischer [11]. In general the
researchers in this main stream were unaware of the reverse mode or continued to consider
it as a somewhat obscure approach of a rather theoretical nature.

Mathematically the reverse mode is closely related to adjoint differential equations. Nu-
clear engineers have long used adjoint sensitivity analysis [4], [5] to evaluate the partial
derivatives of certain system responses (e.g. the reactor temperature) with respect to thou-
sands of design parameters. This approach yields all sensitivities simultaneously at a cost
comparable to only a few reactor simulations. In contrast, thousands of these lengthy calcu-
lations would be needed to approximate all sensitivities by divided differences. For a recent
survey on the software and applications in this field see the paper by Worley [32]. Similarly,
in atmospheric and oceanographic research, adjoints of the governing partial differential
equations have been used to obtain the gradients of residual norms with respect to initial
conditions and other unknown quantities [29]. Here the residuals represent discrepancies
between observed and predicted conditions in the atmosphere or ocean. Even though these
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had been inserted into a subroutine and subsequently the programmer made a trivial editing
error. Then it would be quite difficult to determine by inspection whether the segment had
been corrupted and nearly impossible to correct it. In other words the code is not only
inefficient but unmaintainable.

While some aspects of MACSYMA’s FORTRAN interface are annoying, they are by no
means the root of our problems. The main culprit is the wrong-headed idea of generating
separate expressions for the function and each gradient component, directly in terms of the
independent variables. By definition this approach eliminates any possibility of utilizing
common expressions during the evaluation. Instead one should write a program for
evaluating the function efficiently and then generate an extended program that
evaluates the function and gradient simultaneously. As we will see later the extended
program can be generated automatically.

Everything may be done by hand on our second example

n
f(z) = Hz; = Ty T2 Tpn-1"ZTn

i=1
which was already used by Speelpenning [28]. Obviously the i—th component of the gradient
V f(z) is given by

af/az'- - HzJ = 21 Tje1°Tj41°Tn

J#s
If calculated in this form each gradient component involves n — 1 multiplications and is
thus almost as expensive to evaluate as the function f itself. Since symbolic differentiators
generate separate algebraic expressions for each component of V f(z) they require exactly
n times as many arithmetic operations for evaluating function and gradient jointly as for
evaluating the function by itself. Formally we may write ¢{f} = n, where

9{f} = work{f,V f}/work{f}

Since the work ratio ¢{f} is even slightly larger for divided differences this may at first
seem a fair price to pay. However, according to Wolfe’s assertion we should be able to do a
lot better, namely to bound q{f} by a constant independent of n.

2.2 Automatic Differentiation of the Product Example

In order to obtain the gradient cheaply one could use the identity
of(z)/0z; = f(z)/z; if z:#0 .

Unfortunately, this ’solution’ suggests that the efficient evaluation of gradients involves
some special cancellations, which have to be detected by human inspection and require
numerical exception handling when certain denominators are zero or small. Fortunately,
for this example and other cases, the gradient can be evaluated efficiently without
any human intervention or numerical instabilities.



In order to discuss the alternative methods we have to base the evaluation of the function
and its gradient on sequential programs rather than a set of explicit expressions. Using an
informal programming language we can evaluate y = f(z) by the following code.

Evaluation of Product

Tntyl =21
Fori=n+2,n+3...2n
Ti = Ti—n Ti-1
Yy =2ZToam

Here and throughout the paper we will allocate all scalar quantities in a single memory
vector (Z;)i=1..m, starting with the independent variables (z;)i=1..n and ending with a
single dependent variable z,. The issue of the storage requirements for actual computer
implementations will be discussed in Section 4.

Since the intermediate quantities T4, = 1...n are smooth functions they possess
gradients Vzn4i,i = 1...n with respect to the independent variables z1,Z2,...,Zn. In
particular we have Vz3, = ¢ = Vf and Vz,41 = €;. Evaluating the intermediate gradients
by the chain rule we obtain the following expanded program.

Forward Differentiation of Product

Tn+l = 21
Vzp €
For i=n+4+2,n43...2n
Ti = Ti—n Ti-1
Vz; = Zi—1 €imn + Ti—n VZTi-1
) = Z2n
g = Vz2,

This program evaluates both function and gradient simultaneously. It can be generated
in a ’mechanical’ fashion and is only about twice as long as the original program because
each assignment to an intermediate quantity is simply augmented by the calculation of its
gradient. This forward approach has been developed and advocated by several authors
(See e.g. [3], [30], [21], and [25]). Various software implementations will be discussed in
Section 4. '

A simple count reveals that the calculation of our example gradient by the program above
involves 1n? nontrivial multiplications, so that ¢ =~ n/2. In general we must expect that the
forward mode of automatic differentiation increases the number of arithmetic operations by
the factor n, because each evaluation of an intermediate scalar quantity z; is accompanied
by the calculation of the corresponding gradient vector Vz;. Apparently Speelpenning was
the first to notice that, instead of the gradient vector, only another scalar, say Z;, needs to
be associated with each quantity z;,i = 1---2n. In case of the product example one may



define Z,4; as the product of all z; with i < j < n and then set
8f/0z,- =Z; = Tnyi-1 Tni-

This calculation is performed by the following extended program.

Reverse Differentiation of Product

Intl = T1 .
Fori=n+2,n+3,...,2n
Ti = Ti_p Tiq {Forward Sweep}
Yy =T
5‘2,‘ =1
Fori=2n,2n-1,...,n+2
Ti1 = i Tion {Reverse Sweep}
Zien = Ti Ti—1
Z1 =Zaq
9 =(Zi)i=1..n

This algorithm requires 3n — 3 multiplications in order to compute the function and its
gradient, so that now ¢ >~ 3. That is 50% more than the number of arithmetic operations
required by the method based on cancellations, but now there is no need for any branching
when one of the variables is small. The amazing fact is that this apparently tricky algorithm
for the gradient of a product can be obtained by a general, straight-forward transformation
from the original function evaluation program.

2.3 Experimental Comparison on Helmholtz Energy

Before discussing the details of this transformation in the following sections, let us list some
empirically observed values for the work ratio ¢{f} on our first example. The numbers
in Table 1 represent the ratio between the execution times of an extended program that
evaluates f(z) and V f(z) jointly and of the original program that evaluates only f(z) at
a given argument. The entries in the first column represent the work ratio for divided
differences, namely n + 1 with n being the number of variables. The three numbers in the
second column were obtained as follows. The Helmholtz energy function f(z) was entered
into the algebraic manipulation package MAPLE [6] and then differentiated symbolically
using the grad command. On a Sun 3/140 with 16 megabytes real memory, the symbolic
generation of the gradient always took several minutes, and when n was set to 30 the
differentiation failed after 15 minutes due to a lack of memory space. The time for this
process was not included in the listed work ratios, which reflect only the times needed to
substitute the indeterminates z; by real arguments in the expressions for f(z) and V f(z).
For example when n = 20 the substitution took 7.13 and 160 seconds CPU time respectively.

The results in the third and forth column were obtained on an IBM XT using the
programming language PASCAL-SC [22]. Like other modern languages this extension of
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Div. Diff. | Symbolic Forward Reverse 1 | Reverse 2
6 2.0 1.5 1.00 6.80
11 9.8 2.1 1.66 4.66
21 22 3.8 1.94 3.46
31 - 5.2 2.04 3.95
41 - 7.6 2.67 3.65
51 - ' - 2.88 3.82
61 - - - 3.76
71 - - - 3.80
81 - - - 3.83

FORTRAN | MAPLE | PASCAL-SC | PASCAL-SC JAKEF

Table 1: Observed work ratios on Helmholtz energy for n = 5,10, 20,...,80.

standard PASCAL allows the transformation of a program for the evaluation of f(z) into
one that evaluates f(z) and V f(z) by a process called operator overloading. This approach
was first implemented by Rall [26],(27] in the forward mode of automatic differentiation. We
have implemented the same approach in the reverse mode as described in Section 4. Again
the entries in the table do not include the compilation times for the original and extended
programs but represent the ratios of the respective execution times. The fifth column was
obtained in almost the same way, except that the original program was written in FORTAN
and then extended to the gradient routine by the precompiler JAKEF [14] (an update of
Speelpennings original version JAKE [28]). The resulting pair of FORTRAN programs was
run on the Sun 3 so that the execution times were naturally much smaller than those of
the PASCAL-SC programs on the IBM XT. Nevertheless the comparison between runtime
ratios provides some meaningful information.

As in the case of divided differences, the observed work ratios grow linearly with the
number of variables n, for both symbolic differentiation and the forward mode of auto-
matic differentiation. However, in the latter case the proportionality factor is only about
.2 compared to 1.0 in case of the popular divided differences. The reverse mode of au-
tomatic differentiation in PASCAL-SC is always faster than the corresponding forward
scheme, and the work ratio seems indeed uniformly bounded in n. The same is true for the
FORTRAN version of reverse accumulation, though there the ratios are initially somewhat
larger. Due to the limitation to 512K core memory, the forward and reverse implementation
in PASCAL-SC can handle the Helmholtz energy function only up to 40 and 50 variables
respectively. MAPLE exhausts the many times larger memory on the Sun much earlier.
On the basis of our experience with MACSYMA and MAPLE we conclude that symbolic
manipulators cannot be considered suitable tools for our purposes. Finally we note that a
carefully handcoded routine for evaluating a suitable representations of the first four deriva-
tive tensors requires only about 1.5 times the computing time of evaluating the Helmholtz
energy by itself. Thus we see that when runtime really counts, some mental effort may still
be worthwhile.



3 Automatic Differentiation of Composite Functions

3.1 Composite Functions and their Computational Graph

Throughout this section we consider a function y = f(z) : R" that is defined by a given
sequential program of the following form.

Original Program

Fori=n+1,n+2,...,m
z; = fi(zj)jex
Yy =Tm

Here the elementary functions f; depend on the already computed quantities z; with j
belonging to the index sets

Jic{1,2,...,i—-1} for i=n+1l,n+2,...,m

In other words f is the composition of m — n elementary or library functions f;, whose
gradients

Vfi =(0fi/0z;)je

are assumed to be computable at all arguments of interest.

For example, this is clearly the case when all f; represent either elementary arithmetic
operations, i.e. + , - , * and / or nonlinear system functions of a single argument, e.g.
logarithms, exponentials and trigonometric functions. Almost all scalar functions of practi-
cal interest can be represented in this factorable form, which has been used extensively by
McCormick et al. [18]. Rather than restricting ourselves to unary and binary elementary
functions we allow for any number of arguments n; = | J;| < %, where |:| denotes cardinality.
In particular we may trivially interpret any function f(z) as a composition of itself so that
in the program above f,4; = f and m = n + 1,n,, = n. More importantly, this general
framework allows for user defined subroutines. '

Sometimes it is very helpful to visualize the original program as a computational graph
with the vertex set {z;}1<i<m. An arc rumns from z; to z; exactly if j belongs to J..
With each arc one may associate the value of the corresponding partial derivative 9 f;/9z;.
Because of the restriction on J; one obtains an acyclic graph, whose minimal elements
are the independent variables. Usually there are several linear orderings of the z; that
are compatible with the partial ordering induced by the directed graph. Whenever two
elementary functions do not directly or through intermediaries depend on each others result,
they can be evaluated in either order or even concurrently on a parallel machine. This aspect
has been examined in [9], but will not be pursued any further here. Also, in contrast to the
analysis in [15], we will not use the graph structure for our complexity bounds.
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zg = fs(z7,T4)

5/
z7 = f1(Z6,23)
g.h.
T = fs(xs,zﬁ)
5

zs = fs(z1)
w X
z T3 z3 T4

Figure 1: Graph for Product where f5(z1) = 1 and. fi(z;, k) = zj * =k for i = 6,7,8.

For any reasonable measure of computational work on a serial machine we may assume
that

m

work{f} = 2 work{ f;}

i=n+1
In defining work{f} one may account for the number of certain arithmetic operations as
well as fetches and stores from and to memory. Now let us develop the extended programs
for evaluating the gradient V f jointly with f.

3.2 Automatic Differentiation with Forward Accumulation

Again denoting by Vz; the gradient of z; with respect to the independent variables (z;);=1..n
we derive from the original program by the chain rule:

Forward Extension

Fori=12...n
Vz; =¢€;
Fori=n+1,n+2,...m
zi =fizi)ier
Vz; = ¥ies %Vzi
Yy =Im
g =Vzn

where e; denotes the ¢ — th Cartesian basis vector in R™.
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Due to the assumed additivity of the work measure we find that

work{f,Vf} = i (work{f;,V fi} + nni(mults + adds)]
i=n+1

where the extra n n; arithmetic operations are needed to form Vz; as a linear combination
of the n; gradient vectors Vz; with j € J;. Here we have neglected the fact that for j
just above n, the gradient vectors Vz; will be sparse so that some arithmetic operations
operations could theoretically be avoided. However, the added complexity of a suitable
sparse implementation is unlikely to be justified by the savings, except in very special
cases. Another possible alternative is to run through the basic loop n times, each time
only evaluating the partial derivatives dz;/dz; with respect to one particular independent
variable z;. This implementation of forward accumulation is considerably less economical in
terms of computational effort but requires only about twice as much storage as the original
program. We will not consider this space saver solution in the remainder of the paper.

Now suppose that the evaluation of any library function f; requires at most c¢n; arith-
metic operations, where ¢ is a common positive constant. Then it follows from the last
equation that the work ratio defined above satisfies g{f} > 1 + n/c. This linear growth in
the number of variables was clearly observed on the Helmholtz example and is not acceptable
for large problems.

3.3 Automatic Differentiation with Reverse Accumulation

In order to obtain a method with a uniformly bounded work ratio we associate with each
intermediate variable z; the scalar derivative

T = 8zm / oz;
rather than the gradient vector Vz;. By definition we have #, =land fori=1...n
0f(z)/0z; = Z;

As a consequence of the chain ruleit can be shown (see e.g. [20]) that these adjoint quantities
satisfy the relation

where Z; = {i < m : j € J;}. Thus we see that Z; can be computed once all Z; with i > j are
known. In terms of the program structure it is slightly more convenient to increment all Z;
with j € J; for a known i by the appropriate contribution Z; 3 f;/8z;. This mathematically
equivalent looping leads to the following extended program.
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Reverse Extension

For i=n+1,n4+2,......,m
zi = fi(zj)ien {Forward Sweep}
Z; =0
'} =TIm
Zm =7
(Zi)ie1 =3
For i=mm-1,...,n+1 ‘
Z;=Z;+ 53-5' forall j € J; {Reverse Sweep }
g = (i'.):"zl

When the initial vector g is set to zero and ¥ equals one, then the resulting vector g is
simply the gradient V f. Otherwise we obtain for exactly the same computational effort the
more general result
=§+7Vf(z)
In other words the above program can increment a certain multiple of the gradient V£ to a
given vector g of the same length. This is exactly the operation we have to perform for each
elementary function in the reverse extension. Hence we have additivity of the computational
work in that m
work{f, §+7Vf}= 3 work{fi, i+ Vf}
i=n+1
for arbitrary scalars v; and vectors g; of length n;. After division by the last equation of
Subsection 3.1 one finds by elementary arguments that

_ work{f, §+7V/S} .
Q{f = work{ f} —n<:< ax Q{fi}

Note that Q{f} is slightly larger than the work ratio ¢{f} defined in Subsection 2.1. This
means that the work ratio for f is bounded above by the worst ratio for any of the library
functions f;, which is clearly independent of the total number of variables n. In other words
the set of functions f for which the work ratio Q{f} does not exceed a certain
bound Q is closed with respect to composition. This rather surprising result holds
for a wide range of work functionals, provided memory space is unlimited and free. However
as was mentioned above, memory access, i.e. fetches and stores, may be included as costs.

Now suppose the f; are restricted to the elementary arithmetic operations and standard
univariate functions on a modern mainframe. For sine and cosine the work ratio lies just
above two, and for all other system functions it is close to 1, because their derivatives come
practically free once the function itself has been evaluated. Assuming that an addition is
cheaper than a multiplication and a division costs at least 50% more than a multiplication,
one finds that the largest work ratio is attained for the multiplication function fi(z1,22) =
z1 * 2. Therefore we may use the upper bound

3 mults + 2 adds + 5 fetches + 3 stores <5

Q=Q{zi*m} = 1 mult + 2 fetches + 1 store -
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Thus we can conclude that under quite realistic assumptions the evaluation of a gradient
requires never more than five times the effort of evaluating the underlying
function by itself. Obviously the bound of 5 is somewhat pessimistic and one might
expect to incur an even smaller penalty for evaluating the gradient in practice. This was
found to be true in our experiments on the Helmholtz example. On the other hand the
extended program may involve communications overhead, e.g. extra subroutine calls, that
is not included in our work measure. '

While the reverse mode is clearly superior to the forward mode in terms of computational
effort, it may require a lot more storage than the latter. As coded in Subsection 3.2 the
forward extension associates with each scalar variable of the original program a gradient
vector of length n. Hence the storage requirement grows by the predictable factor n + 1.
This is true even if some variables are repeatedly updated during the function evaluation.
In that case the associated vectors can also be overwritten by the gradient of the latest
value of the variable. For example in the product program of Subsection 2.2 one would
normally not allocate n extra storage locations for the partial products zn4; = z1...2;
but instead store them successively in the same place. Similarly all gradients Vz,; in the
corresponding extended program could be stored in a common n-vector.

In sharp contrast the reverse accumulation in Subsection 2.2 relies on all n — 1 partial
products z,4; being still available after the final function value z;, has been computed.
Nevertheless, for this problem both modes require essentially the same storage, and on
the Helmholtz energy function reverse accumulation uses slightly less space than forward
accumulation. However, the difference in the memory requirement of the two methods can
be much more dramatic. '

3.4 Relations to Adjoints of Initial Value Problems

Suppose the evaluation of f(z) involves the numerical solution of an initial value problem
y'(t) = Fly(t),t,z] for 0<t<1 with y(0)=yo(z) ,

where y has r components and yg is a smooth function of z € R"™. For a scheme with fixed
step size h the result y,(1) will be a differentiable function of z.. Provided f depends in turn
smoothly on the final values y(1), the whole evaluation procedure fits (for each fixed mesh)
into our framework. For simplicity let us assume that f(z) = wTy(1) with some fixed
weighting vector w € R”. During the numerical integration of the initial value problem
with a p-stage scheme, one only has to store p vectors of length r. In the forward mode the
associated gradients would increase the storage requirement for this part of the program to
npr locations. In the reverse mode we have to keep track of all #/h intermediate values,
which represent a discrete approximation of the solution function y(t) for 0 <t < 1.

Interestingly enough this is exactly the information one needs to calculate the gradient
of V f(z) by solving the so called adjoint differential equation [23],

Z(t) = =FT(y(t),t,z]2(t) with z(1) = w,
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where F, denotes the Jacobian of the right hand side with respect to y. Since the boundary
conditions are terminal and the sign on the right hand side is reversed, this linear system
has exactly the same stability and stiffness properties as the original initial value problem.
The desired gradient is given by '

V()T = z(O)T-aay?0 + /; z(t)T Fely(t),t,z]dt

where F, denotes the Jacobian of the right hand side with respect to z. Thus we see that
in the limiting continuous case, the evaluation of the gradient involves a definite integration
based on the solution of an additional ODE with the same dimensions as the original initial
value problem. Consequently the work ratio for appropriate discretizations should be close
to 2 and certainly below 5.

In fact we may interpret reverse accumulation simply as a discrete analog
of the classical adjoint equations from the calculus of variations and control
theory [10]. Obviously the vector y need not be finite dimensional, and one can adopt
the theoretical arguments and numerical techniques to more general evolution equations in
Hilbert spaces.

In terms of consistency it is probably preferable to discretize only the forward integration
and then to apply reverse accumulation without explicitly referring to the adjoint differential
equation at all. On the other hand separate discretizations of the original and adjoint
equation allow the usage of standard software, with automatic differentiation only being
used to obtain the Jacobian of the right hand side [19]. With the benefit of hindsight one
could also construct an ’optimal’ spline representation of y(t) in order to economize on
storage, especially if the integrator is adaptive and involves many tentative evaluations.
Apparently nobody has studied the relative merits and computational performance of these
various options. : '

When the differential equation is solved using an adaptive grid the actually computed
function is only piecewise differentiable. As for any program that includes branching de-
pending on values of variables, automatic differentiation will generally yield the
derivative of the smooth piece containing the current argument. Obviously this
is the best one can achieve, whereas divided differences may yield completely meaningless
results if taken across a crack of the actually computed function. In transforming the orig-
inal program to the extended routine with automatic differentiation, all control statements
are left unaltered. In effect this means that the form of the loop in the original program
may become dependent on the current argument. As pointed out by Kedem [21] errors may
arise when reals are tested for equality. For example the conditional assignment

if #0 then y=(l1-cosz)/z else y=0

would lead to the derivative dy/dz at z = 0 being automatically evaluated as 0 rather than
the correct value 1/2. Obviously the original programming leaves something to be desired
in this particular example. In our implementation of the reverse mode in PASCAL-SC tests
for equality involving real variables lead to warning messages.
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3.5 Estimation of the Evaluation Error

The adjoint quantities Z; can be utilized to obtain good estimates of the total error in
evaluating f(z). Suppose one knows that the actually computed intermediate values Z;
satisfy for each ¢ > n

|2: — fi(Z;)jen| < bz
Moreover, let us assume that the discrepancies between the actual inputs (Z;)i=1...n and their

ideal values (z;)i=1..n are bounded by data tolerances (§z;)i=1..n. Then one can expect that
the actually computed final value Z,, satisfies

(#m = @) < 3 124 62

i=1

As shown by induction in [1] this inequality must hold if all functions f; are linear and the
adjoint values Z; are exact. Even though these two assumptions are rather unrealistic the
right hand side above was found in [17] to provide a usually somewhat pessimistic upper
bound on the total error. In that paper the local error bounds §z; were obtained from
the machine precision of the computer in question. However, other sources of local error
(such as discretizations, the approximation of a transcendental function by rationals or the
uncertainty of certain problem parameters) could be accounted for as well.

Since the local evaluation errors are rarely correlated and usually unbiased, it makes
sense to consider them as stochastically independent random variables with zero mean and
standard deviations §z;. This assumption implies that the standard deviation of Z,, — f(z)
is simply the /2-norm of the m-vector (Z; 6z;)i=1..m rather than the /; norm occuring on
the right hand side above. Iri et al. found that this error estimate was somewhat tighter
on their test problems. Either choice is certainly far superior to the ad hoc guesses that
users currently have to make in order to specify tolerances for stopping criteria in iterative
methods. Therefore these error estimates could be incorporated into optimization codes, to
provide optimal solution accuracy without inconveniencing the user.

3.6 Extension to Higher Derivatives

In the forward mode the Hessian V2z,, of zm = f(z) can be obtained by updating for
ti=n+4+1...m T o -

sz,- = Z ﬂivzz,‘ + Z sz—éi—(Vzk)T
jez | 9% len 99

sta.rting with Vz; = ¢; and V2z; = 0 for ¢ = 1...n. Similar chain rules of differentiation
apply for third and higher derivative tensors. While the inclusion of these recursive relations
into the original program provides in principle little difficulty, the resulting computational
effort is at least of order (m — n)n?, where p is the degree of the derivative tensor. In
particular the evaluation the Hessian matrix in forward mode will usually be roughly n?
times as expensive as the function itself.
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Applying the complexity bound for the reverse mode separately to each component of
the gradient one finds that

= of . of
{2 z : V(== z —_—
work{V/} < i=1 work { (az;)} <4 i=1 work { 31:.'}
After division by work{f} we obtain in agreement with the results in [17] and [11]

work{V?f} <0 iy work{df/0z:} work{V f} =9

work{f} work{V f} " work(f} =™

In terms of powers of n this bound is unfortunately optimal, as one can see on the simple
example

f(z) = 5[zTz + (aTz)?], Vf(z) =2z + (aTz)a, V2f(z) = I +aaT

Here the function and gradient involve both 2n multiplication, whereas the accumulation
of the Hessian requires certainly .5n2 multiplications.

Fortunately, it is often sufficient to calculate derivative vectors of the form

V1+pf(zj§1v2 vty = V[VPf(z)v10...0)
= v;f (V[VPf(z)v1v2...-1])

where the n-vectors v;,j = 1...p are given directions. For example Hessian-vector products
of the form V2 f(z) v, can be used in the conjugate gradient method (See e.g. [8] and (20]).
Second and third derivatives of the form V2f(z)v v, and V3 f(z)vivovs characterize the
quadratic and cubic turning points [12] of bifurcation theory. Moreover, the gradients
of these scalars involve terms of the form V3f(z)#;%, and V4 f(z)?,,93, which need be
evaluated during the calculation of the turning points by Newton’s method. Selected second
derivatives of the Lagrangian occur in the gradient of smooth exact penalty functions (7]
for constrained optimization.

According to the second equation above, the desired vector of p+1 — st derivatives is
the gradient of the dot product between v, and an analogous vector of p — th derivatives.
Hence it may be computed recursively using p+ 1 sweeps of reverse gradient accumulation.
This shows that evaluating the left hand side above should ‘only be about 51+P times as
costly as evaluating the scalar function f itself. Thus we have exponential growth in the
order of the derivative p but still no dependence on the number of variables n.

4 Computer Implementations of Automatic Differentiation

So far we have not really justified the adjective automatic because all program transfor-
mations were carried out by hand. Moreover, we can certainly not expect that the scalar
function f(z) is supplied by the user in form of the Original Program in Section 3.1. Also,
our specification of the reverse mode via the extended program in Subsection 3.3 is not com-
plete, because the required partial derivatives may be evaluated either during the forward
or the reverse sweep. Either variant has been implemented and yields certain advantages.
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4.1 Immediate versus Delayed Differentiation

The first variant might be called immediate differentiation with reverse accumulation. Pro-
vided only first derivatives are required, every elementary function is linearized at its current
arguments during the forward sweep, and only the computational graph with the nodes z;
and the arc values Jf;/0z; needs to be stored in a suitable fashion. Even the nodal values
z; are no longer required after the forward sweep, and they may be overwritten by the
corresponding adjoint values Z; during the reverse sweep. User defined subroutines that
return their gradient together with the function value are easily incorporated.

Similarly, if there are segments of code that produce only one or two scalar values for
the subsequent calculations, the corresponding gradients can be preaccumulated in a local
reverse sweep. In other words, these scalars may be interpreted as super — elementary
functions of the variables that enter into the segment, and their gradients can be computed
during the forward sweep. This applies in particular to single assignment statements with
complicated right hand sides, e.g.

z3 = (71 + 322)? + sin? z; exp(.2z5)

Here the the representation of z3 as a factorable function of z; and z; involves six unary
functions and three binary arithmetic operations. Thus we have originally 12 = 6 + 2+ 3
partial derivatives as arc values. Preaccumulation of the partial derivatives 8z3/0z; and
0z3/0z, would cut that number to 2. Another example is the product considered in Section
2, which might occur as a super-elementary function in a larger program. Preaccumulating
its gradient would essentially halve the number of arcs, whose origins, destinations and
values have to be stored until the global reverse sweep.

Except in the simple cases mentioned above, the detection of suitable super-elements or
funnels [28] requires some combinatorial analysis of the computational graph. If the same
function is evaluated over and over such a potentially very large preprocessing effort may
well be justified. However, it probably will only be economical when the graph is essentially
static, i.e. the control flow of the original program is largely independent of the variable
values. As far as we know this kind of combinatorial optimization on the graph has not yet
been implemented.

A major disadvantage of immediate differentiation is the impossibility of obtaining
higher directional derivatives after the forward sweep has been completed. To this end
one has to construct a complete representation of the computational graph at the current
argument, rather than just its linearization. In other words one has to store the type and
data dependence of each elementary function in a suitable symbol table. In a way this
doubles up the structural information that is already contained in the program.

4.2 FORTRAN Precompiler

There are at least three such implementations, namely JAKEF [14], GRESS [13], and
PADRE2 [17]. All three precompilers require the user to supply a source code for the
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evaluation of f(z) in some dialect of FORTRAN. The dependent and independent variables
must be nominated through explicit declarations or a naming convention. The source
code is then fed to the precompiler, which analyses its arithmetic assignment statements
very much like a normal compiler. As we have mentioned before the control statements
remain unaltered. All calculations involving real variables are broken down into elementary
arithmetic operations and univariate system functions, e.g. exponentials or trigonometric
functions. For each of these elementary functions f; the precompiler has built in expressions
of the one or two partial derivatives df;/0z;.

Using this ’knowledge’ the precompiler can construct an extended FORTRAN program
that evaluates the partial derivatives simultaneously with each elementary function. In the
forward mode of GRESS, these local partial derivatives are used immediately to calculate
the full gradient Vz; of the intermediate value z; with respect to the independent variables
nominated by the user. In the case of JAKEF and the reverse mode of GRESS, the local
partials are stored as arc values with a suitable encoding of their origin and destination,
i.e. the j — th and i — th node respectively. PADRE2 delays the differentiation by storing
instead a symbol identifying the elementary function and the current argument, so that its
first and possibly higher derivatives can be evaluated during the reverse sweep. To effect
the reverse sweep the precompilers-insert a call to a standard accumulation subroutine at
the end of the program.

The resulting extended FORTRAN programs rely on runtime support packages con-
taining various standard subroutines and possibly also problem specific scratch files. The
user then compiles and links the whole suite to obtain an executable code for evaluating the
function, its gradient, and in the case of PADRE2 also second derivatives or error estimates.
As an example the next page displays the FORTRAN subroutine PROD that evaluates the
product of n independent variables followed by the subroutine PRODJ obtained by precom-
piling PROD with JAKEF. The in-line comments on the right were added later and would
naturally result in compilation errors.

Apart from the five subroutines called in the extension PRODJ there are two other
subroutines in the runtime support library of JAKEF. Its total length is less than 150 lines
of FORTRAN. When calling PRODJ the user has to provide the integer work arrays IFS
and the real work array RFS with a sufficiently large common length LFS. The precompiler
cannot provide a lower bound on LFS, because the storage requirement is usually a function
of the number of variables and other problem parameters. This difficulty occurs in all reverse
implementations, whereas the storage requirement in the forward mode is predictable.

Even though we have had no opportunity to test it, the recently released package
GRESS, developed at Oak Ridge National Laboratory, appears to be the most versatile and
user frxendly precompiler for automatic differentiation that is currently available. It oper-
ates in the forward or reverse mode and allows for user defined functions as well as implicit
relationships. PADRE2 is the only precompiler capable of producing second derivatives and
error estimates, but as yet it is only documented in Japanese. JAKEF is quite efficient but
does not allow user defined subroutines.
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FORTRAN subroutine for evaluating product

SUBROUTINE PROD(N,X,F)
INTEGER N,I A
DOUBLE PRECISION F,GRAD
DOUBLE PRECISION X(N)

CONSTRUCT D(F)/D(X) IN GRAD(N) {Nominate the dependent

10

90001
90000

F =1.D0 /independent variables }
DO 10 I = 1,N
F = F*X(I)
CONTINUE
RETURN
END -

Extended FORTRAN program generated by JAKEF

SUBROUTINE PRODJ(N,X,F,GRAD,YGRAD,LYGRAD,RFS,IFS,LFS)

INTEGER LFS,IFS(LFS) { Lot’s of extra storage }
DOUBLE PRECISION RFS(LFS),TGRA(543)

INTEGER N,I,LQOO,LQO1,LYGRAD,IGRAD,RGRAD,IX

DOUBLE PRECISION X(N),F,GRAD(N),YGRAD(LYGRAD)

IX = 544

CALL DPINIT(IX+N,LYGRAD) { Initialization Routine }
CALL DMITO(1,RFS,IFS,LFS) {Storage of zero arc for
F=1.D0 constant assignment}
LQO0 = 1

LQOo1 = N

DO 90001 I = LQOO,LQO1 {Loop logically unaltered}
CALL DMIT2(1,X(I),IX+I,F,1,RFS,IFS,LFS) {Storage of two arcs for
F = FxX(I) multiplication}
CONTINUE » S
CONTINUE

RGRAD = O :

.CALL DPGRAD(YGRAD,LYGRAD,1,RGRAD,IGRAD,RFS,IFS,LFS) {Accumulation
CALL DPCOPY(GRAD,IGRAD,1,YGRAD(IX+1),N) of gradient}
RETURN '

END
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4.3 Operator Overloading

The use of a precompiler means in effect that the original program is compiled twice, with
a rather cryptic extended source code being generated as a by product. Hence one may ask,
whether it is not possible to saddle the main compiler with the task of issuing the instructions
that have to be executed in order to evaluate certain derivatives. This is in fact possible by a
facility called operator overloading, which is available in most modern computer languages,
including hopefully FORTRAN 8X. The key idea here is that the programmer can define
new types of variables, whose occurence as arguments of an elementary function triggers
the compiler to issue additional instructions. The source code itself remains essentially
unchanged.

Apparently the first implementation of this kind is due to Kedem [21]. Since FORTRAN
itself does not support overloading, he used the general purpose precompiler AUGMENT,
which allowed the user to write the original program in a Taylor made extension of FORTAN.
The resulting source code was then precompiled into standard FORTRAN by AUGMENT.
Since most of its facilities are more conveniently available in modern computer languages,
AUGMENT is no longer supported by its authors or anybody else. Kedem’s extension of
FORTRAN enabled the user to compute gradients or truncated Taylor series in the forward
mode of automatic differentiation. -

A few years later Rall [26] achieved a much cleaner implementation of the forward mode
in the language PASCAL-SC, an extension of PASCAL for PC Compatibles distributed by
Teubner and Wiley [22]). The transformation process is extremely simple. Suppose we have
a standard PASCAL code for the evaluation of a function in the variables X[1..V] of type
REAL. Then the X[/] and all real variables that depend on them are redeclared to be of the
new type GRADIENT, which is completely problem independent. Each variable X J of type
GRADIENT is a record consisting of a scalar part XJ.F and a vector part XJ.D[1..N]. At
each stage of the calculation the vector part represents the gradient of the scalar part with
respect to the independent variables X[1..N]. The vector part of the independent variable
X1 is initialized as the i-th Cartesian basis vector. Whenever an argument of type GRA-
DIENT occurs in an elementary arithmetic operation, say the assignment Z := X *Y, the
compiler looks for an appropriate overloading of the usual elementary operation on REALs.
Therefore Rall supplied small, problem independent operator declarations for every possi-
ble combination of arguments, e.g. GRADIENT*GRADIENT, REAL*GRADIENT, and
GRADIENT*REAL. In the last case for example, both the scalar and vector part of the
first variable are multiplies by the second variable, which is of type REAL. Unfortunately
PASCAL-SC does not allow the overloading of standard functions, so that the definition
of SIN(X) cannot be extended to arguments X of type GRADIENT. Instead one has to
introduce a new function GSIN(X) that evaluates and differentiates the sine for arguments
of type GRADIENT. This and some other limitations of PASCAL-SC require minor mod-
ifications of the program body. Any such changes could be avoided in a more powerful
programming language such as C++.

The reverse mode of automatic differentiation can be implemented in a very similar way.
Instead of GRADIENT we define a new type VAREAL that represents a record consisting
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of one REAL value and two pointers to other VAREALs. In contrast to the length of the
vector part in GRADIENT, the size of each record of type VAREAL does not depend on the
total number of independent variables. At execution time the extended program generates
a doubly linked list of such records to represent the linearization of the computational
graph at the current argument. Since they have to manipulate this data structure the
overloaded operators for arguments of type VAREAL are logically more complicated than
those for arguments of type GRADIENT in Rall’s implementation. However, according to
columns 2 and 3 of Table 1 in Subsection 2.3 the reverse mode is always faster than the
forward mode, even when the number of variables and hence the difference in the number
of arithmetic operations is small. This may partly be due to the lack of a mathematical
coprocessor or floating point accelerator on the IBM PC in use. On systems with such
devices the generation and manipulation of the doubly linked list might be relatively more
expensive and thus shift the balance a bit in favor of the forward mode. Possibly for the
same reason, it was found that recreating the list during each of several function evaluations
is no more expensive than reusing the pointers from the first evaluations during subsequent
calls. Overloading as such has no bearing on the execution time, because the type dependent
decision which declaration of an operator applies at a particular occurence in the code is
already made during the compilation. Again using the product example, we have listed
on the next page the original evaluation program in PASCAL-SC and its modification for
reverse differentiation via operator overloading. The program on the left simply reads in the
nine variable values and prints out their product. The program on the right does exactly
the same and then prints out the nine components of the gradient at the given argument.

The central sections of both codes are almost identical, except that the one on the right
needs the conversion function VARY in assigning real values to variables of the new type
VAREAL. Conversely the function EVAL extracts the real value from a VAREAL, which is
needed in particular for output operations. The type VAREAL, the functions VARY and
EVAL, the gradient accumulation procedure ACCUMULATE, the multiplication operator
* between VAREALSs, and the two pointer variables TAIL and SPARE are all defined
in the problem independent header file VHEAD.SRC occuring in the compiler directive
$INCLUDE right at the top. The explicit initialization of TAIL and SPARE, and the two
conversion functions could be avoided in a programming language like C++, where the
assignment operator can also be overloaded. Here, any oversight in making the required
modifications will result in compile or run time errors. If the independent variables are
declared as VAREALs and program executes normally, then the gradient values should be
correct. ‘ ‘ :

Compared to precompilation overloading probably requires more user sophistication but
on the other hand it clearly offers more flexibility. Provided all subprograms are compiled
together, either mode of automatic differentiation in PASCAL-SC can deal with user de-
fined functions and even recursive procedure calls. This does not require any extension or
modification of the header file. Higher derivatives and some optimization of the computa-
tional graph can also be implemented by overloading. The forward evaluation of general and
structured Hessians in the advanced language ADA is discussed by Dixon and Mohseninia
in [8]. When the currently proposed standard for FORTRAN 8X is actually implemented
one of the major objections to operator overloading will be removed.
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Reverse Automatic Diﬁ‘erentiaﬁon by Operator Overloading in PASCAL-SC

PROGRAM PROD(INPUT,QUTPUT) ;

VAR X : ARRAY[1..9] OF REAL;
Y,T : REAL;
I : INTEGER;

BEGIN

Y :=1;
FORI := 1 TO N DO
BEGIN
READ(T) ;
X[I] :=T;
Y := Y*X[I]
END;

WRITELN(Y);

END.

Program for Product Example

PROGRAM PROD(INPUT,OUTPUT) ;
$INCLUDE VHEAD.SRC
VAR X : ARRAY[1..9] OF VAREAL;
Y : VAREAL; T : REAL;
I : INTEGER;
BEGIN
TAIL := NIL; SPARE := NIL;

Y := VARY(1);
FOR I := 1 TO N DO
BEGIN
READ(T) ;
X[I] := VARY(T);
Y := Y*X[I]
END;

WRITELN(EVAL(Y));

ACCUMULATE(Y) ;

FORI := 1 TO N DO
WRITELN(EVAL(X[I]));

END.

Extension with Reverse Differentiation
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5 Conclusions and Discussion

Like several previous authors we conclude that in theory and practice the gradients of all
functions defined by computer programs can be evaluated cheaply and automatically. This
observation suggests the reexamination of the many arguments in the optimization litera-
ture, that rely at least implicitly on the seemingly reasonable assumption, that gradients
codes are often hard to to come by and run typically much slower than the corresponding
function routine.

Since truly derivative-free algorithms rarely have worked for more than a handful of
variables, many researchers recommend the approximation of gradients by central or one-
sided differences. Whenever this classical technique can be applied at all, we must have a
reasonably accurate evaluation algorithm, in which case automatic differentiation provides
a far superior alternative. Provided there is enough storage, reverse accumulation yields
truncation error free gradient values at less than 5/n times the computing time of divided
differences. This technique has been successfully implemented on problems in nuclear engi-
neering and oceanography with thousands or even millions of variables. Should the function
evaluation be so lengthy that the storage of all intermediate results is impossible, then one
can still employ the forward mode to achieve better accuracy at essentially the same cost
as divided differences.

Many line search procedures avoid the evaluation of the gradient at trial points before
these have been accepted as the next main iterate. This strategy could still make sense,
since we found that the gradient may well be four or five times more expensive to evaluate
then the function. Also, the cubic interpolation made possible by the value of the direc-
tional derivative at the trial point destroys the simplicity of usual quadratic interpolation.
Moreover the improved accuracy of the cubic interpolants rarely leads to a significant re-
duction in the overall number of evaluations or iterations. On the other hand, keeping two
evaluation routines ( one without and one with the gradient) and calling them successively
at all main iterates does not seem that economical either.

Penalty functions have long been used to convert constrained optimization problems
into unconstrained problems. If one wants the penalty functions to be exact, i.e. attain
local minima right at the solutions of the constrained problem, then there are basically two
choices. Either the penalty function is nonsmooth or it depends explicitly on the gradi-
ents of the objective and constraint functions [7]. In the latter case the resulting gradient
and Hessian depend on second and third derivatives of the original problem functions re-
spectively. Since this additional level of differentiation was thought to be unacceptable,
nonsmooth penalty functions have generally been preferred. However, automatic differen-
tiation can produce the restricted second derivative terms in the gradient of smooth exact
penalty functions at a reasonable cost, namely a fixed multiple of evaluating the objec-
tive and constraint functions. Therefore a suitable implementation of unconstrained BFGS
could be both user friendly and efficient, especially since the troublesome Maratos effect of
nonsmooth penalty functions cannot occur here.

The combination of automatic differentiation with the variable metric method BFGS
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recommended above may seem a strange mixture. Indeed, some researchers in automatic
differentiation feel that the development of quasi-Newton methods was an emergency mea-
sure, which is outdated now that we can obtain the Hessian automatically. This seems to
us a rather premature assessment. As we have seen in Subsection 3.6 the evaluation of a
Hessian-vector product by either mode of automatic differentiation may be up to 5n times as
expensive as that of the gradient. Thus we must expect that sometimes an exact or inexact
Newton method based on automatic differentiation of the gradient will be less efficient than
the corresponding finite difference.version. In view of the trouble with negative curvature
one may then prefer the simple and usually quite efficient BFGS method with line-search.

In any event automatic differentiation should allow the design of an optimization package
that requires the user only to supply source code for the evaluation of the objective and
constraint functions. The generation of the corresponding gradient codes, the detection
of sparsity, and the determination of the maximal achievable solution accuracy, could all
be done automatically. Ideally, the selection of a suitable linear equation solver for the
computation of steps on large structured problems could also be left to the package.

In nonlinear least squares it is usually assumed that the calculating the gradient of the
residual norm requires the evaluation of the full Jacobian. Hence, the argument goes, we
might as well fully utilize this derivative information by employing a Gauss-Newton like
procedure. However, as is the case for certain inverse problems [29], the Jacobian matrix
may be huge and dense, whereas reverse accumulation always yields the gradient cheaply.
Then nonlinear conjugate gradients or a variable metric method with limited memory is
clearly the only choice. On the other hand, there are many problems, where the Jacobian
is of moderate size and costs little more than the residual vector to evaluate.

Throughout this paper we have restricted our attention to a scalar valued function f(z)
in n variables. Naturally all results and techniques can be separately applied to the m
components of a vector valued function F(z). However, this approach may be far from
optimal if the component functions are closely related, i.e. have many common expressions.
Also, if m is significantly larger than n the forward mode of automatic differentiation is
likely to be cheaper. Currently there appears to be no clearly superior strategy for the
evaluation of derivative matrices (rather than vectors).

Even though the underlying mathematics are straight forward much remains to done
in the field of Automatic Differentiation. With regards to general purpose differentiation
software for various machine architectures, the problems are mainly of a computer science
nature. However, some combinatorial analysis of the graph structure might be beneficial for
the optimal evaluation of derivative matrices and the local preaccumulation of gradients,
which was briefly mentioned in Subsection 4.1. Also, as in the case of evolution equations
discussed in Subsection 3.4, there are probably other problem classes in which the reverse
sweep has a natural interpretation and can be implemented in various ways. Finally, au-
tomatic differentiation could and should be integrated into numerical packages for special
purposes, such as optimization, stiff differential equation, boundary value problems, optimal
control, and path-following with bifurcation analysis. This process would be a lot simpler
and more widely acceptable, if the next FORTRAN standard were to allow user-defined
types with function and operator overloading.
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