Adaptive Data Distribution
for Concurrent Continuation

E. F. Van de Velde
J. Lorenz

CRPC-TR89013
August, 1989

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

CRPC-89-4-revised August 30, 1989

Adaptive Data Distribution for Concurrent
Continuation*

Eric F. Van de Velde and Jens Lorenz

Applied Mathematics 217-50
California Institute of Technology
Pasadena, California 91125

* This work is supported in part by Department of Energy Grant No. DE-AS03-7T6ER72012.
This material is based upon work supported by the NSF under Cooperative Agreement No.
CCR-8809615. The government has certain rights in this material.

Abstract

Continuation methods compute paths of solutions of nonlinear equations
that depend on a parameter. This paper examines some aspects of the mul-
ticomputer implementation of such methods. The computations are done
on a mesh connected multicomputer with 64 nodes.

One of the main issues in the development of concurrent programs is
load balancing, achieved here by using appropriate data distributions. In
the continuation process, many linear systems have to be solved. For nearby
points along the solution path, the corresponding system matrices are closely
related to each other. Therefore, pivots which are good for the LU-decom-
position of one matrix are likely to be acceptable for a whole segment of
the solution path. This suggests to choose certain data distributions that
achieve good load balancing. In addition, if these distributions are used, the
resulting code is easily vectorized.

To test this technique, the invariant manifold of a system of two identical
nonlinear oscillators is computed as a function of the coupling between them.
This invariant manifold is determined by the solution of a system of nonlin-
ear partial differential equations that depends on the coupling parameter. A
symmetry in the problem reduces this system to one single equation, which
is discretized by finite differences. The solution of the discrete nonlinear
system is followed as the coupling parameter is changed.

1 Introduction
Consider a system of M equations:
G(u,A\)=0 (1)
for u € RM, which depends on a parameter A € R. Here,
G:RMxR—RM
is a smooth map. By a solution branch we mean a one parameter family
(u(s),\(s)) ERM xR, s, <s< s (2)

of solutions of (1) depending smoothly on some parameter s € [sq,53]. Be-
cause of the importance for applications, many numerical methods have been
devised and investigated to compute such branches; see, e.g., [3,8,10].

In this paper, we discuss some aspects of the implementation of such
methods on multicomputers. In particular, we address the question of good
data distributions for the linear systems that need to be solved during the
continuation procedure. Assuming that the branch (2) contains only regular
points and simple folds, one has to solve linear systems whose matrices have
the form:

[f; b] € RIM+1)X(M+1)
c §
where Ais M X M.

These bordered systems can be solved efficiently once an LU-decompo-
sition of A is known. In general, for reasons of numerical stability, it is
necessary to compute such a decomposition with pivoting. To do this on
multicomputers, the algorithm described in [13] is used. As already noted
in [13], the efficiency of the decomposition depends crucially on an interplay
between the pivot locations and the distribution of the matrix entries over
the concurrent processes. For continuation problems, it is reasonable to be-
lieve that the pivot locations can be kept constant along a whole piece of the
branch. This is indeed confirmed by our experience. Hence, the pivot search
cost is eliminated for the majority of the LU-decompositions. In addition,
with the pivots known in advance, the data distribution can be chosen to
achieve optimal load balance. Because the pivots can be kept constant along
a whole piece of the branch, an adaptation of the data distribution to new
pivot locations is necessary only occasionally.

In continuation methods, it is thus possible to reduce a dynamic to a
static pivoting strategy without significant loss of numerical stability. Here,
we use this technique for an example with linear systems whose sparsity
structure we do not exploit. Nonetheless, the technique of projecting a
dynamic to a static pivoting strategy is valuable also in a sparse context:
At the start of the continuation process, a dynamic sparse strategy is ap-
plied which achieves numerical stability while limiting (or minimizing) the
amount of fill. In this step, the issue of load balance is ignored. Then, for the
subsequent LU-decompositions, the predetermined pivot locations and the
predetermined sparse matrix structure are used together with a correspond-
ing data distribution which achieves good load balance. Numerical stability
is monitored for these decompositions. Only occasionally, when numerical
stability is not achieved, the dynamic routine is applied again. The present
paper investigates this approach, ignoring the issue of sparsity, however.

An outline of the paper follows. In Section 2, we describe the mathe-
matical aspects of the concurrent LU-decomposition algorithm. In Section 3,
we explain the terminology concerning data distributions on multicomput-
ers and apply the concepts to the LU-decomposition algorithm. Sections 4
and 5 contain some details on the continuation and bordering algorithms
which are used to test the strategy.

Sections 6 and 7 give performance and numerical stability results for a
test problem, namely the numerical calculation of the invariant manifold of
a dynamical system. We have chosen such a — rather involved — exam-
ple, because it leads to matrices in the continuation process which have no
apparent symmetry or diagonal dominance properties. Therefore, the pivot
locations do not follow easily from structure properties of the matrices. The
concept of invariant manifold is explained in Section 8, and the dynamical
system for which we compute it is given in Section 9. The numerical results
of the computations are given in Section 10.

In this paper, we make essential use of concepts from computer science
(multicomputers, data distribution) and from scientific computing (contin-
uation for nonlinear equations, LU-decomposition). Some necessary back-
ground material and explanations of terminology are included to make this
paper accessible to numerical analysts as well as computer scientists.

2

2 LU-Decomposition

To clarify terminology, we describe here (a version of) the LU-decomposition
algorithm. For its implementation on multicomputers we refer to [13]. The
main characteristic of the presented version is the following: though arbi-
trary pivoting strategies can be incorporated, an explicit interchange of rows
and columns is not required. The main advantage of this formulation is that
it allows an implementation which is, to a large extent, independent of the
data distribution; see [13]. A second advantage is that communication costs
are reduced if explicit row and column interchanges are avoided.

Let A be an M X M matrix with entries amn, 0 <m< M and 0 < n <
M. Let 74, 0 < k < M, be the row index and cx, 0 < k < M, the column
index of the pivot of the k-th elimination step. The permutations 4 and c
may either be known in advance or may be determined during the course of
the elimination. In Figure 1, pseudo-code is given for the LU-decomposition
algorithm with implicit pivoting, i.e., without explicit interchanges of rows
and columns. The “pivot search” in this code refers to the computation
necessary to determine the pivot if the pivots are not preset.

The next theorem follows from a well known result by permutation:

Theorem 1 Let R and C denote the permutation matrices correspondmg to
the permutations r and cy, i.e., for 0 < k < M and for all vectors x € RM

(Rx)k = z,, and (CX)i = z,.
If the algorithm of Figure 1 runs to completion, then it overwrites the orig-
inal matriz A = A© by the matriz:
AM-Y) = RTC) 4+ U,
where one defines the matrices L and U by their entries Ly, and ump,
0<m< M and0<n< M, as follows:
(M-1)

Qrmcn’ R <M

brmen =4 1 ifn=m
0 otherwise

u _ agﬁf,:,‘l) ifn>m
TmiCn 0 otherwise.

With these definitions, the original matriz A has the decomposition:

A= LCTRU. (3)

M:={m:0<m< M};
Ni={n:0<n< M};
fork=0,1,...,M — 1 do begin
{Pivot Strategy and Bookkeeping.}
do pivot search and find a,,7[k], c[k] ;
M= M\ {r[k]} ;
N = N\ {elt]} ;

if a,. = 0.0 then terminate ;

{Calculation of the Multiplier Column.}
for all m € M do
a[m, c[k]] := a[m, c[k]]/a,c ;

{Elimination.}
for all (m,n) € M x N do
L clm = afmn]— alm, il
en

Figure 1: LU-Decomposition with implicit pivoting.

The matrix L = RLCT is unit lower triangular and U = RUCT is upper
triangular. The matrices L and U are called permuted triangular. As is well
known, once the decomposition (3) is computed, the linear system Ax = b
is easily solved.

It remains to discuss the strategy for the choice of the pivot indices
7+ and cx. There are two aspects of importance, namely numerical stabil-
ity and computational costs. In this paper, we restrict ourselves to only
two different pivoting strategies, which are, in some sense, opposite to each
other. The first strategy, called complete pivoting, requires to determine
Tk, cx before each elimination step in such a way that the pivot element
ar, ¢, is as large as possible in absolute value. This strategy is usually good
from the perspective of numerical stability, but the computational costs are
high. The second strategy, called preset pivoting, is the trivial strategy to
accept the permutations 7, ¢ as known (from previous calculations) before
the LU-decomposition algorithm for A starts. Clearly, there is the danger
of numerical instability or even breakdown of the algorithm. On the other
hand, there are obviously no search costs; more importantly, with preset
pivoting one can choose an optimal data distribution, as will be explained
in Section 3.

For reasons of reliability, one would like to have a convenient measure
to evaluate the numerical stability of the algorithm with preset pivoting.
If amn denotes entries of the original matrix A and aﬁ{;l entries of the
overwritten matrix AM-1 = (L — RTC) + U, then we compute the growth
factor v as the ratio given by:

y = maXo<m,n<M Ia%:ull
MaXo<mn<M |Gmun|

(4)

If v is large, there is the danger for numerical instability. A theoretically
sounder, but — for applications — prohibitively expensive growth factor is
given in [14]. For a recent discussion of the significance of growth factors to
numerical stability; see [7].

3 Data Distribution

3.1 Terminology

On multicomputers, the prevalent paradigm for concurrency is to use a
number of sequential processes that communicate with each other. For the

5

purposes of the following discussion, the number of processes is kept fixed.
Each process has a unique identifier, which is supplied by the multicom-
puter operating system, and which is used as an address in the exchange
of messages. No a priori assumptions are made about the physical location
of the processes on multicomputer nodes. It is often convenient to map the
system-supplied identifier into a user-defined identification. E.g., for vector
calculations the processes are organized as a one-dimensional process grid.
The user identification for each process is then a number p between 0 and
P — 1, where P is the number of processes. A multicomputer program op-
erating on a vector, say of dimension M, must distribute the vector entries
over the P processes. A distribution allocates each vector entry to a particu-
lar process, e.g., it maps the m-th entry to process p = p(m). The collection
of entries allocated to one process form a local vector. Each entry of this
local vector corresponds to exactly one entry of the global vector, e.g., the
i-th local entry in process p is the m-th global entry. A vector distribution u
is thus a map from the global index m, where 0 < m < M, to an index pair
p(m) = (p,i) consisting of a process number p = p(m) and a local index
t = i(m). Two often used maps are the linear distribution given by:

{ p(m) = max(|Z;],|2£8])) %)
i(m) = m—p(m)L — min(p(m), R)

and the scatter distribution given by:

{p(m) z m mod P 6)

i(m) I.%J ’

where L = [%J and R = M mod P. (For the linear distribution, it is
assumed in (5) that L # 0 or, equivalently, P < M. If P > M then
p(m) = m and i(m) = 0.) The notation |z| means the greatest integer less
than or equal to z. An example is displayed in Table 1: the index range
0 < m < 10 is distributed over 4 processes.

For matrix calculations, the processes are organized in a rectangular
grid such that each process is identified by two coordinates (p,q), where
0 <p< Pand0<q< Q. The total number of processes is thus P x Q.
All processes with coordinates (p, q) where 0 < ¢ < Q form the p-th process
row and all processes with coordinates (p,q) where 0 < p < P form the g-th
process column. A matrix distribution is defined as the Cartesian product of
two vector distributions y and v. The rows of the matrix are distributed by

Linear Scatter
Global || Process | Local || Process | Local

|
|

NN~ =O|O|O|O

71 Ko o] RN] =-Y 3,1 I NOCT B U
wlwln|vl=|=m|olo
=HIOI=OIN|—= O] -
=lolwln=]|o]wln] -

Table 1: Four fold linear and scatter distribution.

u over the P process rows. Similarly, the columns are distributed by » over
the Q process columns. Thus, if u(m) = (p,) and v(n) = (g,), the matrix
entry with global row and column indices m and n is found in process (p, q)
as local matrix entry a; ;.

Using only the linear and the scatter distributions, a matrix can be
distributed in a variety of ways. Consider, e.g., the distribution of a matrix
over four processes. They may be organized asa4x1,a2x2,0oralx4
process grid. Then, if either the linear or the scatter distribution to rows
and columns is applied, the following 8 distributions are possible:

4 x 1 linear-, 2 x 2 linear-linear,

4 x 1 scatter-, 2 X 2 scatter-linear,
1 x 4 -linear, 2 X 2 linear-scatter,
1 X 4 -scatter, 2 X 2 scatter-scatter.

Here, we list P X @, the type of row, and the type of column distribution.
(Note that the linear and the scatter distribution are the same when P =1
or Q = 1.) A 5 x 7 matrix A = [am,] distributed over a 2 X 2 process grid

7

with a linear row and a scatter column distribution is stored according to:

Go0 @ao,2 Go4 Qo6] ap,1 Qao3 Qo5 1]
Aoo Aoy a0 a12 G14 G186 a1 @13 415
[Aro Aix] = G20 622 424 G286 | G20 423 425
aso as2 as4q aze as,1 a33 aszs
| | 340 @42 Q44 Q46 | | 04,1 Q43 Q45 | |

where Ap, is the submatrix of A stored in process (p,q). The local in-
dices (i,) corresponding to the global indices (m,n) are determined by the
position of the entry a,, , in its submatrix.

3.2 Data Distribution for LU-Decomposition

Our concurrent LU-decomposition program is valid for any distribution of
the matrix represented with functions like p and v, not necessarily linear or
scatter. As shown in [13], the choice of distribution influences the efficiency
of the execution considerably. Fine tuning the data distribution is usually
crucial to obtain an effective concurrent program. Distribution functions
like the linear and scatter distributions (5) and (6) are static: they depend
only on the dimension of the problem and the number of processes (i.e., on
M, N, P, and Q, assumed fixed). Adaptive or dynamic data distributions
also depend on the actual computation itself.

Adaptive distributions may increase the concurrent efficiency by increas-
ing the load balance. To make this plausible, consider the LU-decomposition
algorithm in somewhat greater detail. Each decomposition step deactivates
the pivot row and the pivot column of the step. Consequently, once a row
(column) has been chosen as a pivot row (column) it is not accessed for
the remainder of the decomposition. Therefore, a bad load balance results
if successive pivot rows (columns) fall into the same process row (column).
How can one obtain a good load balance? Suppose the number of process
rows P and the number of process columns @ is kept fixed, and the load
balance of LU-decompositions for all possible distributions of the type u x v
is compared. Then, for full matrices, the best load balance is obtained if:

1. within divisibility constraints, an equal number of matrix rows
(columns) is allocated to each process row (column),

2. the order in which matrix rows (columns) become inactive is such that
always after P (Q) steps, one row (column) has become inactive in each
process row (column).

The first condition is easily fulfilled by many static distributions, e.g., by
the linear and scatter distributions discussed earlier. The second condition,
however, connects the desired data distribution to the order of the pivots.
It can be satisfied if the locations of the pivots are available prior to the
LU-decomposition. To explain this, assume that the location of the k-th
pivot is known to be at the global row index r; and the global column index
ck. Then, the second condition is satisfied by choosing the row and column
distribution given by:

u(ri) = (k mod P, |k/P]) and v(cx)= (kmod @, |k/Q]).)

For LU-decomposition without pivoting, i.e., 7, = k and ¢x = k, these
coincide with the scatter distribution (6).

3.3 Remark on Vectorization

When the pivot locations are known in advance, the matrix distribution (7)
is also optimal from the perspective of vectorization. Consider the set of
feasible rows in one arbitrary but fixed process during the course of the
LU-decomposition. (A row is feasible as long as some of its entries are
still allowed to be pivots.) The set of feasible row indices starts out as an
interval, i.e.,Z = {i: 0 < i < I'}. Note that this is a set of local indices. Each
elimination step makes one global row infeasible. If this row is represented
in the process under consideration, its local row index is deleted from the
index set Z. In general, there is no a priori information about the order in
which local indices are removed. For the given data distribution, however, it
will be the first index in the set. The feasible row index set thus remains an
interval. The same holds for the feasible column index set. As a result, all
computations throughout the LU-decomposition can be done on contiguous
blocks of data, and vectorization is straightforward. The Symult Series 2010
does not have vector hardware, and the full effect of this observation has not
been assessed at this time. On current nodes, the only effect of the above
observation is a reduction in administrative overhead because loop traversal
is simplified.

3.4 Vector Distributions in Matrix Calculations

Scalars and vectors that occur in the same operations as a matrix must be
distributed compatibly with the given matrix distribution. Scalars are easily
taken care of by duplication, i.e., their values are stored in every process.

9

Vector distributions compatible with matrix distributions are more compli-
cated, because the desired distribution depends on the operation which will
be performed. E.g., consider the implementation of the following assign-
ment, which requires the evaluation of a matrix vector product:

b := Ax.

Entry z,, of the vector x multiplies the n-th column of A. Hence, z,, must be
known in every process where a segment of the n-th column of A is stored.
This implies that x must be duplicated in each process row, and within each
process row, it must be distributed according to the column distribution »
of the matrix A. Similarly, it is seen that storage space for the vector b must
be assigned in a dual fashion, i.e., duplicated in each process column and
distributed across process rows. Although conflicting with linear algebra
conventions, we refer below — for brevity — to the vector x as a row vector
(since it appears in each process row) and to b as a column vector (since it
appears in each process column). These two types of vector distributions
are sufficient to implement all matrix vector operations necessary for the
whole continuation algorithm. In particular, the back-solve algorithm, which
generally follows an LU-decomposition, uses a column vector as right hand
side and produces the solution in a row vector.

3.5 Data Redistribution

In a program with adaptive data distribution, it is, in general, necessary
to perform some data redistribution when switching distributions. In the
continuation program, e.g., successive iterations add corrections to the cur-
rent estimate of the solution vector. If the correction and the solution are
identically distributed, summing them is easy and trivially concurrent. Af-
ter changing distributions, the solution vector is redistributed to keep its
distribution identical to that of future corrections.

Because row vectors are duplicated in every process row, the row dis-
tribution g can be changed without affecting data stored in row vectors.
Similarly, data in column vectors are not affected by changes in the column
distribution v. Thus, before changing the column distribution, row vectors
are copied into temporary column vectors. Once v has been changed, the
vectors are copied back from the temporary column vectors to the original
row vectors. A similar strategy is applied to column vectors when the row
distribution is changed.

10

To copy a row into a column vector (the reverse operation is analogous),
the column vector is initialized to zero. This is followed by a local assignment
phase: all local row vector entries that can be assigned to local column vector
entries are assigned. Le., in process (p,) local row vector entry j is assigned
to local column vector entry i if and only if the corresponding global vector
indices are equal, i.e., if and only if:

v~g,7) = n~(ps1)-

This is achieved by running through all local row vector entries j, computing
their global index n = v~1(g,5), computing (,i) = u(n), and assigning the
j-th row vector entry to the i-th column vector entry if p = p. Consider now
only processes of one arbitrary but fixed process row. Every row vector entry
is stored exactly once in the process row. Only a subset of the column vector
entries is stored, however, and those column vector entries are duplicated
in each process of the process row. During the local assignment phase,
the process row as a whole considered each row vector entry exactly once
and made the corresponding assignment to the column vector section if
appropriate. Thus, within the process row, each assignment to the column
vector section was made exactly once. Each of the individual processes,
however, has only a partially initialized column vector section. In the global
assignment phase, these partially initialized sections of the column vector
are combined by a standard recursive doubling procedure over the process
columns. In such a procedure, pairs of process columns are recursively
combined. This requires log, Q sequential steps; each step consists of Q/2
concurrent data exchanges.

3.6 Choice of Process Grid

The discussion so far left the number of processes and the choice of process
grid P x Q open. Here, we examine some factors that influence practical
choices for P and Q.

For computations of medium and large grain concurrency on multicom-
puters like the Symult Series 2010, the total number of processes is usually
fixed and equal to the number of processors in the multicomputer. For com-
putations with a high communication overhead on architectures with low
cost context switching, increasing the process to processor ratio may be an
effective way to hide the communication cost. For the computations dis-
cussed here, the overall communication cost is too small and the context
switching overhead too large for such strategies to be considered. Hence,

11

the total number of processes is kept fixed, and we examine how best to
organize them.

The choice of process grid has a bearing on the communication cost and
the memory requirements of the program. The fized communication cost,
i.e., the part that depends only on the number of messages sent, is reduced
when either P = 1 or Q@ = 1 because the broadcast of the pivot row (if
P = 1) or the pivot column (if @ = 1) is avoided in each step. The marginal
communication cost, i.e., that part of the communication cost that increases
with the message length, is minimized by choosing a process grid in which
P =~ @, see [6,13], because such a choice minimizes the message length of
pivot row and column broadcasts. Here, we take P &~ Q to mean equal within
divisibility constraints. Memory usage is minimized when choosing P ~ Q
because this leads to a minimum amount of duplication in vector storage, at
least in programs with about an equal number of row and column vectors.
To see this, consider a program with one row and one column vector, each
of dimension M. Because a row vector is duplicated P times and a column
vector @ times, the total memory usage is (P + Q)M words. With the total
number of processes P X Q fixed, this is minimized if P ~ Q. On the Symult
Series 2010 the fixed communication cost is so small that it may be omitted
from consideration, and hence, two dimensional distributions with P =~ Q
are preferred.

4 The Continuation Procedure

In this section, we describe briefly the continuation process that we have
implemented. The basic ideas are well-established; see [8,10]. In actual
calculations, one has to specify — among others — the stopping criterion
for Newton’s method and the strategy for determining the arc-length of the
continuation steps. To avoid ambiguity, we shall also give details on these
issues below.

We consider a smooth map

G:RM xR —RM
and assume that the system of equations
G(u,)) =0, (8)
has a smooth solution branch

(u(s),M(s)) €ERM xR, s, <s< s, (9)

12

consisting of regular points and simple folds only. We also assume that a
scalar product of the form

(v, 1), (w,) =wvTu+pd, w>0, (10)

is chosen in RM x R. The corresponding norm is denoted by || . ||. (The
freedom in the choice of w in (10) is convenient; e.g., if the system (8) arises
by discretization, then w will change naturally with the grid spacing.) For
definiteness, we assume that the branch (9), is parametrized by its arc-length
s with respect to the scalar product (10). Then, the tangent vectors

: du d)\
Y —_ — — a <
(u7A) (ds’ds), S Ss___sb,

are normalized, i.e., .
| (&,2) [|=1.

Clearly, for each s, < s < sp, the tangent vector satisfies the M linear
equations:

Gu(u, Vi + Gr(u,\)A = 0.
4.1 Computation of the Normalized Directed Tangent

Suppose two nearby points on the branch (9) were computed previously:

(u-1,A-1) (u(s-l),A(s-l))’
(uo,Xo) = (u(s0),A(s0)), s_1 < S0,

and we also know the tangent vector (i1-1,A-1) at (u_1,A-1). Since the
two points on the branch are assumed to be close, one can expect that (see
Figure 2):

wﬁzlﬁo + /._IXQ > 0.

Therefore, the normalized directed tangent (1o, ;\o) can be obtained by solv-
ing the system of equations:

Gu(ug,d0) Ga(uo,X0) || v [_ |0 (11)
wilzl A—l K B 1
and normalizing;:
) v S [k
o = 77 ’ Ao = T 12
A N R NP (42

The linear system (11) is solved with the bordering algorithm of Section 5.

13

Figure 2: Two nearby solutions and their tangent vectors on a solution
branch.

14

4.2 Newton Iteration in a Hyperplane

After determining the tangent (o, Xo), a new point on the branch is com-
puted. To this end, assume that an arc-length distance As > 0 is chosen;
see Figure 3. The initial approximation

(u®, 1) = (ug, Ao) + As(ito, do)

is improved by a Newton iteration in the hyperplane H through (u(®,(©)
and perpendicular to (1g, Ag). One obtains the iteration for k > 0:

aB+) = y®) 4 Ay(E+)
AE+) — \(R) . AN+

where the correction (Au(*+1); AX(*+1)) solves the linear system:

Gu(u®, () Ga(u®), A(R) Auk+D) | ~G(u®, ()
wal Ao AXF+Y) | 0 '
(13)

Again, the bordering algorithm of Section 5 is used to solve the above system.
The two basic procedures outlined above have to be supplemented by

starting procedures, stopping criteria, and a strategy for changing As.

4.3 Stopping Criterion for Newton’s Iteration

In the above iteration, we compute the norm of the correction:

k1)]| (Aul+D, XED) |

and stop the iteration when
e+t < 7 = 1075, (14)

The last approximation (u(**1), A(¥+1)) is accepted as a new point on the
branch (9). We stop the iteration as unsuccessful if e*+1) > k) or if it
takes more than 10 iterations before (14) is satisfied.

4.4 Strategy for Changing As

Let Asg denote the arc-length for the previous step, i.e.,

.

(u_1, /_1) + ASo(ﬁ_l, A_l)

15

A

Figure 3: Initial approximation for new solution point.

16

was the starting point of the Newton iteration leading to the latest solution
(w0, Xo). Let No denote the number of Newton iterations that was required
to satisfy the stopping criterion (14) for this iteration. The norms of the
corrections are denoted by e((-,"), where 1 < n < No. (We identify the “so-
lution” (ug, A¢) and the latest Newton iterate, though, of course, the latest
iterate solves the system (8) only up to O(72).) We want to determine a
new step length As;, which will lead to the starting point

(10, Xo) + Asy(tig, Ao). (15)

With 65") = e&")(Asl), we denote the norms of the corresponding corrections
if we should start the Newton process at (15).
We assume quadratic convergence; then, to leading order, we have that:

& = o(rDy2 = o2 -1 Dy (16)
for i = 0 and ¢ = 1. We also make the assumption that for i =0 and ¢ = 1:
651) = alAs;. (17)

(If As; is very small, a theoretical analysis to leading order suggests the
assumption:
egl) = a(As;)?. (18)

The assumptions (17) and (18) lead to slightly different strategies for chang-
ing As. It is our experience, however, that the strategy based on (17) is
slightly better than the one suggested by (18). It seems that (17) is more
realistic than (18) if As; is not extremely small.)

Our aim is to choose As; such that the stopping condition:

egK) <T : (19)

is satisfied after K steps. Here, the number K is chosen by heuristic ar-
guments; we always perform at least 3 Newton iterations, and our aim is
to choose the parameters such that 3 iterations are sufficient to satisfy the
stopping criterion. Thus, we assume Np > 3, and take

k{3 if No =3,
- No-1 if No> 3.

17

We replace (19) by the requirement eﬁK) = 07, § = 0.1, and obtain from (16)

and (17) that:

2K-1

egx) = e((,K) (2—::) = 0.

Therefore, the suggested value for As; is:

o 2—K+1
r

A31 = (m) A.So.
€

As usual, some precautions must be taken if the suggested value for As;
is too large or too small, but we omit technical details. For alternative
approaches to selecting an arc-length As, the reader is referred to [3,8], e.g..

4.5 Remarks on the Starting Procedure

The first point on the solution branch, (ug,Xo) = (u(ss),A(ss)), cannot
be computed as outlined above. In general, a special starting procedure is
needed. However, the problem at A =)¢ is often substantially simpler. The
exact solution might be known or easily constructed. If a good estimate for
the solution is available, the straight Newton iteration given by:

Gu(u®), X)vEH) = _Gu®), xo)
a1 = y(k) 4 (k1)

can be used. If the initial problem is linear, as is the case for the example
discussed in Section 9, one Newton iteration is sufficient to find the solution.

To start the extended Newton iteration, also the tangent to the solution
branch (1’10,5\0) is necessary. To compute it, use (12) with 4 = 1 and v the
solution of the system:

Gu(ug, Ao)v = —Gx(ug, Ao).

This determines the tangent except for an easily resolved ambiguity in sign.
To complete the starting procedure, the arc-length step As must be initial-
ized. This value is determined heuristically.

5 The Bordering Algorithm

In every step of the continuation algorithm, a system of linear equations is
constructed and solved. Most of the computation time is taken up by the

18

solution of these linear systems. For continuation methods, these systems
have special structure, and a specialized algorithm to solve them is outlined
below. As seen from (11) and (13), the linear systems have the form given

ENBEE!

where A is an M by M matrix, the vectors b, r, and c are of dimension
M, and § and o are scalars. The unknowns consist of the vector x and
the scalar n. According to our assumption, the solution branch (9) consists
of regular points and simple folds only. Then, the bordered matrix is not
singular, i.e., has rank M + 1. The matrix A has rank M at regular points
and rank M — 1 at simple folds.

In principle, the system (20) could be solved by a straightforward LU-
decomposition of the bordered matrix. An accurate solution is found if
a numerically stable pivoting strategy is used and the bordered system is
sufficiently well conditioned. LU-decomposition of the bordered matrix is
not favored because the sign of the determinant of A detects simple folds
and potential bifurcation points. By treating the matrix A and the border
vectors separately and computing the LU-decomposition of A instead of
the bordered matrix, the sign of the determinant of A is easily monitored
from the LU-decomposition of A. In applications where the matrix A is
sparse there is also another reason why one does not favor factoring the
bordered matrix: The vectors b and c are, in general, dense. Unless they are
excluded from the pivot search until the final phase of the LU-decomposition,
a factorization of the bordered matrix can generate an unacceptable amount
of fill.

If A is well-conditioned, then (20) can be solved as follows:

1. Solve: Aw =b, Az =r.
2. From the first M equations of (20) it follows that:
X = —-nw + z. (21)

3. Here, the scalar 7 is obtained from the last equation of (20), i.e., from:

(6-cTwp=0-c"z.

Nonsingularity of the matrix (20) implies that § — cTw # 0. This strategy
is proposed by Keller [9]. To solve the systems Aw = b and Az = r, one
can, of course, use the LU-decomposition of A.

19

For the case that A is singular or almost singular, numerous modifica-
tions to the bordering algorithm have been suggested; see [2]. We describe
here a version that is easily implemented in a concurrent environment. This
version — under certain reasonable assumptions — works well if A is non-
singular, singular, or almost singular. (We always assume that the bordered
matrix is well conditioned.)

Let the matrix A be factored with implicit pivoting, i.e., A = LCTRU.
Multiplying the first M equations of (20) with RTCL~!, we obtain:

U RTCL ' || x RTCL 'r
R | o B B
In practice, this transformation is achieved by taking the vectors b and r
along in the LU-decomposition of A. The procedure overwrites the vec-
tors b and r with RTCL~'b and RTCLr, respectively. For notational
convenience, assume this overwriting is done so that (22) becomes:

EHIHRHE

Here, the matrix U is permuted triangular. Let p.[k] and p,[k], where
0 < k < M, be the arrays of row and column pivot indices used by the
decomposition. Let v = u[p.[m],p;[m]] be the smallest pivot in absolute
value. For notational convenience and clarity of the exposition only, assume
that an explicit row and column permutation in (23) brings row p,[m] to row
M —1 and column p;[m] to column M -1, i.e., the last row and column of U.
We now separate the last row and column in U, and apply a corresponding
partitioning to the vectors ¢, b, x, and r. We obtain:

Uo uo bg Xo o
viv B||el=]nr] (24)
& v 6 n o

Here, the matrix Up is a nonsingular permuted triangular matrix, and » = 0
if and only if A is singular. Proceeding analogously to (21), we write:

Xp = —{to — nWo + 2o, (25)

where Upto = ug, Ugwo = by, and Upzo = ro. (In actual computations, the
matrix Up is not explicitly formed, and the back-solves are done using the

20

matrix U. The standard back-solve algorithm with U is modified slightly so
that it ignores row p,[m] and column p.[m].) Substitution of (25) into the
last two equations of (24) leads to the following 2 X 2 system for £ and 7:

v—vito ﬂ—vg'wo] [f] _ [p—vg'zo]

y—clto 6—ciwo n| " | o=tz

This 2 X 2 system is solved with complete pivoting. The computation of
¢ and 7 is followed by an application of (25) to find the solution of the
bordered system. Often, the smallest pivot and the last pivot are the same,
i.e.,, m = M — 1. In this case, the above 2 x 2 system simplifies because the
vector v vanishes.

In summary, the underlying assumptions for this algorithm to work re-
liably are

1. that the system (20) is well-conditioned, and

2. that the factorization A = LCTRU (the LU-decomposition with piv-
oting) contains at most one small pivot, i.e., if there is a small pivot,
then it is well separated from the next smallest.

6 Computational Results: Pivoting

In this section and in Section 7, we present some computational results for
a test problem of the form (8). The test problem itself is explained in detail
in Section 9, whereas numerical output is presented in Section 10. Here, it
is sufficient to note that the dimension M of the system (8) depends on a
step size h = 2r/N, and that M = NZ2. The tests described in this section

are concerned with
1. pivoting and numerical stability and
2. relations of complete pivots along a branch.

In Section 7 we present timings for matrix LU-decompositions calculated
with different data distributions.

Test 1: Preset Pivoting and Numerical Stability

One of the heuristic assumptions underlying this work can loosely be formu-
lated as follows: Suppose a matrix Ao is factored using complete pivoting.

21

(Here, we always refer to the decomposition of Section 2.) Suppose further
that the matrix A is near Ao in some sense. Then, if we use the pivot lo-
cations of Ao as preset, the resulting decomposition of A is acceptable from
the point of view of numerical stability.

To test validity and usefulness of this “principle,” we have computed a
solution branch by continuation for the example (33) with h = 27/25, i.e.,
M = 625. We always tried to use preset pivoting and calculated the growth
factor v defined in (4) to detect numerical instability. If v < 100, the LU-
decomposition was considered numerically stable; the next decomposition
used the same preset pivots. (The limit of 100 on the growth factor is
somewhat arbitrary.) If 7 > 100 or if a change in the determinant sign
was detected, the next LU-decomposition used complete pivoting. In the
third column of Table 2, we present the factors . Horizontal lines in the
table separate different Newton iterations. Since the start-up is special
(linear problem for A = 0), the table begins with the first extended Newton
iteration. Excluding the start-up calculation, only one more time complete
pivoting is necessary in the presented part of the branch; this includes the
solution of 34 linear systems. This part of the branch was typical, and
throughout the computation preset pivoting was almost always acceptable.
In this calculation the determinant sign of matrices 30 and 31 differed, and
hence, the LU-decomposition of matrix number 32 was done with complete
pivoting.

For comparison, we also have computed all decompositions with com-
plete pivoting, and we list the resulting growth factor in the second column
of Table 2. As expected, these growth factors are usually slightly smaller.
The resulting gain in numerical stability is negligible, however, and the dis-
cretization error is several orders of magnitude larger than the gain in accu-
racy of the solution vector. (Note that for matrices number 14 through 18,
20, and 21 preset pivoting has a slightly better growt* factor than complete
pivoting. Although this may seem somewhat surpriz:ag, complete pivoting
does not guarantee a minimal growth factor.)

Test 2: Relation between Complete Pivots along Branch

The previous test confirms that preset pivoting is most often acceptable
from the point of view of numerical stability. Of course, to make a stronger
claim, many more examples should be investigated. (Also a better quanti-
tative understanding of the relationships between pivot locations, step size
strategy, and numerical stability in a continuation process is needed.) It

22

“ LU Number | Complete | Preset
-1 1.626 | 1.626 | * |
0 1.626 | 1.626 | *
1 1.436 1.436 | *
2 1.444 1.444
3 1.444 | 1.444
4 1.334 | 1.386
5 1.335 | 1.392
6 1.335 | 1.392
7 1.293 | 1.357
8 1.325 | 1.363
9 1.326 1.363
10 1.286 | 1.357
11 1.287 | 1.358
12 1.287 | 1.358
13 1.261 | 1.753
14 1.445 | 1.278
15 1.414 1.284
16 1.420 | 1.286
17 1.420 | 1.286
18 1.447 | 1.422
19 1.478 1.480
20 1.478 | 1475
21 1.478 | 1.475
22 1.431| 1.579
23 1.431 | 1.578
24 1.431 1.578
25 1.447 | 2.388
26 1.444 | 2.281
27 1.443 | 2.279
28 1.225 2.489
29 1.225 | 2.465
30 1.225 | 2.465
31 1.139 | 35.550
32 1.149 | 1.149 | %
33 1.148 1.148
34 1.148 1.148

Table 2: Comparison of growth in matrix entries between complete pivoting
and a preset pivoting strategy.
23

is, in principle, possible that our example is such that the pivot locations,
if always determined by complete pivoting, remain almost unchanged along
the branch. To refute this (remote) possibility, we ran the continuation code
for our standard example, i.e., h = 27 /25 and M = 625, but using com-
plete pivoting for every LU-decomposition encountered. Let Ag, A;, A2, ...
be the matrices that are factored successively in the continuation process.
Let rﬁ'),cf:) be the pivot indices of A;. We counted the numbers:

RO = #{k:0< k <625 and r{™V = {)},
CW = #{k:0< k< 625and cf:-l) = cﬁ‘)},

briefly called the number of row hits and the number of column hits. The
results are presented in Table 3 This test confirms that, with complete piv-
oting, the pivot locations vary considerably from step to step.

7 Computational Results: Data Distributions and
Timings

The calculations were performed on a Symult Series 2010 multicomputer
with up to 64 nodes. In our first study we investigate the dependence of the
execution time on the data distribution for one LU-decomposition. Here,
we used 64 nodes and an 8 X 8 process grid. As expected, the adapted data
distribution turned out to be superior. In the second study we consider, for
each fixed strategy, the dependence of the execution time on the number of
nodes. We used 2, 4, 8, 16, 32, and 64 nodes, and obtained excellent speed-
up for each strategy. For absolute performance, we made a comparison
of the sequential version of our code with a fully optimized C-version of
the LINPACK benchmark. In our last study we timed the redistribution
procedures of vector data. As explained in Section 3.5, a data redistribution
of vectors is necessary whenever a new matrix distribution is introduced.
Our study shows that the redistribution times are negligible as compared
with the time for the LU-decomposition.

Study 1: LU-Decomposition Timings

We consider the example (33) with h = 27/25, i.e., M = 625. In Table 4,
we present timings for one (typical) LU-decomposition using complete piv-
oting and preset pivoting in combination with different data distributions

24

LU Number | Row Hits | Column Hits

1 1 1
2 184 184
3 622 622
4 10 10
5 143 143
6 623 623
7 6 6 "
8 84 84
9 612 612
10 58 58
11 332 333
12 625 625
13 3 2
14 2 2
15 15 16
16 463 463
17 625 625
18 7 6
19 39 39
20 583 583
21 625 625
22 68 69||
23 593 593
24 625 625
25 17 13
26 161 159
27 425 424
28 126 123
29 593 591
30 625 625
31 18 17
32 82 80
33 468 467
34 625 625 ||

Table 3: Number of times k-th pivot index of current LU-decomposition is
equal to k-th pivot index of the previous. The basis problem is a discretiza-
tion on a 25 x 25 grid and has 625 unknowns.

25

Pivoting Distribution Time (s) | MegaFLOPS

1 | Complete | 8 x 8 Linear-Linear 75.308 1.081
2 | Complete | 8 x 8 Random-Random 63.669 1.278
3 | Complete | 8 x 8 Scatter-Scatter 62.760 1.297
4 | Complete | 8 x 8 Adapted-Adapted 51.277 1.587
5 | Preset 8 x 8 Linear-Linear 48.921 1.664
6 | Preset 8 x 8 Scatter-Scatter 40.335 2.018
7 | Preset 8 x 8 Adapted-Adapted 33.808 2.407
8 | Fast Preset | 8 x 8 Adapted-Adapted 29.741 2.736

Table 4: LU-Decomposition times for a 25 x 25 grid problem on 64 node
Symult Series 2010. Number of megaFLOPS is based on M3/3 floating point
operations, where M = 25% is the number of unknowns.

for the factored matrix. The linear and scatter distributions were defined
in (5) and (6), respectively. The adapted distribution uses the pivot lo-
cations of the previous LU-decomposition to distribute the current matrix
with the distribution functions (7). In the version “Fast Preset” of preset
pivoting, certain administrative overhead is eliminated; see Section 3.3. All
calculations were done on a 64 node machine using 64 processes, one process
running on each node. The process grid was partioned into P = 8 process
rows and () = 8 process columns.

Assuming — for each calculation — M3/3 floating point operations, the
execution times are also translated into megaFLOPS.

Study 2: LU-Decomposition Speed-Ups

To test the concurrent performance of our code, we determine the execution
time as a function of the number of nodes. The same example as in Study
1 is computed successively using 2, 4, 8, 16, 32, and 64 nodes, and always
choosing the number of processes equal to the number of nodes, one process
running on each node. The numbers P and @ of process rows and columns
were chosen equal within divisibility constraints; see Section 3.5. When the
logarithm of the execution time is plotted as a function of the logarithm of
the number of processes, ideal speed-up is characterized by a straight line
with slope —1 if appropriate scales are used. Figure 4 shows that, for each
strategy, the execution-time plot is almost parallel to the line characterizing
ideal speed-up. Table 4 can be used to identify the individual timing plots.

26

104 = T T T

TIME (S)

101 -] ! 1 1 1

0 1 2 3 4 5 6 7
D IMENSION

Figure 4: LU-Decomposition times for a 25 X 25 grid problem as a function
of number of nodes on a Symult Series 2010.

27

The problem was too big to run on a one-node machine. Precise speed-
ups could thus not be calculated. In Table 5, we give speed-ups and efficien-
cies with respect to two-node timings, i.e., the real speed-up is estimated
by:

Spq = 2*T3/Tpq,

and the real efficiency is estimated by:

epq = 2x T, /(PQTpgq).

Here, T3 is the two-node timing and Tpq is the timing with P x Q nodes.
Speed-up and efficiency are good measures for the overhead due to commu-
nication and load imbalance.

When varying the data distribution and keeping the pivoting strategy
fixed, it is clear that the adapted data distribution is the most efficient.
This is easily explained by the increased load balance of the adapted data
distribution. This observation holds for both complete pivoting and preset
pivoting.

When comparing efficiencies for the same distribution but for different
pivoting strategies (i.e., in Table 5 compare lines 1 and 5, 3 and 6, 4 and
7), it is seen that complete pivoting is more efficient. This is because the
pivot-search cost leads to a higher ratio of computation to communication
time for complete pivoting than for preset pivoting.

Another interesting observation, which follows from Tables 4 and 5, is
that complete pivoting with the random distribution (line 2) is more efficient
than complete pivoting with the scatter distribution (line 3). The execution
time, however, is lower for the scatter distribution. The random distribution
is better than the scatter distribution for load balancing, and hence, has
higher efficiency. The random distribution leads to very irregular memory
access patterns, however, and that causes the absolute execution time to be
larger.

The fast-preset algorithm is both faster and more efficient than the pre-
set algorithm. The absolute performance gain is due to overall reduction
in administrative overhead. The communication calls were simplified to a
larger degree than the computational parts of the code; hence, the efficiency
gain.

For absolute performance considerations, we compared a sequential ver-
sion of our fast-preset code with a LINPACK benchmark program [12]. Due
to memory restrictions, this comparison was done with a random 300 x 300
matrix. A sequential version of the fast preset pivoting algorithm ran about

28

Pivoting Distribution Speed-Up | Efficiency (%

1 | Complete | 8 x 8 Linear-Linear 414 64.7
2 | Complete | 8 x 8 Random-Random 49.9 78.0
3 | Complete 8 X 8 Scatter-Scatter 46.2 72.2
4 | Complete | 8 x 8 Adapted-Adapted 54.2 84.7
5 | Preset 8 x 8 Linear-Linear 36.9 57.7
6 | Preset 8 X 8 Scatter-Scatter 42.6 66.6
7 | Preset 8 x 8 Adapted-Adapted 48.9 76.4
8 | Fast Preset | 8 x 8 Adapted-Adapted 50.0 78.2

Table 5: LU-Decomposition speed-up and efficiency estimates for a 25 x 25
grid problem on a 64 node Symult Series 2010.

5% slower than LINPACK. (These 5% result from the fact that we have not
implemented a number of low level optimizations used by LINPACK.)

Study 3: Redistribution Timings

In the infrequent case that preset pivoting is not successful in the continua-
tion process, a data redistribution of vectors (not of matrices) is necessary.
See Section 3.5 for details. Table 6 gives the time in milliseconds needed for
the data redistribution. These times are three orders of magnitude smaller
than those of the LU-decomposition, and hence, they are negligible. It fol-
lows from Table 6 that, for a 64 node computation, the process grid with
smallest redistribution time is given by P = Q = 8. This is, of course, not
important in view of the small absolute execution times for redistribution.

8 Invariant Manifolds

To explain our example in Section 9, we introduce here — in a very special-
ized form — the concept of an invariant manifold of a dynamical system.
We consider autonomous systems in the partitioned form:

6| _| fo,r)
[P] B [5(0,1') ’ (26)

where 8 € TX and r € RL. (Here TX = (R mod 27)¥X denotes the standard
torus of dimension K.) The functions:

f : TK xR — RK

29

[Redistribution Times |

ﬂ Process Grid | Time (ms) ||

1x1 183
2x1 93
2x2 80
4x2 77
4x4 67
8x4 65
64 x1 158
32 x2 93
16 x 4 65
8§x8 58
4% 16 66
2 x 32 92
1 x 64 158

Table 6: Overhead time due to data redistribution, 25 x 25 grid.

g : TX xRV — RE

are assumed to be smooth. The solution of (26) to initial data 6(0) =
8°,r(0) = r° is denoted by $*(6°,r°).
We consider manifolds of the form:

M = {(6,R(8)): 0 € TK} c T¥ x RE, (27)

where R : TX — RL is a C'-function. (These manifolds are all diffeomor-
phic to TK.) M is called an invariant manifold for (26) if, given any initial
data (6°,r°) in M, the solution $*(8°,r°) stays in M for all t € R. (Since
M is compact, the solution 5t(6°,r°) exists for all ¢ € R if M is invariant.)

What are the conditions on R so that M is invariant? If M is invari-
ant, then the solutions in M have the form (6(t),r(t)) = (6(t),R(6(t))).
Thus (26) implies:

6 = 1(6,R(9)),
. K-1 oR . _
r = lg’ '(9_0:01: = g(8,R(0)).

30

Therefore, R : TK — R satisfies the first order system:

K-1 R K
> fk(O,R)a—ok' =g,R), 0€T". (28)
k=0

Conversely, it is not difficult to show that any C'-solution of (28) defines a
manifold M which is invariant for (26).

Clearly, the dynamics on an invariant manifold (27) is governed by the
equation:

6 = £(6,R(9)), (29)

which has only K variables. In general, knowledge of an invariant manifold
often reduces the dimensionality of a problem; here it is assumed, of course,
that the phenomenon of interest is captured in M.

9 Example: A System of Two Coupled Oscilla-
tors

A simple example of a single oscillator is described by the two scalar equa-

tions)
0
,"-

where w is a fixed constant (for computations presented below w = —0.55).
From the sign of #, it follows that

w
1'(1 - ,’.2),

A, r) =1
if #(0) > 0. In this case, the one-dimensional manifold given by:

{6,1):0eT"}

is invariant and it describes an attracting limit cycle.

‘As in [1], a system of two coupled oscillators of the above form is studied.
Let the subscript j be used to identify the oscillator, i.e., j is either 0 or
1. Let (8;,7;) be polar coordinates for each oscillator; then the equations
considered read: .

0;
rj

w+/\Cj

ri(1—12) +ACL, (30)

i

31

where

Co = —cos20p+ :—l(cos(eo + 6,) —sin(6p — 6,))
0
Cy = r1(sin(bp + 61) + cos(6p — 6,)) — ro(1 + sin 26)

and) is the coupling parameter. The coupling terms C; and C] are obtained
by interchanging the indices 0 and 1 in the right hand sides of the above
expressions for Co,C . A motivation for this specific form of coupling is
found in [1]. Some isolated invariant manifolds of this system were computed
in [4].

For the coupling parameter A = 0, the system has the attracting invariant
2-torus

M(A:@:{(G,[i]):ou’?}.

One can show that the torus persists for small coupling. More precisely,
general theory, given in [5] and [11], yields the following result:

Theorem 2 For any k > 1 there ezists a Ay > 0 and a C* function
R: T2 X (—/\k,)\k) —_— R2

such that
M) = {(6:R(6,)): 0 € T},

with = Ak < A < A, is invariant for (30).

Here, R(0,\ = 0) = , and the invariant manifold M()) is locally

1
1
unique. As the absolute value of A is increased, the torus looses more and
more derivatives, and — according to the calculations of [4] — the torus
disappears at about A = 0.2527. (It is not clear if one can attach an exact
A-value to the “disappearance”; the bifurcation of tori is not governed by
Fredholm theory.)

For the example (30) the partial differential equation (28) with K = L =
2 depends on A. It is convenient to write:

R(0,)) = [X] +AS(0,).

32

Then (28) becomes in our example:

S
(w+,\co)§% + (w+,\cl)(,‘;’—01 - [z‘l’] (31)

with
¥j = —(1+ AS;)(28; + ASH + C), ji=0,1.

Using the symmetries:

C1(60,61,70,71) = Co(61,00,71,70),
Ci(80,61,70,m1) = Cg(61,00,71,70)

it is not difficult to prove: if S is a solution, then

i [$1(61,60,))
S(0,)) = [5:,(0:,02,A)]

is also a solution. Therefore, as long as the solution is unique, it obeys the
symimetry:
So(fo, 61,) = S1(61,60, A). (32)

To arrive at a discrete system, we choose a grid spacing h = 27 /N and
replace the torus 72 by a grid:

T2 = {(hko,hk1):0 < kj < N}.

As usual, for notational convenience, grid functions on T? are identified with

grid functions on:
{(hko,hky) : k; € 1}

which are 2r-periodic in 8y and 6;. If v : TZ — R?is a grid function, one
defines the centered divided differences:

1
Dov(oo, 01) = —(V(OO + h, 01) - V(oo - h, 01))
2h

1
D1V(00,01) = —(v(00,01 + h) - V(00,01 b h))
2h

The leap-frog discretization for (31) is obtained by replacing z%sj with D;Sk.
This system has 2N? scalar unknowns. Finally, we impose the symme-
try (32) on the discrete system to obtain an equation:

Gr(u,A) =0. (33)

33

Here, u is a vector of M = N? scalar unknowns, identified with the grid
function S}. The continuation process is applied to the system (33): thus
symmetry is enforced. Of course, by enforcing the symmetry on the so-
lution, we exclude a study of bifurcations breaking the symmetry. Initial
studies indicated that higher-order singularities (different from simple folds)
do occur in the discrete system if one does not enforce the symmetry.

In our computations, the grid function S and the vector u are identified
according to a lexicographic ordering of the grid. Then, linearization of (33)
leads to a coefficient matrix which has the characteristic sparsity structure
displayed in Figure 5. The figure shows the matrix structure for an 8 x 8
grid. The dense lines parallel to the main diagonal are due to the periodic
leap-frog discretization. The remaining anomalous sparse fill is caused by
the enforcement of the symmetry. The anomalous fill makes it difficult for
the LU-decomposition algorithm to exploit the sparsity of the matrix.

10 Numerical Results

We have applied our continuation algorithm to the system (33) with A =
27/25 and h = 27 /50. In Figures 6 and 7, we present the solution paths by
plotting

I S5Co) llzz= b 1| u(A) Il

as a function of the coupling parameter A\. Though the discretization theory
for h — 0 is not complete (see [4] for some discussions), we believe that the
discrete branches are fairly good approximations to the continuous branch of
invariant tori, but only away from the fold points. In our calculation, the first
fold in the discrete branch occurs at A-values approximately given by 0.243
for h = 27 /25 and 0.249 for h = 27 /50. This is in fairly good agreement with
the value A = 0.2527 reported in [4] as the last value where a torus could
be obtained. (The calculations in [4] reach higher resolution, but do not
give a solution branch.) The continuation of the 25 x 25-grid problem was
terminated when the arc-length steps became too small. From comparison
of the 25x25-grid and the 50 x 50-grid calculations, it is reasonable to expect
that the discrete solutions approximate continuous solutions up to the first
fold.

In Figure 8, we present the functions R}(8,)) for h = 27/50 and two
different A-values. Beyond the fold, the surfaces show crinkling. We want to
emphasize that the discrete solutions beyond the first fold are not necessarily
related to any invariant manifold of the dynamical system.

34

Figure 5: Fill structure of coefficient matrix for 8 x 8 grid.

35

13.0 -1 rrrrrrrrT T T T T T T T T T
12.5

12.0

10.5
10.0
9.5
8.0
8.5
8.0

7.5

TT T Y TV v T T 7 VT v [T v T v T V[v [vy vy [V y [v [Ty vy [T pvrrs

7.0

sapa e be e ey bog b e e b e baerslapa sty ey liesalyoaalagg

S-S-llllllll||||l|lll|lLlllll
0] .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24

X

N

6

Figure 6: Solution norm as a function of the coupling parameter; h = 27 /25.

36

12.5

12.0

10.5

10.0

8.0

8.5

8.0

7.5

7.0

LR (LN A B B 0 B N O (O L NN NN S B R AL

ta b oo b g a o beea bty a g deeaabor oo deogalagaaleniy

6.5-1 | N T N TN TN YA NN TN (SN TN NUNUU SN RSN SN S S DY SN NN WU S S S
o .02 .04 .08 .08 .10 .12 .14 .16 .18 .20 .22 .24

N
[o2]

Figure 7: Solution norm as a function of the coupling parameter; A = 2r/50.

37

\\\\‘3::- 235
\‘Q\\\\ S A TR

Figure 8: Function ro(fo,6;) defining the invariant manifold for A = 0.245
(before the fold) and A = 0.247 (beyond the fold).

38

We also present the streamlines of the system (29), which governs the
dynamics on the computed invariant torus; see Figure 9. Clearly visible are
the “in-phase” attracting periodic orbit and the instability of the out-of-

phase periodic orbit; see [1].

39

References

[1] D. G. Aronson, E. J. Doedel, and H. G. Othmer. An analytical and
numerical study of the bifurcations in a system of linearly-coupled os-
cillators. Physica, 25D:20-104, 1987.

[2] T. F. Chan. Deflation techniques and block-elimination algorithms for
solving bordered singular systems. SIAM Journal on Scientific and
Statistical Computing, 5(1):121-134, March 1984.

[3] B. Deuflhard, B. Fiedler, and P. Kunkel. Efficient numerical pathfol-
lowing beyond critical points. SIAM Journal on Numerical Analysis,
24(4):912-927, August 1987.

[4] L. Dieci, J. Lorenz, and R. D. Russel. Numerical calculation of invariant
tori. 1989. Submitted.

[5] N. Fenichel. Persistence and smoothness of invariant manifolds for
flows. Indiana University Mathematics Journal, 21:193-226, 1971.

[6] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon,
and D. W. Walker. Solving Problems on Concurrent Processors. Pren-
tice Hall, 1988.

[7] N.J. Higham and D.J. Higham. Large growth factors in Gaussian elim-
ination with pivoting. SIAM Journal on Matriz Analysis, 10(2):155—
164, 1989.

[8] H.B. Keller. Numerical Methods in Bifurcation Problems. Tata Insti-
tute of Fundamental Research, Bombay, 1987.

[9] H.B. Keller. Practical procedures in path following near limit points.
In R. Glowinski and J.L. Lions, editors, Computing Methods in Applied
Sciences and Engineering, North-Holland, 1982.

[10] W.C. Rheinboldt. Numerical Analysis of Parametrized Nonlinear
Equations. Wiley, New York, NY, 1986.

[11] R. Sacker. A perturbation theorem for invariant manifolds and Hélder
continuity. Journal Mathematical Mechanics, 18:705-762, 1969.

[12] B. Toy. Private Communication.

41

[13] E. F. Van de Velde. Ezperiments with Multicomputer LU-
Decomposition. report CRPC-89-1, Center for Research in Parallel
Computing, 1989. To appear in Concurrency: Practice and Experi-
ence.

[14] J.H. Wilkinson. Error analysis of direct methods of matrix inversion.
Journal of the Association for Computing Machinery, 8:281-330, 1961.

42

