An SQP Augmented Lagrangian
BFGS Algorithm for Constrained
Optimization

R. H. Byrd
R. A. Tapia
Yin Zhang

CRPC-TR89007
May, 1989

Center for Research on Parallel Computat:
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Revised November, 1990.

An SQP Augmented Lagrangian BFGS Algorithm

for Constrained Optimization *

R. H. Byrd ! R. A. Tapia *and Yin Zhang?

Revised November, 1990

Abstract

In this research we present an effective algorithm for nonlinearly constrained optimization
using the structured augmented Lagrangian secant update recently proposed by Tapia. The
algorithm is globally defined, and uses a new and reliable method for choosing the Lagrangian
augmentation parameter that does not require prior knowledge of the true Hessian. We present
considerable numerical experimentation with this algorithm, both embedded in a merit-function
line search SQP framework, and without line search. We compare the algorithm to the widely-
used damped BFGS secant update of Powell, which, like ours, was designed to circumvent the
lack of positive definiteness in the Hessian of the Lagrangian. We also establish that when
our algorithm converges it converges R-superlinearly, which is a strong result in that it makes
no assumptions on the approximate Hessian or the augmentation parameter. An immediate
corollary is a new result in unconstrained optimization: whenever the unconstrained BFGS
secant method converges, it does so Q-superlinearly. Our study has led us to the conclusion
that when properly implemented Tapia’s structured augmented Lagrangian BFGS secant update
has strong theoretical properties, and in experiments is very competitive with Powell’s damped
BFGS update.

Keywords: BFGS secant method, augmented Lagrangian, SQP methods, superlinear conver-
gence, constrained optimization.
Abbreviated Title: An SQP BFGS Algorithm.

*Research sponsored by SDIO/IST/ARO,AFOSR 85-0243, and DOE DEFGO05-86ER 25017, and NSF grant
CCR8702403, AFOSR grant 85-0251, and ARO contract DAAL03-88-K-0086
'Department of Computer Science, University of Colorado, Boulder, Colorado 80309

!Department of Mathematical Sciences, Rice University, Houston, Texas 77251-1892
$Department of Mathematics and Statistics, University of Maryland Baltimore County, Catonsville, Maryland

21228,

1 Introduction

In this work, we will be concerned with the equality constrained optimization problem
minimize f(z),

1.1
subject to Ah(z) =0, (1-1)

where f :R® = R, h: R® — R™ (m < n) and f and h are generally nonlinear. The Lagrangian
function associated with problem (1.1) is the function

Uz,7) = f(z) + ATh(z) (1.2)

where A € R™ is called the vector of Lagrange multipliers or simply the Lagrange multiplier. We
will be examining algorithms for solving this problem based on successive quadratic programming
that make use of a modification of the Lagrangian in (1.2), the augmented Lagrangian.

As usual V will denote the gradient operator, V2 the Hessian operator and subscripts on
these quantities signify partial differentiation. We will denote V f(z) by g(z) and the matrix whose
columns are Vhy(z), Vhy(z),..., Vhm(z) by A(z). On occasion, we employ the convention of writing
gk for g(zi) and g. for g(z.), and similarly for other functions and other arguments. This usage
should be clear from the context. We will use z, to denote a local solution of problem (1.1) and
A. to denote a Lagrange multiplier vector, satisfying Vz£4(z.,A.) = 0.

In unconstrained optimization the BFGS secant update has emerged as the secant update of
choice. The convergence analysis of BFGS secant methods requires that the Hessian matrix that is
being approximated be positive definite at the solution. Furthermore, this requirement is satisfied
at any nonsingular local minimizer. »

It is well-known that a formal extension of the BFGS secant method can be made from un-
constrained optimization to constrained optimization (problem (1.1)) by employing the so-called
successive quadratic programming (SQP) framework. In anticipation of our later needs, we now
state this formal extension in a line search globalization environment.

Algorithm 1.1 (Line Search SQP Lagrangian BFGS Method) Given zo € R" and a sym-
metric Bo € R™"*™, for k = 1,2, ..., until convergence do

Tky1 = Tk + Tidg,
Ak+1 = A(Zk, T4, Br), (1.3)
Sk = ZTk4l — Tk
Vi = Vl(Zrs1, Mes1) = Val(Zhy Aks), (1.4)
By = Bi-— E%.’ﬁﬂ fun’ (1.5)

i Bisk yi Tg,
where the line search direction d is the solution of the quadratic programming subproblem
minimize g{d + -lz-dT Byd,

1.6
subject to ki + ATd =0, (1.6)

2

and the step-length 7 is_chosen to decrease a given merit (line search) function. The matrix B
is interpreted as an approximation to V2£(zk, Ak). The function A in (1.3) is an updating formula
for \. A common choice for Ai4; in (1.3) is the multiplier associated with the solution di of the
subproblem (1.6). Observe that By, satisfies the secant equation Bi413k = yf.

There is a major flaw in Algorithm 1.1. This flaw will be obvious once we invoke the following
assumptions, which are standard in the theory of quasi-Newton methods for problem (1.1). They
will be assumed throughout this paper.

Assumptions

A1l f and h; have second derivatives which are Lipschitz continuous in an open, convex neighbor-
hood D C R™ of the local solution z..

A2 A(z.) has full rank.
A3 pTV2(z.,A\.)p > 0 for all p # 0 satisfying A(z.)Tp = 0.

Note that A2 implies that A. is unique.

The deficiency of Algorithm 1.1 is that the local convergence theory for BFGS secant methods
requires V2{(z.,\.) to be positive definite and yet satisfaction of this condition is not guaranteed
by the standard assumptions A1-A3.

When a line search globalization strategy is added to a BFGS secant method, it is essential
that the approximate Hessian matrices By be positive definite. The well-known hereditary positive
definiteness property of the BFGS secant update is that positive definite By leads to positive
definite Bi4, if and only if yirsk > 0. If V2{(z.,.) is not positive definite, we cannot guarantee
the condition y{Tsx > 0 even locally, i.e., for zx and Zi4, near z., let alone globally. The desire to
enforce this condition globally will play a major role in the present research.

Alternative formulations of the SQP Lagrangian BFGS secant method which circumvent the lack
of positive definiteness of V2£(z.,).) have been challenging researchers now for many years. Per-
haps the first alternative considered was replacing the Lagrangian with the augmented Lagrangian
associated with problem (1.1), (see Han [12], and Tapia [23]). This latter function is

L(z,),p) = (=) + 5h(2)Th(z), (p 2 0). (1.7)

Observe that the Hessian of the augmented Lagrangian at a local solution of problem (1.1) has the
form

Hu(p) = VEL(2) Ay p) = V3U(20, A, 0) + pA(z2) A(z.)T. (1.8)

It is well-known that for any augmentation parameter p greater than a threshold value g, H.(p) is
positive definite; therefore, if yx is defined as (we will use yi as a generic term and different choices
of yx will be denoted by different superscripts)

YE = Vo L(Zk41, Me+150) = Vo L(Zks Ak+1,P), (1.9)

3

we can guarantee that near the solution yf Tsi > 0 for p sufficiently large.

We arrive at the (line search) SQP augmented Lagrangian BFGS secant method for problem
(1.1) by replacing y{ in (1.4) with y¥ from (1.9). The Broyden-Dennis-Moré theory was used by
Han [12], Tapia [24] and Glad [9] to establish local and Q-superlinear convergence in the pair (z,A)
for a version of this algorithm under the standard assumptions A1-A3. Fontecilla, Steihaug and
Tapia (8] showed that the convergence in z is actually Q-superlinear.

Though theoretically attractive, this alternative has serious practical problems. First, a priori
knowledge of the threshold value 5 for a given problem is generally unavailable. Second, the attempt
to use large p seems to present severe numerical problems; see the examples given by Tapia [24] and
Nocedal and Overton [16]. See Appendix B of Tapia [25] for some interesting comments on this
issue. We emphasize that y£ given by (1.9) has the serious disadvantage that at some iterations it
may not be possible to choose p sufficiently large so that y¥ Ts, is positive (even though it must
be possible near the solution).

Another direction taken to circumvent the lack of positive definiteness of V2{(z.,\.) is to use
the BFGS secant update in the context of reduced Hessian (or projected Hessian) methods. In
contrast to full Hessian methods, reduced Hessian methods approximate the Hessian restricted to
the null space of the Jacobian of the constraints, where it is expected to be positive definite. Since
the concern of the present work is full Hessian methods, we refer interested readers to Coleman and
Conn [4], Nocedal and Overton [16], and Byrd and Nocedal (2] for further references on reduced
Hessian methods. Fenyes [6] and Fontecilla [7] proposed full Hessian methods which have some of
the flavor of the reduced Hessian methods.

Powell (19] proposed another modification to the (line search) SQP Lagrangian BFGS secant
method which compensates for the lack of positive definiteness in the Hessian at the solution.
Despite the fact that the true Hessian of the Lagrangian may not be positive definite at a solution,
Powell chose to maintain a positive definite matrix by modifying y{ whenever necessary. The
modified yf (say) has the form

Yk = 0kyf + (1 — 6k)Brs, (1.10)

where the parameter i is contained in (0, 1]. Notice from (1.5), if 6 = 0, then By, = By; while
if 6x = 1, we obtain By, as the full BFGS update of Bi. For this reason, with Griewank [10], we
refer to the use of (1.10) in (1.5) as the damped update. Powell chose 6 so that

yE Tsi 2 nsf Bisi
is always satisfied for some n € (0,1). More specifically, the number 8 € (0, 1] is given the value

9 { 1, vETse > nsf Besi
k —1

(1 = n)s¥ Bisk/(sT Bisk — yE Tsk), otherwise.
A value for 7 of 0.2 was proposed in [19] and 0.1 in [21]. This technique preserves positive definite-
ness of By even far from the solution, and therefore the subproblems (1.6) are always well-posed.

.

4

Powell’s damped BFGS secant method has proved to be computationally very successful (see Hock
and Schittkowski [14], for example). However, there a proof of local convergence is not known for
this algorithm. Given convergence, Powell (18] proves an R-superlinear rate, but only under the
assumption of uniform bounds involving the approximate Hessians. Practically, although Powell’s
damped BFGS update works very well in general, it does sometimes encounter difficulties (see
Powell [21)).

Recently, Tapia [25] suggested two new BFGS secant updates based on the structure of the
augmented Lagrangian. He was able to prove that the corresponding SQP methods gave local and
Q-superlinear convergence in the variable z under the standard assumptions and the assumption
that the augmentation parameter p was greater than a threshold value 5. No guidelines or heuristics
were given for choosing the augmentation parameter p.

It is worth mentioning that all the above techniques except for Powell’s damped update have
been restricted primarily to a local framework.

The objective of the current research is to first develop effective guidelines for choosing the
augmentation parameter in Tapia’s BFGS structured augmented Lagrangian secant algorithm
(SALSA). This choice must produce globally a yi such that yfsy > 0 so that the positive def-
initeness of approximate Hessians will be maintained. We then describe a practical implementation
of SALSA, and make a theoretical and experimental investigation of its behavior.

The bulk of our numerical study of SALSA will be accomplished by using it in an SQP framework
in conjunction with a line search on an ¢; merit-function. Because of the demonstrated effectiveness
of Powell’s damped BFGS algorithm (which we will refer to as PDA) on many problems, we compare
SALSA and PDA in this context. However, in order to demonstrate that differences observed are
not purely consequences of the line search strategy employed we also include comparisons of the
local versions of both algorithms (i.e. without line search).

Our theoretical results are an advance over what has been shown about SALSA and other aug-
mented Lagrangian based SQP methods. We analyze the algorithm and its adaptive procedure for
choosing the augmentation parameter pi, without assuming that this parameter is chosen greater
than some threshold value. We show, under only Assumptions A1-3 and no assumptions whatso-
ever on the approximate Hessians and the choice of the augmentation parameter, that if SALSA
converges, then the convergence in z is R-superlinear. This is similar to, although somewhat
stronger than, the result of Powell for PDA which is mentioned above. Additionally, our theorem
implies, as an immediate corollary, the new result that under the standard assumptions only, i.e, no
assumptions on the approximate Hessians, whenever the BFGS secant method for unconstrained
optimization converges it converges Q-superlinearly.

This paper is organized as follows. In Section 2, we briefly present SALSA as Tapia proposed
it. In Section 3, we discuss some critical issues concerning the globalization and implementation of
SALSA and describe a complete algorithm. In particular, we develop a choice for the augmentation
parameter p, propose a merit function and present the complete line search algorithm. Section 4

is devoted entirely to demonstrating the convergence rate result discussed above. Our numerical

results comparing SALSA and Powell’s damped BFGS algorithm are given in Section 5. Section 6
contains concluding remarks.

2 The Use of Structure in the Augmented Lagrangian

SALSA was designed to take advantage of structure present in the Hessian of the augmented
Lagrangian function for problem (1.1). By way of motivation, observe that the Hessian of the
augmented Lagrangian (1.8) displays significant structure in that there is a clear separation between
the first and second order information.

Recall that the Lagrangian {(z, \) is given by (1.2) and that the augmented Lagrangian L(z,), p)
is given by (1.7). We use the superscript £ and L to denote quantities associated with the Lagrangian
- and the augmented Lagrangian, respectively. The superscript S is used in place of the superscript L
when the quantity in question has been derived using the structure of the Hessian of the augmented
Lagrangian.

;From the definitions of yf and yf (see (1.9) and (1.4)),

Y = b+ p(Aksr hisr — Arhi)
= ¥+ h;:ll Vihﬂl + Aer1 AL)3k + O(llskll?)
= Y +PAk1AL, 5k + O(0}),

where in this case we use the superscript (i) to denote the i-th component of the vector A; and
ok = max{([|zk+1 = 2|, llzx = z.|1}. (2.1)
Eliminating the second-order term of oy from y£, we have
Yk = UE + PAks1 AT, 5k (2.2)
It should be noted that the use of yf in place of yF does not prevent the local analysis for secant
methods from being carried out since the difference between y¥ and yj is O(o?).
For the sake of completeness we present the line search SQP structured augmented Lagrangian
BFGS secant algorithm - SALSA in its entirety instead of merely making appropriate changes in
Algorithm 1.1. .

Algorithm 2.1 (SALSA) Given zo € R™ and a symmetric positive definite matriz By € RrX",
for k = 1,2,..., until convergence do

Tker = Tk + Tidk,
’\k+1 = A(zks zlc+lan)’ (2‘3)
Sk = ZTk41 — Tk,
yks = Vel(Tr+1, Akt1) — Vl(Thy Aky1) + PAk+1A£+13k’ (2.4)
BLS STBL S,ST
Bl€+1 = BE-Zk k9% Tk o y:?%j (2.5)

i, By sk Y

where the line search direction dj is the solution of the quadratic programming subproblem (1.6)
with BE in place of By, and the step-length 7 is chosen to decrease a given merit function. The
matrix B,f'_,_l is interpreted as an approximation to V2L(Zk41, Ak41,0)-

In SALSA, the approximate Hessian of the augmented Lagrangian B,f:,_1 satisfies the following
structured form of the augmented Lagrangian secant equation

Bfiisk = % = ¥k + pArs1 AT 5k (2.6)

For p large enough, the local positivity of y§ Tsj is guaranteed and consequently the hereditary
positive definiteness of BF is achieved. Even globally, y3 Tsi can be made positive by increasing p,
as long as A£+13k # 0. To see this notice that

vt Tsk = yt Tox + pll AT 0:ll2. (2.7)

However, as discussed in Section 3, some back-up strategy is needed to make yf Ts, > 0 when
AT, sk is numerically zero and y{7s, < 0.

It is interesting to note that while we have been viewing SALSA as an SQP augmented La-
grangian secant method, it can be equivalently viewed as an SQP structured Lagrangian secant
method. To see this recall that V2L, = V¢, + pA.AT; thus it is quite natural to consider B,ﬁ +1
defined by -

¢ _ pL T
Biy1 = Biy1 — PAks1 4k

Now from (2.6), we see that Bf, satisfies the Lagrangian secant equation
Bf 115k = uk- (2.8)

Moreover, B +1 is positive definite on the null space of AZ'H, since on this space it coincides with
B,EH. It also follows that the corresponding quadratic programming subproblem (1.6) using B{ +1
will have the same solution. Hence SALSA can be viewed as an SQP Lagrangian secant method
with the highly desirable property that Bf,, is positive definite on the null space of A7, ;.

In SALSA the structure in the Hessian of the augmented Lagrangian was utilized only in the
definition of y§, but not in the definition of BE. Tapia [25] considered utilizing the structure in
both definitions and derived what he called the augmented scale BFGS secant update. Essentially,
he was able to show that this complete use of structure led to cancellations throughout the SQP
method and the resulting algorithm could be viewed as an SQP Lagrangian secant method where
only the part of the BFGS secant update corresponding to the scale was changed.

Initially, we experimented with the SQP augmented scale BFGS secant method and found that
it does not lend itself to a line search globalization. This is due to the fact that the Hessian
approximations are not necessarily positive definite. For this reason, we decided to restrict our
attention to SALSA. However, the augmented scale BFGS secant update may find use in a trust-
region globalization.

3 Development of SALSA

In the previous section we have discussed why we believe that the SALSA updating procedure, that
is using (2.5) with (2.4), should be a good one. However, several important issues associated in
the development of the algorithm SALSA remain to be addressed. In this section we first discuss
a weighted form of the augmentation, and then we take up the essential issue of choosing the
augmentation parameter p. We discuss the issues of subproblem solution, multiplier estimates, and
line search, which must be addressed for any SQP algorithm, and finally we give a precise statement
of the algorithm. We mention that the current version of the code is given primarily for the purpose
of testing the viability of SALSA and performing numerical comparative studies. Further effort is
needed to optimize each component of this algorithm.

3.1 Weighted Augmentation

The Hessian of the (unweighted) augmentation term ph(z)Th(z) at any feasible point, in particular
at a solution z., is of the form pA(z)A(z)T. If the constraints are badly scaled, then the matrix
A(z)A(z)T may be ill-conditioned (here the condition number of a singular matrix is defined to be
the ratio of its largest and smallest non-zero singular values) and can have negative effects on the
updating process through the use of AxA7 si in y7. It is natural to scale the constraints by using
a weighted augmentation term ph(z)TW(z)h(z) which produces at z. a well conditioned Hessian
matrix pA(z.)W(z.)A(z.)T. The matrix W(z) € R™*™ js called a weighting matrix and should
be positive definite in the area of interest. Under the assumption that A(z) has full rank for all z;,
a good choice for the weighting matrix seems to be

W(z) = [A(2)T A(=)]"
because we can write
AW AT = A (AT A PAT = YT,
where Y} is any orthonormal basis for the range space of A. Clearly, the matrix Y;YT always has
unity condition number. Moreover, as long as a weighting matrix W(z) and its inverse are uniformly

bounded in norm, all our theoretical results remain valid. Based on the above consideration, we
therefore use the matrices YkY,,T instead of A;.AZ' in our algorithm. Specifically, we define

ve = Ui+ PkYk+lYk1-;-13k~ (3.1)

In our computational experiments, this weighting technique worked somewhat better on the

whole, and we did find examples for which it significantly improved the robustness of the algorithm
when compared to the unweighted version.

3.2 Choice of Parameter p

A fundamental issue in using the augmented Lagrangian in a secant algorithm is the choice of the
augmentation parameter p, and this is thus an issue for SALSA also. Although, as mentioned

8

in the introduction, any_value of p greater than the threshold value 5 will make the Hessian of
the augmented Lagrangian H.(p) = V2L. = V£ + pA.AT positive definite, 5 depends on the
unknown matrix V. £2.

The pi'a.ctice of choosing a large p from the very beginning has proved to be computationally
ineffective for the SQP augmented Lagrangian secant method. Not surprisingly, as was also observed
by Martinez [15], we found that the same ineffectiveness also exists for the structured version,
SALSA. '

An alternative approach that we consider here is to choose pi just large enough so that yg s
is positive. The formulation of SALSA provides a natural framework for doing this. As we can see
from the definition of yf in (2.4), p can be increased whenever needed to make yf Ts; sufficiently
positive, as long as Af, sk # 0. The difficult question here is what is meant by sufficiently
positive. Suppose we choose pi just large enough so that y7 Ts, = ﬂsfsk. If B is a very small
positive constant then Bi4; will be nearly singular (having an eigenvalue less than or equal to 3)
whenever yf s Si 0. If B is reasonably large, then we get a poor approximation to H. whenever
the smallest eigenvalue of the reduced Hessian ZTH.Z., where Z. is an orthonormal basis for the
null space of AT, is much less than 8 (provided that s; has a significant component in the null
space). However, if we impose the condition

vi sk >y (3.2)

”Yk+13k”2 - '

we have a condition on y,f Ts, that is inactive when sg is in the null space of AZ:H and the Hessian

of the Lagrangian is positive definite on that null space, and avoids near singularity of B,f'+1 when

sk has a significant range space component Y,?,;lsk. Consequently, as will be shown in Theorem
3.1, imposing the condition (3.2) solves the problem near the solution.

However, when this positive definiteness fails, as it may far from the solution, we argue that
this bound should be larger. This is because the term yfyf T/yZ Tsy in the BFGS updating
formula (2.5) can get excessively large when y§ T s, is small relative to ||y7||>. To demonstrate this
phenomenon, let us suppose that we are in a situation where yf7s; < 0 and [|Y,T sl < [lvéll-
If pi is chosen such that y§ Ts, is comparable to [|Y,X,skl|?, then yf Tsi < [lvfll. On the other
hand, the magnitude of [|yJ|| (i-e., |lvf + PkYk+1Y5 1 3kl]) can be as large as as the dominant term
llyf]l. Consequently, the rank-one matrix y;fyf T yf T3, can be excessively large, since its unique
nonzero eigenvalue is ||y3||2/y; Ts.. As a result, the newly updated matrix B,f’+1 could be badly
ill-conditioned. To see this, observe that a lower bound for the spectrum condition number of B, ,
is

2
TBEave/vETYE | (lvil Ilskll) .
sZ'B,f‘Hsk/sfsk y,f T,

In deriving the above estimate we used the facts B, sk = y¢ and

ve TBE vd > (w8 Tv2)? /v T sk

Now it should be clear that the condition number of Bf,, will be large when y§ Ty is small relative
to ||yl llskll. In experiments we have observed algorithm failures due to this behavior. However
these failures were avoided by requiring in addition that y Ts; > lyk skl

Therefore, combining this condition with (3.2) yields the following strategy for choosing pi at
each iteration. Whenever ||Yk1.;.13k” is sufficiently positive, we choose pr > 0 such that

¥R Tk = vE Dok + prst Y1 Vi s > max{|yf Tsel, o[V G 1 5%} (3.3)
where v is a positive constant. The condition of IlYkT_;_lskll being sufficiently positive will be discussed
in the next subsection. In that case we need a back-up strategy, which will also be discussed in the
next subsection.

It is straightforward to show that (3.3) is equivalent to requiring

k
w8 ok 2 max{EE, LUV oul (34)

In our implementation, we set v = 0.01. We choose p; to be the smallest nonnegative value
satisfying (3.3), which implies that we choose py = 0 if

vk Do > vV sl (3.5)

It can be seen easily that when si is in the null space of AZ'H and z, is near z., which implies
v£Tsk > 0 under Assumption A3, condition (3.5) will hold. On the other hand, when the step
has a significant range space component Yi,, Y,g;lsk, near-singularity of B,f'+l is avoided because
sZ'B,f'“sk > u||Y,3_',,18k||2. Moreover, the condition yg Tsi > |yt Tsy| is designed to prevent the
deterioration of B,f‘+l due to relatively small yf Ts). Our computational experiments have shown
that this heuristic condition works quite well. In addition, as a result of enforcing (3.3) y7 has the

following nice property.

Theorem 3.1 Under Assumptz’onf A1-A3, if pi is'chosen t;) satisfy (3.8), then there is a constant
M such that
ve Tk > My|sel? (3.6)

for all) and zi4, sufficiently close to z. and Ay sufficiently close to ..
Proof: Let j be some value such that H.(3) = V2{(z.,\.) + pA(z.)W(z.)A(z.)T is positive

definite, and let y; be the smallest eigenvalue of H.(p).
Case 1: [[Y,L skll® < p1llskl]?/(35). Then for some constant C > 0,

ye T > yiTse
> sTH.(p)sk — Collskl|® = pst Yeer1 Y15k
> (w1 = Cow)llsell? = plIYi&sell?
>

H#1 2
—||s
2 lse]

10

when o) = max(||zi — zol, 1241 = 2. |, |41 = Aul]) < p1/(3C).
Case 2: ||Y,L sk||? > p1|skl|?/(35). Then by (3.3)

Vil
v Ton 2 IVl 2 ol (3.7)
In either case our result holds with M; = min(#&}, %1]. a

Note that the only property of the matrix Yi4, used in the proof was the existence of p such
that H.(p) is positive definite. This means that Theorem 3.1 also holds for any choice of yx such
that yx — y2 = O(ok||sk||) or one using Ar4; in place of Yiyy.

A nice feature of this result is that it shows that we can pick px so that y7 acts as though
H.(px) were positive definite (it satisfies (3.6)) even though we don’t know whether we have chosen
pk large enough to make H.(px) positive definite.

3.3 A Back-up Strategy

Theorem 3.1 seems to indicate that we have a good strategy for choosing the augmentation pa-
rameter and maintaining positive definiteness of By in a neighborhood of the solution. In fact it
actually allows us to maintain positive definiteness whenever Y,Z_'Hsk is nonzero.

However, in the above strategy for making y,f Ts, positive, there is one case that the structured
augmented Lagrangian approach is incapable of handling; that is when

Y,g_;,ls;c =0 and yf‘Tsk <0. (3.8)

This is analogous to the case y7 sy < 0 in unconstrained optimization. We have shown that this will
not happen when the current iterate is already close to a solution, but globally this may happen. In
addition, if yf Tsk < 0, and ||Y,Z, sk|| is not zero but very small, the choice of p given by (3.3) would
be excessively large. Therefore in these cases we need a back-up strategy for preserving positive
definiteness, and we need a rule for deciding between the back-up strategy and the SALSA update.
A possible option for such a back-up strategy is to just not update, i.e., set B,{‘_H = BE whenever
the case (3.8) occurs. However, in experiments with this strategy we have observed that once an
update is skipped, the algorithm often continues not to update for a number of iterations without
much progress, requiring a large number of iterations to solve the problem. The problem with the
not-to-update strategy seems to be its sacrifice of a self-correcting mechanism. This sacrifice may
cause problems in the following way. Suppose the not-to-update strategy is invoked when the step
sk is very small due to very large elements in the matrix BE as well as small ||h(zk)||. Because s
is small, z441(= zi + &) will be close to zx. Since yﬁrsk < 0, we would like sz,f'Hs;, to be small.
Instead, the update is skipped and B,f‘_H continues to be large. As a result, sg4, is again very small
and has a direction close to that of si (because Bf,,,l = BF and zi41 = zi). At the (k + 1)-st
iteration the update will be skipped again and this process can be repeated for many steps.
Having been convinced that skipping updates is not a good strategy, we adopt the following
back-up strategy. Noting from (3.1) that yf is augmented by a constant times the projection of s

11

on the range space of Ais.1, it seems natural to use sy itself whenever its projection on the range
space of Ai4; is too small. Therefore, whenever (3.5) is violated and

Y% skll < min{By, [|sell}Hlsll, (3.9)

we replace Yi4) Y&lsk in (3.1) by sx. Here 5; < 1 is a small positive number. We choose the value
B1 = 0.01, which seems to work well experimentally. When using this back-up strategy we choose
pr such that '
Y8 Tok = yET sk + prsf sk > max(lyf Tsel,)|V 1skl?) (3.10)
is satisfied, which is analogous to condition (3.3).
Condition (3.9) is designed to ensure that the back-up strategy is eventually turned off as z;

approaches z.. This is due to the fact that ||Y,3_;_lsk|| is of order O(||sk(|?). This is the subject of
the following result.

Theorem 3.2 Assume A1-A3. If condition (3.9) holds, z; and zy4, are sufficiently close to z, and
Ak+1 is sufficiently close to \., then condition (3.5) is satisfied and therefore the back-up strategy
18 not selected.

Proof: Suppose condition (3.9) holds and let Z,,.; € R(®™™)xn be such that its columns form
an orthonormal basis for the null space of A7,,. It follows from WY& skl < Billsk]| and s =

Zk+lzlz'+13k + Yk+lYk1:,.13k that
T 2. _Bb T 2
IYesrsell® < 1- 52 1 Zics1ell®

Substituting the above into ||[Y;T sk < ||skl|?, we obtain

T T .12 T 2 |lZZ'+ls,,||2
IYeraskll < 1 Zisasell® + Yeqasill® < -4 (3.11)
Let
' o2
Gy = /0 Vil(zk + TSky Ag41)dr.
Then, we have
viTsr = s{Gisk = sf Zks1 (201G Zik41) ZE 1 9k
+ "zYk+1.(Yk1;1GkYk+l)YkI-;-l"k + 287 Vi1 (Y1 G Ze41) 2T, sk
= 5k Ze41(Zi1GrZin1) Zia ok + O(1 25 8411°)
by (3.11). By Assumption A3, for zx and zi4; sufficiently close to z. and ¢4 to A,
3% Zu41(Z251GrZin) ZE 3 2 pll ZE sl
for some constant u > 0. Therefore, by (3.11)
v Tor 2 SN ZFal? 2 501 - ADIYG ol 2 vlIYE el
for ||Y,3;13k|| sufficiently small, and condition (3.5) is satisfied. o

12

3.4 Subproblem Solution and Multiplier Estimates

Our procedure for computing the solution of (1.6) is as follows. A QR decomposition of A4} is first
performed, namely

Av=(Y z) (I;") = YiRy, (3.12)

where Y, € R™*™ is an orthonormal basis for the range space of A, Z; € R**(®=™) is an orthonor-

mal basis for the null space of AZ', and Ry is an m by m upper triangular matrix. The solution d;
of the subproblem (1.6) is given by ‘

de = VoY Tdi + 2127 ds, (3.13)

where
YTdr = ~R;Thy, and ZFdi = —(ZF BEZ4)~2 27 (gx + BEY2 YT dk). (3.14)
The multiplier associated with the QP subproblem (1.6) is

A = —(AF A0)"' AL (i + BEdy), (3.15)

We use this multipler estimate in defining yf. Another possible choice for the multiplier estimate
is the least-squares estimate

’\gfl = ‘(A{+1Ak+l)—lA£+1gk+l- (3.16)

However, in our experiments we found that use of this value resulted in significantly more
failures than the use of (3.15). Therefore, we will use the QP multiplier estimate to form yf in our
numerical tests, that is

vk = Vol(zre, M) = Val(zi, AZH). (3.17)

3.5 Line Search

In order to test the viability of SALSA in a line search globalization framework, we need to specify
a merit function for the algorithm. Our purpose here is not to determine the best merit function,
but to use a simple robust function to provide some context for testing our updating strategy. We
choose a merit function of the form
#(z,w) = f(z) + Y w|AO(2)]. (3.18)
=1

This type of merit function was first used in an SQP algorithm by Han [13] and was later also used
by Powell [19]. .

Let ¢r(T) = ¢(zk + 7dk, wk), T > 0 and let ¢},(0) be the directional derivative of ¢(z, wi) with
respect to z in the direction di — the solution of subproblem (1.6). Then

m -
#.(0) = g¥di = 3 w|aY),
=1

3

13

which follows from the fact that dj satisfies the constraints of subproblem (1.6)
VA Tg =), i=1,2,...,m
It has been shown by Han [13] that a sufficient condition for ¢/(0) < 0 is
) > ()9 (3.19)

for all ¢, where z\,‘ +1 is the Lagrange multiplier associated with the k-th QP subproblem. Han
(13] proves a global convergence result assuming (3.19) is eventually satisfied for a constant w.
This holds under his conditions if the weights are chosen to be monotone increasing. However, it
has been observed that the performance of this merit function is rather sensitive to the choice of
the weights w. Too large a w can also slow down convergence. Powell [19] first used in his code
VFO2AD a strategy that allowed w to fluctuate, more specifically,

w) = max{|(ATF)DL, 0.5(1(AZP)D] + w2)}

Though this strategy has been shown [14] to be computationally successful, it does not meet Han’s
condition for global convergence. Moreover, Chamberlain [3] constructed an example that shows
that Powell’s strategy of choosing w can lead to cycling instead of convergence.

We performed numerical tests using monotonically increasing weights and found that this strat-
egy resulted in a large number of failures with both Powell’s method and SALSA. This was par-
ticularly true when we used non-standard starting points which were far from the solutions or ill-
conditioned initial Hessian approximations. It seemed to occur fairly often that an early estimate
of the Lagrange multiplier would be much larger than the true multiplier. Then the corresponding
large weight, kept large by the monotonicity reqmrement would cause the line search to take very
short steps, sometimes leading to failure.

In order to have a more meaningful comparison in a realistic environment, we used the following
simple nonmonotone strategy. We define at the k-th iteration

0w = (A9 + 6), i=1,2,.

where pur > 1 and § > 0 (here we choose § = 0.0001) and z\k +1 is the Lagrange multiplier estimate
obtained by solving the quadratic programming subproblem. Although a value of ux = 1 does give
a descent direction (see (3.19)), we found that we were able to take full steps more often if u; was
chosen large enough so that

%(0) < —|gi di.

Consequently, the formula we used for choosing u; was

pr = max{1, 2¢] dk/(z [(CHARIERIE

=1

3

14

This is somewhat similar to-a condition proposed by Powell [20] in the context of a monotone
strategy. Of course, we can make no global convergence guarantees for this nonmonotone strategy,
and it is certainly possible that instances of cycling like those discussed by Chamberlain (3] could
occur. However, based on our experiments, the likelihood of cycling seems to be extremely low (it
was never observed) for equality constrained problems. In addition, it should be noted that most
proofs of convergence involving quasi-Newton methods and merit functions (except that given in
(2] for the reduced Héssian case) assume the boundedness of ||Bi|| or ||B;|l, a property whuch,
even locally, does not follow from our analysis of this method. Thus even if we used monotone
increasing weights, we would have only a very weak guarantee of global convergence.

A back-tracking strategy is used in our line search to determine a step-length 7, satisfying the
sufficient decrease condition

¢k(T) < B%(0) + arid)(0) (3.20)

where 0 < a < }. Here we choose & = 0. 1 We a.lwa.ys start from r(V=1.If r(’) satisfies (3.20),
we let 7 = r("), otherwise, '

) ’ .(') o
f£:+l)=max{o.1,nﬁn{0-9 os¢((:);~’ _ }} ()
8k(0) + #,(0)r) — gy (=)

The formula on the right-hand side comes from a restricted quadratic interpolation. We limit the
number of back-trackings to 10; if j > 10, we abort the line search and terminate the algorithm.
The above back-tracking procedure is basically the one used by Powell [19].

It is well-known that the non-smoothness of the merit function ¢(z,w) may prevent a step-
length of one from being taken near the solution even though it is a good choice. This phenomenon
is commonly called the Maratos effect. It is certainly an issue that should be adequately addressed
in a production code, but it does not happen very often and we therefore took no specific measures
to combat it. The Maratos effect does not appear to have been a major factor in our numerical
experiments; in only a very small number of cases was a step-length of less than one taken within
the last three iterations of a run and it never happened within the last two iterations.

3.6 Algorithm Description

Now we are ready to describe the complete form of SALSA. We suppose that all the quantities
involved in the algorithms have already been evaluated before they are used.

Algorithm 3.1 (SALSA)

Step 0 Choose positive constants tol > 0, v, B, a positive integer mziter, o € R™ and a sym-
metric positive definite matriz Bf € R**". Set k = 0.

Step 1 If the stopping criterion ||(Z,fgk,h;,)||g < tol is satisfied, erit.

15

Step 2 If BE is numerically indefinite, stop; otherwise solve the subproblem (1.6) for the search
direction d and the QP Lagrange multiplier estimate z\?fl, using (3.13), (3.14) and (3.15).

Step 3 Perform the line search to determine the step-length ty. If the number of back-tracking
iterations exceeds 10, stop; otherwise, set Try1 = Tk + Tkdi and Sk = ZTi41 — Zk-

Step 4 Calculate yf given by (3.17). If yfTsk > v||[Y, L skll?, set y§ = yf. Otherwise, set
Y = Vi + Pkvk, where

pr = (max{|y Tsil, IV skll®} = wi T o)/ lvall?,

oy = Yir Y sk, i I1YS skl 2 min{By, llsill Hisll,
Sk, otherwise.

Use the updating formula (2.5) to obtain B,{'H.

Step 5 If k > mziter, then stop (too many iterations); otherwise, increment k by one and go to
Step 1.

Since Powell’s damped BFGS method is one of the most efficient methods currently available,
for the purpose of comparison we also implemented Powell’s damped BFGS method and ran it
side by side along with SALSA. Our implementation of Powell’s damped BFGS algorithm is the
following and for simplicity we will refer it as the PD algorithm or simply PDA.

Algorithm 3.2 (PDA) All steps are identical to Algorithm 3.1 (SALSA) ezcept for Step 4 where
Powell’s damped BFGS update is used.

Evidently, discrepancies in the numerical performance of Algorithms SALSA and PDA should be
largely due to the use of the two different updating schemes: the structured augmented Lagrangian
BFGS update or Powell’s damped BFGS update.

4 Convergence Rate of SALSA

Now we consider the convergence rate of the algorithm developed in the previous section. In
this paper we will analyze only the local behavior of SALSA. Therefore we will assume that the
sequence generated by SALSA converges to a local minimizer satisfying Assumptions A1-3, and
that a step-length of one is eventually taken at each iteration. A proof of convergence based on a
line search on the merit function as in [1] would require more knowledge of merit functions than
currently exists. As already mentioned, augmented Lagrangian quasi-Newton algorithms have been
analyzed by Han [12] and by Tapia [24], [25] under the assumption that pj is chosen larger than
the threshold value and is eventually constant. Their analysis is similar to the Broyden, Dennis
and Moré theory for unconstrained optimization and establishes that, if zo and By are sufficiently

16

good initial approximations,. then the sequence {(zx,Ax)} converges to (z.,\.) Q-superlinearly.
Actually, Tapia [25] established that z; — z. Q-superlinearly. Because of our weaker and more
implementable assumptions on the choice of p, we cannot prove local convergence when By is a
good enough approximation, but we can prove that if the iterates converge to the solution they
converge R-superlinearly.

We would like our analysis to apply to a wider class of implementations of SALSA than the
detailed Algorithm 3.1. To achieve this we will base our analysis on the following generalized
version of SALSA, which differs from Algorithm 3.1 in that step-lengths of one are always taken,
stopping conditions are removed, and a wider class of augmentation terms and multiplier estimates
is allowed.

Algorithm 4.1 (Generalized Local Version of SALSA)

Step 0 Initialize 7o € R" and a symmetric positive definite matriz B¥ € R™*", Set k = 0.
Step 1 Sélve the szibproblem (1.6) for the search direction di using (3.18) and (3.14).
Step 2 Set zxy1 = zk + dk. N

Step 3 Choose the matriz Aryq = Ak.,.lWé_,_l + O(||sk|l), where Wiy, is taken from a bounded set
of positive definite matrices whose inverses are also bounded. '

Step 4 Calculate yf
Otherwise, set y

= Val(Tet1, Me+1) = Vel(Zi, Aes1). I vfTsie > vl| AT, sell?, set v = yt.
i = Uk + prvk, where
pr = (max{|yf T sel, v|| AT,y skl1?} = £ T se)/llvkll?,

o = { AL, st if AT ell 2 min{By, ol Hlsell,

Sk, otherwise

Use the updating formula (2.5) to obtain BE, .
Step 5 Increment k by one and go to Step 1.

Note that we do not specify the Lagrange multiplier estimate A\ in ny,l in Step 4 of the
algorithm; however in the theory we will require that Ay — A.. (For some choices of multiplier
estimate such as AES convergence of the multipliers is a consequence of convergence of {zk}, but
this is not immediate for /\fP .) The form of Aj allows many possible choices for yi depending on
the choice of Wiy (see Section 3.1). It is easy to see that the following choices of y7 are of the
specified form, yf + peAk+1 Wis1A47, 15k + O(||skl|?), and thus covered by our analysis.

vi = vk +oYen Y,
v = ylle+PkAk+1AZ+13ka

i vt + o Vi YT i,
v8 = b+ pkAr(hrs1 — ki),

17

In the analysis to follow,-we will use y; in place of y{ and By in place of BE for simplicity.
The main purpose of this section will be to prove the following result.

Theorem 4.1 Assume that the sequence {zx} is generated by Algorithm 4.1, and Assumptions

Al1-3 hold. If zx — z. and Ax — A., then z; — z. R-superlinearly.

In order to prove this convergence theorem, however, we first define some useful quantities and
prove the intermediate results, Lemmas 4.1-4.4. After proving the theorem we will then point
out an interesting application to unconstrained optimization. Note that Theorem 4.1 is similar to
the rate of convergence result proved by Powell for his damped algorithm, except that this result
makes no boundedness assumptions on the approximate Hessians. Our analysis uses some of the
techniques developed by Powell in his proof.

By Assumptions A1-3 we know that there is a value 5 > 0 such that the matrix V2L(z., A, p)
is positive definite. Given the uniform boundedness of {W, 4}1}, this value may also be chosen so
that

St(vE + pArn Al 16) > 0 (4.1)
for zx, k41, and A sufficiently close to their solution values. For purposes of analysis we select one
such p and we define the matrix H. = V2L(z., .,), which will be used as a weighting matrix.

We define two quantities which measure the accuracy of B along the step direction sk: the ratio
of quadratic forms,

T
i Brsk
= 3 Bksk 4.2
and
T
cos O = Sk Besk (4.3)

L _l 9
| HZ si||l| Ha * Besll
i

quantities, which ideally have value one, thus measure how close the magnitude and direction of

the cosine of the angle between Bisi and H.si, measured in the H. > weighted norm. These two
By sk correspond to the magnitude and direction of H.sx. We now show that these two quantities
provide rough bounds on the ratio of ||sk|| to the error, and on the ratio of successive errors. We
will also use the notation ex = zx — z. in what follows.

Lemma 4.1 . Given Assumptions A 1-3, there ezist constants v, and v, such that if zx is sufficiently
close to z., and sy solves (1.6) then

k
4.4
N1+ cos 0 = llexll = 72(cos€,. qx (4.4)
and leksall 1 1
€k+1
<1+ (+—). 4.5
llexll 72 cosbr gk (4.5)

18

Proof: By the way the-step is computed, || Bxsk|| > ||ZF Bisk|| = || ZT gk||. Therefore,

sl 1
loull > ”gks'k"nzkgkn

- SEBum sk o7
| Besk |||l skll sZ Bisk
, Bksk ‘skH Sk

T
> ||H T BkskllllH’Skll sT Bysi 1 Zk gxll
for some constant 1, since H. is positive definite. Thus
loell 2 754 2 gl
Looking at the normal component of the step we see that
llsell > lAR(AT Ak) T AT skll = I| = Aw(AT Ae) ™ hell 2 TallAxll,

for some constant 4;. Then, in the neighborhood of a minimizer satisfying Assumptions A1-3 we
have

IN

YN ZE gill + 1),

Y4k Y
< — —_
= 7{ cos ak ”3"” + 'il "'sk”v

lze = z.]|

and the left inequality of (4.4) follows immediately.
To establish the other side note that

sTs
sfsp = .sTkBlfs sf(ZkZEBk8k+YkYkTBksk)
sTs
: JZ;B_,‘ (sl 27 gill + YT sillll Besill) -
Therefore 1 Beselllswl
Sklll|Sk
el < S ZE ol + 7o el

and since H., is positive definite,

TH.se |1H Beslll B sl
< ! S) 4113k - = ZT h ,
lsll < 7; (3{ Bt B (12E gl + l1ml)

from which the right inequality follows immediately. Inequality (4.5) follows from (4.4) upon noting
that, by the triangle inequality,

llsll
llexll”

||ek+1||

llexll

<1+ 3—

a

Actually the previous lemma could have been proved with any positive definite matrix replacing

H, in the definition of gqx and cosd,. However, in the next lemma the use of H. is essential to

establishing the more precise result that if gx and cos) are sufficiently close to 1 then the ratio of
successive errors can be made arbitrarily small.

19

Lemma 4.2 Under the conditions of Lemma 4.1,

O(llexll® + 12£ (B — H.)skll) (4.6)

1
2 2
q
o (Hek“? + (cos:Ok - 2qx + 1) ||3k“) . (4.7)

Proof: First we decompose the error into two parts and consider each separately. Observe that

llexall

128 Heersall = (127 Hu(er + si)l
= ||ZT [VL(zk, Aer p) = (VL(Zu, Ae, §) + Brsk]
+Z{ (H. - Bi)si)|| + O(llexll?)
= [|ZF [VL(zk, Aer) = gk + (H. = Bi)si)] |l
+0(llexll?)
< 128 (H. = Be)se)ll + O(llexll?).

The range space component of the error is given by

Afers1 = Afer+ Als, (4.8)
= hi+O(llexll?) - he = O(llexll®). (4.9)

The total error is related to these two parts by

-1
ZZ'H' Z{H-ek‘f-l
AZ. A{elﬂ,]_ ’

llex+1ll = [

and by Assumptions A1-3 the matrix

ZTH

-1
ur] = [Zu(ZF B.20)™" HI'Ak(ATHI A0)7Y]
k

is bounded for all zx in some neighborhood of z.. Therefore

ZTH.ep s
Aler

llexs1ll = O (

) = O(lexll® + 1Z2F (Bi = Hu)sil)

which is just (4.6).
To establish (4.7), note that

-1
18 (B - Bl _
1B a2 cos? B

-2qk+ 19

which, since H, is nonsingular, implies that the right hand side of (4.6) is of the same order as the
right hand side of (4.7).

20

. o
Having established the effect of the quantities gx and cosf; on the length of the computed
step and the error at the next point, we now consider the issue of how these two key quantities
are related to the BFGS update. To that end we define, for any positive definite matrix B, the
quantity
-1 1 -}, -}
w(B) = ttace(H- zBH. 2) - logdet(H‘ BH-),

which may be considered as a measure of the deviation of B from H.. Note that v is a strictly
convex function over the set of positive definite matrices, and it has a unique minimizer at B = H.
as is discussed by Byrd and Nocedal [1].

We now show that {pi} is bounded and that the update has an important self-correcting
property with respect to 1. Close to the solution if gx or 8; deviates significantly from 1, and if s;
is close to the null space, then ¥(B) is decreased (i.e. B4, is closer to H.). The self-correction
relation (4.10) established below is analogous to the one of Lemma 7 in [18] except that it uses the
¥ function in a manner similar to equation (2.9) of 1] instead of a weighted Frobenius norm.

Lemma 4.3 If A1-3 are satisfied, then for all z; and zr4, sufficiently close to z. and all A\pyq
sufficiently close to M., there ezists an upper bound for the augmentation parameter p, chosen by
Algorithm 4.1. In addition, for any bounded choice of pk, if By is positive definite the updated
matriz produced by the algorithm satisfies

2
LN (£10)

9k + —
Y(Br+1) S ¥(Bi) - —3 B log gk +1+ 749k + 73 (”31:"

where o, = max{||ek||, ||lex+1ll, | \k+1 = A.||}, and 73 and 44 are constants.

Proof: By Theorem 3.2, sufficiently close to the solution, the backup strategy is not used,
and the value of px chosen in Step 4 of Algorithm 4.1 is the smallest value satisfying (3.3), or
equivalently (3.4). Since the value g is such tha..t sufficiently close to z. (4.1) holds, then it follows
that a value of py as large as 25 + v will satisfy (3.4).

By the definition of ¥, and since det(B+1) = (y¥ sk/s¥ Bisi) det(Bx)

w(B) + trace(H:*(-ﬂ;’fﬂfoi + %?JT-)H: b 1og(-,?£r—’-"—) (4.11)

B =
'f’(k+1) i Bisk Vi Sk i, Bisk
IEZ Bsl? T Hw y¥ sk sE Besi
= - - log —— +1 N 4.12
¥(Bx) sz;,sk + y{sk & 8£H.8k +lo 8; Husk ()
By Steps 2 and 3 of the algorithm,
Y = H.sk— ﬁAk+1A£+13k + PkAk+lAZ'+13k + O(okllskll)

= Husk + Acs1(psWis1 — PI) AL, 8 + O(owllskll).

21

This means that
TH e =y syl B Aesr (0eWisr — AN AT, 8k + +0(okl|sell?)
= yf sk + 5% Aet1(PkWi1 — pI)AZ+13k
+5F A1 (psWis1 — PD AL AT A1 (PeWierr — BD AL 418k + O(ol|sel|?),

so that using Theorem 3.1, the fact that. A{+13k = h;; + O(ok||sk]]), and the uniform bound on
Wi,

T g-1 2
Yk H: y ("hk“)
=1+0({=—) +0(ok). 4.13
Tor ol 90 (4.13)
In addition,
VR sk = 8] Husk + S Aks1(pkWi1 — AI)Af 18k + O(oxllsk]l?)
so that
T 2
Vi Sk "hk")
log—=—— = -=1lo 1—0(—-— +0 4.14
llhfell)2
0 (_ +0(o 4.15
”8"“ (k) ()

for ok and ||hk||/||sk|| sufficiently small. Since, by Theorem 3.1, y7 si/sf H.sx is bounded away
from zero (4.15) also holds if either o or ||h||/||sk|| are not small. Substituting (4.13) and (4.15)
into (4.12) and using (4.2) and (4.3) we get

Vi1 < Yk —

+logqr + 1+ 0(ok) + O ("h"”)

9 llsxll

a

To analyze the iterates produced by the algorithm we would like bounds on the ratios I:;1I

and 17 1. Such bounds would hold at each iterate if we had bounds on the quantities || Bell and
|ZF B! Z|| as is shown in [18], but we have not assumed and cannot establish such bounds on Bk.
However, the self-correcting property of Lemma 4.3 based on the departure of gx and cos 6 from
1, can be used together with the bounds in Lemma 4.1 to bound the average behavior of any large
subset of the iterates.

Lemma 4.4 Assume that the sequence {zx} is generated by Algorithm 4.1 and that Assumptions
A1-3 hold. If Tk — ZTe, and A\p —)., then there is a constant 3 such that for any k > 0 and any
subset S of {1,...,k},

[H “eJ-H“] < ﬁk » (4.16)

Jes " J"
In addition, for any p € (0,1) there are constants B, and (2 such that for any k > 0 the set

l1s;ll

Jk={j€[17k]:ﬁ1$"_e;ﬁ

< B2} (4.17)

contains at least pk elements.

22

Proof: Summing up the recursion (4.10) established in the previous lemma we have that

‘ 0<¢"+1<¢°+Z[' 9 +logg; + 1+ 740; +73(:|| JH)]
Jj=0 85

Since ||A(z)]| is uniformly bounded near z., the quantity ||hk||/||sk|| is bounded above for all & so
that

Z[—c 7, +logg; + 1] + k7',
=0

for some constant v’. Alternatively,

Z[cosz& —logg; — 1] < k7. (4.18)

Now note that by Lemma 4.1 for any j (since we may assume without loss of generality that
Y2 Z 1)1

llej+all 1
= < log7(l+ -
s e+ o)
= log7: + log(g; + =0 +1) log g;
< logv: + qo. +q,-—logq,-
< logv: + qo + 2¢; - 3logg;
< —loga:).
< 10872'*‘3(‘:0501 log ¢;)
Therefore,
"e.H'l" q;
D log=iES < 33 [—I— —logg; — 1] + k(3 + log72)
j€S " J" jES cos 01
k
< 3Z[coq;0 —logg; — 1] + k(3 +log72) < (37" + 3 + log 72)k.
Jj=0

by the fact that all terms in the sum are nonnegative and by (4.18). The nonnegativity of the terms
in the sum follows from the fact that

g;
cos? 8;

—logg; — 1 = (—logcos? 9,)+(- log —— (4.19)

9 cos2 0;)
and, by the properties of the logarithm, both expressions in parentheses are nonnegative.
The first result follows by taking the exponential of both sides of (4.19), and letting 8 = y2¢3'+3.
To establish the second result, we apply to (4.18) the same argument as in the proof of Theorem 2.1
of Byrd and Nocedal [1]. The relation (4.18) implies that for any k at least pk of the (nonnegative)
terms in the sum are less than or equal to 4'/(1 — p). For these terms (4.19) implies a positive
lower bound on cos ; and upper and lower bounds on g;. Then the existence of the constants 3,
and f; in (4.17) follows from Lemma 4.1. a
Now we are ready to prove our main result, which we restate here.

23

Theorem 4.1 Assume that the sequence {z} is generated by Algorithm 4.1 and Assumptions A1-3
hold. If zx — z., and A — A., then z; — z. R-superlinearly.

Proof: Suppose that the convergence is not R-superlinear. Then there exists a positive constant
r and a subsequence K such that

llexll > r* for all k € K. (4.20)

We will derive a contradiction from this assumption. Consider the recursion established in Lemma
4.3,

VYr41 < Yk — +loqu+1+.“ak+73(" k”)

llsxll

m-{;eu k] : Hz\/;} (4.21)

and let m; = }|Px| where |.| denotes cardinality.
Case 1: {7 }kex converges to 0.
Note that for ¥ € K Lemma 3.3 implies that

c020

Let

0<¢k+1<¢o+z

i+1+ ‘7401 + 05] + k7kvs

0

for a constant vs since ||h;||/||s;|| is uniformly bounded above. Therefore

z Z[cosg 7; —logg; - 1] < ¢o +4 Jzc:)(‘r« +1)o; + mi7s. (4.22)
Since we are assuming that {ex} and a subsequence of {7} converge to 0, the right hand side and,
thus, the left hand side of (4.22) converge to 0 for this subsequence. Therefore for any § > 0 there
exists kg such that if £ > ko and k € K then

NlQn

k Z[cosz o lOg 9 = l] .<.

Since each summand is nonnegative, this implies that ¢;/ cos?8; — logg; — 1 < é for at least k/2
values of j < k.
Now note that

9;
cos? 8;

9; 2
- = - + [—logcos? 8;
loggi — 1= 529 log p— 0,~] [— log cos* 6;]

and both quantities in square brackets are nonnegative so that by choosing § sufficiently small we
can make |g; — 1| and 1 — cos 8; arbitrarily small for half the iterates. By Lemma 4.1 the quantity
lIs;ll/lle;ll is bounded above for those iterates. Now consider (4.7), and note that the quantity

24

(g#/ cos® Ok — 2qi + 1)V/2is zero when g = cos 0 = 1 and is continuous at that point, so by (4.7)
llej+11l/lle;jll can be made arbitrarily small for those iterates.
Therefore we have that for any € > 0 there exists ko such that if k > ko,k € K then

llej+1ll/llejll < € for k/2 values of j < k. Let S = {j < k : |lej41ll/llejll < €}. This implies
that

k
H ”eJ+1” H ||¢:+1|| I llej+1ll < hp*,

using the bound (4.16).

By choosing € small enough we see that (I'[;Ll llﬁgﬁl.l)f is arbitrarily small for all sufficiently
large k € K thus contradicting (4.20) in Case 1. ‘

Case 2: There is an infinite subset £’ C K and a constant # > 0 such that T > 7 for all
kek'.

Apply Lemma 4.4 withp > 1 — % (note that # < 1). Consider k € K’ and Ji, the set of iterates
defined by (4.17). Now define the set

Th={jePcnNTk:j-1e T}

The number of elements in P that are not in 7% is no more than the number of indices J < k such
that j or j — 1 is not in Jk, which is at most twice the cardinality of the set [1, k] — Ji. Therefore,

1Tel 2 |Pel = 2(k = | Til)
> 7k —2(k - pk)
= (f+2p-2)k =rk. (4.23)

where 7 = & + 2p — 2 is positive by our choice of p.
For any j € T, by (4.17) and (4.21).

1 73
lesti < -lslleslt < L2 as)
1 1
Expanding this h; we get
I8(z5)I| < I1A(2i-1) + A]_18j-1ll + ellsj-1ll* = Ysllsj-1I?
for some constant vg. Applying (4.17) at j — 1 gives,
3 _ /7378 737653
e < Y00y, je < YR s,
B B
Thus for the at least 7k indices in 7z we have
llesll < vrllej-all} (4.24)
where 77 = (\/737682/61)*/3.

25

1
Now since the sequenee converges we can choose kg so that 77||ej||i‘ < (#) Tforall j > k-1,
where r is as in (4.20) and, without loss of generality, may be assumed to satisfy 3 <5<< L
Therefore, for any k > ko such that k € K’ we have, using Lemma 4.4, (4.24) and (4.23),

k

lle;ll
lesll = et
ol I e

e [A8l e

j€lko k]=T llej-1l J€ThO (ko k] llej-1ll

< lle-allB* I (vrlleiall®)
JE€TWN[ko k]
L [7 HTolko Al
< llexallB (ﬁ)
k(T k-t
< fler-1lld (ﬁ)
X

< o ())

For k sufficiently large this violates the assumption (4.20) for Case 2. Thus the convergence must
be R-superlinear. ' a

Although we have assumed in Theorem 4.1 that both sequences {z;} and {Ax} are convergent,
it is interesting to note that if A is given by the least-squares multiplier estimate (3.16), then
convergence of {A;} follows from convergence of {4}, so the assumption of multipler convergence
is not needed in Theorem 5.1.

Theorem 5.1 establishes an R-superlinear rate of convergence, and we do not now see any way to
strengthen the result to show Q-superlinear convergence for our algorithm. However, if we instead
choose pi to be fixed and sufficiently large, we can prove the following.

Corollary 4.1 Consider a modification of Algorithm 4.1 where in Step 4, for sufficiently large k,
Pk is chosen to be equal to a constant greater than j satisfying (3.3) for all large k. Then if z;, — z.
and Ax — A, it follows that z; — z. Q-superlinearly. That is

lzk+1 = z.]l
lzk — .|l

- 0. (4.25)

Proof: Note that as long as p satisfies (3.3) and is bounded then Lemma 4.3 holds, and thus
Theorem 4.1 holds also. Then by Theorem 4.1 we still have R-superlinear convergence which
implies ’

oo

Z lzk = za|| < 0. (4.26)

k=0
However, the modified algorithm is equivalent, for large k, to the fixed p version of SALSA analyzed
by Tapia in [25]. It then follows from (4.26) and Theorem 7.2 of [25] that convergence of zj is Q-
superlinear. a

26

A Corollary in the Unconstrained Case. It is interesting to note that if we apply Theorem
4.1 in the case of unconstrained optimization it implies a new result about the convergence of the
unconstrained BFGS method.

Corollary 4.2 If z. is a local minimizer of the function f(z) such that V?f(z.) is nonsingular,
and the sequence {zi} generated by the BFGS method with step-length one converges to z., then
the convergence is Q-Superlinear.

Proof: Note that Algorithm 4.1 applied to a problem with no constraints is simply the BFGS
method. By Theorem 4.1, if the iterates converge to the solution they do so R-superlinearly. This
of course implies that

o0
> llzk = z.| < oo. (4.27)

k=0
By Theorems 3.4 and 3.5 of Dennis and Moré (5] this implies the sequence converges Q-superlinearly.
a

Recently, A. Griewank [11] has shown us an alternative proof of Corollary 4.2 using techniques
developed in [10].

5 Numerical Experiments

The algorithms described in Section 3 have been programmed and tested on a SUN 3/50 Worksta-
tion in double precision FORTRAN with a machine epsilon of about 2 x 1016, The tolerance for
the stopping criterion was chosen as tol = 10~® and the allowed maximum iteration number was
maziter = 100. All the other parameters used in the algorithm are as specified in Section 3. In
particular, v = §; = 0.01. We now give a couple of details about our numerical experiments that
are not stated in the description of the algorithms.

5.1 Experiment Description

In our implementation we always set the initial Hessian approximation to a scalar multiple of the
identity matrix. A pre-update scaling proposed by Oren and Spedicato [17] for use with the BFGS
secant method for unconstrained optimization has been adapted to both algorithms SALSA and
PDA to give this scalar. Following Shanno and Phua [23] we perform the pre-update scaling only
at the first iteration. :

In the unconstrained case the scaling factor is chosen so that the spectrum of the initial ap-
proximation By overlaps the spectrum of the true Hessian of the objective near zog. Now in SALSA
we are approximating the Hessian of the augmented Lagrangian and in PDA we are approximating
the Hessian of the standard Lagrangian. These facts indicate that we should set B = nI where
n > 0 is a pre-update scaling factor that for SALSA would naturally be given by

1= 15 L s0/s3 0. (5.1)

27

For PDA it is appropriate to-use

n= { vETs0/s3 50, ¥ETs0>0

5.2
1, otherwise. (5.2)

Observe that according to our construction of SALSA, the factor 7 given by (5.1) will always be
positive and therefore SALSA will always take advantage of the pre-update scaling. However, from
(5.2) we see that this is not the case for the factor based on PDA. In order to ensure that any
differences between the numerical performance of SALSA and PDA were not due to this difference
in pre-update scaling, we used the choice (5.2) in for both SALSA and PDA in our experiments.
This decision put SALSA at a slight disadvantage, as numerical experimentation showed that the
choice (5.1) led to slightly better performance for SALSA than did the choice (5.2).

As can be seen from the algorithm description, the algorithms, SALSA and PDA, are forced to
terminate in the following three situations:

1. BE is numerically indefinite. This is the situation when the Cholesky factorization of Z] Bi Zk
can not be carried out or s} Bgsk < 0.

2. the number of back-trackings in the line search exceeds 10;
3. the number of iterations exceeds mziter.

All three of these cases will be called irregular terminations in contrast to the regular termination
which occurs when the stopping criterion is satisfied. In addition, the algorithms are stopped if a
matrix Aj is found to be numerically rank deficient. However, this situation only occurred once in
the entire sequence of experiments.

A set of 44 test problems has been chosen from Hock and Schittkowski [14] and Schittkowski
[22]. A precise description of these problems can be found in the above two references. All the
problems are numbered as in these references. Problems with numbers less than 200 (29 problems)
are from Hock and Schittkowski [14] and the rest (15 problems) are from Schittkowski [22]. For
those of the problems having inequality constraints, only the constraints active at the solution are
included. Linearly constrained problems have been excluded from our test set.

Most of the test problems are so well-conditioned that the identity matrix is often too good an
approximation matrix to really test the robustness of an algorithm. In order to test the robustness
of algorithms SALSA and PDA, from each given standard test problem we construct four scaled
variants. We first define a diagonal matrix D, by

i1 .

D,~‘-=1+(1—%T-1-)(10"—1),t=1,2,...,n, (5.3)

where ¢ € R™ is a control parameter. In our tests, for each given objective function f and constraint
function h, we solve the following five problems

minimize f(D,z),

(5.4)
subject to h(D,z) =0,

28

for ¢ = 0,1,2,3,4. Obyiously, ¢ = 0 corresponds to the original problem and ¢ > 0 to the
scaled variants. If the Hessian matrix of a function f(z) is H(z), then after the diagonal scaling,
the Hessian of f(D,z) is D,H(z)D,. Since the condition number of D3} is 10%, if H(z.) is well
conditioned, then for g large, in general D,H(z.)D, will be relatively ill-conditioned compared
with H(z.).

The starting points zq are chosen as

To =2z, + (v - 1)(z, - z.), (5.3)

where z, are the standard starting points given in [14] and [22]. However, for Problems 12, 316-
322, 336 and 338, we use zo = (1074,---,10™*) instead of the given z¢ = 0 because A(0) has zero
columns and therefore is not of full rank. It is easy to see that

o = 2|l = 17| llzs = z.]|.

The number 7 is thus used to control the distance ||zg — z.|| and was given different values as
described in Section 5.2. For each problem, we let the integer q vary from 0 to 4. The total number
of test cases is 220.

In the sequel, by one function evaluation we mean an evaluation of the (m+1)-vector [f(z), h(z)).
Similarly, one gradient evaluation represents an evaluation of the n x (m + 1) matrix [9(z) A(z))].
Since the algorithms require only one gradient evaluation per iteration, the number of iterations
needed for a run is always one less than the number of gradient evaluations because iterations are
counted from 0.

5.2 Numerical Results

It is interesting to see how the two updating methods, SALSA and PDA, behave locally without a
line search. After deactivating the line search subroutine as well as the pre-update scaling (because
without a line search the information obtained from the first iteration is usually unreliable), we ran
both SALSA and PDA on the 220 test cases always using step-length one and starting from the
standard starting points z, given in [14] and [22] (i.e., we set ¥ = 1 in (5.5)). It turns out that the
standard starting points are fairly close to the solutions because for all the problems at least one
of the two algorithms converged for at least one value of g. We will call this test (220 test cases)
the local test.

We also tested SALSA and PDA with the line search procedure described in Section 3.5 and
with the pre-update scaling (5.2) on the same set of test problems. As already mentioned, the
standard starting points as given in [14] and [22] are generally fairly close to the solutions. In
order to test the algorithms in a realistic global environment, we set ¥ = 10 for the starting points
defined in (5.5) but with a few exceptions. Because for all the g-values both algorithms failed to
converge for Problem 72, we still set ¥ = 1 for this problem. We ran the two algorithms with the

29

above prescribed starting points and with the line search subroutine on the 220 test cases for the
pre-update scaling (5.2). We will call this test (220 test cases) the global test.

Detailed information on both the local and the global tests that used the pre-update scaling
(5.2) can be found in Tables 3-6 in the Appendix. In Table 1, we list the average numbers of
function and gradient evaluations required by SALSA and PDA. To distinguish the standard test
problems with its scaled variants, we present the results for ¢ = 0 (standard) and for ¢ > 0 (scaled)
separately. The average number for each -ca.tegory is taken over all test cases in that category for
which both SALSA and PDA converged. For the local test, since the number of function evaluations
is always equal to the number of gradient evaluations, only one number is given for each category.
For the zlobal test, in each category the average number of function evaluations is given, followed

by the average number of gradient evaluations separated with a colon. The rest of the table should
be self-explanatory.

Table 1: Average Numbers of Function and Gradient Evaluations

Local Test Global Test
qg=0 q=1,2,3,4 g=0 q=1,2,3,4
SALSA PDA | SALSA PDA | SALSA PDA | SALSA PDA
23 21 32 31 24:29 27:29 | 28:33 30:37

As one can see from Table 1, the numbers of function and gradient evaluations required by
SALSA and PDA are comparable for test cases where both algorithms converged. Therefore, we
infer based on our numerical experiments that as far as efficiency is concerned, SALSA and PDA
appear comparable.

However, we observe that SALSA has displayed a somewhat higher degree of robustness. This
can be seen from Table 2 where thebirregular termination behavior of SALSA and PDA is summa-
rized. As can be seen from the table, for the total number of 450 test cases, PDA had more irregular
terminations than SALSA did (59 vs. 42). However, since most of PDA’s irregular terminations
occurred in the local test, it does seem that the line search and the scalings helped to narrow the
gap in robustness between SALSA and PDA.

Table 2: Number of Irregular Terminations

Local Test Global Test
q=0 q=12,3,4 g=0 q=1,2,3,4
SALSA PDA | SALSA PDA | SALSA PDA | SALSA PDA
4 9 20 26 2 6 16 18

30

We close this section_by providing some additional observations obtained from our numerical
tests. Among all the updates made by SALSA in our tests, the back-up strategy was used about
24 percent of the time. Of course, the choice of §; in (3.9) affects how often the back-up strategy
is used and a decrease in the value of §; will result in less usage of the back-up strategy. As a
comparison, we also ran SALSA using Powell’s damped BFGS update as a back-up strategy instead
of the one described in Section 3.3. Very similar results were obtained, though Powell’s damped
BFGS update, as the back-up strategy, was used slightly more often and the number of function
evaluations was slightly increased.

6 Concluding Remarks

SALSA appears to have certain theoretical advantages over PDA. On the one hand, if a value for the
augmentation parameter happens to be picked up that is greater than the threshold value, under
standard assumptions, it will have local and Q-superlinear convergence. Local convergence has not
yet been established for Powell’s damped BFGS method. On the other hand, if the augmentation
parameter happens to be smaller than the threshold value, we have established, under much weaker
and more realistic assumptions than those that were assumed by Powell, that SALSA will, if
it converges, converge at an R-superlinear rate as has been proved for Powell’s damped BFGS
method. As an immediate corollary, we have that if the BFGS secant method in unconstrained
optimization converges it gives Q-superlinear convergence.

Our numerical experiments have shown that for a fairly large set of test problems the overall
numerical performance of SALSA was moderately better than that of PDA in terms of robustness
as measured by the number of irregular terminations. The higher degree of robustness of SALSA
is likely due to the fact that By is not involved in y; but is involved in y{ (see (3.1) and (1.10)).

Based on the established convergence results and our computational experiments, we have been
led to the conclusion that in addition to its strong théoretical properties, the structured augmented
Lagrangian BFGS secant method if properly implemented also performs experimentally at least as
well as Powell’s damped BFGS secant method.

References

(1] R. H. Byrd and J. Nocedal. An analysis of reduced Hessian methods for constrained optimiza-
tion. Technical report CU-CS-398-88, Dept. of Computer Science, University of Colorado,
1988, (to appear in Math. Prog.).

(2] R. H. Byrd and J. Nocedal. A tool for the analysis of quasi-newton methods with application
to unconstrained optimization. SIAM J. Num. Analy., 26:727-739, 1989.

(3] R. M. Chamberlain. Some examples of cycling in variable metric method for constrained
optimization. Math. Prog., 16:378-383, 1979.

31

[4] T. F. Coleman and A. R. Conn. On the local convergence of a quasi-Newton method for the
nonlinear programming problem. SIAM J. Num. Analy., 21:755-769, 1984.

(5] J. E. Dennis Jr. and J. J. Moré. A characterization of superlinear convergence and its appli-
cation to quasi-Newton methods. Math. Comp, 28:549-560, 1974.

(6] P. Fenyes. Partitioned quasi-Newton methods for nonlinear equality constrained optimization.
PhD thesis, Dept. of Computer Science, Cornell University, 1987.

(7] R. Fontecilla. Local convergence of secant methods for nonlinear constrained optimization.
SIAM J. Num. Anal., 25:692-712, 1988.

[8] R. Fontecilla, T. Steihaug, and R. A. Tapia. A convergence theory for a class of quasi-Newton
methods for constrained optimization. SIAM J. Num. Anal., 24:1133-1151, 1987.

[9] S.T. Glad. Properties of updating methods for the multipliers in augmented Lagrangians.
J.O.T.A., 28:135-156, 1979.

[10] A. Griewank. The global convergence of partitioned BFGS on semi-smooth problems with
convex decompositions. ANL/MCS-TM-105, Mathematics and Computer Science Division,
Argonne National Laboratory, 1987.

(11] A. Griewank. Private communication, 1989.

(12] S-P. Han. Superlinear convergent variable metric algorithms for general nonlinear program-
ming. Math. Prog., 11:263-282, 1976.

(13] S-P. Han. A globally convergent method for nonlinear programming. J.0.T.A., 22:297-309,
1977. '

(14] W. Hock and K. Schittkowski. Test ezamples for nonlinear programming codes (Lecture notes
in eco. and math. systems 187). Springer-Verlag, Berlin, 1981.

(15] H. J. Martinez. A numerical investigation on the BFGS update. Master’s thesis, Dept. Math.
Sciences, Rice University, 1986.

[16] J. Nocedal and M. Overton. Projected Hessian updating algorithms for nonlinear constrained
optimization. SIAM J. Num. Anal., 22:821-850, 1985.

[17] S.S. Oren and E. Spedicato. Optimal conditioning of self-scaling variable metric algorithms.
Math. Prog. 10, pp. 70-90, 1976.

(18] M. J. D. Powell. The convergence of variable metric method for nonlinearly constrained opti-
mization calaulation. in Nonlinear Programming 3, O. Mangasarian, R. Meyer, and S. Robin-
son, editors, Academic Press, New York, 1978.

32

[19] M. J. D. Powell. A_fast algorithm for nonlinearly constrained optimization calaulation. in
Numerical analysis Proceedings Dundee 1977, G. A. Watson, editor, Springer-Verlag, 1978.

(20] M. J. D. Powell. Extensions to subroutine VFO2AD. in System modeling and optimization,
Lecture notes in control and information sciences 38, R. F. Drenick and F. Kozin, editors,
Springer-Verlag, New York, 1982.

(21] M. J. D. Powell. The performance of two subroutines for constrained optimization on some
difficult test problems. in Numerical Optimization 1984, P. T. Boggs, R. Byrd, and R. Schnabel,
editors. SIAM, 1985.

(22] K. Schittkowski. More test ezamples for nonlinear programming codes (Lecture notes in eco.
and math. systems 282). Springer-Verlag, Berlin, 1987.

(23] D. F. Shanno and K. H. Phua. Matrix conditioning and nonlinear optimization. Math. Proq.,
14:145-160, 1978.

[24] R. Tapia. Diagonalized multiplier methods and quasi-Newton methods for constrained opti-
mization. J.O.T.A., 22:135-194, 1977.

[25] R. Tapia. On secant updates for use in general constrained optimization. Math. Comp.,
181-202, 1988.

Appendix: Tables

Detailed information on our numerical experiments is given here.

In all the tables, the problem are numbered after Hock and Schittkowski [14] and Schittkowski
[22] and are specified in the first column along with the corresponding numbers of variables and
constraints (n : m).

For each value of g, listed in the tables are ng : nf — the numbers of gradient and function
evaluations respectively, as well as the final values of ||V{(zk, A¢)||2 when the algorithms terminate.

The irregular terminations are indicated by boxes around the values of || V£(zk, Ax)||2 which are
greater than tol = 10~8. The symbols “Inf” and “NaN” in the tables stand for “Infinity” for “Not a
Number” under the IEEE floating point standard as implemented in the operating system SunOS
4.0.3. Basically, both indicate that a floating point overflow has occurred.

The three types of irregular terminations as listed in Section 5 can be distinguished as follows. If
the number of gradient evaluations is 101, then the algorithm was stopped because the maximum
number of iterations was exceeded. If a pair ng : nf is followed by an asterisk “*”, then the
algorithm was stopped because the maximum number of back-tracking steps in the line search
was exceeded. Otherwise, the irregular terminations was due to the numerical indefiniteness of
the Hessian approximation matrix. For Problem 72 in the local test of Powell’s Damped BFGS

.

33

Algorithm (PDA) the blank entry indicates the algorithm was terminated because the matrix A,
was found to be rank deficient.

Table 3: SALSA without line search

Prob.# =0 g=1 =2 g=3 =4
(n:m) ng:nf 1v4) ng:nf iva| ng:nf \vai ng:nf Iva| ng:nf vy
8 (2:1) 9:9 2D-09 | 1717 4D-08 | 2121 .7D-10 | 2727 .5D-06 | 3131 2D.07
7 (2:1) 1515 .2D-07 | 14:14 6D-09 | 1717 .3D-06 | 18:18 .2D-06 | 21:21 .1D.o7
10 (2:1) 1212 4D-08 | 1212 .1D-06 | 1515 .3D-07 | 1515 .3D-07 | 16:16 .8D.06
11 (2:1) 8:8 2D-07 | 1212 .1D-07 | 1717 .4D-06 | 23:23 .3D-10 | 25:25 .8D.09
12 (2:1) 5151 6D-09 | 46:46 .5D-06 | 35:35 .1D-06 | 33:33 .2D-06 | 25:25 .8D.0s
26 (3:1) 34:34 .5D-06 | 31:31 .5D-06 | 36:38 .1D-05 | 4343 .8D-06 | 47:47 6€D.0s
27 (3:1) 34:34 .6D-06 22:22 .sD-07 8:8 .9D-08 4:4 .2D-06 4:4 .2D-08
29 (3:1) 1313 .3D-08 | 14:14 .4D-07 | 31:31 .7D-06 | 34:3¢ .2D-07 | 4141 4D.07
39 (4:2) 1313 .8D-08 | 14:14 .2D-06 | 19:19 .4D-06 | 24:24 .9D-06 | 10:10 .SD.o7
40 (4:3) 8:8 SD-07 | 3333 .9D-06 6:6 2D-07 6:6 4D-11 6:6 3D-11
43 (4:2) 1212 4D-07 | 1717 .3D-07 | 3939 .5D-07 | S7:57 .2D-06 | 88:88 .2D-06
46 (5:2) | 101:101 16:16 20:29 .1D-08 | 38:38 .2D-06 | 38:38 .3D-06
47 (5:3) 68:68 .4D-07 23:23 .3D-07 36:36 .8D-06 52:52 .1D-06 79:79 .7D-06
| s6 (7:9) 14:14 .5D-06 | 101:101 10:10 5D-07 | 11:11 .9D-06 | 1212 .sD-06
60 (3:1) 11:11 .8D-08 | 19:19 .3D-08 | 24:24 .7D-07 | 39:39 .2D-08 | 37:37 .6D-06
61 (3:2) 111 3D-11 | 1111 5D-09 | 14:14 .6D-06 | 1515 .2D-07 | 16:16 .2D-06
63 (3:2) 8:8 6D-08 | 1313 4D-08 | 14:14 .2D-06 | 1515 .9D-07 | 1515 .8D-06
65 (3:1) 10:10 .7D-07 | 27:27 2D-07 | 28:28 .3D-07 | 37:37 .8D-08 | 40:40 .4D-07
66 (3:2) 7.7 .3D-06 27:27 9D-07 | 101101 [NaN] | 101:101 101:101
71 (4:3) 6:6 4D-07 | 14:14 5D-06 | 19:19 .3D-07 | 40:40 .2D-07 | 6363 .2D.06
72 (4:2) 21:21 2D-06 | 31:31 .3D-06 | 101:101 50:50 43:43
77(5:2) | 4343 .4D-06 | 101:101 31:31 .1D-06 | 3737 .4D-08 | 4343 2D-06
78 (5:3) 8:8 4D-07 | s51:51 2D-06 | 3232 .3D-06 | 29:29 .1D-06 8:8 .6D-07
79 (5:3) 1:11 1D-06 | 1515 .8D-08 | 4949 .3D-07 | 8383 .2D-07 | 7575 .5D-08
80 (5:3) 7.7 8D-08 | 33:33 4D-07 | 32:32 .2D-06 | 39:39 .1D-08 6:6 8D-07
81 (5:3) 10:10 .6D-08 22:22 2D-06 | 101:100 {NaN| | 101:100 [.1D+00 6:6 .8D-07
93 (6:2) 33:33 .3D06 | 66 44 24:24 [2D+01) | 29:29
100 (7:2) | 51:51 .3D-08 | 28:28 .SD-08 | 37:37 .2D-08 | 4747 .1D-06 | 52:52 8D.06
104 (8:4) | 27:27 .4D-06 [101:100 [.5D+09] | 101:101 [sD+02] | 101:101 | 101101
106 (8:6) | 43:43 20:29 |[.2D+09|.| 89:89 [sD+0s|| e1:61 3D06 | 6161 .6D-06
216 (2:1) | 25:25 .1D-06 9:9 2D-07 | 22:22 .1D-09 | 20:29 .5D-07 | 38:38 .7D-07
219 (4:2) | 1818 .2D-07 | 22:22 .2D-07 | 25:25 .2D-06 | 30:30 .6D-07 | 1717 .2D-06
316 (2:1) | 60:60 .2D-08 | 60:60 .4D-07 | 4141 .4D-08 | 37:37 .4D-08 | 27:27 .3D-06
317 (2:1) | $9:59 .2D-09 | 54:54¢ .3D-07 | 4848 .4D-07 | 36:38 .D-07 | 28:28 .5D-11
318 (2:1) | 6262 4D-06 | 60:60 .3D-08 | 4343 .8D-07 | $9:59 .6D-09 | 28:28 .3D-11
319 (21) | 59:59 .9D-11 | 59:59 .6D-08 | 53:53 .8D-09 | 44:44 .2D-07 | 3333 .1D-08
320 (2:1) | 49:49 .2D-08 | 70:70 .3D-07 | 53:53 .3D-10 | 4343 .2D-06 | 3737 .D.o7
321 (2:1) | 44:44 8D-06 | 71:71 .4D-08 | 53:53 .3D-10 | 4646 .7D-068 | 44:44 .2D-08
322 (2:1) | 25:25 3D-11 | 39:39 4D-06 | 64:64 .4D-08 | 50:50 .3D-06 | S51:51 .6D-08
335 (3:2) | 25:25 .7D-08 | 28:28 .3D-07 | 28:28 .3D-08 | 3737 .4D-07 | 46:46 .2D-06
336 (3:2) | 4848 2D-08 | 7575 .7D07 | 7676 .2D-06 | 72:72 .aD-0s | 72:72 .8D-09
338 (3:2) | 56:56 .4D-06 | 4343 .2D-09 | 36:36 .2D-07 | 36:36 .5D-08 | 30:30 .1D-07
385(41) | 77 [3D+47|| 41 2007 | 101201 24:24 59:59
373 (9:6) | 101:101 [.2D+04| | 14:14 .5D-06 | 21:21 .1D-07 | 26:26 8D-07 | 3232 .2D.06
375 (10:9) | 26:26 4D-10 | 16:16 .2D-07 | 20:20 .4D-08 | 1515 .1D-07 | 16:16 .1D-09

35

Table 4: PDA without line search

Prob.# q=0 q=1 =2 =3 =4
(n:m) | nginf V0 | nginf VAl | nginf VAl | nginf VO] | ngins VA

6 (2:1) 13:13 .5D-09 14:14 _ .3D-08 | 1818 .1D-11 | 21:21 .8D-08 | 26:26 .2D-13
7 (2:1) 15:15 4D-08 | 21:21 2D-10 | 4747 .1D-08 | 52:52 2D-07 | 4646 .2D-08
10 (2:1) 12:12 .1D-06 1313 2D-06 | 1717 .8D-10 | 20:20 .D-08 | 22:22 .3D-08
11 (2:1) 8:8 .2D-07 1313 .5D-07 | 1818 .3D-06 | 24:24 .8D-08 | 32:32 .1D-06
12 (2:1) 21:21 2D-11 2424 .2D-10 | 39:39 .2D-09 | 28:28 9D-06 | 30:30 .2D-06
26 (3:1) 34:34 sD-06 | 31:31 .5D-06 | 35:35 .5D-06 | 43:43 .8D-06 | 46:46 .9D-06
27 (3:1) 31:31 .3D-07 22:22 .5D-07 12:12 .5D-06 4:4 .2D-06 4:4 .2D-08
29 (3:1) 49:49 1313 .9D-07 | 25:25 .2D-07 | 29:29 .4D-07 | 3535 .2D-07
39 (4:2) 13:13 .8D-06 14:14 2D-06 | 16:16 .8D-06 | 1818 .2D-08 | 10:10 .4D-07
40 (4:3) 8:8 2D-07 | 39:39 .4D-08 6:6 .2D-07 6:6 4D-11 6:6 3D-11
43 (4:2) 1212 .4D-07 16:16 .5D-08 | 44:44 .4D-08 | 63:63 .1D-06 | 87:87 .6D-06
46 (5:2) 62:62 .6D-06 89:89 .sD:06 | 23:23 [Inf] 39:39 .9D-06 | 4343 .8D-07
47 (5:3) 54:54 1D-06 | 20:29 .9D-07 | 65:65 . .4D-07 | 64:64 .2D-06 | 87:87 .3D-06
6 (14) | 101:00 [NaN] 7.7 7D-06 | 1010 .SD-07 | 1212 .8D-06 | 13:13 .8D-06
60 (3:1) 11:11 8D06 | 2020 .7D-07 | 28:28 .2D-08 | 27:27 .D-08 | 37:37 .3D-06
61 (3:2) 11:11 3D-11 15:15 .8D-06 | 19:19 .4D-08 | 22:22 .3D-07 | 24:24 .6D-07
83 (3:2) 8:8 .6D-06 15:15 .5D-09 | 21:21 .2D-09 | 19:19 .4D-07 | 22:22 .SD-08
85 (3:1) 14:14 .1D-08 22:22 .8D-06 | 32:32 .4D-08 | 98:98 .3D-07 | 95:95 .3D-06
66 (3:2) 7.7 .3D-06 28:28 .5D-08 | 101:101 |.2D407| | 75:75 .7D-08 | 101:101
71 (4:3) 6:6 .4D-07 15:1s .6D-09 | 23:23 .2D-06 | S1:51 .6D-06 | 7373 .5D-09
72 (4:2) 21:21 .4D-06 37:37 .1D-06 | 101:101 — | s
77 (5:2) 44:44 .3D-06 1717 8D-06 | 2727 .3D-06 | 31:31 .2D-08 | 39:39 .7D-07
78 (5:3) 88 4D-07 | 22:22 .8D-06 | 14:14 54:54 .5D-08 8:8 .1D-06
79 (5:3) 11:11 .1D-06 20:20 .2D-06 | 4242 .9D-07 | 84:84 .1D-08 | 101:101
80 (5:3) 7:7 .8D-08 2020 .1D-06 | 35:35 .5D-07 | 101:101 [NaN] 6:6 .8D-07
81 (5:3) 9:9 .8D-08 27:27 .3D-07 | S54:54 .7D-07 | 92:92 .4D-08 66 .8D-07
93 (6:2) | 35:35 .3D-06 |[101:200 [NaN] [55 34:34 4444
100 (7:2) | 50:50 5D-06 | 28:28 .5D-06 | 37:37 .2D-08 | 4747 .1D-06 | 60:60 .3D-06
104 (8:4) | 2727 .4D-06 | 92:92 s¢:84 [2D-01] | 101:101 [3D+00] | 101:101 [9D+o01
106 (8:6) | 29:29 .5D-08 32:32 .1D-08 | 57:57 51:51 [.2D+14| | 101:101 |.2D+21
216 (2:1) | 26:26 .1D-09 9:9 aD-07 | 2626 4D-11 | 37:37 .3D09 | 50:50 .5D-09
219 (4:2) | 1818 2D07 | 2020 9D08 | 2323 .3D-06 | 35:35 .1D-06 | 18:18 .2D-06
316 (2:1) | 37:37 3D-06 | 4040 2D-07 | 29:29 .3D-10 | 31:31 .aD-07 | 3232 .2D-06
317 (21) | 1717 [eD+02| | 3737 5D-06 | 2828 .5D-06 | 31:31 .2D-09 | 3232 .2D-07
318 (21) | 17a7 [1D+03| | 3333 .9D-0s | 2828 eD-07 | 30:30 .2D-07 | 3232 .2D-07
319 (2:1) | 1818 [s8D+oz2| | 22:22 [2D+03]| 20:20 .7D-07 | 3030 .1D-07 | 3131 .3D-07
320 (2:1) | ‘1sas [.1D+03| | 22:22 [4D+02|| 34:3¢ .aD-0s | 2029 .1D-08 | 30:30 .2D-07
321 (2:1) | 1sas [.2D+o02| | 3737 7Do7 | 4.4 2D07 | 28:28 1D-07 | 29:29 .4D-06
322 (2:1) | 55:55 .1D-05 4545 8D-12 | 3939 .D-07 | 3535 .4D-08 | 2727 .5D-08
335 (3:2) | 25:25 1D-07 | 3232 .aD-o7 | 28:28 .3D-07 | 39:39 .3D-07 | 5151 .3D-06
336 (3:2) | 32:32 .8D-10 s4:54 2D-06 | so:s0 .2D-07 | €565 .1D-07 | 8282 .sD-08
338 (3:2) | 19119 1313 [2D+o0e| | 1sas [1D+o02]| 1616 [.2D+01]| 1818 |.1D-02]
355 (4:1) 6:6 6:6 2D+84| | 23:23 [.1D+71|| 3535 |.6D+61) | 22:22
373 (9:6) | 25:25 -3D-06 14:14 5D-06 | 21:21 .1D-07 | 26:26 .2D-06 | 30:30 .2D-06
375 (10:9) | 14:14 .2D-07 1515 .1D-07 | 1616 .4D-06 | 22:22 .3D-07 | 20:20 .sD-06

36

Table 5: SALSA with line search

Prob.# q=0 g=1 =12 q=3 g=4
(n:m) ng:nf vai ng : nf Wval | ng:nf IV ng:nf e ng:nf vai
8 (2:1) 1319 2D-07 | 15:16 .3D-07 | 26:30 . .6D-09 | 29:31 .8D-08 | 38:43 .6D.06
7 (2:1) 18:20 .8D-08 | 2021 .5D-07 | 26:28 .2D-09 | 24:24 .8D-06 | 28:32 4D.o7
10 (2:1) 1719 2D-10 | 18:20 °.1D-0S | 1717 .1D-06 | 1919 .3D-07 | 1919 .3D.06
111 (2:1) 11:12 3D-07 | 1518 .2D-06 | 21:26 .3D-09 | 21:26 .D-07 | 30:3¢ .1D.cs
12 (2:1) 23:31 9D-08 | 23:28 .2D-09 | 20:27 .8D-11 | 38:63 .2D-08 | 3043 .3D-07
26 (3:1) 32:34 .9D-06 | 31:31 .8D-06 | 34:35 .7D-08 | 4748 .8D-06 | 53:54 .6D-08
37 (3:1) 51:63 .2D-06 | 31:39 .6D-07 | 61:12 .1D-07 | 1717 .8D-06 44 2D-07
29 (3:1) 27:32 3D-07 | 1515 .3D-07 | 1922 .5D-09 | 23:25 .7D-06 | 29:32 .3D-08
39 (4:2) 18:20 .3D-08 | 25:27 .SD-07 | 22:22 .4D-08 | 28:28 .5D-07 | 14:14 .6D-08
40 (4:3) 1011 aD-06 | 2223 9D-06 | 77 .aD-0s 7.7 .7D-12 7.7 5D-12
43 (42) 26:37 .2D-06 | 2942 .8D-06 | 3752 .8D-08 | 47:.69 .4D-08 | s5:81 .3D-06
46 (5:2) | 101:116 25:29 .7D-06 | 41:47 .3D-06 | 60:70 .2D-08 | 89:99 .9D-06
47 (5:3) 5761 .1D-06 | 22:23 .ID-07 | 4044 4D-06 | 36:38 .2D-06 | 69:76 .8D-06
56 (7:4) 20:27 9D-07 | 4045 .3D-07 | 41:.80 [7D-0s] | 1212 2D-07 | 1515 .5D-0s
60 (3:1) 23:25 4D-08 | 25:26 .8D-07 | 31:33 .1D-06 | 35:36 .1D-05 | 41:42 .4D-06
61 (3:2) 25:36 .2D-10 | 17:20 .8D-07 | 14:16 .1D-06 | 16:17 .1D-06 | 1718 .2D-09
63 (3:2) 9:9 6D-09 | 10:10 .2D-08 | 11:12 4D-07 | 1213 2D-07 | 13:14 .1D-07
85 (3:1) 24:34 .3D-06 | 4465 .7D-06 | 29:35 .7D-06 | 31:36 .7D-08 | 34:39 .2D-07
66 (3:2) 8:8 .2D-09 18:27 .3D-07 6:7 6:21* 8:37*
71 (4:3) 910 .6D-07 | 1010 4D-08 | 11:12 .3D-06 | 1215 .7D-09 | 16:23 .3D-08
72 (4:2) 26:27 3D-06 | 31:31 .3D-06 | 32:35 89:114 [.7D+00] | 39:42
77 (5:2) 78:90 .8D-06 | 24:26 .2D-06 | 29:30 4D-06 | 34:35 9D-.068 | 3940 .3D-08
78 (5:3) 28:39 .1D-06 | 11:12 .6D-06 | 4143 .6D-06 | 54:77 .6D-06 8:8 .3D-06
79 (5:3) 1718 9D-07 | 2021 .D-07 | 22:23 .6D-07 | 4049 .SD-07 | s9:72 .sD-o7
80 (5:3) 9:9 .7D-06 | 18:18 .4D-06 | 32:38 .6D-07 | 65:100 .6D-06 6:6 .6D-08
81 (5:3) 19:22 4D-06 | 24:24 9D-07 | 4248 .3D-06 | 93:103 .4D-06 6:6 .6D-06
93 (6:2) 30:35 .2D-08 | 84:108 .5D-07 | 72:108 .4D-07 | 101:208 37172
100 (7:2) | 82:93 .1D-06 | 5360 .2D-06 | 5561 .1D-08 | 6€8:76 .4D-06 | 75:868 .SD-07
104 (84) | 25:26 8D-06 | 28:31 .1D-08 | 33:38 .8D-06 | 14:30° 26:48°
106 (8:6) | 40:42 .1D-08 | 40:63° 37:52 60:65 .9D-06 | 80:98 .3D-08
216 (2:1) | 17:20 4D-10 | 1618 .1D-06 | 14:14 4D07 | 13:16 .2D-07 | 13:21 .1D-05
219 (4:2) | 3949 9D-08 | 4759 .4D-07 | 36:37 .3D-06 | 4345 .5D-06 | 50:52 .5D-07
316 (2:1) | 25:28 9D-07 | 23:29 2D-06 | 1618 .3D-08 | 1719 .2D-08 | 1719 .7D-09
317(2:1) | 14:21 .2D-09 | 42:59 3D-08 | 1617 .2D-06 | 1617 .SD-07 | 1617 .2D-07
318 (2:1) | 1922 4D-07 | 2125 2D07 | 1718 .D-07 | 1617 .1D-06 | 1617 .8D-0s
319 (2:1) | 22:33 2D-07 | 3145 .uD-0S | 19:20 .3D-08 | 1818 .2D-07 | 17:17 .4D-06
320 (21) | 1315 .aD-os | 22:33 .aD-06 | 2529 .2D-07 | 1919 .9D-06 | 20:21 .3D-07
321(21) | 1516 .5D-06 | 16:19 .1D-09 | 26:35 .5D-06 | 25:26 .3D-06 | 22:24 .6D-08
322(2:1) | 1922 .2D06 | 1923 .1D-12 | 1416 3D-08 | 1718 6D-07 | 21:21 .3D-08
335 (3:2) | 2330 .2D-07 | 79:176 42:56 3D-07 | 28:38 .6D-09 | 22:27 .6D-06
338 (3:2) | 20:27 .8D-07 | 21:25 2D-07 | 2945 .AD-05 | 31:52 .1D-07 | 19:57"
338 (3:2) | 99 1D-07 | 1517 .2D-06 | 2028 .2D-07 | 22:33 4D-08 | 30:46 .4D-06
355 (4:1) | 84112 .9D-06 | 32:39 .8D-07 | 93:166 .1D-06 | 101:150 101:188
373 (9:6) | 101:206 [3D+01] | 101:203 [4D+01]| 3441 6D-0s | 42:51 2D-07 | 48:58 .4D-06
375 (10:9) | 11:11 5D-06 | 15:16 .5D-07 | 1617 .3D-06 | 16:16 .6D-06 | 18:18 .8D-10

37

Table 6: PDA with line search

Prob.# q=0 g=1 g=2 g=3 q=4
(n:m) ng:nf val ng:nf vai ng:nf val ng:nf v ng:nf 1ve)
6 (2:1) 13:16 .3D-10 | 14:17 [.5D-05] | 25:25 .1D-13 | 290:34 4D-12 | 32:33 .3D.12
7 (2:1) 17:21 .5D-06 | 3542 3D-09 | 34:38 .2D-06 | 3641 .3D-07 | 3539 .6D-06
10 (2:1) 1719 .2D-10 | 18:220 .1D-06 | 18:18 .6D-06 | 23:23 .2D-09 | 25:25 .9D-09
11 (2:1) 11:12 3D-07 | 1618 .7D-08 | 23:28 .5D-07 | 28:32 .3D-10 | 34:39 .1D-07
12 (2:1) 23:28 2D-10 | 23:29 .5D-07 | 23:29 .sD-07 | 27:35 .9D-09 | 3241 .3D-10
26 (3:1) 3234 9D-06 | 31:31 .8D-06 | 36:37 .6D-06 | 4748 .8D-068 | 53:54 .6D-06
27(3:1) | 46:55 .2D-07 | 50:69 .2D-06 | 101:132 18:18 .3D-06 | 4:4 2D-07
29 (3:1) 31:51 15:15 .3D-07 | 21:23 9D-06 | 22:25 .2D-06 | 28:31 .4D-06
39 (4:2) 18:20 .3D-06 | 20:20 .4D-08 | 31:32 .2D-07 | 28:29 .4D-07 | 19:20 .4D-06
40 (4:3) 10:11 .1D-06 | 2222 .9D-08 7.7 .8D-08 77 .7D-12 7.7 5D-12
43 (4:2) 26:39 .3D-07 | 2942 .5D-07 | 41:59 .1D-06 | 56:83 .3D-06 | 62:92 .3D-06
46 (5:2) | 101:126 26:30 .4D-06 | 101:134 99:133 .8D-06 | 101:135
47 (5:3) $8:62 .6D-06 | 22:23 .1D-07 |. 41:47 3D-06 | 36:38 .2D-06 | 72:.94 .9D-06
56 (7:4) 18:35 .9D-06 | 33:36 .5D-07 | 48:58° 1212 .2D-07 | 15:15 .5D-06
80 (3:1) 24:27 4D-07 | 23:24 .D-07 | 3233 6D-07 | 36:38 .2D-08 | 4142 .4D-06
61 (3:2) 18:21 .2D-06 | 15:16 .5D-06 | 17:18 .3D-10 | 20:20 .9D-08 | 21:22 .8D-08
63 (3:2) 9:9 6D-09 | 10:10 .2D-08 | 1212 .6D-06 | 1515 .3D-08 | 18:18 .1D-07
65 (3:1) 25:37 .8D-06 | 2742 .8D-09 | 29:35 .2D-07 | 36:44 .7D-06 | 3549 .3D-06
86 (3:2) 8:8 2D-09 | 1824 .8D-06 | 26:35 .3D-06 | 36:43 .6D-06 | 36:50 .1D-07
71 (4:3) 910 .6D-07 | 10:10 . .4D-08 | 1213 .2D-08 | 16:19 .3D-09 | 29:38 .2D-06
72 (4:2) 26:27 .8D-06 | 32:33 .2D-06 | 35:62* 48:72° 43:43
77 (5:2) 80:89 .2D-06 | 23:24 .1D-06 | 29:30 4D-06 | 34:35 9D-06 | 38:39 .5D.07
78 (5:3) 24:32 .2D-08 | 11:12 .6D-06 | 29:3¢ .9D-07 | 67:102 .1D-07 8:8 .3D-06
79 (5:3) 1718 9D-07 | 20:21 .2D-07 | 21:22 .SD-07 | 48:54 .2D-07 | 4857 .8D-o7
80 (5:3) 9:9 .7D-06 | 18:18 .4D-06 | 27:28 .2D-06 | 62:95 .3D-07 6:6 .6D-06
81 (5:3) 18:20 .7D-08 | 23:25 .6D-07 | 33:3¢ .3D-06 | 90:94 .7D-06 6:6 .6D-06
93 (6:2) 29:3¢ .8D-07 | 87111 .3D-07 | 3341 .6D-06 | 59:74 .1D-06 | 62:138
100 (7:2) | 83:96 .2D-06 | 5360 .8D-06 | 54:59 .2D-06 | 61:66 .9D-06 | 66:70 .2D-06
104 (8:4) | 25:26 .8D-06 | 28:31 .1D-06 | 36:40 .5D-07 | 14:30° 24:40* [.8D+00
108 (8:6) | 42:45 32:42 45:55 63:68 .D-0S | 64:92 |.6D+21
216 (2:1) | 17:20 4D-10 | 16:18 .1D-08 | 14:14 .4D-07 | 17:19 2D-09 | 27:35 .5D-06
219 (4:2) | 49:57 .2D-07 | 80:115 .6D-08 | 52:60 .6D-06 | 46:85% 47:62 .2D-07
316 (2:1) | 3363 .3D-06 | 23:29 .2D-06 | 23:30 .8D-07 | 26:31 2D-07 | 27:3¢ .2D-07
317(2:1) | 1623 .2D-08 | 30:48 .3D-06 | 24:38 .2D-07 | 24:28 .4D-06 | 3348 .3D-07
318 (2:1) | 1418 .sD-06 | 19:2¢ .4D-07 | 2228 .9D-06 | 25:31 .8D-07 | 29:46 .2D-09
319 (2:1) | 17:23 .7D-07 | 18:22 .3D-06 | 2640 .2D-06 | 25:36 .D-07 | 27:38 .2D-07
320 (2:1) | 16:20 .6D-08 | 1517 .6D-07 | 29:43 .1D-07 | 24:33 .2D-07 | 29:40 .9D-11
321(21) | 1720 .2D-08 | 1619 .1D-09 | 26:31 .8D-09 | 32:52 .1D-06 | 2943 .2D-06
322 (221) | 12:14 20:26 4D-07 | 14:16 .3D-06 | 26:37 .5D-06 | 29:43 .2D-08
335 (3:2) | 2531 .3D-06 | 42:64 .8D-09 | 3545 .5D-09 | 36:41 .1D-06 | 26:31 .4D-07
336 (3:2) | 21:25 .4D-08 | 21:228 .3D-07 | 36:66 24:3¢ 9D-07 | 2644 .1D-09
338 (3:2) 9:9 aD-07 | 1516 .1D-09 | 23:29 .1D-08 | 28:41 .6D-07 | 12:22 .3D-08
355 (4:1) | 101:136 [.2D-01] | 3542 4D-07 | 93:166 .1D-06 | 101:230 [.7D-01] | 101:155
373 (9:6) | 101:223 101:199 34:41 6D-06 | 42:52 4D-06 | 48:58 .4D-06
375 (109) | 11:11 5D-06 | 1717 7D-06 | 1717 .5D-06 | 20:20 .3D-07 | 22:22 .4D-06

38

