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Abstract

We introduce an approach to velocity and reflectivity estimation
based on optimizing the coherence of multiple shot-gathering inver-
sions of reflection seismograms. The resulting algorithm appears to
avoid severe convergence difficulties reported for output (nonlinear)
least-squares inversion. We describe in detail an algorithm appropri-
ate for plane-layered acoustic models, using the convolutional approx-
imation to the plane-wave (p-tau) seismogram. We give theoretical
and numerical evidence that coherency optimization, as defined here,
yields stable and reasonably accurate estimates of both velocity trend
and reflectivity, by exploiting reflection phase moveout and amplitudes
in a computationally efficient way. We demonstrate that the approach
may be applied to field data by extracting velocity and reflectivity es-
timates from a Gulf of Mexico marine data set. Finally we explain
briefly how the approach may be modified to determine elastic models
and source parameters as well as to determine laterally heterogeneous
models.






1 Introduction

Full waveform inversion algorithms for multi-offset seismic reflection data
have been discussed extensively over the past several years. For a small sam-
ple of this discussion, see Bamberger et al. (1982), Lines and Treitel (1984),
Tarantola (1984, 1986), Gauthier et al. (1986), MacAulay (1985), Kolb et al.
(1986), Mora (1986, 1987), Pan et al. (1988), Pan and Phinney (1989), Cao
et al. (1989). All of the work just cited is based on the output least-squares
principle in which a physical model of the subsurface is adjusted to mini-
mize the mean square error between model-predicted and data seismograms.
This approach does not require picked travel-times, unlike reflection tomog-
raphy (Bube et al. (1985), Lines et al. (1987)) and in principle can extract
seismic velocity estimates as well as reflection amplitudes, unlike linearized
inversion (Cohen and Bleistein (1979), Clayton and Stolt (1981), Beylkin
(1985), Ikelle et al. (1988), Beylkin and Burridge (1987)). In addition, any
desired level of physical detail may be built into the output least-squares
principle, and it may also incorporate non-seismic constraints (Lines et al.
(1988)). Accordingly, some motivations for the interest in model-based full
wave-form inversion are the possibilities of more-or-less automatic determi-
nation of complicated seismic velocity structures, and of rational extraction
of reflection characteristics directly indicating the presence of hydrocarbon
deposits.

In practice it has proven difficult to realize the promise of output least-
squares inversion, even for synthetic data sets. The hypersensitivity of the
reflection seismogram to slowly varying velocity components results in severe
non-convexity of the mean-square-error, and consequent slow, or no, conver-
gence of the (necessarily iterative) solution algorithms. Despite some progress
for layered models (Kolb et al. (1986), Canadas and Kolb (1986), MacAulay
(1986), Cao et al. (1989)), in general quite accurate initial estimates of ve-
locity are required, else the amplitude preserving depth-migration function
is disabled as well (Gauthier et al. (1986), Mora (1987), Pan and Phinney
(1989), Ikelle et al. (1988), Tarantola (1986), Santosa and Symes (1989),
Spratt (1987)). That is, for essentially mathematical reasons, least-squares
inversion generally fails to give reliable velocity and reflectivity estimates.

The purpose of this paper is to introduce a variant of output-least-squares



inversion which appears to have better mathematical properties than does the
straightforward version. This variant is based on optimizing the coherence
of multiple inversions, so we call it the coherency method. The essential idea
is very old, and is operative in ordinary (NMO-based) velocity analysis and
in more speculative iterative before-stack migration schemes. OQur specific
quantification of coherence seems to be novel, and leads to a large class of
algorithms, which we begin to explore in this and related papers.

The simple version of the coherency method used in this paper is based
on a model of the plane-wave (p-tau) seismogram. Two hypotheses explain
the essence of the model, and also hint at its limitations.

i) Each (plane-wave) trace is the convolution of a primary reflectivity with
a source wavelet (plus noise).

ii) The reflectivities for various slownesses (or incidence angles) are related
in the manner appropriate for a layered acoustic model.

The first assumption is that each trace can be explained by the venerable
convolutional model. Thus multiple reflections are neglected. The second
hypothesis makes explicit the layered medium assumption, already implicit
in (i), and also restricts the change in reflectivity amplitude with angle to
that appropriate to a layered fluid.

We shall establish three major points in this paper: First, a variational
principle extracted from the above hypotheses (Section 3) is convez over
a large region in model space. In particular, when coupled with suitable
numerical optimization software, it yields the only waveform inversion algo-
rithm known to the authors capable of reliable estimation of velocity (trends,
i.e. long wavelengths) starting from grossly incorrect initial estimates. We
illustrate this feature via a synthetic example (Section 4). Mathematically
rigorous arguments leading to similar conclusions are presented in companion
papers, referenced below.

Second, the coherency method is practical, in the sense that it can be
applied to field data sets and — at least sometimes — produces reasonable
results. We process a plane-wave gather derived from a marine survey in the
Gulf of Mexico, using the implementation of the coherency method mentioned
above (Section 5). This data set was selected and processed to conform as

3



closely as possible to the hypotheses underlying the current implementation
(i.e. (i) and (ii) above). The velocities and reflectivities obtained compare
favorably to those evident in a sonic log from a well near the line.

Third, the coherency method may be formulated for laterally heteroge-
neous models, for variable-density or elastic (rather than acoustic) models,
and using the fully nonlinear model-data relationship rather than the con-
volutional model or analogous higher-dimensional linearized approximations.
In particular, the coherency method is no more restricted to analysis of lay-
ered systems than is output-least-squares inversion. This point is of critical
importance, as the central issue in velocity analysis is reliable and accurate
estimation of laterally heterogeneous velocities. We describe explicitly a for-
mulation based on shot gathers, designed to extract laterally heterogeneous
velocities and reflectivities in the acoustic model (Section 6).

1 Output Least-squares Inversion

The discussion in this and the following three sections is based on the con-
volutional approximation to the plane-wave seismogram over a plane-layered
acoustic earth model with constant density. Thus the only mechanical vari-
ation allowed in this model is the compressional velocity profile ¢(z). While
this model underlies a great deal of seismic data processing, it is clearly a
gross simplification of seismic wave mechanics. Some of the concepts dis-
cussed below are extended to more realistic models in Section 6. The math-
ematical essence of velocity inversion is already present in the very simple
plane-layer context, however, so we first develop the solution of the problem
in that context. For discussion of plane-wave seismograms, and their produc-
tion from synthetic point-source data and field reflection data, see Gutowski
et al. (1982) and Brysk (1986).

Denote the plane-wave (“p-7”) seismogram corresponding to a velocity
profile ¢(z) by S[c]. The arguments in this paper are based on the well-known
convolutional approximation, which is reasonably accurate when ¢ may be
re-written as a sum

cxRCcst+ o

where



¢s(2) is a slowly varying background velocity model

c-(z) is a rapidly varying “reflector sequence,” having locally
zero mean on the length scale of significant change in the back-
ground velocity.

Thus the (two-way) travel-time to depth z of a precritical plane-wave at
(horizontal) slowness p is determined with a small error by the background
velocity c,(z) according to

: 1 L\ : ]
) =2 [ (cf(z) "’) =2},

where v, is the vertical (plane-wave) velocity at slowness p:

v(z,p) = ( ‘ _,,z)"”=c,(z),\(z,p)

c3(2)
A(z,p) = (1-c(z)p?)7V/2

The convolutional approximation to the plane-wave seismogram with (possi-
bly directionally-dependent, known) source wavelet f(t,p) is then

Slewerltr) = £+ 26

(1)
¢ / / ar /
= [dfe-t,p5(tn)
where the “reflectivity” r(t,p) is given by
r t? )
r(t, p) = 2{8(t:2),P) @)

v,(¢(¢, p), p)

by means of the inverse two-way travel-time function ¢, defined implicitly by

¢(tp) 1
t=2 / -,
0 Vs

and the vertical velocity perturbation

vr=Cr'A3-



Note that reflectivity conventionally means 8r/8t; we shall confuse r and
its t-derivative, calling both “reflectivity” as convenient. Note also that all
surface-related phenomena, as well as source and receiver characteristics, are
subsumed in the source wavelet f(t,p). A detailed derivation of this model,
appropriate to linear acoustics, may be found in Santosa and Symes (1988).

Now S is clearly linear in c,, but quite nonlinear in c,. In fact, a change
in ¢, will typically result in a change in the “phase” ¢, and thus in a shift
in the high-frequency components of S, which in turn derive from the high-
frequency components in c,. Since such a phase-shift may have a drastic
effect on components of the appropriate (high) frequency. Since ¢, must
have a great deal of high-frequency content in order to model the dense
distribution of reflectors in the typical sedimentary column, one expects S
to be extremely sensitive to changes in the background velocity c,.

This oversensitivity to background errors shows quite clearly in the ex-
pression for the perturbation 65 in the seismogram, due to a perturbation
éc, in the background velocity (holding c, fixed, and assuming 6c,(0) = 0):

8 ( v o
55(,8) = 1+ 37 (=258 + Z(995¢) (€t p1)

where

-~

6¢(z,p) := 6¢((z,p), p)=
2z
v,(z,p)/o dz'vy(2', p)c73(2")bcy(2')
is the phase perturbation corresponding to éc,, referred to depth/slowness
coordinates.

Thus the second derivative of ¢, (or, of ) appears in the perturbations
65 associated with a background velocity perturbation c,. On the other
hand, a perturbation §c, in ¢, simply results in

6S ~ Sle,, 8¢,

as S is linear in the derivative of ¢,. Thus S is linear in the derivative of
be,. :

Again, c, must be highly oscillatory to model the typical reflector dis-
tribution, so the second derivative of ¢, is typically much bigger, in any
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reasonable sense, than is the first derivative of ¢, itself. Thus perturbation of
the background velocity ¢, has a much larger effect on S than does pertur-
bation of ¢,: in the language of linear algebra, the linear perturbation map

(“Jacobian”)
8¢y, 8c, — 8S

is #ll-conditioned.

Even worse, a straighforward extension of this reasoning shows that the
difference between the perturbed seismogram

S[Cs +bcyycr + 601']
and its linear prediction
S [Cu Cr] +6S
can easily be on the order of S itself, even for quite small éc,.

To summarize: under realistic assumptions on ¢, and c,,

(i) the Jacobian §S is ill-conditioned;

(i1) S is poorly approximated by its linearization.
Consequently, the output least-squares objective function

Jis[Csr i S datql = //dp dt|S[c,, c;] - Sdatalz

is highly non-convex, with rapidly changing gradient.

To illustrate these features of the mean-square error function, we con-
structed the convolutional plane-wave (reference) seismogram (Figure 2) cor-
responding to a (reference) model (velocity profile) of the form: smooth
background (c,) plus rough reflector series (c,) (Figure 1).

Remark. We have elected to calibrate all velocities in units of surface
velocity, so that ¢,(0) = 1 always, and correspondingly to measure depth
(2) in seconds of one-way time at surface velocity. This normalization has a
salubrious effect on the scaling of various numerical computations; physical
units can easily be recovered when desired.



We added multiples of a trend perturbation éc,(z) (Figure 3) to c,(z).
We produced for each value A in the range 0 < A < 1.2 the seismogram
corresponding to the perturbed background velocity

cs(2) + (h = 1)dc,(2)

with in all cases the same reflector series c,(z). Note that these are finite
perturbations, and that for A = 0 the perturbed velocity profile is constant
(independent of 2). Next we subtract the seismogram for A = 1 from the
seismogram computed for each value of k, and form the mean-square of the
resulting difference (i.e. a suitably discretized version of):

/otm [ dt dplSle, + (h = )6es, (8, p) = Slem (8, 2)P

This quantity is plotted versus the parameter h in Figure 4. This figure
represents a sampling of the mean-square error — the objective function of
output least squares — along a line segment in model space connecting the
homogeneous background (A = 0) with the reference background (h = 1),
with the reference seismogram playing the role of the data gather.

The features mentioned above are evident in Figure 4: the mean square
error changes rapidly near the “solution” (k = 1), and possesses many local
minima and maxima. Near the homogeneous background velocity (h = 0),
which might be selected as a natural “initial guess,” the local trend of the
mean square error bears no particular relation to the global trend. Con-
sequently, relatives of Newton’s method have little prospect of success in
finding the global minimum. Examples of the failure of Newton-type meth-
ods started at a poor (but reasonable) initial guess are presented in Kolb
et al. (1986), Gauthier et al. (1986), Santosa and Symes (1989). Remedies
for this delinquent behavior have been suggested by Kolb et al. (1986), Cao
et al. (1989), MacAulay (1986). None of these remedies change the basic
character of the objective function: highly nonconvex, with rapidly varying
gradient. Since methods based on local behaviour of the objective, exempli-
fied by Newton’s method, are virtually mandated by the size of the seismic
inverse problem, especially for laterally heterogeneous models, the outlook for
a reliable implementation of the output least squares method would appear
dim.



3 The Coherency Method

The hysterical behaviour of the mean-square error function, as described in
the last section, is caused by the interaction between the background velocity
¢, and the reflectivity r through the definition (2). A possible way out of this
dilemma is to decouple ¢, and r by treating r, rather than c,, as the “other”
component of the model: thus define

SlesrI(t,p) = f * %(t,p)-
Certainly if r and ¢, are related by (2) then
Slcsyer] = Slea, 7).

In fact, apart from the surface normalization, the background velocity ¢,
enters the definition of S only implicitly, through the condition (2). If we are
to use r as one of the independent variables, instead of ¢,, we must develop a
condition, phrased only in terms of ¢, and r, which guarantees that (2) holds.
Fortunately, this is rather easy: from the useful perturbational identity

SAEY

(3)

v,
v}
it follows that, if (2) is satisfied, then

;3 (2)er(2) = v;%(2, p)r(7(2,p), P)- (4)

The notable quality of (4) is that the left-hand side is independent of p. Thus
differentiation with respect to p eliminates ¢, altogether:

0, _
0= a—'[vs 2(2'; p)T(T(Z,p),p)]. (5)
P
It is easy to reverse this reasoning. Thus:
A section r(t,p) is the reflectivity corresponding to a reflection

series ¢,(z) if and only if (5) is satisfied, in which case c, is
given in terms of r(t,p) and c,(2) by (4).



In formulating the constraint given by (5), it is advantageous to return to
(t,p) coordinates (the reason will become apparent below). Thus define the
quantity Wle,,r] (the incoherency) by

Wlearltp) = { 2 576z, r(r(a,),0)] )

z=((t,p)

Then
Wies,er] = Sgatq

if and only if )
Slesst] = Sgata
and Wle,,r] = 0
with ¢, and r related by (2) and (4).

Of course, the inverse problem is overdetermined, so we replace the exact
fit of predicted to measured seismograms by minimization of the mean-square
error:

min [ [I3(cur] = Sgqtal’dt dp

CoyT

subject to  Wec,,r] = 0 (6)

The constrained least-squares problem (6) has exactly the same solutions as
the output-least-squares problem discussed in the preceding section. Since
you can’t get something for nothing, something must be wrong with (6).
The nasty features of (6) are discussed in the companion papers Symes
(1988 a,b,c). Essentially (6) does not have the properties which ensure that
constrained optimization problems have efficiently computable solutions, de-
pending stably on their data.

To obtain a problem more amenable to numerical solution, we “relax” (6)
by making the constraint W = 0 soft:

min Jolcos TS datal (7)

where

jo[caar7 Sdata] = //dp dt {lg[csar] - Sdata|2 + a'2|W[c,,r]|2}
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We call (7) the cokerency optimization problem.

From the equivalence above, we see that if S data 18 consistent, i.e. S data =
S[csy ¢r], then the problem (7) has [c,,r] amongst its solutions for which r
and c, are related by (4). That is, for consistent data, (7) has “the same
solutions” as the output least-squares problem (6). We have shown, how-
ever, that (7) is far better suited to numerical computation by Newton’s
method and its relatives, and that the solution of (7) is stable, i.e. “degrades
gracefully” in the presence of data error, for suitable choices of the penalty
parameter o.

These conclusions hold provided that S j,4, is near (in the mean-square
sense) some “exact” or consistent data S[ec,, ¢,|, and provided that ¢,, ¢, sat-
isfy certain conditions. “Physical,” or poetic, statements of these conditions
are:

(1) ¢, should be “rough”, i.e. contain significant variation (reflectors),
on a length scale dictated both by the wavelet (f) passband and by the
smoothness (characteristic length) of c,;

(i1) The range of slownesses p available in the data (“aperture”) should be
sufficiently large relative to both the degree of roughness mentioned in
(i) and the amount of data error, so that the moveout of reflections
clearly discriminates the velocities.

It is easy to see why these conclusions might hold, and at the same time to
identify the close link between coherency optimization and velocity analysis,
as widely practiced in the exploration industry. In fact, to make the first
term in the definition of J, small, i.e.

//dp dtlS’[c,,r] - Sdata|2

requires simply deconvolving the data, as is evident from the definition of .S,
given near the beginning of the section. Having removed the influence of the
source signature f, the second term

| [dpdtiwiearii

gauges the extent to which ¢, reproduces the moveout inherent in the data.
In fact, the substitution of 7(z,p) for t in (5) is a precise (“ray trace”)
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normal moveout correction; vanishing of the derivative with respect to p
detects whether the section is flat after the normal moveout correction. Thus
minimizing the second term flattens the tau-p reflectivity section in just the
way the usual constant-velocity normal-moveout correction flattens events
on a CMP section.

The coherency method differs from ordinary velocity analysis in three
crucial ways, which are responsible for its feasibility as an automatic velocity
estimator. First, since (ray-theoretic) travel time is used to construct the
moveout correction, rather than an RMS velocity, the entire tau-p section
is flattened, rather than small windows about certain events. Second, the
reflectivity section (i.e. part of the model) is flattened, rather than data
itself. The derivative figuring in the definition of W guarantees that inco-
herent error in the data will not be fit by r, since such errors would greatly
increase the size of W. For the same reason, it is necessary to apply W
to the reflectivity model r rather than directly to the data S datq- Finally,
an obvious alternative measure of flatness after NMO correction is the sem-
blance, (a version of) which would be generated by integrating in p in equation
(5), instead of differentiating, followed by normalization by the RMS power.
Such velocity power spectra are commonly used detectors of event-flattening.
The most cited reference is Taner and Koehler (1969). These integrated mea-
sures of coherence are very robust, so can be applied directly to the data. On
the other hand the effectiveness of semblance analysis depends on the non-
convexity of the semblance, i.e. on the sharpness of the peaks, and in fact
semblance analysis is essentially equivalent to output-least-squares estima-
tion for a simplified model (Santosa and Symes, (1989), App. A). Therefore,
an integrated version of (5) is unsuitable for automatic velocity estimation
by gradient methods in the same way as is output-least-squares.

The role of conditions (i) and (ii) above is clear from the heuristics of
velocity analysis as well. The reflector series c,, hence each trace in the
reflectivity r, must be rough or oscillatory in the passband of the source sig-
nature f in order that the tau-p section contain events of significant power.
These events must be dense enough and extend over a large enough range
of slowness that the moveout constrains the velocity effectively on its char-
acteristic length scale. In effect, the typical event density, seismic velocity
range, and cable length determine the resolution limit of velocities. In the
next section this resolution limit will be illustrated graphically.
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The final change back to travel time in the definition of W is necessary in
order that W define a smooth function on appropriate function spaces. Other
technical aspects of the coherency method, as well as precise mathematical

statements and proofs of our results, may be found in the companion papers
Symes [1988a, b, c].

1 Numerical Experiment: Synthetic Data

Implementation of the coherency method in a FORTRAN code (of approxi-
mately 3,500 executable lines) involved a large number of choices concerning
discretization, approximation, and optimization. A detailed description of
the code appears in the technical report (Symes 1988a). For reasons of space,
we will describe here only those features which seem to us most important.

First, we repeat the “scan” experiment reported in Section 2, this time
displaying the coherency optimization functional

Jolenrs Sdaal = [ [ dp dt {1310 ]~ Sgasal® + AWlew I} .

The integration is over the (tau, p) rectangle displayed in Figure 2, and
the integral is discretized using the trapezoidal rule. The various deriva-
tives appearing in the definitions of S and W are approximated by centered
differences. The parameter o is set = 1.

The sampling of J, over the line in model space (defined in Figures 1, 3)
is displayed in Figure 5. The contrast with Figure 4 is dramatic, and provides
some evidence that the theoretical convexity results explained in Section 3
are reflected in the actual behaviour of J,.

Next we attempt to recover the model of Figure 1 from the data of Figure
2, by numerical minimization iof J,. This process requires the definition of
trial spaces for c,(z) and r(t,p). For c,(z) we used a space of exponentiated
integrated cubic b-splines:

cs(z) = exp (/oz NZ-2 $j¢j)

i=2
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where

¢j(2)=‘I'(N(Z-Tz")), z,'=izm, j=0,...N

N
and ¥ is a model cubic b-spline (see DeBoor (1978)). This choice of rep-
resentation, parameterized by the coefficients z;, j = 2,..., N — 2, ensures

positivity of the velocity and gives direct control over the amount of smooth-
ness in the model. See Figure 6 for illustration. (Recall that velocities and
depths are normalized against the surface velocity.)

For r we used an array of samples:
rie ® r(tAt,pr), i=0,...,nt, k=1,...,np

where At = .004 sec. In principle, the slowness samples p; are allowed
arbitrary spacing. In the synthetics reported in this section, we used 100
equally-spaced slownesses ranging from 0.15 to 0.35. (Recall that slownesses
are also normalized against the surface velocity.)

It is inherent in our approach that differentiation of r with respect to ¢
and p must be bounded operators, i.e. r derivatives must be measured in such
a way as to have essentially the same size as r. This equilibration may be
accomplished by using discrete analogues of the Sobolev norms to measure
the size of r, etc. For details see Symes (1988a).

Correct relative weights must also be established for c, and r, as these
have entirely different units. We have determined the weights up to now by
trial and error. An approach like that described by Kennett et al. (1988)
may circumvent this difficulty, and is under study.

We coupled subroutines for J, and its derivatives with respect to the ve-
locity parameters z; and the reflectivity parameters r;; to an optimization
routine of truncated Gauss-Newton type, described in Santosa and Symes
(1989, Ch. 10). This algorithm interpolates between steepest descent itera-
tion and the Gauss-Newton iteration in a controllable way. In general, steep-
est descent iteration is more reliable far from a minimum, whereas Gauss-
Newton iteration is more rapidly convergent near a solution (see e.g. Dennis
and Schnabel (1983)). Our algorithm in effect switches continuously between
the two, and achieves assured convergence to a local minimizer with some
efficiency, at least in principle.
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Other reasonable choices of optimizer are certainly possible. We regard
the optimal choice of strategy as open, at present, partly for the reasons to
be discussed below.

The velocity function in Figure 1 belongs to the model space described
above with N = 16, Zmax = 1.25sec. We applied the algorithm just described
to the data of Figure 2, and after 10 Gauss-Newton steps achieved the es-
timate of ¢, depicted in Figure 7. The initial estimate of ¢, was c,(z) = 1.
Rather than display the resulting reflectivity, we give the stack

Q) free

_— dp vz, p)r((z,p),
e — ponn o 9P (2,p)r(7(z,p),p)

which should reproduce ¢, if r is exactly correct. As Figure 8 shows, the major
features of c, are recovered, but with some loss of energy. This inaccuracy
occurs at least in part because of the relative-scale problem mentioned above.
The estimate for r can be “cleaned up” somewhat by holding c, fixed at
Figure 7 and taking a number of additional steps in r alone. The stack
resulting from this process is displayed in Figure 9.

Another gauge of the extent to which the inversion is successful is eyeball
assessment of the extent to which the NMO correction for the estimated
velocity function flattens the estimated reflectivity section. In Figure 10 we
display the NMO-corrected before-stack reflectivity

}(2)v;%(z,p)r(7(2,p),p)

and in Figure 11 the same using the exact ¢, and r.

A crude measure of the roboustness of this process is its sensitivity to
additive noise in the data section S,,,. We added 50% RMS relative pseudo
random noise, filtered by the source wavelet, to the data of Figure 2; the
result is given in Figure 12. The estimated velocity and reflectivity appear
in Figures 13 and 14. Note the role of the coherency constraint in keeping
the reflectivity “clean”: any incoherent noise drastically increases W, and
is therefore not modeled. In effect, coherency optimization implements a
moveout-adapted dip filter.
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5 Numerical Experiments: Field Data

To make a preliminary assessment of the practicality of the method described
in the preceding paragraphs, we applied it to a tau-p data set produced from
a marine survey conducted in the Gulf of Mexico.

The survey consisted of 511 shot profiles (shot interval 22.5 meters) col-
lected with a streamer containing 301 hydrophone groups. The group inter-
val was 15 meters with a minimum separation of 148 meters. Each group
contained 17 equally spaced and equally weighted phones. The data were
recorded without a low-cut filter; a 110 Hz. high-cut filter was applied; the
sampling rate was .002 sec.; total record length was 5 sec. A portion of a
50-fold near-trace common midpoint stack is shown in Fig. 13. This area
of the Gulf contains a strong gas-sand related direct hydrocarbon indicator
(DHI) located near 2.3 sec.; it is readily apparent in the stack.

The data were prepared by carrying out shot-gather based wavelet esti-
mation and deconvolution designed to remove a mild low- frequency linear
noise observed in the data. An isotropic two-lobed minimum phase gaussian
wavelet was employed. The data were sorted to midpoint order, merged into
bins containing up to 301 offsets, interpolated to a uniform spacing of 7.5
meters and radially slant stacked. The antenna pattern of the receiver array
was computed and compensated to produce a true plane-wave decomposi-
tion. The 250 computed plane wave slownesses correspond to an angular
range of 11 to 70 degrees at the streamer.

The result is shown in Fig. 14. Inspection of Fig. 14 shows a rich
sequence of apparently primary reflections, culminating at approximately
2.3 sec. in the DHI event mentioned above. Below the DHI, the character of
the data changes markedly, to a regime of slower events, presumably multiple
reflections.

An additional source estimation process was carried out after the plane-
wave decompostion. Both wavelet shape and directivity were re-estimated.
A line average of the water-bottom reflection event was computed and the
result fit to the wave equation prediction for P-wave reflection at a fluid-solid
interface. The resulting p-dependent estimated source wavelet was used in
the inversion.
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Finally the tau-p gather of Fig. 14 was subjected to a deghosting filter
and a further tapered 50 Hz. high-cut filter, resampled to .004 sec., and
windowed to 100 traces of duration 2.5 sec. The resulting gather, shown in
Fig. 15, was the input data set for the inversion.

Application of the damped Gauss-Newton algorithm produced the veloc-
ity estimates depicted in Fig. 16. These are displayed alongside a velocity
profile extracted from a sonic log taken from a well near the midpoint in
question.

The first of several difficulties in assessing these results is evident in Fig.
16. The estimated velocity compares quite well with the log velocity trend,
where both are available. Since the log only covers a segment of the well (in
this case approximately 1400 - 2500 meters depth), however, the full depth
range of the velocity estimate cannot be compared.

Another index of successful velocity estimation is the extent to which
NMO correction flattens the reflectivity gather. The NMO-corrected esti-
mated reflectivity gather is displayed in Fig. 17. Several features of this
gather deserve comment. First, the lateral continuity of events is consider-
ably enhanced relative to that displayed in the data gather (Fig. 15). This
moveout- adapted dip filter effect was noted in the previous section. Most
of the moveout has indeed been removed. Some residual moveout remains,
however; apparently the reflectivity is slightly overcorrected at the shallower
depths and undercorrected at the DHI. We speculate that this effect is partly
due to the peculiar structure of the DHI: careful inspection of the data shows
that this event undergoes a phase shift at about trace 60, and another at
about trace 85. We are unsure as to the cause of these phase anomalies,
which are present in neighboring midpoints as well. Obvious possibilities
are elastic reflection effects and thin-bed tuning. In any case, the dip filter
effect of our optimization turned the phase shift into moveout, which forced
overcorrection of overlying events.

Since we used a globally precritical gather with a fixed range of slowness
for all times (i. e. a rectangular mute pattern) the range of angles available
to constrain the shallow part of the velocity is quite small. We expect that
a mute pattern better adapted to the velocity structure, employing different
slowness ranges at different depths to keep the angular aperture as constant
as possible, would better constrain the shallower velocities and prevent this
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overcompensation for deeper non-primary-acoustic artifacts, to some extent.
Such a mute pattern could be estimated adaptively; we hope to implement
adaptive mute estimation in a future version of the code.

It is also known from logging that the density fluctuates considerably
throughout this region. The general acoustic reflectivity varies systemati-
cally with slowness in a different way than the constant-density reflectivity.
We have verified in subsequent numerical experiments that neglect of this
difference can cause systematic misestimation of velocity, through the ampli-
tude dependence of the incoherency operator W. Since our current code is
based on the constant-density assumption, some of the inaccuracy of the ve-
locity estimate might be due to actual density fluctuations in the real earth.
This is an obvious matter for further study.

The identities and depths of events also diagnose the success of an inver-
sion. In the present approach these are estimated by the stacked reflection
series estimate, which is also displayed alongside the log in Fig. 16 (bottom
curve). The DHI is easily identifiable, as is the event near 1520 meters Both
are placed about 80 meters too deep, consistent with the slightly high ve-
locity estimate in the logged zone and the overcorrection of shallow events
noted above.

In summary, this preliminary test achieved a modest degree of success: a
reasonable velocity model, accounting for the bulk of the moveout in the data,
was estimated entirely automatically. Several causes for the residual inaccu-
racies, consistent with the layered medium hypothesis, suggested themselves,
and remedies will be pursued in subsequent work.

6 Coherency Optimization for Laterally
Heterogeneous Models

The essential ingredients of the approach to velocity inversion sketched in
the previous section were:

(1) parameterization of the reflectivities as time “sections” (i.e. traces),
so that the seismogram is a regular function of the reflectivities, one
reflectivity (trace) per plane-wave “shot” (synthetic source);
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(i) referral of each time-section reflectivity to depth, and assessment of
the dependence of the resulting suite of depth sections on the “shot”
parameter (i.e. slowness).

In this section, we maintain the fiction that the seismogram is adequately
approximated by the multi-dimensional version of the convolutional model,
i.e., the linearization about a smooth background velocity, and moreover
apply high-frequency asymptotics freely. A natural interpretation of (i) and
(ii) emerges in this context.

First recall why the parameterization by two-way time resulted in reg-
ularity of the seismogram as a function of both the background velocity
and the reflectivity. In effect, each reflector was associated with the time
of arrival, at the surface, of its reflection. If the background velocity is
changed, then depth-parameterized reflectors remain fixed while their re-
flection times change, whereas time-parameterized reflectors remain fixed
while their depths change. In the former case, high-frequency arrivals are
time-shifted, while in the latter case they are not. The time-shift is a time
derivative in the infinitesimal limit, and its appearance marks the loss of
regularity of the depth-parameterized reflectivity-to-travel-time map. For
time-parameterized reflectivities, no such time shift occurs as a result of
background velocity change, and regularity is maintained.

Reflectors and reflection arrivals are both (near)-singularities, i.e. locii of
high-frequency energy. In the high-frequency limit, therefore, we must ask:
how can we parameterize reflectivity so that a singularity in the reparameter-
ized reflectivity corresponds, under conversion to ordinary spatial coordinates
and mapping to the seismogram, to a singularity in the same location? In
several-dimensional problems, singularities may have orientations, and these
must be preserved as well.

This question is answered by a theorem of Rakesh (Symes (1985), Rakesh
(1988)), together with a construction presented for this problem by Beylkin
(1985). To fix ideas, suppose we consider the linearized acoustic problem for
a point source, which models a shot-gather:

21‘, azuO
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where r, = ¢ /¢, is the “reflectivity depth section”, ¢, is the background
velocity, u is the scattered field, and uo is the reference field satisfying

= 220 _ Vo = f(t)(z - &),

z, being the source location. Rakesh showed that for the impulsive case
(f(t) =46(t)) a singularity in r; at the subsurface location y, across a surface
element with normal 7, corresponds to a singularity in the reflected field at
receiver location z,, time t,, only if there exist

— an incident ray 7; associated with ¢ e reference field, emanating from
the source-point z, at t =0;

_ a reflected ray 7., passing over the receiver point z, at time ¢,

so that 4; and 7, meet at the reflector point y at some intermediate time,
making equal-angles with the reflector normal n. For non-impulsive but
broad-band time signatures f(t), this rule governs the arrival of (primary-
reflected) high-frequency energy.

This is exactly the usual picture of the reflection process, of course.
Rakesh’s theorem, which justifies this picture in terms of the wave equa-
tion, holds in complete generality, so long as the background velocity ¢ is
smooth. It tells us exactly which singularity in the time section must be
mapped to a given singularity in the depth section if the seismogram is to
return such singularities to their original position and orientation. Beylkin’s
construction, on the other hand, applies only when no caustics exist in the
incident field, i.e. each depth point y is joined to the source point z, by a
unique incident ray. Then any mapping having the singularity-moving prop-
erties just described must differ only by a (possibly frequency-dependent)
amplitude modulation (technically, a pseudodifferential operator) from the
Kirchhoff migration formula

rz(ﬂa z,) = KT(Q’L) (8)

= [dz, w(L,z,L)r(znT(L,y_,.azr),_z_..)-

Here 7(z,,y,Z-) is the two-way reflection phase, i.e. the time from z, to ¥
to z,, and w(z., Y, z,)isa slowly-varying amplitude modulation.
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Thus: the reflectivity time-sections r(z,,t,z,) will be converted to re-
flectivity depth sections r.(y, z,) via a Kirchhoff migration formula like (8).
This relation implicitly defines the seismogram as a function of r(z,,t,z,),
and guarantees that it is regular as a function of ¢,,r. Note the apparent
similarity of (8) to the travel-time change-of-variables, appropriate in the
layered case (formula (A.1), for instance).

The second ingredient (ii) in the coherency optimization approach is evi-
dently the condition that the depth-parameterized reflectivities r, (y,z,) are
actually independent of z, (“Every shot sees the same earth”). Regarding
the source locations as filling up a continuum, this amounts to the condition
Ve r:(y,2,) = 0. The composition rules for oscillatory integrals (the local
calculus of Fourier Integral operators—e.g. Duistermaat (1973), Ch. 2) give
the result:

Ver: =V, Kr=K(Vg + P)r

up to an error rapidly decaying in frequency content, where P is a pseudod-
ifferential operator in z, and t, i.e. an oscillatory integral of the form

Pr(z.,t) = / / dz ds dk dw eE(E—D+elt=Ip(z ¢ 5k w)r(z,s).

The amplitude p depends on the ray geometry, i.e. on the background veloc-
ity ¢,, but the phase k(z, — z) +w(t —s) does not. Thus (V, + P)r is regular
as a function of c,, i.e. perturbing ¢, does not result in the appearance of
higher derivatives of r, just as was the case for the formula (A.1) for W/c,, r].

Now let L be any operator from depth-parameterized reflectivities to sec-
tions which has the reverse effect to K on singularities: for instance L might
be taken as the linearized seismogram operator itself. Then another applica-
tion of the same reasoning shows that

Wle,,r] := LV, Kr

is regular as a function of c,,r for the same reason. We take this formula
as our definition of the incoherency for the laterally heterogeneous acoustic
problem. Note that L must be computed to form the seismogram, and K is
the Kirchhoff migration operator (or an equivalent). Thus W(c,,r] involves
only well-understood computations.

The attentive reader will note the immediate resemblance to the definition
of W{e,,r] given in Section 2.
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Thus the transformation # — Kr serves the role of the travel-time trans-
formation. The special role of travel-time in regulariz:ng 1-d problems was
noted in the work of Gray (1980). Some time later, Gray and Hagin (1984) at-
tempted generalized travel-time coordinates for laterally heterogeneous point
source problems, with limited success; travel-time (ray-straightening) co-
ordinates per se do not exist in general for several-dimensional problems.
Nonetheless, the operator K accomplishes the principal effect of the 1-d
travel-time coordinate, i.e. to make reflector location independent of back-
ground velocity in both the (reparameterized) reflectivity and in the seismo-
gram simultaneously. Of course, K is a more complicated operator than a
change of coordinates, except for 1-d (plane-wave, layered model) problems.

The very close relation of the method described here to “migration ve-
locity analysis” (e.g. Al-Yahya (1989)) is also clear. In fact W{c,,r] vanishes
exactly when the migrated gathers Kr are flat — in fact all traces are equal
— with respect to shot parameter, i.e. “when sorted to receiver gathers.”
The differences between the two approaches are exactly parallel to the dif-
ferences between the layered coherency method and standard NMO-velocity
analysis, as described at the end of Section 3. Specifically, the method de-
scribed here is based on a differential measure of coherence, applied to the
model, whereas migration velocity analysis is based on an integral measure
(analogous to semblance) applied to (migrated) data.

We conclude that both main ingredients of coherency optimization, as
explained in Section 2 for layered acoustics, generalize in an acceptable way
to a simple laterally heterogeneous model. Many details remain to be settled,
some of which will doubtless be crucial to computational efficiency. Also, the
analysis cited in Section 3 remains to be generalized. A technical complica-
tion is that, while the operators L and K exist in general, the composition
rules leading to the regularity of the incoherency W/c,,r] must be modi-
fied when caustics are present. Nonetheless, we have established that the
coherency approach is not restricted conceptually to layered problems.
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1 Discussion and Conclusion

1.1 The scope of the coherency approach

From a theoretical point of view, and perhaps from a practical one as well,
the chief defect in the results of the preceding sections on the layered acoustic
problem is the absolute lack of any provision for multiple reflections. This
defect is cured in the companion paper Symes [1988¢], in which the fully
nonlinear bandlimited layered velocity inversion problem is treated with full
mathematical rigor. We reach a qualitatively identical conclusion about the
appropriate version of coherency optimization: that is, it gives a (regular-
ized) solution of the inverse problem stably dependent on near-consistent
data, provided that sufficiently many reflectors are present, i.e. that the
target profile is sufficiently rough. We give a precise sense for “rough”, and
a relation emerges between stability, aperture, bandlimits, and roughness
(reflector density) very similar to that explained in Section 3.

Both convolutional model and fully nonlinear versions of other layered
inverse problems should succumb to the same approach. We mention specifi-
cally nonconstant-density acoustics, the “marine” elastic model (with sources
and receivers in an overlying fluid layer), and either of these with the source
time-dependence and directivity also regarded as unknowns. Some idea of
the novel features of these problems in convolutional approximation may be
gleaned from Sacks and Symes (1987) and Bube, Lailly, Sacks, Santosa, and
Symes (1989). No technical obstacles appear to lie in the way of an analogous
treatment of these problems.

Note that the density, regarded as independent of velocities, will not be
recovered with trend, in any of these problems, as density trend perturba-
tions do not affect ray geometry. This gross density ambiguity is well-known
(Tarantola (1986)) and has been observed in output-least-squares results
(Canadas and Kolb, (1986)).

The program outlined in Section 6 appears feasible. On the other hand,
while an analogous coherency optimization principle can be formulated for
fully nonlinear laterally heterogeneous models, its analysis will require funda-
mental advances in the understanding of wave propagation in rough media.
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7.2 Conclusion

We have presented a novel approach to the reflection seismic inverse problem,
which has its roots in utterly commonplace concepts in seismic data pro-
cessing. We have formulated this coherency optimization principle precisely
for the convolutional approximation to the layered constant-density acoustic
model. We displayed the results of numerical experiments with both simu-
lated and field plane-wave data sets. The results of these experiments suggest
that the method is “practical,” and that it produces reasonably accurate and
stable estimates of both velocity trends and reflectivities, to the extent that
these are determined by the precritical plane-wave data set used. In particu-
lar, the coherency method extracts reasonable velocity estimates in cases in
which output least squares inversion fails completely, viz. when the trend of
the initial velocity estimate is grossly incorrect. Finally, we formulated an
analogous principle for laterally heterogeneous velocity inversion, a problem
for which output-least-squares inversion is so inefficient as to be infeasible. It
remains to be seen whether coherency optimization yields a computationally
tractable approach to such several-dimensional problems.
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Captions

(2]

7.

10

. Background velocity and reflector series for synthetic examples.

. Convolutional plane-wave seismogram corresponding to the model of
Fig. 1.
e One-way time interval: 0 - 1.5 sec.
e Normalized slowness range: 0.15 - 0.35.
e Source: Ricker wavelet peaked at 20 Hz.,
isotropic radiation pattern.

. Velocity trend perturbation.

. Scan of mean-square error over line segment connecting constant back-
ground velocity with that displayed in Fig. 1.

. Scan of incoherency W over the same segment of velocity models as
used to produce Fig. 4.
a. Cubic b-splines.
b. Integrated cubic b-splines.
a. Estimated velocity. 10 Gauss/Newton/trust region steps; con-
stant initial velocity, zero initial reflectivity. Shown are the target

(solid line) and iterates 1, 2, 3, and 10. Note that the general
trend is achieved in three steps.

b. Velocity components of gradient at iterations 1, 2, 3, and 10.

. The black line is the target reflection series (Figure 1). The red line is:
a. stack from reflectivity estimate after 10 Gauss/Newton steps.

b. stack from reflectivity estimate after 30 additional conjugate resid-
ual steps, holding the velocity estimate fixed at the result dis-

played in Fig. 7.
. NMO-corrected final reflectivity estimate.

. Data with 50% RMS pseudorandom passband noise.



11.

12.
13.
14.
15.

16.

17.

a. Black line: target velocity model (Figure 1).

b. Red line: velocity estimate, 0% data noice (Figure 7), 10 Gauss /Newton
steps.

c. Grey line: velocity estimate from data in Fig. 10, 10 Gauss/Newton
steps.

Final reflectivity estimate corresponding to Fig. 11.
Gulf of Mexico data: CDP stack.
Gulf of Mexico data: Plane wave decomposition of a midpoint gather.

Gulf of Mexico data: windowed, deghosted, filtered, and resampled
version of Figure 14. Input data for inversion.

Results of inversion: top curves are velocity estimate (smooth curve)
and interpreted sonic log (ragged curve). Bottom curve is stacked re-
flection series estimate. Products of 10 Gauss-Newton steps.

NMO corrected reflectivity corresponding to results of Fig. 16.
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