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Introduction

The standard trace theorem in Sobolev space H*(IR") indicates that the trace
map which denotes the restriction of each distribution to a codimension one
hypersurface extends uniquely to a continuous linear operator from H*(IR")
to H*~'/2(IR™), if s > 1/2, see Taylor [13] or Hérmander [6] for details. It
is also well known that this trace theorem is sharp. However, it seems quite
natural that one may expect an improvement of regularity of the trace if the
distribution is a solution of a linear partial differential equation. Obviously,

the optimal case will be that of no loss (or even a gain) of smoothness. The
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main goal of this work is to determine circumstances under which the trace
of the solution of a linear partial differential equation is as smooth as the
solution itself.

The trace properties of solutions to linear partial differrential equations
have been used widely in various problems such as boundary value problems,
initial-boundary value problems, control problems and in particular, many
inverse problems. In [10], Symes proved a trace theorem for a second order
multidimensional 3 compactly supported away from the boundary, the trace
is of class H},. which is the same regularity class as the solution in the interior.
His examples, in the same article, also showed that additional smoothness
of initial data along certain directions (corresponding to grazing rays) is
necessary for the trace to be so regular. We refer to Symes[11] for some more
comments, which turn out to be the original idea of our work here.

Clearly, if the linear partial differential equation is strictly hyperbolic
with smooth coefficients, standard energy estimates will yield the fact that
the solution along any spacelike trace is as smooth as itself locally, provided
" a sufficiently smooth right-hand side. Unfortunately, for more general equa-
tions or even a strictly hyperbolic differential equation but this time along

a nonspacelike trace, the same idea will not work, essentially because one
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does not know how to apply energy estimates to a nonhyperbolic p:oblem
directly.

In this paper, we shall investigate the trace regularities of solutions to
linear P.D.E. Our result shows that the difficulties discussed above may be
cured by imposing some additional microlocal smoothness. In order to see
why this is so, let us begin with the following definition.

Definition. A distribution u is said to-be in H* N HY (xo,&o) if there exist

¢ € C3°(R") with ¢(zo) # 0 and a conic neighborhood T C R™\{0} of &

such that
(€)°(du)"(¢) € L*(R™)

and

() xr(§)(¢u)"(€) € LA(R") .

The reader is referred to Beals [2], Rauch [9] and references cited there for
an overlook of microlocal analysis and its applications to nonlinear problems.
Roughly speaking, our trace theorem says that the solution will belong
to H* along a codimension one hypersurface if it belongs to H* and to H*+!

in those directions where the P.D.E is not microlocally strictly hyperbolic.



The proof of the theorem is based on a pseudodifferential cutoff tech-
nique. Similar techniques have been used by many people, see for example,
Homander [7], also Nirenberg [8]. The main idea is to alter the P.D.O. mi-
crolocally to make a nice strictly hyperbolic linear pseudo-differential equa-
tion for which the» trace hypersurface is spacelike, then estimate the remainder
via a lemma stated in a fairly general form.

We believe that the trace theorem, the lemma and the techniques used in

this work will be helpful in various of other contexts. Some of the applications
have already been seen in our recent work of understanding multidimensional
hyperbolic inverse problems with smooth or nonsmooth coefficients, which
will be reported elsewhere.
Notation. Throughout htis paper, the reader is assumed to be familiar
with the basic calculus of Pseudodifferential Operators (¥.D.0.) as stated in
Taylor [13] or Nirenberg [8]. For simplicity, C serves as a generalized positive
constant the precise value of which is not needed. Usually, the constant from
Fourier transform is assumed to be absorbed by the integal. W F(u) is the
wavefront set of u, ES(P) stands for the essential support of operator P,
both F and A mean Fourier transform and (£) is (14 | £ |?)1/2.

We close this introduction by the plan of this paper. Several useful fea-
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tures concerning the smooth family of ¥.D.O are introduced in Section 1.
the trace ‘heorem is atated and proved in Section 2. In Section 3, we make
a few comments on the trace theorem and give a half-space trace regularity

result as a corollary of the trace theorem.

1 Preliminary Results

It is interesting to see that from the definition a smooth family of ¥.D.O.
P(z,y,D:) € OPS]o(IR* x R™) with m < n is not a U.D.0. in R®. This
phenomenon was observed by Taylor in the Appendix of [12]. Fortunately, as
he also pointed out, the operator acts like a ¥.D.0. on the types of functions
and distributions we are insterested in. This section is devoted to the under-
standing of these W.D.O.-like operators. We begin with our Proposition 1

which guarantees that similar Sobolev space continuous properties still hold.

Proposition 1 If p(z,£) € S]o(R™ x R™), 1 < m < n, satisfies one of the

following assumptions:
1. p(z,€) = p(§), i.e., it is independent of z;

2. p(z,€) has compact support in z,



then

p(z,D;) : H*(R") —» H*™"(R")
continuously.

Proof. For simplicity, we only prove the second statement here. The first one
follows directly from the fact F[P(D)u(z)] = P(£)i(€). It suffices to prove
for 7=0 case. Also, it suffices to derive the appropriate norm estimates. Let
u € S, the Schwarz space, write p(z, ¢) = [ F.p(n, £)e*"dn, with Fzp(n,€) =

S p(z1,€)e~*"17dz,. Assumption 2 on p(z, ) implies that
2\—=N/2
| Fep(n,€) IS Cn(1+ |0 )™, YN >0,

knowing that
n"Fep(n,€) = [ D2, plar, €)e™da,

By the definition of ¥.D.O.,

Pz, D)u(z,y) = [ p(z, ) Fou(é, y)etde .

Taking the Fourier transform on both sides, we have

F(P(z, D)u)(n,¢) = / / / P(z, &) Foul€, y)e ™= de dedy

[ FP(n - &,6)a(e, Q)de
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hence

-N/2

| F(P(e, Dyu)(n,¢) 1< O [(1+1n—€ )" Ja(e,0) | de .

Therefore,

s/2

| P, Dyu e = (141 +1¢ )" | F(P@, D)1, 0) Niagney

-N/2 2

46,0 g I,

s/2

<ol fa+inP+1¢M A+ In-¢P

then, the Hérmanur inequality yields

I P(z, DYu |I3.

< Ol f@+ln=eP™ P+ 1eP+1¢ " a0 e ||

L2(n,)
c / 1dc,

with Ny = N — s, and

-Ni/2 s/2

T= [0t in=e M 16 P+ 1P a0 eI,

Using Young’s inequality and the fact

-Ny /2

A+ln—-€ € L'(n)n L),

for large N;, we have

s/2

T<ONA+1EP+1¢P™ 460 g -
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Finally, we obtain that

s/2

| P Dy, < € [IA+1€6F+1¢B 1060 | lgaede

s/2

< CHA+TEF+1¢B860) e

< Cllullf.
a
Note that, the only thing prevents P(z,y,D.) from being a ¥.D.O. of
order r is that its symbol p(z,y, ) does not decrease in any directions other
than ¢-direction. This implies that via a pseudodifferential cutoff along those

nondecay directions P may be regularized to be a ¥.D.O., which leads to

our next proposition.

Proposition 2 Assume that P € OPS],(R" x R™), H € OPS](R" x

R*),1<m < n,r,s € R and ¢(z,y) € C(IR™). Furthermore, assume
ESH)CT,
where I' is a (closed) conic neighborhood of

{(x,y,{, 77) € (IR"1 X IRn)s (£m+l,-",£n) = 0} .

Then
P¢H € OPSI’;’(IR" x IR™) .
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Proof. W.L.O.G. it is sufficient to show that
Q = P(z,y, Dz)‘b(x’y)H(DzaDy)
isa ¥.D.0 (in OPSY,(IR* x R™) ). Observe that

Poitu(z,y) = [ P(z,y,6)e™ F($Hu)(&,y)de

and
F@HW(EY) = [ 8(e',»)H(Ds, D,)u(',y)e e,
H(D:, Dyu('y) = [ [H(E,n)a(e,n)e= e+ dg'an,
then
Qu(z,v)

[ [ ] [Pau.e= 6 v = uie, n)ale, n)e=e ' de'antda'de
= [ JUf [ P(z,9,006(", y)ei=t- )= e

H(f,, 7],)'&(5’, nl)eiz'£’+iyn'dé~ldnl

[ [ P@.v.0)3( - &, 0)e=c-Ode B (€ n)i(€' n )=+ gy
hence, the symbol of Q
Q = [ Pla,y,Od¢ - ¢,9)e=COdH(E )

- /P(w,y,é+€')$(€,y)e‘”‘d€H(E',n')-
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To show that @ € OPSY,(IR" x IR"), it suffices to prove

| %6 Qo(z,y,¢',0') IS Cax(1+ 1€ | + 0" )77,

for any (¢',n’') € R", (z,y) € K (a compact set in IR").

But, from definition,

| 6?;1P($,y,§ +§,) | < Ca,K(1+ | € +¢& I)_al

< CA+[EN)™A+1£D™, Ve >0,

it follows that

I 3?/Q0($, Y £Ia ’7') I

< Cl X (07 [ Ple,y,6 +€)e"t(¢,y)dg] 03 H(¢', ) |

0<La; <

< X CQA+|E)™ag™H(E )

OSal 50:

< Carx(1+ 1€+ |7"]),

where the last inequality comes from our construction of H, i.e. H(¢',n')

nonzero only in the region (1+ | ¢ |+ | 7' |) S C(1+ | & )). m
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2 Trace Theorem

We can now state and prove the main result in this paper, a trace theorem.
(From now on, t will serve as a distinguished variable.

Theorem. Assume that

m-1
P(z,t,6,7) =17+ 3 aj(, t)ri¢m
Jj=0
is the principal symbol of a linear partial differential operator P(z,t,D,, D)
with uniformly bounded smooth coefficients {a;(z,t)}.
Let @ cC R* = {t = 0}, and T =closed conic set C T*(IR") |g such that
(z,€) € T = P(z,0,£,7) has m distinct real roots as a polynomial of 7.

Let T’ be a closed conic neighborhood of

FCO = {(Ql,t,f,T) € T*(IR'n+l)’T2/(1 + Zn: | fj ,2) <Co < +OO} ,

j=1
i.e., I' is closed and does not intersect with the normal bundle of {t = 0}.

Also, assume that u satisfies the equation Pu = 0 and

u€ H' (H (T,
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where T’ = II*(T1) C T*(R™"), and Y, is a conic neighborhood of YC.

Then, for ¢(z,t) € CL(M) with Q, cC R™, O, n {t =0} c Q,
du |t=o€ H.

Remark. If P is elliptic, the stronger conclusion holds by the classical
trace theorem. On the other hand, if P is strictly hyperbolic with respect to
the trace {t = 0}, the conclusion also holds from standard hyperbolic energy
estimates.

Proof of Theorem. For the situations where the operator P is neither
elliptic nor strictly hyperbolic, i.e. both T and Y€ are not empty, the idea of
proof is to construct a strictly hyperbolic Cauchy problem by a ¥.D.O cutoff.
Since the problem is local, one may assume that T = Q x% and T; = Q x4,
where U is a conic subset of IR™ and U, is a conic neighborhood of &€, which

guarantee that we can find a convolutional ¥.D.0 Q € OPS?,(R" x R")

(i.e. Q(z,€) = Q(&)) such that

e ES(Q) C the conic neighborhood U; of U°;

° Q0=1inuC,Qo=0inU10a.nd0§Qo$1,
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where Qo is the principal symbol of Q. Then, consider

P=(I-QP+QR ™ (I-QP+QI[(r—altl),

=1

with {o;} are real and distinct constants. It follows that P is strictly hy-

perbolic ¥.D.O. of order m and diferential in t. Now we have the following

strictly hyperbolic Cauchy problem of ¢u (recall ¢ has compact support)

~

Pgu = (I-Q)Pdu+QPou

= (I-Q)[P,¢Ju+ QPodu.

Hence, standard hyperbolic energy estimates (see Courant and Hilbert [5] or

Taylor[13]) yield

|| du 't=0”a <
<
<

<

C ” (I - Q)[P7 ¢]u + QP0¢u ”s-(m-—l)
C{Il gou [l + Il QPodt |[s=(m-1)}
C{ll dou |ls + Il [Q, Polét [ls—(m-1) + | PoQU [ls=(m-1)}

C{ll dov lls + Il [Q, Polpu lla—(m-1) + || @bt [|ss1} ,

where ¢o € C5°(1) and supp(¢o) C supp(¢). Since [Q, Po] € OPSTs?, in

order to complete our proof it suffices to show that

Qdu € HJ'(R™),
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which requires the following lemma.

Lemma. Let B € OPS],(IR™ x R™) and A € OPS; o(IR™ x R™), where
1 <mg < ng. Let T' be a conic neighborhood of

To={(z:6) € R™ x BR™,[( 3 [&A)/(1+3°1& )] < C < +o0}.

i=mo+1 J=1

Furthermore, assume that

1. A is microlocal elliptic in a conic neighborhood K of IR*™\T;
2. u€ H'n HYY(T'N ES(BY), ES(BY =I-Y(ES(B)), l € R;
3. Adu € H[;P(R™), ¢(z) € CP(IR™).

Then

Bgu € Hi7t (R™).

To be able to apply the above lemma to our proof of the trace theorem, the
assumptions stated in the lemma must be verified. Notice that assumption
2 is just our assumption in the theorem. Assumption 3 is easy to be verified.

Since the coefficients {a;(z,t)} are uniformly bounded,
m-l . .
P(z,t,¢,7)=7"+ Z aj(z,t)r?¢m™™?

i=0
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will be microlocal elliptic in a conic neighborhood K of R*™\T¢, if Co
is properly chosen (sufficiently large), this verifies the assumption 1 of the

lemma. Hence, as a consequence of the lemma, we obtain immediately that
Qéu € HiY

which completes the proof of our trace theorem. 0O
Remark on the Lemma. The operator A plays a very important role here.
Fortunately, for many problems the operator in the linear partial differential
equation can be often chosen as A, which is implied by assumption 3.

Proof of Lemma. W.L.O.G., the proof may be reduced to the case r = 0.

We construct a ¥.D.0 H € OPS?((IR™ x IR™) which satisfies
e ES(H) CT;
e H=1inToyCT,

where IR*™\T; is another conic neighborhood of IR*™\I' and contained in
K. Write ¢ = ¢¢, with ¢, € C(IR™), then

Béu = B¢y Hpu + By (I — H) pu.

Since
A(I - H)pu = [A,] — H|¢u + (I — H)Adu
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and [A, ] — H] has order s — 1, we have
A(I — H)¢u € H;.”* |

follows by assumptions 1&2 and Proposition 1.

Applying Prop.1.10 of Chapter5 in Taylor[13], assumption 1 and the fact
ES(I-H)CR*™\IhLcKk,
i.e., microlocal elliptic directions of A, we get

(I - H)¢u e HS' .

loc

Thus

Bé:(I — H)pu € HTHL,

loc

On the other hand, from the construction of H, our Proposition 2 implies
that

Bé:H € OPS? (R™).

Moreover,
ES(B¢,H) C ES(B)'ﬂ ES(H) CT()ES(BY).
Assumption 2 allows us to write

U= uy + up
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such :aat

u; € H*' and (ES(B)Y (\T)(\WF(u;) =0.

Thus, a simple property of wavefront set gives
B$Hou, € C%,

which yields

Bé1Hou, € HiF!.

Eventually, combining the above arguments, we have

Béu = Bp1Hou + Béy(I — H)du € H}!

loc

which finishes the proof. a

3 Concluding Remarks

In this section several remarks on the trace theorem will be made. In partic-
ular, a useful corollary will be introduced.

(a). The equation is not necessarily homogeneous. Also, there are no more
difficulties if the operator has smooth lower order terms. It is clear that the

conclusion of the theorem can not be improved significantly if the operator
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is not elliptic.

(b). In many situations, the microlocal smoothness assumption of the solu-
tion can be imposed by appropriate side conditions, such as Cauchy data for
hyperbolic problems.

(c). Although in this paper only the P.D.E. with smooth coefficients are
considered, we claim that it is entirely possible to prove trace theorems for
general nonsmooth coefficients cases by analyzing various results on linear
propagation of singularities, for example those in Beals and Reed [3] and [4],
on this matter partial results have be obtained in Bao [1].

(d). Note that, it is crucial to investigate the trace regularities of solutions
to linear Partial differential equations defined only on one side of the trace
(corresponding to boundary value problems). The difficulties will present
immediately due to the fact that the ¥.D.0. cutoff technique engaged in
the proof of the previous lemma will break down around the trace in general.
Nevertheless, one is able to get some partial results along the same line of
the proof of the trace theorem as follows.

Corollary. Assume that P(z,t,D,,D;) is a linear partial differential op-

erator of order m with smooth coefficients. Also, assume there is a smooth
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family of ¥.D.O. and a small constant € > 0,
Q(t) = Q(z,t,D;) € Cm{[oa 6],0PS?'0(Q)} ’

with § is an open subset of IR", such that

(1). if (z,&) € [ES(Q)], forall 0 < t < €, P(x,t,£,7) has m distinct
real roots as a polynomial of T;

(2). (Qu) li=to€ HE'(Q), 0Lt <,
where u € Hf, (2 x [0,¢]) satisfies the equation Pu =0 in Q x [0, ¢].

Then, for ¢(z,t) € CP(Q x [—¢, €]),

(#u) |t=0€ H*(Q).

Proof of the Corollary. We basically follow the proof of the trace theorem,
indicating the necessary modifications. Let us first extend u (in whatever

way) to a small neighborhood of the trace such that
u € H (2 x [—¢,€]).

W.L.O.G. we may assume that u(z,t) has compact support in . Morever,

the pseudolocal property allows one to assume further that Q is compactly
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supported in z. Therefore, for all r € IR
Q: H () —» H™(Q), uniformly in ¢ € [0, €].
Observe that

p=(I_Q)p+QP0"é‘(I-Q)P+Qﬁ(T—a.-I€I)

1=1
with {a;} are real and distinct constants. It follows that P is strictly hyper-
bolic ¥.D.0. of order m and is differential in £. Now we have the following

strictly hyperbolic Cauchy problem of ¢u (recall ¢ has compact support),

~

Péu = (I—-Q)Pou+ QPyou

= (I - Q)[P,d)u+ QPyou.

Hence, standard hyperbolic energy estimates yield
|| u |t=0||§1'(n)5 /0 {Il ( - Q)[P, $]u ||§1'-<m-1)(n) + || QPodu ”ip-(m—t)(ﬂﬂdt

< C/O {ll dou lzrs() + I [Q; Podlu I3s=cm-1)(q) + | PodQu ||3s=(m-1yq) }dt
< C |l dot Wrwanteay +C [ 1l é1u oy dt + C [ 1| PogQu IBunsey

where ¢o and ¢, are smooth functions with compact support contained in

supp(¢). Notice that, to obtain the above estimates, the continuous property
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of @ and the fact that the extended u is in Ht'(Q x [—¢, €]) have been used.

Therefore, in order to accomplish our proof, it suffices to show that

€
/0 I $Qu ||31e41(q) dt < +o00,

which is exactly our assumption (2). m
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