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Abstract

Today’s supercomputers are mainly used to solve numerical problems. Understanding
the characteristics of numerical programs is therefore essential for the design of supercom-
puters and their compilers. A run-time information gathering tool has been developed
that allows (1) the study of program properties as they relate to vectorization and (2) the
study of the efficiency of vector transformation used in vectorizing compilers. This paper
describes the dynamic tool based on the PFC vectorizer and the results gained from the
analysis of a testsuite of eight computationally intensive numerical programs.

1 Introduction

At Rice University empirical studies on the properties of Fortran programs have been per-
formed and are still underway as they relate to parallel and vector architectures and the
prospects for automatic detection of parallelism. These studies are based on a set of ‘real
world’ programs that have been collected from industry and universities over the last nine
months. RICEPS, the Rice Compiler Evaluation Program Suite, is a representative subset
of these programs.

In order to facilitate dynamic studies of Fortran programs, a tool called PFC-SIM has
been developed. PFC-SIM is a program-event-driven tracing facility which can be modified
to perform a variety of dynamic statistic-gathering tasks.

The practical value of run-time information gathering tools is based on the assumption
that information gained by executing a specific program with a specific input data set is also
valid for other input data sets or other similar programs. This assumption is especially true
for programs like oil reservoir codes where a specific computational model is specified by one
part of the input data set while another part contains the actual data for the computation.

Many input data sets share the first part but differ in the second.



Some studies have already been performed including studies on uniprocessor memory
management [Por89], array subscript characteristics relevant for data dependence analysis,
and vectorization potential and vector characteristics.

In this paper we present the results on the latter study, analyzing eight Fortran programs,
some of which have been included in the program suite RICEPS.

After a description of the vector version of PFC-SIM, called PFC-VECTSIM, in the
next section we will briefly discuss the eight Fortran programs that were used in this study.
The results of the study are given in section 4, followed by a discussion qf the possibility of

incorporating PFC-VECTSIM into an interactive programming environment.

2 PFC-VECTSIM

PFC-SIM is a tool to gather dynamic statistics of specific characteristics of Fortran77 pro-
grams. The input program is instrumented with analysis statements that compute the desired
information during the execution of the program. This technique avoids long traces and there-
fore allows the analysis of programs that run for several hours or even days on an IBM3081D
mainframe.

Two versions of PFC-SIM have been implemented so far, a version to gather information:
about the memory performance of the input program on a uniprocessor in terms of cache
hits, misses and memory traffic (MEMORY OPTION[Por89]), and a version to determine the
vectorizability and vector characteristics of the input program, using program restructuring
transformations (VECTOR OPTION). Other versions to understand multiprocessor memory
management and the parallelization potential of numerical programs are in preparation. In
this paper we will concentrate on PFC-VECTSIM, the VECTOR OPTION version of PFC-
SIM.

2.1 Structural Overview

Figure 1 shows the structure of PFC-VECTSIM. A modified version of the PFC VEc-
TORIZER ([AK87], [All83]) is used that doesn’t generate Fortran8X vector triplet notation
[ANS86] but sequential loop nests instead, with innermost loops marked as vector loops. In

addition, the PFC VECTORIZER is modified in such a way that the application of specific



FIGURE 1: Structure of PFC-VECTSIM
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restructuring transformations can be disabled. This feature of PFC-VECTSIM allows a
study of the profitability of transformations with respect to the overall increase of vectoriz-
able operations and with respect to vector characteristics. The set of enabled transformations
and a table of cost estimates for operations, instructions, and intrinsic functions are input
to PFC-VECTSIM. The table is used to determine cost estimates for each basic block in
the input program. The instrumented output program of PFC-VECTSIM contains calls
to routines that gather analysis information during runtime. The instrumented program is
compiled and executed. The output of the original program and the non-analysis output of
the instrumented program are compared to ensure the correctness of the applied restructur-
ing transformations. The analysis output includes the number of operations and instructions
executed inside and outside of vector loops, vector lengths and vector stride distributions,
and vector characteristics such as average vector-mask density.

In the following, the cost estimates for operations and instructions, the computed vector

characteristics, and the sets of enabled transformations are described in more detail.

2.2 Operations and Instructions

PFC-VECTSIM supports three different counters for each source-level basic block in the
input program. The counters contain a cost estimate of all (1) floating point operations,
(2) integer operations, and (3) load/store and type conversion instructions, executed during
one execution of the basic block. All operations involving variables of type real, double
precision, complex, and double complex are considered to be floating point operations.
The values of the counters are determined by a static analysis, that visits each statement in
the basic block and determines its contribution to the overall cost of the basic block. Note
that operations and instructions in index expressions of arrays are ignored in the computation
of static counter values.

Cost estimates for each arithmetic and relational operation, and intrinsic function are
input to PFC-VECTSIM. The values used in this study were determined by experiments
conducted on an IBM3081D and are shown in Figure 2. The cost estimate for a type con-
version instruction is set to 1, if it does not involve a variable of type complex or double
complex, and 2 otherwise. The estimate for load/store instructions is the number of memory

words referenced by the instruction. Each reference to a variable is counted as either a load



or a store, thus assuming a very naive register allocation technique.

The contribution of a basic block to the overall cost of executing the program is determined
by multiplying the values of the static counters by the number of times the basic block
is executed. The latter information is provided by frequency counters ([Knu71]), that are

associated with each basic block ($DYNCNT variables in the example of Figure 3).

2.3 Vector Characteristics

PFC-VECTSIM does not generate vector triplet notation but sequential nested loops instead
with the innermost loops marked as vector loops. Each execution of an innermost vector loop
generates for each array reference in the loop a vector. The lengths of these vectors are set
to the number of times the body of the innermost loop is executed.

In Figure 3 each execution of the innermost vector loop generates four vectors. Infor-
mation about vectors is gathered dynamically by PFC-VECTSIM inserted calls to analysis
routines. Statistics about the vector lengths distribution are obtained by calls to routine
$VECTL. All vectors of an innermost vector loop have the same length. The number of vec-
tors is passed as the second parameter to procedure $VECTL, and their lengths as the first.

The stride of a vector is the memory address increment used to move from one element of
the vector to the next ([Sto87]). The stride of each vector represented by an array reference
can be determined by analyzing the subscripts of the reference knowing the induction variable
of the innermost vector loop and the dimensions of the array.

PFC-VECTSIM distinguishes three classes of strides, namely, constant strides, indirect
strides, and masked/random strides. Indirect strides can occur when arrays are used in
subscript expressions. Masked strides are generated for masked vectors, i.e. array references
under a guard. If the stride cannot be shown to be constant, indirect ,or masked, a random
stride is assumed. In the example of Figure 3, a stride of 0 is computed for the array reference
A(LK) , since in each iteration of the surrounding J-loop the same memory location is
accessed. Calls to routine $STRIDE provide the means to compute vector stride distributions.
The first parameter represents the class of the stride while the second gives the stride value.
The stride value is only defined for the class of constant strides.

Vector mask densities are calculated as the ratio between the number of times a guard

expression is evaluated and the number of times this evaluation yields the value true. All



FIGURE 2: Table of Operation Cost Estimates

| operations || integer || real | double precision | complex | double complex

+, - 1 1 1 2 2
* 2 1 1 5 5
/ 4 2 3 11 13
ok 8 20 42 67 73
.gt. 2 1 1
.eq. 2 1 1 7 7
sqrt 10 13 20 23
exp 8 18 28 33
log 13 18 32 37
log10 15 22
sin 9 12 35 51
cos 8 14 35 51
! tan 13 19
asin 20 28
acos 22 31
atan 9 15
sinh 11 30
cosh 9 30
tanh 11 28
aint 1 1
anint 2 2
nint 3 3
abs 1 1 1 7 8
mod 4 4 5
sign 1 1 1
dim 2 1 1
max(2-arg) 2 1 1
max(3-arg) 3 2 2
aimag 1
conjg 1




array references in guarded statements are considered to be masked vectors.

2.4 Transformations

The set of restructuring transformations that can be applied during vectorization is input to
PFC-VECTSIM. This feature of the tool allows us to gain insight into the profitability of
transformations with respect to their effect on the overall vectorization and with respect to
specific vector characteristics, e.g. vector lengths and vector strides.

The transformation sets used in this study are the following:

e Setl: Statement Reordering and Loop Distribution

o Set2: Set! + Loop Shifting

e Set3: Set! + If-Conversion and Scalar Expansion

¢ Set4: Setd + Loop Shifting and Loop Switching

¢ Set5: Set{ + Array Renaming and Single Statement Reductions

Loop Shifting and Loop Switching are special forms of loop interchange as described
in [AK84]. If there are no dependences at a level k, then the k loop can be placed as the.
innermost loop. This process is called loop shifting. Loop switching is loop interchange applied
to only the innermost pair of loops in a r-block ([AK87]). The transformation array renaming
is also known in the literature as node splitting ((KKP*81]). Single statement reductions are

sum, product, and minimum/maximum reductions.

3 Test Suite

PFC-VECTSIM has been applied to a test suite of eight Fortran77 programs, some of which
are members of the benchmark suite RICEPS. A brief description of the eight programs and

their major data structures is given below:

1. LES: (1240 lines and 24 program units)

Large Eddy Simulation code; the program contains one to four-dimensional arrays of

type real. The program uses two working space arrays of sizes 8192 x 4 x4 and 24576 x 4.



FIGURE 3: Matrix Multiply Example of N x N-Matrices

DO 1019 K =1,N,1
$DYNCNT(9) = $DYNCNT(9) + 1
C$PFC Vector
DO 1018 I =1, N, 1
$DYNCNT(7) = $DYNCNT(7) + 1
C$PFC Vector
DO 1017J =1, N, 1
$DYNCNT(5) = $DYNCNT(S) + 1
$VECLNG = $VECLNG + 1
C(I,J) = C(1,J) + A(LLK) * B(K,J)
1017 CONTINUE
$DYNCNT(6) = $DYNCNT(6) + 1
CALL $STRIDE( 1, N )
CALL $STRIDE( 1, 0 )
CALL $STRIDE( 1, N )
CALL $STRIDE( 1, N )
CALL $VECTL( $VECLNG, 4 )
$VECLNG = O
1018 CONTINUE
$DYNCNT(8) = $DYNCNT(8) + 1
1019 CONTINUE

Statements in typewriter style have been inserted
by PFC-SIM VECTOR OPTION




. LINPACKD: (796 lines and 11 program units)

Double precision LINPACK test routines. The computations are performed for arrays
of size 100 x 100 of type double precision.

. NASKER: (1183 lines and 19 program units)

NAS kernel benchmark program; the major data structures are arrays of one to four
dimensions that share a working space common block of 360000 reals.

. ONEDIM: (1016 lines and 16 program units)

Eigenfunction and Eigenenergies calculation of the time-independent Schrodinger equa-
tion for a one-dimensional potential. The major data structures are two-dimensional

arrays of size 150 x 150 of type double precision.

. SHALB4: (534 lines and 9 program units)

Benchmark weather prediction program using a simple atmospheric dynamic model
based on shallow-water equations. Two-dimensional arrays of size 65 x 65 of type real

are the basic data structures.

. SHEAR: (915 lines and 15 program units)

Three-dimensional turbulence fluid dynamics simulation based on spectral techniques.
The computations involve three-dimensional arrays of size 18 x 17 x 17 of type real that

are aliased to a working space array of size 18 x 17 x 238.

. SIMP1: (1312 lines and 8 program units)

Two-dimensional Lagrangian hydrodynamics code with heat diffusion (Standard LLNL
benchmark code). The major data structures are one-dimensional arrays of size 12 and

203, and two dimensional arrays of size 203 x 183. The arrays are of type real.

. VORTEX: (709 lines and 20 program units)

Particle dynamics code simulating the dynamics of a one-dimensional vortex sheet by
means of discrete vortices. The computation involves one-dimensional arrays of type

real with sizes 48 and 1000.



4 Results

The results of the study with respect to the number of vectorized operations and instructions
are given in Figure 4. Neither interprocedural side effect analysis nor interprocedural constant
propagation were performed. A comprehensive summary of the vector characteristics can be
found in the appendix.

In Figure 4, the program names are followed by a list of numbers in parentheses. The
numbers in the list represent transformation sets that generate the same instrumented output
program. The profitability of transformations can be determined using the set of instrumented
programs generated and their corresponding vector/scalar ratios. For instance, in the case of
LINPACKD, the transformation set 1 generates a program that achieves a floating point vec-
tor ratio of 92.3%. Since transformation sets 1 and 2 produce the same program loop shifting
alone is not profitable after statement reordering and loop distribution. The increase of the
floating point vector ratio by 4.1% to 96.4% is only due to if-conversion and scalar expansion,
because the additional transformations of transformation set 3, namely loop shifting and
switching, could not improve the vector ratio since the output programs of transformation
sets 3'and 4 are the same. Therefore loop shifting and loop shifting are not profitable at all
for vectorizing LINPACKD. The final improvement of the floating point vector ratio by 1.4%
to 97.8% is obtained by applying single statement reductions.

In general the PFC VECTORIZER achieved good results for all programs except SHEAR.
For SHEAR the vectorizer failed to vectorize two loop nests that contribute to more than 40%
of the overall number of executed floating point operations, even when interprocedural side
effect analysis and constant propagation had been switched on. The interprocedural constant
propagation was not able to propagate three constants that were stored in an arra: N and
referenced in the program as N(1), N(2), AND N(3), respectively. These three constants were
crucial for the precision of the dependence analyzer which - not knowing the constant values
- had to make conservative assumptions about the existence of dependences in the two loop
nests. After substituting three ‘new’ scalar variables for the array N, PFC vectorized the two
computationally intensive loops using interprocedural constants and side effect information.

The high vectorization ratio and the dominance of unity strides due to applying the

first transformation set for programs LES, SHAL64 and SIMP1 seems to indicate that these
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FIGURE 4: Table of Operations and Instructions

programs’ integer operations floating point operations® || load, store, type conversion

scalar vector | ratio® || scalar | vector ratio® || scalar | vector ratio®
LES(1)* 2218294 | 26214924 | 92.2 % 4.6 3158 | 99.9 % 16.2 9341 99.8 %
LINPACKD(1,2) || 2868768 0 0% 1.5 18 | 923 % 9.8 72.8 88.1 %
LINPACKD(3,4) || 2866194 5148 | 02 % 0.7 188 | 96.4 % 0.8 74.7 90.4 %
LINPACKD(5) 2866194 5148 | 0.2 % 0.4 19.1 ] 978 % 6.3 76.3 924 %
NASKER(1,2) 471608 0 0% [[ 1152.4 | 1243.1 [ 51.9% || 1579.9 | 1782.5 53.0 %
NASKER(3,4)% 2117806 192 0% 11.9 | 2383.6 | 99.5 % 28.7 | 3335.5 99.1 %
NASKER(5) 2117796 202 0% 6.9 | 2388.6 | 99.7 % 13.7 | 3350.5 99.6 %
ONEDIM(1) 738166 154 0% 76.8 115 13.0% || 281.8 42.3 131 %
ONEDIM(2) 738166 154 0 % 56.5 31.7| 36.0% || 200.8 | 123.3 38.0 %
ONEDIM(3) 1996710 | 2487154 | 55.5 % 36.5 518 | 58.7% || 121.5 | 206.0 62.9 %
ONEDIM(4)® 2.0 251 555% 16.2 72.0 | 81.6 % 40.5 | 287.0 87.6 %
ONEDIM(5) 1996710 | 2487154 | 55.5 % 9.6 789 | 89.2% 13.8 | 313.6 95.8 %
SHALG64(1-5) 132011 8450 | 6.0 % 0.5]3244.1 | 999% 2.0 | 4512.8 99.9 %
SHEAR(1,2) 5629575 136 0% || 3315 155.0 | 31.9% || 508.5 | 362.5 41.6 %
SHEAR(3,4)* 5629223 488 [ 0.01 % || 310.3 | 176.2 | 36.2% || 466.0 | 404.9 46.5 %
SHEAR(5) 5629223 488 | 0.01% || 307.5| 179.0 | 368 % || 457.7 | 413.3 475 %
SHEAR(5*)7 5629223 488 | 0.01 % 90.2 | 396.4 | 81.5% || 227.5| 643.4 73.9 %
SIMP1(1,2) 484624 0 0% 174.7 | 8754.7 | 98.0 % || 363.1 | 8651.5 96.0 %
SIMP1(3,4) 213040 271584 | 56.0 % 92.1 | 88374 | 98.9% || 145.6 | 8869.0 98.4 %
SIMP1(5) 212610 272014 | 56.1 % 86.7 | 8842.7 | 99.0 % || 129.5 | 8885.1 98.6 %
VORTEX(1,2) 28499 10500 | 26.9 % || 1367.9 0.8 | 0.06 % || 3255.2 23 0.08 %
VORTEX(3) 29499 10500 | 26.2 % 189.3 | 11794 | 86.2% || 568.1 | 2689.3 79.9 %
VORTEX(4)® 29499 10500 | 26.2 % 1.3 | 13674 | 99.9 % 4.3 | 3253.2 99.8 %
VORTEX(5) 29499 10500 | 26.2 % 0.8 | 1367.9 | 99.9 % 2.6 | 3254.9 99.9 %

! applied transformation sets are listed in parentheses

2 in units of 108

3 ratio := (vector / ( scalar + vector )) * 100

* numbers for transformation sets 1 - 5 differ only slightly

5 if-conversion didn’t improve vectorization

¢ loop switching didn’t improve vectorization

7 interprocedural constant propagation and side effect analysis

11



programs have been written for vector machines, i.e. many vectorization transformations
have been performed manually.

If-conversion was very successful in the case of VORTEX where nearly every loop nest
contains control flow, but failed to significantly improve vectorization for all other programs.
Loop shifting also has a mixed review. It was useful for ONEDIM and VORTEX but had no
effect in the cases of LINPACKD, NASKER, SHEAR, and the manually vectorized programs.
For all programs except ONEDIM, applying single statement reductions like sum, product
and minimum/maximum reductions lead ‘o only slight improvements of the vector ratios
although they were counted as full vector operations. Loop switching, array renaming, and
product reductions did not improve vectorization of any program in the test suite. Note that
for some programs, namely LINPACKD, NASKER, ONEDIM, and VORTEX the number of
integer operation increases after if-conversion and scalar expansion has been applied. This
increase is due to the fact that if-conversion introduces boolean guards to eliminate goto or |
if-then-else statements. For instance, in the latter case the else-statement can be substituted
by an if-statement that contains the negation of the condition for the true-branch.

Vector characteristics like vector lengths and vector strides depend on the choice of the
innern'lost loop in a vector loop nest. Therefore loop interchange can change the number of
vectors generated by a vector loop nest, and their vector characteristics. PFC-VECTSIM
does not alter the order of loops in a loop nest of the input program unless loop interchange
leads to more inner loops that carry no dependence and therefore can be vecto_rized. In
particular, loop shifting is not applied to maximize vector lengths or to minimize vector
strides.

The vector characteristics of the different programs varied significantly. While SHAL64
had only two distinct vector lengths 64 and 65, SIMP1 generated vectors of over twenty
different lengths in the range of 1 to 203. LINPACKD, ONEDIM, and VORTEX showed
vector length distributions typical for triangular matrix computations. Vector strides of 0
and 1 only dominated the stride distributions of LES, LINPACKD, SHAL64, SIMP1. Stride
distributions of programs NASKER, ONEDIM and SHEAR showed constant strides that
indicate computations involving row-vectors as well as column-vectors. Vectors with indirect
strides only occurred in the case of SIMP1 and there were no vectors with random strides.

For a closer study of the vector characteristics of each program we refer the reader to the

12



summary table and diagrams in the appendix.

5 Conclusion and Future Work

The study of eight computationally intensive numerical programs shows that automatic vec-
torization techniques are able to vectorize most of the computations involved in executing
these programs. For some programs a high vectorization ratio and a dominance of unity
strides are achieved without performing vectorization transformations such as scalar expan-
sion, if-conversion, or loop interchange. This seems to indicate that in these cases program-
mers have adopted a ‘vector’ programming style, i.e. most vectorization transformations have
been performed manually by the programmer.

Run-time information gathering tools can be useful for hardware and compiler designers if
applied to programs that are considered to be typical applications for the envisioned architec-
ture or compiler. Tools like PFC-SIM can also help optimize a specific program or estimate
the runtime improvement resulting from executing the program on a vector machine instead
of a sequential machine as in [P1JJ88]. Embedding PFC-SIM in an interactive environment
would allow the user to identify performance bottle necks by mapping the generated infor-
mation back to the source program. For the memory option of PFC-SIM such an interactive
visualization tool already exists ([Por89]). A similar tool for the vector version could easily
be implemented. This tool would give the user the ability to perform vector optimizations
([Wol87]), or to identify computationally intensive loops that have not been vectorized au-
tomatically. The latter feature seems to be extremely useful. For instance in SHEAR, two
loop nests contribute to more than 40% of the performed floating point operations. Due to
conservative assumptions in the dependence analyzer the PFC VECTORIZER fails to vectorize
these loops automatically. The user is able to concentrate his effort to vectorize a program
on computationally intensive loops. After analyzing the problem the user can either change
the program in such a way that the vectorizer is able to detect the vector loops or he can
insert compiler directives that provide assertions about the values of specific variables and
thereby enable vectorization.

The dynamic nature of PFC-VECTSIM allows an insight into the behavior of programs

that cannot be gained by any static analysis. Due to the representation of vectors by vector
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loop nests and the insertion of instrumentation code the output program of PFC-VECTSIM

is about three to four times the size of the input program. However, since calls to statistic

gathering routines are not inserted into innermost loops the increase in execution time is not

very significant. Tools to allow dynamic studies on multiprocessor memory management and

parallelization potential are in the planning stage.
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Appendix

A - Vector Characteristics (Summary)

programs’ vectors masked lengths lengths (< 1000) strides®

overall # # | density || #(> 1000) | average | deviation® || average | deviation3
LES(1) 28027890 0 841628 | 179.48 214.99 0.91 0.29
LINPACKD(1,2) 415037 0 66.20 24.25 1 0.02
LINPACKD(3,4) 420515 0 0 66.64 24.39 1 0.02
LINPACKD(5) 423217 0 0 66.85 24.46 1 0.02
NASKER(1,2) 14454024 2840 | 113.04 117.43 || 421.10 370.42
NASKER(3,4) 25715300 0 2842 99.58 105.46 || 293.11 359.10
NASKER(5) 25720375 0 2842 99.76 106.19 || 293.05 359.09
ONEDIM(1) 233143 0 0 65.19 42.70 2.05 12.48
ONEDIM(2) 503143 0 0 110.70 51.31 28.0 57.57
ONEDIM(3) 823808 174000 0.68 0 83.97 65.25 1.54 7.57
ONEDIM(4) 1093808 174000 0.68 0| 100.27 62.43 15.89 44.62
ONEDIM(5) 1182608 174000 0.68 0 98.37 61.62 14.58 42.82
SHAL64(1-5) 57454956 0 0 64.00 0 1.35 4.70
SHEAR(1,2) 16979053 8810 15.75 2.87 || 126.35 145.48
SHEAR(3,4) 22035520 2 0.28 8810 12.83 5.91 139.38 148.36
SHEAR(5) 22500028 2 0.28 8810 12.62 6.02 142.82 148.72
SIMP1(1,2) 90550096 0 84.62 49.12 20.53 59.70
SIMP1(3,4) 92871044 || 556000 0 0 84.12 49.19 20.34 59.46
SIMP1(5) 92931914 || 556000 0 0 84.12 49.20 20.35 59.45
VORTEX(1,2) 22512 0 50.34 94.53 1 0
VORTEX(3) 6855537 || 2986511 0.99 0 172.00 175.88 0.86 0.35
VORTEX(4) 9003070 || 2981022 0.99 0| 172.73 176.04 0.82 0.38
VORTEX(5) 9007074 || 2981022 0.99 0] 172.71 176.03 0.82 0.38

1
2

applied transformation sets are listed in parentheses
masked vectors don’t contribute to the listed numbers
3 standard deviation
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B - Vector Length Distributions

LES(1)
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B - Vector Length Distributions (cont.)

NASKER (1,2)
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B - Vector Length Distributions (cont.)

SHAL64 (1,2,3,4,5) ONEDIM(5)
53.1%
under 0.1%:
under 0.1%: o 154
65 100%
6-1% 6.3%
4.6% '
0.8%
] ] 0.23% 0.12%
64 1 2 3 4 5 149 150
SHEAR (1,2) SHEAR (3,4)
69.5%
under 0.1%: under 0.1%:
greater than 1, greater
1000 than 1000 53.5%
22.9%
Lo 136% 14.4%
i 9.2% H
8 16 17 3 8 16 17
SHEAR (5)
under 0.1%:
1, greater
than 1000 524 %
24.4 %
14.1 %
9.1% l_l
3 8 16 17
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B - Vector Length Distributions (cont.)

SIMP1 (1,2)
under 0.1%: 39.8%
3, 4, 26, 40,
51, 181, 203
13.9%
12.5%
8.3%
1% 6.7% 5.9%
-0 12 % 2.9% 1% 2.2%
. . or.
03% = [] .02% — Q4% | 3%
10 11 12 25 50 60 61 62 100 101 102 180 200 201 202
SIMP1 (3,4)
under 0.1%: 39.4 %
3, 4, 26, 40,
51, 181, 203
14.0 %
12.4 %
. 8.3%
0 6.6 % 5.9%
- L2 % 2.9% L1% 2.2%
. 0 . 0’
(.)'i?? 1 [ 1.02% — 2-4% 1 027
10 11 12 25 50 60 61 62 100 101 102 180 200 201 202
SIMP1 (5)
under 0.1%: 39.4 %
2,3,4,9,21, 26,
34, 40, 51, 181, 208
14.0 %
12.4 %
8.3%
e 6.6 % 5.9%
-0 190 2.9% 1.1% 2.2%
P e B [ .02% — %] | 02%
10 11 12 25 50 60 61 62 100 101 102 180 200 201 202
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B - Vector Length Distributions (cont.)

VORTEX (1) VORTEX (3)
44.5%
40.0% 48.4%
0.008-0.014% 0.016-0.19%
2.2% 2.1%
0.0266% ] 0.0266% I [—I 0.02%
1-18 . 19 20 21 22-500 1-18 19 20 21 22-500
VORTEX (4,5)
48.7%
0.008-0.014% 0.016-0.19%
1.6%
0.02%
f n— | [—l I 1 ‘:—*

1-18 19 20 21 22-500
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C - Vector Stride Distributions

LES(1)
82.4%
under 0.1%:
5, 32
9.5%
8.1% °
0 1 over 1000
LINPACKD (1,2,3,4,5)
under 0.1%:
0 100%
1
NASKER (1,2) NASKER (3,4,5)
under 0.1%: 42.1% 44.9% under 0.1%:
2, 100, 501 2, 100, 501,
. masked
25.0% 28.7%
10.4%
7.4% 7.80%
U 60%  63% 599 |42 | 54y 0% 5.5%
[ [ - =57
0 1 4 128 500 750 900 0 1 4 128 500 750 900
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C - Vector Stride Distributions (cont.)

SHAL64 (1,2,3,4,5)

99.5%
0.5%
|
1 65
ONEDIM (1) ONEDIM (2)
99.3% 68.1%
18.2%
13.4 °
0.7%
1
1 150 0 1 150
ONEDIM (3) ONEDIM (4)
76.9%
68.2%
21.1% 15.9%
6.2% 8.4%
0.4% 0.7% 0.5%
. [ 027 03% =
1 9,10 150 masked 0 1 3 9,10 150 masked
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C - Vector Stride Distributions (cont.)

ONEDIM(5)
70.6%
14.7%
7.
5.7% 7%
0.5%
3% /M
0 1 3 9,10 150 masked
SHEAR (1,2) SHEAR (3,4)
48.7
% under 0.1%: _‘55-7% under 0.1%:
2 2, masked
] 43.1
38.2% %
7.2%
5.9%
] il ﬁ% Sl
0 1 153 306 0 1 153 306
SHEAR (5)
45.7 % under 0.1%:
2, masked
44.3 %
li]5 7 45 %
0 1 153 306
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C - Vector Stride Distributions (cont.)

SIMP1 (1,2) SIMP1 (3,4,5)
90.3% 89.8 %
9.7% 9.5 %
0.6 % 0.1 %
| o | —
1 203 1 203 masked indirect
VORTEX (1) VORTEX (3)
100% 48.5%
43.6%
7.9%
1 0 1 masked
VORTEX (4,5)
54.9%
33.1%
12.0%
0 1 masked
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