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I
Abstract

The fluid-implicit-particle-method, FLIP, is extended to
magnetohydrqdynamic (MHD) flow in two or three dimensions.
FLIP-MHD incorporates a Lagrangean representation of the field,
and is shown to preserve contact discontinuities, to preserve
the Galilean invariance of the MHD flow equations, and to give a
grid magnetic Reynolds number up to 16. The conservation of
mass, momentum, magnetic flux, and energy are demonstrated by
analysis and numerical examples. Results from numerical
calculations in two dimensions of the convection of a contact
discontinuity, Rayleigh-Taylor unstable flow, and a confined

eddy are presented.



I. Introduction

A particle-in-cell (PIC) method, the
fluid-implicit-particle-method, FLIP [1], is extended to
magnetohydrodynamic (MHD) flow. FLIP-MHD is used to study the
effect of hydrodynamic instabilities on magnetic reconnection in
the earth's magnetosphere, and similar problems that are
dominated by flow at high Reynolds numbers. Such applications
require a method with computational diffusion that does not
increase with flow speed. Spectral methods hawe this property,
[6], but are less able to model discontinuities and shocks in
the flow than are finite-difference methods. For the
magnetosphere problem, adaptive zoning is also useful to resolve
singularities and to model arbitrary geometries. With FLIP,
these capabilities are available for fluid flows, and with
FLIP-MHD, these capabilities are extended to magnetofluid flow.

One can place FLIP between "classical” PIC (2], which uses
particles to follow the mass motion of the fluid but calculates
everything else on a grid, and smoothed-particle-hydrodynamics
(SPH), which uses particles but doesn't use a grid at all ([3].
In FLIP, particles provide a Lagrangean description of the fluid
that resolves contact discontinuities, preserves translational
and rotational invariance, and reduces computational diffusion
of linear and angular momentum [4, 5]. The interactions among
the particles are calculated on a grid for convenience and

economy. The present study extends FLIP to MHD, by including
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information about ihe magnetic field among the attributes of the
particles.

Monaghan [3] gives a comprehensive review of "particle" MHD
methods, which is still current. As he notes, there have been
three approaches to "particle" MHD, which we summarize very
briefly here.

There is "classical" PIC, with which Butler et al [7] modeled
a plasma focus experiment. They applied a specified magnetic
pressure to cells in which there were no particles so that a
magnetic field entered as an applied pressure boundary condition
at the frée surface of the plasma.

There are hybrid PIC, finite-difference methods. For example,
Brunel et al [8] developed a particle MHD method in which
particles represented certain properties of the fluid, while the
magnetic field was treated on a grid exactly as in an ordinary
finite difference method. The algorithm for solving Faraday's
law did not differ significantly from those used in typical
finite difference calculations, except in the use of
predictor-corrector method to obtain approximate time centering.

There is the grid-free-particle model, the SPH-MHD algorithm,
which Monaghan describes [3]. It has been applied with the
greatest success to hydrodynamic flow in astrophysical problems.
The approximations to the equations of motion in SPH preserve
Gallilean and rotational invariance, and do not diffuse angular

momentum. Particle interpenetration has been a problem in low



speed flows, whichAMonaghan has addressed by reformulating the
viscosity [22]. In SPH-MHD, the magnetic field is parceled among
particles. The evolution of the field is computed particle by
particle in the Lagrangean frame of each particle.

The FLIP-MHD method lies between Brunel's and Monaghan's
methods. Each particle is assigned data from which the magnetic
field is computed each computation step. In this respect,
FLIP-MHD is like SPH. However, Faraday's law is solved on a grid
each step, and so, in this respect, FLIP-MHD is like Brunel's
method. Because the equations on the grid are solved in the
Lagrangean frame in FLIP, convection is modeled by the motion of
particles through the grid. Particle motion in flow without
gradients (in the flow velocity) introduces no computational
diffusion, and thus, the method is Galilean invariant. Some
computational diffusion is introduced by the assignment of
information from the grid to the particles, but the overall‘
diffusion compares favorably with high-order Eulerian,
difference methods.

In the following sections, the formulation of FLIP-MHD in two
or three space dimensions is described, the algorithm for
solving MHD flow problems is outlined, and several computational
examples of flow in two dimensions are presented which
demonstrate FLIP-MHD's Galilean invariance, and, by comparison
with high-order finite-difference approximations to convection,

FLIP-MHD's relatively low‘computational diffusion.



1

II Resistive Magnetohydrodynamics
Consider, first, the equations for viscous, resistive MHD
flow comprising a mass continuity equation,
dp

S rPVeu=0, (1)

Faraday's and Ampere's laws,

——-=VXB, (2)

a momentum equation,

2
du B BB
p-at-=-V p+-8: +[V' ar ]+V)\.pVou-VoupH(3)

and an energy equation,
dl 2

pg=-PVeus+ip(Veu) +pp(Ilell) +n (Jed), (4)

p is the mass density, B is the magnetic field intensity, J is

the current density, c is the speed of light, u is the fluid

velocity, I is the specific internal energy, and p is the fluid

pressure. The symmetric rate-of-strain tensor, Il is defined in

the usual way,

1'1='2L[ Vu+VuT]. (4a)

The pressure is given by an equation of state, p=p(p,I).

The transport coefficients are the kinematic shear viscosity



K, the kinematic bulk viscosity A, and the resistive diffusivity

7N. The solenoidal condition on B,

VeB =0, ()
is assumed as an initial condition. It is important that this
property be preserved if the interaction of the field and the
plasma be represented accurately. Otherwise, there will develop
non-physical, accelerated motion parallel to the magnetic field
(91.

Egs. 1-5, which describe the interaction of an ionized,
collisional plasma with a magnetic field, compose the resistive
MHD model.

III FLIP Magnetohydrodynamics

To model MHD flow using a particle-in-cell method one must
represent the fluid and the field by assigning appropriate
properties to particles. The choice that is made in FLIP is

discussed below.

A. The FLIP-MHD Algorithm

To solve magnetohydrodynamic flow problems using the
particle-in-cell method requires the same 4 steps as for
ordinary fluid flow:

Lagrangean phase:

1.Interpolate the particle data on to a grid to

initialize the dependent variables p, u, B, and p at



the grid points. The overlap of finite-sized particles
with the cells of the computation mesh determine the

allocation of particle properties to the grid points.

2.Solve finite-difference approximations to Egs. 1-4 to

advance the solution one time step, from t to t+At.

3.Interpolate the solutions of the MHD equations on the

grid, Egs. 1-4, to the particles
Convection phase:

4.Move the grid through the particles to the position
it will occupy on the next time step to model

convection.

One can compare this algorithm with the
arbitrary-Lagrangean-Eulerian (ALE) method for
magnetohydrodynamics [13]. An ALE method also separates each
computation step into two phases. In the first phase, the
finite-difference equations are solved on a Lagrangean grid. In
the secong phase, convective transport due to relative motion
between the grid and the fluid is computed by solving finite
difference equations. Thi; phase is the principal source of

computational diffusion [5].
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In the PIC method, steps 1 and 3 are added to the first phase
of the ALE method, and $tep 4 replaces the second or convective
phase. Lagrangean particles replace convective transport, and
eliminate one source of computational diffusion. However,
Lagrangean particles add another, possible source of
computational diffusion in step 3, in which the solutions are
transferred from the grid to the particles. This error is

discussed in Section IV.

B. The FLIP Particles
In the FLIP code, a particle is assigned a mass, Mp, &
momentum, mpup, an internal energy, ip, and a position, Xp - The

interactions among particles are calculated on a grid of
arbitrarily-shaped, quadrilateral zones in two dimensions with
vertices Xi, s 1<isSNg, 1SjSNy. The data for the calculation is
the interpolated particle data using a shape or assignment
function. To simplify the interpolation when the zones vary in
shape and size, each quadrilateral zone is mapped on to a unit
square. The mapping in two dimensions corresponds to bilinear

interpolation,

X(i,ﬂ)=§'[ (1'“')xi+1j+“'xi+1j+1]
+(1-€')[(1'“')"ij+“'xij+1] (6)

where §'=€-i, m'=n-3, and the mapping is defined for 0<g',n',<1.
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Note that xj§ maps on to E=i, n=3.

C. The Interpolation Equation

The shape function used in FLIP, S(B)/ is an n-th order
B-spline [10]. The use of this shape function in PIC
calculations is described in Birdsall and Langdon [11], Hockney
and Eastwood [12], and Monaghan [3]. Some of these references
interpret the shape function as giving the particle a finite
size. In FLIP, this size is defined by the properties of the
grid in the neighborhood of the particle in the following way.

Consider the mass contained in a quadrilateral zone denoted

by the index ¢, with centroid x; and volume V.. (The natural

coordinates of the centroid are (§',Mn')=(1/2,1/2).) The mass is
computed using the shape function, S(P), to calculate the
overlap of the shape function associated with each particle
with the zone, weighted by the mass of the particle. The tensor
product interpolation formula that results from evaluating the

overlaps in two dimensions is written,
2

(n) d 2

mo= Zm [T 870 go0-2x) ). @eh=6n. 7a
p =1

The shapedfunction, s(n), is a positive, symmetric function of

the distance in natural coordinates between the two points x¢

and xp. (M) has bounded support (n+1)/2; when the distance
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between two points is greater than (n+l1)/2, s(n) is zero. (While
the support of s(n) is constant in natural coordinates, it will

vary in physical coordinates. Thus, the "size" of a particle is

determined by the size of the zones it overlaps.) Further, s (n)

is normalized so that,

2
1= 2T s €x)-ex) ) (7b)

C d=i
for any n and any x in the domain. That is, the values of S(n)
at the grid points form a partition of unity.
To simplify the notation in the following discussion, the
interpolation weight given by Eq. (7a) is denoted by,

2
S i= L1 8™ &(x,)-8(x,) ). ®)

d=1

where xp and xp' are any two points on the domain.

D. ELIP-MHD

To extend FLIP to MHD, one assigns a magnetic moment, up, to

each particle from which one can calculate a magnetization by

interpolation,
(n)
MV, = D, Sh . (9)
o]

The magnetization is usually not solenoidal. If one computes the
divergence of M by approximating the derivatives by finite

differences and letting the mesh spacing approach zero, there
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will remain terms which depend upon the gradient of s(n) that

are zero only when Xo=xp or |§(xc)—§(xp) |>(n+1) /2. Otherwise, the

gradient of S is not zero, and the divergence will not be zero.

Because M is not solenoidal, the magnetization cannot be
used in place of the magnetic field. If it is used, there
results an instability that causes the growth of oscillatory
motion in the direction of strong magnetic fields [2]. Since a
solenoidal field exerts no force along its own direction, the
instability is caused, evidently, by the non-solenoidality of
the magnetization.

To initialize a problem, one must specify the magnetization,
M. In some cases, this is very easy to do. For example, when the
magnetic field, B, is uniform as in the examples described
below, M and B are equal. When B is force-free with current, J,
equal to zero, M is zero. However, in some cases the magnetic
field corresponds to neither M nor J equal to zero. In such
cases, one must solve for M from the identity,

VxM = VxB. (10)

That is, the current, J, is the data from which the

magnetization, M, is initialized.

1. Magnetization and the magnetic field
One can calculate a solenoidal magnetic field from the

magnetization by subtracting the gradient of a scalar potential,
B=M-Vo (11)
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where ¢ is given by,

VeM= V29 (12)

The resulting B is solenoidal.

The advantage of using the magnetic moment as a particle
variable and calculating a solenoidal magnetic field by
projection is that one is required to solve just one potential
equation, whether the problem is in two space dimensions or in
three. While examples are given for flow in two space dimensions -
only, the same formulation can be used to solve probleﬁs in
thrée dimensions.

Using the relationship between the magnetic field and the
magnetization, Eq. (11), one can write the magnetic field energy
integral,

e, = [av 3 [M-vo]es. (13)

Applying Gauss's theorem allows the explicit display of the
boundary contribution,

E=jdv12-M-a-§)ds%n-B¢. (14)
S

If one imposes the Dirichlet conditions, ¢=0, the surface

integral is of course zero. However, if n e B is required to be

zeroon s ( i.e. s is a conductor), one should apply the Neumann

conditions, given by,

neVo=ne M, (15)
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in solving the potential equation, Eq. (12), for ¢.

2. Equation of motion for the magnetization

On the grid, one solves one's favorite approximations to the
MHD equations for B. (The ones that are solved in FLIP-MHD are

discussed in Refs. [1,4,13, and 14].) One must then advance the

magnetization in time. M and ¢ can evolve separately, provided

Eq. (11) is always satisfied. Thus, one can postulate an

additional evolution equation either for ¢or for M .

Several considerations guide the choice of the additional

equation. For mathematical consistency, ¢ must evolve as a

scalar. For economy, the evolution equation for M should be

explicit. For accuracy, the equations for M and ¢ should have no
terms which depend upon the mean flow velocity, or whose
approximation will introduce such dependence. That is, one
should avoid introducing convection terms, which typically
introduce computational diffusion that depends on the mean flow

speed.
One ewvolution equation for ¢,

20 _ o, (16)
ot

clearly satisfies the constraint that ¢ evolve as a scalar, and
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yields an equation for M, written,

dM dB
—dt =Ft-+V0uV¢. (17)

However, the second term in Eq. (17) requires evaluating a
convection-like term, with all the attendant problems. For this
reason, Eq.(16) is discarded.

For plausibility, one should be able to identify some limit
in which the equations give an intuitively correct physical

result. One can guess the correct physical result for a single

particle. ¢, B, and M should all be constants of the motion, so
that,

@ o (18)

Substituting Eq. (18) into the definition of ¢, Eq. (11), one

finds,
dM dB
—dt—=Ft--(VU)°V¢. (19)

(A similar equation was derived previously by Fogelson to

describe the transport of concentration gradients ([24].) In Eq.

(19), the second term describes the change in V¢ due to strain.
This term depends only on gradients of the velocity, and is
unaffected by changes in the mean flow. If X denotes the

Lagrangean coordinate of an element of the fluid, the term can



17

be written,

d| 2 F dxi]jul
dt| 9% | " gl A Jox @

Its numerical evaluation neither requires up-winding as would a

transport term, nor does it introduce diffusion.

3. The magnetic moment interpolation equation

At this point in a computation step, one has advanced ih time
the grid magnetization, but not the particle magnetic moments.
To do so, one must derive an evolution equation for the particle
magnetic moments.

Differentiating the interpolation equation for the

magnetization, Eg. (9) results in an implicit expression for the

evolution of up,

dﬁﬂ:vc dup
o = ;-&— Spc (21)

M. in Egs.(9) and (21) is the average value of M(x) over the

control volume, Vg,
MV, = [dvm (22)
VC
The suppoft of S is defined in the Lagrangean frame as noted in
Section B, and thus it satisfies the equation,

dS
i 0. (23)
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(The consequences of this definition are discussed in Ref. [4].)

To calculate up using the interpolation equation, Eq. (21),

requires solving as many coupled equations as there are
particles. This is judged to be prohibitively expensive. One can

define an approximate inverse to Eq. (21), written,

du 1 dM_V
W v -
& 'zc" N, Tdr om e --Zp,s,,c : (24)

The_approximate inverse replaces the elements in each row by
their average value in that row, similarly to a "lumped” mass
matrix in finite element methods. This equation has the virtue
that it is simple to solve, and that it preserves global flux.
However, the substitution of Eg. (24) for Eq. (21) has the
defect that it introduces some computational diffusion. Because
only the changes in the magnetization are projected on to the
particle using the approximate inverse, no zeroth order
diffusion is introduced and the approximation is consistent when
any order B-spline is used, not just nearest-grid-point
interpolation (n=0) as in classical PIC.[2] (A different
approach to removing the zeroth order diffusion than used in

FLIP is described by Nishiguchi and Yabe. [15])

IV. Properties of the FLIP-MHD Model

A.Flux Conservation

The proof that magnetic flux is conserved is trivial. One
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simply sums both sides of the approximate inverse, Eq. (24),

over p, the particle index, to show that,
Zd"" PR 29
c dt .

Even though flux is conserved globally, there is diffusion of
the change in the flux because of the substitution of the
approximate inverse for the interpolation equation. Recall that
the change in the magnetization is transferred to the particles
at the end of each time step by solving the approximate inverse
equation, Eg. (24). The change is then transferred back to the
grid to continue the calculation for the next time interval.

This round-trip of the change in the magnetization from the grid
to the particles and back results in the substitution of the

result of a double interpolation,

aM. V! zz, dMLV M Ve 28

pcpe *

for the grid solution even with a Lagrangean grid. The
superscript L denotes the result of the numerical solution on
the grid, and the superscript 1 denotes the result of the
transfer of this solution from the grid to the particles and
back. If one sums both sides of the equation over ¢ and

substitutes the normalization of S, Eq. (7b), and the definition
of No, Eq. (24), one can show that magnetization flux is

conserved. However, the substitution replaces each grid value by

an average including contributions from all the neighboring grid
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points within the éupport of S. The effect of this averaging is
similar to theveffect of applying a diffusion operator written
in conservation form.[16]

One can estimate the diffusivity in one dimension by placing
one particle at the center of each cell. First compute the

difference between the double interpolation result and the grid

result,
1,1 L L LL
dM_ Vv, ) dM_V, _ z dM_ V. —1—-T 272
dt d¢ ~ 4 dt N,

The elements of the transfer matrix, T, are defined by,

T = 2{ 8uSpe So 5ee ) (27b)
p

where 8..: is the Kronecker 8 function. The elements are easily

evaluated for quadratic B-splines, yielding a weighted sum of

contributions from neighboring grid points. The contributions,

M.Vs, to the sum, when expanded in a Taylor series about the

value at xo, yield the diffusion-like expression,

W e aszf;vt
dM_ V. dM_V 2
c'c c'ec AX dt 4 )
T ax2 + O(Ax), Axi=X X, . (28)

The double interpolation, which occurs once each time interval

At, introduces an error which corresponds to diffusion of the

change in magnetization with diffusivity Ax2/16At. The
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achievable grid magnetic Reynolds number, Remagnetics 1S

limited by this numerical diffusion. The limit can be estimated

from,

_ |ujax
magnetic 2

AX

16At

Re =16C , (29)

where C=|u|At/Ax is the material Courant number. Note that the
approximation, Eq. (26), to the evolution equation for the
magnetization, Eq. (17), is consistent because it is the rate of
change of the magnetization that is being diffused, not the
magnetization itself.

This diffusivity does not depend upon the flow velocity.
Thus, Galilean invariance is preserved, e.g. the solution is
unaffected by the addition of a constant velocity to the fluid

motion.

B.Magnetic Enerqgy Conservation

One can identify 3 sources of error jin magnetic field energy
conservation in FLIP-MHD. There is an error caused by the use of
the approximate inverse, Eq. (24), and truncation error in the
difference approximation to Eq. (19). These errors contribute to
errors in«the conservation of energy through steps 2 and 3 of
the Lagrangean phase of a computation cycle. There is also a
dependence of the magnetic field on the grid that causes an

error in step 4, when convection is calculated. Through the
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interpolation, Eq.'(9), the magnetic field depends upon the
number and placement ofAthe grid points. Thus, there is a change
in magnetic energy when particles move from cell to cell in step
4.
One can contrast this with the conservation of kinetic energy
in FLIP, where the particle kinetic energy, defined by,
1 2

kp =3 m, u, (30a)

does not change as the particle moves from cell to cell. The

corresponding particle magnetic energy
T TRD)
ep.-Eupo - BcSpc . (31a)

contains contributions from interactions among particles. That
is, the energy depends upon the magnetic field strength, which
is a grid quantity.

Because of the dependence of the particle magnetic energy on
the grid, it is impossible to reduce the energy error to a
quadratic form similar to the error term in the kinetic energy
in FLIP. A brief review of the analysis of the kinetic energy
error in FLIP will indicate why.

Recall the definition of kinetic energy in FLIP

K, = 5 m, U (30b)

The subscript v labels the vertices of the mesh where the

velocities are stored in FLIP [1]. The vertex velocity, Uy, is

defined by,
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2 m, U, Sy

U . (30c¢)

. Z
- m, Spv
p

(The sum in the denominator defines the vertex mass, my.) The

total particle kinetic energy is larger than the grid kinetic

Zk ZKV Z—m u e, Z{Spv o0 Sou S } 20, (32)

but the rates of change of the particle and grid kinetic

energy,

energies are equal,
dk dK du du
-2 . —_— = P . —_—
zp'dt zv: dt -;mpuP. dt v vaVO dt =0 (39

Evidently, the energy surfaces on which the solution evolves for

the particles and the grid remain a constant distance apart for
a time step. (There are errors in the total kinetic energy when
the timé derivatives are approximated by finite differences.
These are evaluated in Refs. [1,4].)

By an analogous analysis for the magnetic field, one finds
that, in contrast to the kinetic energy, the particle and grid
magnetic energies are equal but the rateé~of change are not.
Further, the particle magnetic energy, Eq. (3la) includes
contributzons from interactions among particles that are absent
from the particle kinetic energy.

The grid magnetic energy, which is evaluated by discretizing

the magnetic energy integral, Eq. (13),
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- 1
E, =%

M +B_V, (31b)
can be used to show that the total particle and grid magnetic

energies are equal,
2: 2:1 E: 2:1
- % = - M - B; Spc = ~ 5B oM V. = Zc E.. (34)

However, the rates of change of the particle and grid magnetic
energies are not equal. The difference is calculated from
Faraday's law, Eq. (2), the approximate inverse, Eq. (24), and
the definitions of the particle and magnetic energies, Egs.

(31a), and (31b). The difference is,

d dE dM_V_,
Ep;-;—"-zc"d:r%zc:; BC-NLO: LA )

The transfer matrix, T, is defined in Eq. (27b). Because the

terms in the sum are a product of the magnetic intensity and the
magnetization, the total energy changes for the particles and

for the grid are not equal. However, the eigenvalues of the
transfer matrix are positive, and lie in the interval 0 to N¢

[1,4]. Thus the error in the magnetic energy due to double
interpolation is opposite in sign to the change in grid magnetic
energy and smaller in magnitude.

The e;ergy error given by Eq. (35) can be added to the
particle internal energy, particle by particle, to force
conservation of total energy. The addition to the particle

internal energy is given by,
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di dhk'vd,
g D IR R L) S

The sums over c and c' comprise the cells within the support of
the particle. The addition is computed simultaneously with the
evaluation of the approximate inverse, Eq. (24).

Conservation of total energy through an entire time step is
imposed through step 4 by convecting the sum of particle
internal and magnetic energies. At the end of step 3, the
particle magnetic energy, Eq. (3la), is added to the particle
internal energy, using the value of the magnetic field computed
on the grid at. the end of step 2. At the beginning of the next
time step, i.e. at the end of step 1, the particle magnetic
energy is computed using the value of the magnetic field
computed by solving Eq. (11). The particie magnetic energy is
then subtracted to recover the particle internal energy. Errors
in magnetic field energy are thus absorbed by adjustments in the
internal energy.

Since the particle internal energy and magnetic energy are
conserved as the particles stream through the grid, and kinetic
energy is conserved separately, the conservation of total energy
is enforced. One difference between FLIP-MHD and Eulerian
formulations written in conservation form is that the magnetic
and kinetic energies are conserved independently. This avoids a
common problem in high-speed flows, where small relative errors

in the kinetic energy are large relative to the internal energy,
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and can drive the internal energy negative.

The sign of the internal energy correction is same as the
sign of the change in M.V.. A decrease in the magnetic energy

results in a decrease in the particle internal energy. In stron<
magnetic fields or cold fluids, one anticipates that the
correction will sometimes drive the internal energy of
individual particles negative. This is not observed to happen in

the examples beldw.
IV Results

A._Contact discontinuity

A notable property of the particle-in-ceil method is its
ability to resolve contact discontinuities, even in highly
distorted flows [2]. FLIP-MHD extends this capability to
discontinuities in the magnetic field by introducing a
Lagrangean representation for the field. A uniform flow problem
with a discontinuity in the magnetic field direction illustrates
this capability.

The FLIP calculation for magnetohydrodynamic flow in two
dimensions is performed on a 10x50 mesh, with equal mesh spacing
in x and ¢ and periodic boundary conditions in y, the direction
with 50 zones. Initially, the uniformly-flowing,

constant-density fluid is in pressure equilibrium, and the

magnetic field is equal to B=Bgn, in the lower half of the
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domain, and B=-Bpn, in the upper half. The sound speed, a, is

100 times the Alfven spéed, AaB/(4xp)1/2, and the Mach number,
M=u/a is equal to 0.32.

In Fig. 1, the magnetic field profile in y is plotted at the
initial time at an x-coordinate corresponding to 1/3 the mesh
width. The profile is a mollified square wave. The mollification
is a result of the quadratic interpolation in Egq. (9). In Fig.
2, the magnetic field is plotted at a time corresponding to a
fluid displacement twice the height of the mesh. There is no
diffusion. Errors in the approximate inverse, Eq. (24), have no
effect because the particle magnetic moment is a Lagranean
invariant when there are no gradients in the flow velocity in
the direction of the magnetic field.

A direct measure of the diffusion is given by the integral of
the variation in the magnitude of the field over the domain;

18 = [ LB - By, 0) )’ ey a7
B(xy.0)

Any diffusion causes the variation to increase. The variation is
plotted in Fig. 3. (A time of 12.5 probiem units corresponds to
2 fluid transit times.) The oscillations in the variation have a
period eqmal to the time for the fluid to move one cell. The

variation is greatest when the zero value of the magnetic field
lands at the center of a cell, and least when the zero lands at

a cell edge. The average value of the variation is constant.



28

With a non-zero resistivity in Eq. (2), the variation
increases in time as shown in Fig. 4. The resistive diffusivity
corresponds to grid magﬁetic Reynolds number (computed similarly
to Eq. (29)) of 30, and causes an increase in the variation by
400%. The sensitivity of the results to added diffusion
indicates the purely numerical diffusion of contact
discontinuities in FLIP-MHD calculations has to be very small or

negligible to produce the results in Figs. 1-3, as expected.

B. Rayleigh-Taylor instability

The FLIP-MHD code is verified, first, by comparison with the
linear stability theory for the Rayleigh-Taylor instability. On
a domain in tow space dimensions with 30x15 zones and periodic
boundary conditions in y, a heavy fluid is supported against
gravity, which acts in the negative x-direction, by a light
fluid. The pressure is initially constant. The potential energy
oscillates in time, but this appears ta have no effect on the

results.

Where p; and p, are the densities of the light and heavy

fluids, g the gravitational acceleration, and k the wave number
of the pefturbation of the interface between the two fluids, the

growth rate is given by, [23]
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. 22
¥ _ PL-PI _ A kparallel

k k
g | p*e g

(38)

The Alfven number, A=B/2m(p;+pj),is defined using the average

density at the interface, and kparallel=kOB/Bz.With

ka/ (kg)1/2=458, kA/(kg)1/2=0.512,and Atwood number,

Ar=(py-p1)/ (pp+p1)=0.6, the results are illustrated in Figs. 5

and 6. In Fig. 5, the particles of the heavy fluid are overlaid
on éontou:s of constant magnetic flux or field lines at the
initial time. After a time, kAt=4.67, the heavy particles have
formed a spike, and the field lines have been bent in the
process as shown in Fig. 6.

The comparison between theory and computation is summarized
in Table I. The predicted and computed growth rates agree within
expected error except for the case with B=1.89. This field
corresponds to zero growth réte theoretically, but a finite
growth rate computationally. It can be shown that truncation

error in the spatial differencing is accounted for by replacing

k by k'=sin(kAx/2) /Ax/2. When k' is substituted for k, the
growth rate should be zero for B=1.92. However, even a stronger
magnetic field, B=1.95, does not suppress the instability
completely. It is as though there were resistive diffusion, in

which case one would expect a slowly growing instability with
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|IB|>1.89.

Suppose the resistivity were due to numerical dissipation.
One could estimate the magnitude of this numerical resistivity
by imposing a physical resistivity just large enough to double
the growth rate of the instability. By computation, the
resistivity needed to double the growth rate corresponds to a
magnetic Reynolds number approximately equal to 250, and a grid
magnetic Reynolds number as defined by Eq. (29), equal to 17.
The agreement with the predicted value suggests the source of
the resistivity is the diffusion due to the use of the
approximate inverse to calculate the particle magnetic moments.

The resulfs of a calculation performed on an Eulerian grid
are shown in Fig. 7, and of a calculation performed on an
Lagrangean grid in Fig. 8. The calculations are shown at
kAt=2.8, just before some of the cells in the Lagrangean grid
lose convexity. The changes in the magnetic energy and the

growth of the enstrophy, defined by,
2 2
E=I[qu] d’x (38)

are essentially equal. (The enstrophy is used to calculate the
grdwth rates listed in Table I.) The error in the conservation
of the total energy, due to truncation error in the
approximagion of Eq. (19), is equal to less than 1% of the
magnetic energy change. There are small differences between the
Lagrangean and Eulerian calculations that are probably accounted

for by the distortion of the Lagrangean grid. Note that the
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particles do not move from cell to cell in the Lagrangean
calculation. The calculation is initialized with 9 particles per

cell, and there are the same 9 particles per cell at the end.

C. Confined Eddy

The confined eddy problem, which is suggested by a discussion
in Moffatt [19] on the effect of plane, differential rotation on
an initially uniform magnetic field, is used to test the
Galilean invariance of the FLIP method. If the numerical results
depend on the relative motion between the fluid and the grid, it
has to be due to numerical error because the Navier-Stokes and
the resistive magnetohydrodynamics equations are Galilean
invariant. However, finite-difference approximations to them
typically are not.

The confined eddy has been studied extensively. Solutions of
the kinematic problem show that rigid body rotation of a fluid
winds the field into a tight, double spiral in the x-y
plane(20]. In the limit of infinite conductivity, the field is
completely excluded from the rotating region. When the
conductivity is finite, closed loops appear and disappear as
flux is destroyed within the rotating region. In general, flux
is expelled from flows with closed streamlines.

In fluid dynamics experiments, the flows are more complex

than the kinematic case considered by Parker. In experiments on
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forced, circular shéar layers, the vortex sheet at the surface
of the eddy is unstableAand forms a line of vortices. Thus,
secondary eddies are a prominent feature of the steady, driven
flow [21]. Numerical solutions with FLIP of initial value
calculations of the confined eddy problem display the nonlinear
evolution of the instability from many small, secondary eddies
to a few large eddies [5]. (An important result of this earlier
study is the demonstation that angular momentum is conserved,
and vorticity preserved by FLIP.)

Initial-value calculations of the self-consistent effect of
plane differential rotation on an initially uniform field are
performed. The field is weak, A/a=10"3, and the flow is
low-speed, u/a=0.25, so that the evolution of the flow should be
very similar to the incompressible, unmagnetized case.

The initial velocity for the eddy problem is given by,

wx(r-ry), r-ry|<R
0 , |r-r,1>0 (40)
where ® is the angular velocity of the eddy. The center of the
eddy is placed at the center of a computational domain with
dimensions 4R x 4R.

In Fig.9, the magnetic field lines, (contours of constant

vector potential A, where B=VXAa),on a 50x50 zone mesh with FLIP

are shown after 1/2 revolution of the eddy. As determined by the

specified viscosity and resistivity, the Reynolds number is
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25000 and the magnétic Reynolds number is 125. As in the
kinematic case, the motion winds the field into a tight, double
spiral. A Kelvin-Helmholtz instability causes secondary eddies
to form at the periphery of the eddy. After 1 revolution, shown
in Fig.10a, the magnetic field is further expelled from the
interior of the eddy, and concentrated at the periphery. Large
gradients in the field oppose the motion of the eddy, and
islands of closed flux have formed due to dissipation in the
calculation.

‘The particles originally within the eddy are plotted in
Fig.lla aﬁ the time corresponding to Fig.l10a. The particles show
the nonlinear evolution of the secondary eddies, as the eddies
pair to form large, secondary eddies. The secondary eddies are
also visible in the vorticity contour plots, shown in Fig.l2a.
The secondary eddies also expel the flux, increasing the area
within which the field is reduced below its initial value. |

FLIP replaces convection by the motion of particles through a
computation mesh. The particle motion, and the numerical
solution of the flow equations on a Lagrangean grid are
invariant under the addition of a constant frame velocity, and
so it would appear that FLIP results should be frame
independernt.

To test the Galilean invariance of FLIP-MHD, the calculation
above is repeated with a constant velocity added to the initial

fluid velocity. In Fig.13, there are shown the stream lines from
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two calculations fér the confined eddy problem, the one
described above shown in Fig.l13a, which was performed in a
stationary frame, and the other shown in Fig.13b, which was
performed in a moving frame. The frame velocity for the moving

frame calculation,

us= f)—Ly- (40)

is chosen so that the eddy moves one period in y, Lys in one

revolution of the eddy. The frame velocity and the velocity of
flow.in the eddy are of comparable magnitude.

Also in Fig.1l1lb, there are plotted the particles that were
inside the eddy initially. There is a the same four-fold
symmetry of the particle positions in the moving frame
calculation as there is in the stationary frame calculation,
Fig.lla, particle by particle, even though there are differences
in the positions of individual particles, especially those to
the outside of the secondary eddies. There are very small
differences between the magnetic fields, Fig.1l0b compared with
Fig.10a, and vorticities, Fig.12b compared with Figl2a, in
stationary and moving frames.

Another measure of the difference between the calculations is

given by the Ohmic heating rate, defined by,
2
H = jnJ av, (42)

Ohmic heating is observed to be greater with lower viscosity and

lower resisitvity. When diffusion is less, higher gradients in
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the magnetic field-develop and more heating results. Conversely,
increases in numerical diffusion result in decreases in heating.
The heating for the stationary fluid is shown in Fig.14, and the
moving fluid in Fig.15. There are differences in detail in the
heating rates, but overall the heating is very similar for the
two calculations.

In finite difference calculations, the invariance is broken
by a velocity dependence introduced in approximating the
convective derivative. For example, donor cell convection

introduces a numerical diffusion of momentum,
| ulAx

V=L-|2—-, (43)
that depends upon the velocity relative to the grid, while
Lax-Wendroff introduces a dispersion that depends upon the
velocity. Even in more sophisticated limiter methods like van
Leer's, which use donor cell advection in regions of strong
gradients, the errors depend upon the relative velocity. This
velocity dependence means that numerical solutions are different
in coordinate systems in constant motion relative to each other,
contrary to physics.

For comparison with the FLIP results above, there are shown
in Figs.16a and 17b the magnetic field lines and vorticities for
a calculation performed with PLUTO in a stationary frame, and in
Figs.16b and 17b for a calculation performed in a moving frame.

The initial conditions for the FLIP and PLUTO calculations are

identical.
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In PLUTO, the solution of Faraday's law in the Lagrangean
frame is followed by an .advection step, which approximates the

equation,

%JdVB=-stnOB (44)

where V is the control volume, s its surface, and n is the
outward-directed, unit normal to the surface.

PLUTO substitutes a finite-difference approximation to
convective transport for the particle transport in FLIP.
Otherwise, PLUTO and FLIP are identical. The approximation is a
generalization of the PPM method [18] to a nonrectilinear mesh
by Meltz [17].Since the mesh is rectilinear in the case shown,
the method reduces, essentially, to the PPM method.

There is a much greater effect of the frame motion in the
Eulerian calculations than there is in the FLIP calculations.
The most obvious difference is the loss of symmetry in the |
moving frame results, Figs.16b and 17b, compared with the
stationary frame results, Figs.l6a and 17b. One hotes that the
flow velocity relative to the grid is different on the right and
left sides of the domain in the moving frame calculation. On the
right side, where eddy and frame velocities add, the relative
motion between the fluid and the grid is much greater than on
the left side, where eddy and frame velocities subtract. The
differences between the right and left sides in Figs.1l6b and 17b

are evidence of a velocity dependence in the Eulerian
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calculation that is absent in the FLIP calculation. With less
accurate finite-difference advection schemes, the loss of
symmetry is even more obvious.

What kind of error can there be in the FLIP calculations that
causes a difference between stationary and moving frame
calculations, yet is independent of the velocity? Consider
repeating the stationary FLIP calculation with the grid shifted
by a fraction of a mesh spacing. Because the number of particles
is finite, the result of projecting the particle data on to the
grid, for example the magnetization from Eq. (9), would be
different on the shifted grid than on the unshifted grid.
Because of small differences in the projected data early in the
evolution of the eddy, there would be differences in the
subsequent evolution of the eddy because of the instability of
the flow. (One would also expect the differences to decrease as
the number of particles per cell increases.)

In the moving frame calculation, the motion of the particles
through the grid causes their position relative to the grid to
be different from the stationary case each time step of the
calculation. Thus, the results in the stationary and moving
fluid cases are different, even though there is no velocity
dependent .error. The comparison of the stationary and moving
fluid cases demonstrates that the differences are very small.

The velocity dependent errors in the Eulerian calculations

also increase the numerical viscosity in the moving frame
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calculations. The ﬁeating, which is observed in other
calculations to increase with increasing Reynolds number, is 50%
lower in the moving fluid, shown in Fig. 19, than in the
stationary fluid Eulerian calculation, shown in Fig. 18. The
heating with FLIP,shown in Figs. 14 and 15, is 10 times as
large, and there is no significant difference in the heating in

the stationary and moving fluid calculations with FLIP.

V. Discussion

FLIP shares Galilean invariance with several other methods.
Pure, grid-free particle methods, like SPH, are
frame-independent, as are spectral methods. Compared with SPH,
FLIP-MHD is more suitable for bounded flow problems, and,
perhaps, is more economical. Compared with spectral methods,
FLIP-MHD is better able to represent singularities in the flow,
such as shocks and contact discontinuities, expecially if oﬁe
uses the adaptive grid feature of FLIP.

Since FLIP differs from PLUTO only by the use of particles to
model convection, the incremental cost of using particles is
measured by difference in execution time on comparable problems.
For the confined eddy problem on a 50x50 grid, FLIP requires
~300s, whfle PLUTO requires ~170s. FLIP execution times are
roughly 75% greater. On the other hand, more than twice as many
grid points are required to yield the same accuracy with PLUTO

as with FLIP in problems with flow, because of the greater
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numerical diffusion in the convection phase. In problems without
significant flow, for example in equilibrium calculations, PLUTO
would give comparable aécuracy at lower cost.

Although FLIP's performance is already very good, improved
performance would result from finding a better way to evaluate
the evolution of the particle magnetic moment, Eq. (21). The
approximate inverse, Eq. (24), appears to limit the magnetic
Reynolds number that can be modeled and to be the source of

dissipation of magnetic field energy.
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Figures

1. The initial magnetic field profile in y is shown. The domain
is periodic in y, with 50 zones in each period. The x-coordinate
corresponds to 1/3 the mesh width in x.

2. The magnetic field profile in y is shown after the fluid has
traveled twice the length of the mesh in y. There are no visible
changes in the profile from the one shown in Fig. (1).

3.The total variation of the magnetic field as calculated from
Eq. (27) is shown. The time interval, 0 £ t<12.5, is the time

required for the fluid to move two periodic intervals in y. The

variation, AB, oscillates about a mean value that is nearly
constant in time.

4, The variation of the field is shown with resistive diffusion.
The grid magnetic Reynolds number, Eq. (29), is 30. Thé
variation increases by 400% during 2 fluid transit times.

5. The particles of the heavy fluid (depicted by dots) and
magnetic field lines (depicted by lines) illustrate the initial
conditions for a calculation of the Rayleigh-Taylor instability.
6. The growth of the Rayleigh-Taylor instability for the initial
conditions shown in Fig. 5 causes the heavy-fluid particles
(depicted.by dots) to form a spike, and to bend the magnetic
field linés (depicted by lines) by kAt=4.67.

7. The heavy particles in a Rayleigh-Taylor instability
calculation are plotted on the Eulerian computation mesh at

kAt=2.8.
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8. The heavy partiéles for a Lagrangean calculation of the same
problem as in Fig. 7 are plotted on the Lagrangean computation
mesh. The distortion of the mesh illustrates why a Lagrangean
mesh is unsuitable for highly distorted flow. Any shear in the
flow causes a Lagrangean grid to fail eventually.

9. Magnetic field lines from a FLIP-MHD calculation of the
confined eddy are plotted after 1/2 revolution of the eddy. The
magnetic Reynolds number is 125.

10. After a full revolution of the eddy, the magnetic field
lines calculated with FLIP-MHD form the complex patterns shown.
The results in (é), for a stationary fluid, and in (b), for a
moving fluid, are similar in symmetry and structure if different
in detail.

11. Particles forming the eddy at the inital time in the
FLIP-MHD calculation have moved into the pattern of primary and
secondary eddies shown after one revolution of the eddy. The
particles in (a) and (b) correspond to the magnetic fields in
(10a) and (10b) respectively.

12. Contours of constant vorticity calculated by FLIP-MHD are
plotted after one rotation of the eddy. The contours in (a) and
(b) correspond to the particles in Fig. lla and 11lb
respectively. )

13. The streamlines calculated by FLIP-MHD after one rotation
are plotted in (a), for a stationary fluid, and in (b), for a

moving fluid. The contours in (b) clearly show the dominance of
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the imposed, uniform flow almost e.erywhere.

14. The Ohmic heating calculated with FLIP-MHD, defined by

Eq. (42), is plotted for the confined eddy in a §;§tionary fluid.
The time, t=12.5, is the rotation period for the éqdy in problem
units. =

15. The Ohmic heating is plotted for“the confined eddy in a
moving fluid. The peak value at t=7.5 is the same:as for the
stationary fluid, shown in Fig. 14, as is the value at t=12.5.
16. The magnetic field lines calculated with PLUTO for the
confined eddy problem are shown at the end of one rotation
period. The PLUTO calculations are in a station&ry fluid, (a),
and in a moving fluid, (b), with the same initial and boundary
conditions as for the FLIP-MHD calculations in Figs. 10-15. The
loss of symmetry in (b) results form a velocity dependent
diffusion in the approximation of convection. |

17. The vorticity contours calculated with PLUTO corresponding
to Fig. 16 are shown. For a stationary fluid, (a), the PLUTO and
FLIP-MHD results, Fig. 12, are similar. For a moving fluid, (b),
the symmetry is lost in the PLUTO results. »

18. The heating calculated with PLUTO is shown for a stationary
fluid. The maximum heating rate is about 10% of the FLIP-MHD
rate.

19. The heating calculated with PLUTO is shown for a moving

fluid. The peak heating is reduced by 40% from the result for a

stationary fluid, Fig. 18;
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Comparison of theoretical and computed growth rates for the
Rayleiqh-Tayl . bilif

Magnetic field Theoretical growth Computed growth
strength- (kA)2/kg rate - y/(kqg)1l/2 rate- Y/ (kg)1/2
0.0 0.774 0.76
0.1675 o 0.656 0.61
0.60 0.0852* 0.098
0.62 0.0 0.072

* with k' replacing k in Eq. (38)
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