Multicomputer Matrix Computations:
Theory and Practice

Eric F. Van de Velde

CRPC-TR89023
March, 1989

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Multicomputer Matrix Computations: Theory and Practice *

Eric F. Van de Velde
Applied Mathematics
217-50 Caltech
Pasadena, CA 91125

‘March 3, 1989

Abstract

We explore a strategy for concurrent program develop-
ment. It is significant that just two basic techniques, data
distribution and recursive doubling, are sufficient for the
development of many linear algebra computations.

When constructing a concurrent library, it is counter-
productive to develop “optimal algorithms” for each com-
ponent. The problem is that optimality is not stable under
program composition. A user program based on individ-
ually optimized components may be very inefficient due
to interfaces between components. Invariably, these inter-
faces must perform some type of data redistribution. We
implement our algorithms such that their correctness is, to
a large extent, independent of data distribution. This al-
lows the user to chose the most convenient and/or the most
efficient distribution for a particular application and/or
hardware. Another benefit is that the need for interfaces
is minimized.

We applied the above ideas in the development of a mul-
ticomputer library for linear algebra computations. The
library includes most basic operations and a representa-
tive selection of advanced algorithms for full and sparse
matrices. We present some timing results for the Ametek
multicomputer.

1 Introduction

In this paper, we summarize the results presented more ex-
tensively in [13] and [14]. Our goal is to develop an efficient
linear algebra library for multicomputers. Specific design
criteria are that the library components must be easy to
integrate into a larger user program. For this reason, it is
crucial to keep the correctness of our algorithms indepen-
dent of specific data distributions. We also do not accept
any artificial restrictions. An typical example of such re-
strictions is that the dimension of a matrix be a multiple of
the number of processors. An advanced application of this
software is described in [9]. In Section 2, we transform an
easy, sequential sample program into multicomputer form.
This same technique can be applied to more complicated
algorithms like LU- and QR-decomposition. In Sections 3
and 4, we describe the results of such transformations for

*This research is supported in part by Department of Energy
Grants Nos. DE-FG03-85ER25009 and DE-AS03-76ER72012 and by
the NSF Center for Research on Parallel Computing at Caltech.

these more complicated algorithms. We shall also give
some performance results on the Ametek 2010 multicom-
puter.

We shall restrict our attention to multicomputer pro-
grams. Because the latest multicomputer operating sys-
tems, like the Cosmic Environment/Reactive Kernel of
Seitz et al. [11], allow running several processes per node,
we shall refer to a computation with P processes rather
than to a computation with P nodes. Whether the pro-
cesses are run on P different nodes is not important as far
as the correctness of the multicomputer program is con-
cerned. It plays an important role, however, in the effi-
ciency of the program execution. For timing results, we
restrict ourselves to the case where each process is run on
a dedicated processor.

2 The Inner Product

The inner product operation provides an easy example pro-
gram, in which the relevant ideas can be expressed without
technical complications. More complicated algorithms are
transformed into multicomputer form with the same tech-
nique.

The inner product operation is easily specified by:

og:=(+m:0<m<M :: z[m]ylm])

In this section, we use the UNITY notation of Chandy
and Misra [3], which provides an unambiguous framework
to express algorithms. The above gquantification specifies
that the variable o is the sum of all products z[m]y[m] for
0<m< M.

This specification is transformed trivially into a concur-
rent program by duplicating all variables and all work in
every process:

:0<p<P =

(e
op) =(+m : 0<m< M :

z[p][m]y[p)(m])

Ignoring technical complications that need not concern us
here, the ||-separator signifies the concurrency of the oper-
ations inside the quantification. The inner quantification
can be considered a program for process p.

Obviously, the duplication of effort must be removed.
We assign the responsibility of summing a subset of the
quantities to each process. For this reason, the index set

M = {m :0 < m < M} is partitioned into P noninter-
secting subsets M, where 0 < p < P. Process p sums all
products z[m]y[m], where m € M,. In all o[p], we must
obtain the sum of all such partial sums. It is well known
that this is best achieved by recursive doubling, see e.g. [6]
and [12]. This leads to the program:

(lp:0<p<P =
op] =(+m : meM, =
(;d:0<d<log, P ::

send o[p] to pV29 ;
receive t[p] from pV29 ;

olp] = olp] +t[p]

z[pl(mlylpllm]) ;

)
)

The expression pV2¢ is the integer obtained by performing
an exclusive or operation on the binary expansions of p
and 2. As a result, pv2? flips bit number d of p.

The components of the arrays z[p] and y[p] with indices
not in M,, are never accessed in process p. For this reason,
the vectors are compacted. Instead of the global index m,
we use a local index i. The correspondence between m and
i is made with a distribution function g that maps a global
index m into a process number p and a local index i, i.e.:

#(m) = (p,i).

The local indices in process p are elements of a local index
set, say Z,. The multicomputer form of the inner product
program is then obtained by changing the first assignment
into:

o] = (+i:ieT, = syl) ;

The resulting program for process p is given in a more
conventional notation by:

o = 0.0;
for i € I, do o := o + z[i]y[i] ;
ford=0,1,...,log, P — 1 do begin
send o to pV29 ;
receive t from pV29 ;
o = o+t
end

3 LU-Decomposition

Our concurrent LU-decomposition program is a compo-
nent of a library. As such, it should be easy to integrate
into a user program. Several criteria have to be met. First,
it should be correct for as large a class of matrix distribu-
tions as possible. This is important because the particular
matrix distribution may have a major impact on the con-
venience and/or efficiency of initializing the matrix. The
latter component must be written by the user and may be a
complex computation in its own right. Second, for as wide
a range of distributions as possible, the LU-decomposition
should be efficient. Ideally, the efficiency of the compu-
tation is independent of the data distribution. While the

latter goal is unrealistic, we wish to come as near to it as
possible.

A major component of LU-decomposition is the pivoting
strategy. For full matrix computations, pivoting is used for
numerical stability. The strategy of choice has long been
row pivoting. For sparse matrices, pivoting is also used
to reduce the creation of fill. In [13], we show that piv-
oting can also be used to randomize the computation and
increase the concurrent efficiency. Because pivoting plays
such an important role, we allow maximum flexibility in
the choice of pivots. Qur algorithm combines the strate-
gies of Chamberlain [2], Chu and George [5], Geist and
Heath [7], and Moler [10], who have examined varying com-
binations of row- and column-oriented distributions with
row and column pivoting. It also includes rectangular de-
compositions, such as those used by Fox et al. [6], Hipes
and Kupperman [8]. The latter are based on the observa-
tion that rectangular distributions minimize the ->mmu-
nication cost.

Our LU-decomposition algorithm is based on implicit
row and column pivoting. If in the course of the LU-
decomposition no zero pivot is encountered, an implicit
pivoting strategy factors an M x M matrix A in the form:

A=LCTRU,

where R is a row permutation, C' a column permutation,
RLCT is unit lower triangular and RUCT is upper trian-
gular. This is a variant of explicit pivoting strategies that
factor a matrix in the form:

RACT = LU.

In the k-th elimination step of the implicit pivoting LU-
decomposition algorithm, a pivot is chosen among the fea-
sible entries of the matrix. Its row and column are made
infeasible. The multipliers are calculated in the feasible
rows of the multiplier column. The appropriate product
of a multiplier and a pivot row entry is subtracted from

the remaining feasible entries. The LU-decomposition pro-
gram is given by:

M={m:0<m< M};

N:={n:0<n<N};

for k=0,1,...,min(M, N) — 1 do begin
{Pivot Strategy and Bookkeeping.}
do pivot search and find a,., r[k], c[k] ;
M= M\ {r[k]} ;
N =N\ {c[k]} ;

if a,. = 0.0 then terminate ;

{Calculation of the Multiplier Column.}
for all m € M do
a[m, c[k]] := a[m, c[k]]/ar. ;

{Elimination.}
for all (m,n) e M x N do
a[m,n] := a[m, n] — a[m, c[k]]a[r[k], n]
end
In this program, the index sets M and A keep track of the
feasible rows and columns. The variable a,. has the cur-

rent pivot value and r[k] and c[k] are the row and column
index of the k-th pivot.

By applying the technique discussed in Section 2, the
above program is transformed into a multicomputer pro-
gram. The processes in the resulting program are con-
figured as a P x Q grid. The rows and columns of the
matrix are distributed over the process rows and columns
according to distribution functions u and v. The concur-
rent LU-decomposition program for process (p,q) has the
form:

I:={i:0<i<I};

J={j:0<j<J};

for k = 0,1,...,min(M,N) -1 do begin
{Pivot Strategy and Bookkeeping. }
do pivot search and find a,., r(k], c[k] ;
pi= “(r[k]))
g, == v(c[k]) ;
ifp=pthenI: =T\ {i};
ifq:cjthenJ::J\{j};
if a,. = 0.0 then terminate ;

{Broadcast the Pivot Row.}
if p = p then begin
for all j € J do a,[j] := afi, j] ;
send a,[j : j € J] to (e,q)
end else receive q,[j : j € J] from ,9) ;

{Broadcast the Multiplier Column.}
if ¢ = § then begin
for alli € do
a.[i] := al, 3] := afi, j)/ay. ;
send a.[i : i € Z] to (p,e)
end else receive a.[i : i € Z] from (»,4);

{Elimination.}
for all (i,j) €I x J do
afs, 1= afi, 7] — aclilas]
end

The major changes of the concurrent program with re-
spect to the sequential one are: the conversion from global
to local indexation, the broadcast of the pivot row and
the broadcast of the multiplier column. The broadcasts
are nothing more than recursive doubling procedures, al-
though this is hidden by the notation.

The above program must be completed with a pivot-
ing strategy. Because this LU-decomposition does not put
any a priori restrictions on the pivot choice, most classical
pivoting strategies are easily incorporated. We have used
complete, row, column, and diagonal pivoting. In addi-
tion, we have used two intrinsically concurrent strategies,
which we call multirow and multicolumn pivoting.

Multirow pivoting is based on the observation that with
partial row pivoting only one process column is active dur-
ing the pivot search. Without any overhead, every process
column can search through one additional arbitrary ma-
trix column. This increases the extent of the pivot search
and usually yields increased numerical stability. In [13],
we show that multirow pivoting also leads to increased
performance. The extra degree of freedom in the compu-
tation, i.., the column index of the pivot, results in an
increased randomization of the distribution of the feasible

2| Multirow Pivoting

108 F T T T T

TIME (MS)
3
7}

DIMENSION

Figure 1: LU-Decomposition With Multirow Pivoting.

Minimum | Maximum
12.2

Speed Up 7.9
Efficiency 49.1%

76.3%

] Process Grid 1x16 4x4
Row Distribution scatter
Column Distribution linear scatter

Table 1: Least and the Most Effective 16 Node LU-
Decomposition with Multirow Pivoting.

entries over the processes. This in turn results in a higher
load balance of the computation.

We refer to [13] for a complete experimental study of
the performance of this program and of its sparse matrix
versions. Here, we display the performance on the Ametek
2010 for multirow pivoting. The execution times for the
LU-decomposition of a 300 x 300 matrix as a function of
the number of independent processes is displayed in Fig-
ure 1. Because we use a log-log plot, the ideal speed up
curve is a straight line. For each machine size, several ma-
trix distributions are timed. In Table 1, we summarize the
best and worst 16-node performance. Even for this small
problem, a speed up of 12.2 is obtained on a 16 node sys-
tem. For many distributions multirow pivoting is not only
numerically more stable, it is also faster than no pivoting,

i.e., the search cost is more than offset by the increased
load balance.

4 QR-Decomposition

QR-decomposition should satisfy the same criteria as LU-
decomposition: it should be correct for a range of data
distributions and it should be efficient for as large a set of

distributions as possible. From a numerical perspective,
pivoting is not as crucial for QR-decomposition as for LU-
decomposition. Only column pivoting is used and then
only in the case of underdetermined systems, see [1]. Con-
sidering the positive effect of pivoting on the performance
of LU-decomposition, it is reasonable to pursue more gen-
eral pivoting strategies. Here, we shall restrict ourselves
to the algorithm without any pivoting. The major point
that we wish to make is that data distribution and recur-
sive doubling are the only concepts needed to implement
this algorithm. A multicomputer QR-decomposition was
developed by Chu [4]. We shall show that the complicated
logic and extensive bookkeeping of this program can be
avoided. The concept of recursive doubling is sufficient.
Our program is valid for matrix distributions as discussed
in Sections 2 and 3.

The QR-decomposition may be based on either House-
holder reflections or Givens rotations. It is well known that
for full matrices, the former are more efficient. The Givens
algorithm, however, can be generalized to sparse matrices.
We consider only the latter and restrict our discussion to
full matrices. For a more general discussion, see [14].

We assume the theory of Givens rotations known. Let
Givens(i, j, £) be the Givens rotation that, when applied to

Z, replaces component i of £ by ,/¢? + §? and annihilates

component j. In the k-th step of the QR-decomposition
of an M x N matrix A, components k + 1 through M —1
of the k-th column vector are annihilated. To do this,
the matrix A is pre-multiplied with Givens rotations of
the form: Givens(i, j, @), where j > i > k. Such Givens
rotations replace rows i and j by linear combinations of
rows i and j. Because j > i > k, these linear combinations
do not affect previously annihilated entries.

The multicomputer implementation of the QR-
decomposition algorithm exploits a number of key prop-
erties. The applicability of the recursive doubling tech-
nique follows from the associativity of the Givens opera-
tor. In contrast to the addition operator, it is not com-
mutative. We shall also use that two Givens rotations
Givens(%, j, @) and Givens(#', j/, @) may be computed and
applied concurrently provided i # ¢’ and j # j’. The QR-
decomposition is essentially unique (only sign changes oc-
cur). The order in which entries of the k-th column are
annihilated is not important, although different orderings
use different elementary rotations.

Consider an M x N matrix A distributed over a P x Q
process grid with row and column distributions y and v.
As in the LU-decomposition algorithm without pivoting,
row k and column k are made infeasible in step k of the
QR-decomposition algorithm. The k-th step annihilates
the entries in the feasible rows of column k. The distribu-
tion functions 4 and v determine the pivot process (5, §)
and the local indices (i, j) of the current pivot entry (k, k).
In each process (p,q) the local feasible row and column
sets 7, and J, are also known.

All Givens rotations are determined by the values of the
entries of the k-th column, the pivot column. Hence it
is necessary to broadcast the pivot column from process
column § to all other process columns. This is the only

>
>< * 0

O # O # O % O© %

i

Figure 2: Recursive Doubling Procedure to Annihilate the
Pivot Column.

complication of a general rectangular distribution. For the
remainder of the discussion, we shall limit our comments
to row distributed matrices, i.e., we shall refer to process
p instead of to process row p. The final algorithm is for-
mulated for general rectangular distributions, however.

The k-th step is started by choosing a local pivot row,
say local row £, in every process p. In process p, the local
pivot row is identical to the global pivot row, i.e., £ = i. In
a computation that is entirely local to each process, the re-
maining local entries in the pivot column, i.e., those entries
with a local row index i € Z, \ {£} are annihilated. This
can always be done with Givens rotations between rows #
and i. If blocks of consecutive rows are allocated to the
same process (linear distribution), more efficient House-
holder transformations can be used. We do not consider
this possibility further.

Cooperation between processes is needed to annihilate
the leading entries of local pivot rows. We shall show that
this may be achieved by a recursive doubling procedure.
For now let us assume that every process p has a local
pivot row (this is not the case if the set 7, is empty) and
that p = 0. We shall deal with complications that arise
when these assumptions are not satisfied in subsequent
paragraphs. In Figure 2, we display graphically a recur-
sive doubling procedure to annihilate all leading entries
but one among the local pivot rows. In the figure, an *
stands for a noneliminated row and a 0 for a row with zero
entries in columns 0 through k. In this procedure, half
of the processes become inactive at every step or, alterna-
tively, the Givens rotations they compute and apply are
identity operators. ! The multicomputer program that
implements the recursive doubling procedure displayed in
Figure 2 is readily obtained. With a[f] the local pivot row
of the matrix A in process p and t a temporary array, the
program for process p is given by:

for d=0,1,...,log, P — 1 do begin
send {a[¢,n] : 0 < n < N} to pV2? ;
receive {t[n]: 0 < n < N} from pv2? ;
if pA29 = 0 then
modify row a[f] ;
else
eliminate row q[] ;
end

In this program, eliminate row a[(] means that the leading
entry of row a[f] is annihilated and modify row a[f] means

!When Q =1 this can be avoided by starting the annihilation of
the next column.

.

that the leading entry of row ¢ is annihilated by the Givens
rotation. (Of course, only computations that modify row
a[€] are carried out in this process.)

A problem with the proposed procedure is that the non-
eliminated row always ends up in process 0. To make this
algorithm practical, we must have the capability to get
the final noneliminated row to process . A key difference
between this recursive doubling procedure and the one in
Section 2 is that the elementary operator, the Givens rota-
tion, is not commutative. This is exhibited in the program
by the test:

if pA2¢ = 0 then

For the final noneliminated row to end up in process p,
this test must be modified such that process p behaves like
process 0. This is achieved by replacing p in this test by
a permutation PERM(p), such that PERM(p) = 0. Any
permutation of the process numbers 0,1,..., P —1 will do.
A handy choice is: pVp (the exclusive or of the binary
representation of the two integers p and p). Thus, we only
need to replace the test by:

if (pVp)A2¢ = 0 then

If the local feasible row set I, for some process p was
empty, this process cannot participate in the recursive dou-
bling procedure. This is easily remedied by introducing a
dummy row of zeroes for this process. While solving one
problem, it creates another. It is easily seen that the only
possible Givens rotations between a zero and a nonzero row
are the identity and the permutation operator. The latter
may have the effect that real data ends up in a dummy
row. Such an occurrence is easily detected, however. This
happens if and only if the following three conditions hold:

1. there is a rotation between a dummy and a real row
2. the real row has a leading nonzero entry
3. annihilation of the leading nonzero entry is required.

It suffices to detect such permutations and undo them in
the reverse order in which they occurred. We note that
this undoing is itself a recursive doubling procedure. Our
experience is that the occurrence of such dummy exchanges
is very rare and do not have any impact on the performance
of the program.

Combining the key components discussed so far, the fol-
lowing multicomputer QR-decomposition program is ob-
tained. Process (p,q) is driven by the program:

T:={i:0<i<I};

J:={j:0<j<J}
ford=0,1,...,log, P — 1 do undo[d] := NO ;

for k=0,1,...,min(M, N) — 1 do begin
{ Set up Local and Global Pivot Indices }

P, 1= pu(k);
4,j = v(k);
if p = p then begin

IT:=I\{i};2:=1
end else ¢ := any element from T ;

ifg=¢then J =7\ {j};

{ Broadcast Pivot Column }
if ¢ = § then begin
for all i € I do a.[m] := a[m, k] ;
send a.[i : i € Z] to (p,e)
end else receive a.[i : i € Z] from (p,§) ;
{ Local Elimination }
for i € T\ {£} do begin
compute the Givens rotation ;
modify row a[f] ;
eliminate row afi]
end ;

{ Global Elimination }
{ Initialize Local Pivot Rows }
null0 := (M =0);
if null0 then begin
a0y := 0.0 ; for j € J do a0,[j] := 0.0
end else begin
a0y, := a.[f] ; for j € J do a0,[j] := a[¢, 5]
end ;
{ Recursive Doubling }
ford=0,1,...,log; P — 1 do begin
send null0, a0,.,a0,[j : j € J] to (pV2%,9) ;
receive nulll,al,.,al,[j : j € J] from (pV2¢,q) ;
compute the Givens rotation ;
if (pVp) A 2¢ = 0 then begin
undo(d] := (null0 and al,. # 0.0) ;
modify row a0
end else begin
undo[d] := (nulll and a0, # 0.0) ;
eliminate row a0
end
end ;
{ Undo the Dummy Exchanges }
for d = log, P - 1,log, P -2,...,1,0 do
if undo[d] then begin
undo[d] := NO;
send a0, a0.[j : j € J] to (pV29,q) ;
receive aly.,a0.[j : j € J] from (pv2¢, q)
end ;
{ Return Local Pivot Rows to Matrix }
if not null0 then begin
for j € J do a[¢,j] := a0,[j] ;
if p=p and ¢ = § then a[¢, j] := a0,
end
end

In Figure 3, we display the times obtained for the QR-
decomposition of 300 x 300 matrix on the Ametek 2010
multicomputer. The best sequential time (i-e., dimen-
sion=0) is obtained with Householder QR-decomposition.
The other two sequential times are for the Givens algo-
rithm: one with a straight sequential code and one with
the multicomputer code run sequentially. As in Section 3,
the times are displayed in a log-log plot such that the ideal
speed up curve is a straight line. Table 2 summarizes the
best and worst performance on the 16 node system. Speed
ups and efficiencies are computed with respect to the se-

‘os - T T ¥ T -4
—
[%2]
=
Nt
10° 7
w
= - 4
- 1
104k 2 n 1 1 n
o 1 2 3 4 S
DIMENSION

Figure 3: QR-Decomposition of a 300 x 300 Full Matrix
on the Ametek 2010.

f Givens QR-Decomposition
|] | Minimum | Maximum
Speed Up 5.5 12.9
Efficiency 34.5% 80.8%
Process Grid 4x4 8x2
Row Distribution linear scatter
Column Distribution linear scatter

Table 2: Least and the Most Effective 16 Node QR-
Decomposition.

quential Givens algorithm.

5 Conclusions

Many linear algebra algorithms on multicomputers are
based on two straightforward concepts: data distribution
and recursive doubling. The former determines to a large
extent whether a particular algorithm is easily incorpo-
rated into a user program. For this reason, we have devel-
oped our linear algebra library such that it is as much as
possible independent of particular data distributions. Re-
cursive doubling is a key component algorithm to obtain
efficient implementations.

References

(1] P. A. Businger and G. H. Golub. Linear least
squares solutions by Householder transformations.
Numerische Mathematik, 7:269-276, 1965.

[2] R.M. Chamberlain. An alternative view of LU fac-
torization with partial pivoting on a hypercube mul-

(

tiprocessor. In M.T. Heath, editor, Hypercube Mul-
tiprocessors 1987, SIAM Publications, Philadelphia,
PA, 1987.

[3] K. M. Chandy and J. Misra. Parallel Program Design,
A Foundation. Addison Wesley, 1988.

[4] E. Chu. Orthogonal Decomposition of Dense and
Sparse Matrices on Mulliprocessors. PhD thesis, Uni-
versity of Waterloo, Waterloo, Ontario, 1988.

[5] E. Chu and J.A. George. Gaussian elimination with
partial pivoting and load balancing on a multiproces-
sor. Parallel Computing, 5:65-74, 1987.

[6] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto,
J. K. Salmon, and D. W. Walker. Solving Problems

on Concurrent Processors. Prentice Hall, 1988.

[7] G.A. Geist and M.T. Heath. Matrix factorization on
a hypercube multiprocessor. In M.T. Heath, editor,
Hypercube Multiprocessors 1986, SIAM Publications,
Philadelphia, PA, 1986.

[8] P.G. Hipes and A. Kupperman. Gauss-Jordan inver-
sion with pivoting on the Caltech Mark II hypercube.
In G.C. Fox, editor, Hypercube Concurrent Computers
and Applications, ACM Press, New York, NY, 1988.

[9] J. Lorenz and E. F. Van de Velde. Concurrent compu-
tations of invariant manifolds. March 1989. Proceed-
ings of the Fourth Conference on Hypercubes, Con-
current Computers and Applications.

[10] C.B. Moler. Matrix computation on a hypercube mul-
tiprocessor. In M.T. Heath, editor, Hypercube Mul-
tiprocessors 1986, SIAM Publications, Philadelphia,

PA, 1986.

[11] C. L. Seitz, J. Seizovic, and W.-K. Su. The C Pro-
grammer’s Abbreviated Guide to Multicomputer Pro-
gramming. report CS-TR-88-1, California Institute of

Technology, 1987.

[12] H. S. Stone. High Performance Computer Architec-
ture. Addison-Wesley, 1987.

(13] E. F. Van de Velde. Ezperiments with Multicomputer
LU-Decomposition. report C3P-725, California Insti-
tute of Technology, 1989.

(14] E. F. Van de Velde. Implementation of linear algebra
computations on multicomputers. In Preparation.

