- A Tool to Aid in the Design,
Implementation, and Understanding
of Matrix Algorithms for Parallel
Processors

Jack Dongarra Orlie Brewer
James Arthur Kohl Samuel Fineberg

CRPC-TR90021
1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 9, 185-202 (1990)

A Tool to Aid in the Design, Implementation, and Understanding of Matrix
Algorithms for Parallel Processors™*

JACK DONGARRA

Computer Science Department, University of Tennessee, Knoxville, Tennessee 37996-1300; and
Mathematical Sciences, Oak Ridge National Laboratory, P.O. Box Y, Building 9207 A, Oak Ridge, Tennessee 37831-8083

ORLIE BREWER

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4801

JAMES ARTHUR KOHL
Department of Electrical Engineering, Box 142, Purdue University, West Lafayette, Indiana 47907

AND

SAMUEL FINEBERG

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa 52242

This paper discusses a tool that aids in the design, develop-
ment, and understanding of parallel algorithms for high-perfor-
mance computers. The tool provides a vehicle for studying mem-
ory access patterns, different cache strategies, and the effects of
multiprocessors on matrix algorithms in a Fortran setting. Such
a tool puts the user in a better position to understand where per-
formance problems may occur and enhances the likelihood of
increasing the program’s performance before actual execution
on a high-performance computer. © 1990 Academic Press, Inc.

1. INTRODUCTION

The emergence of a wide variety of commercially avail-
able parallel computers has created a software dilemma.
Will it be possible to design general-purpose software that
is both efficient and portable across a wide variety of these
new parallel computers? Moreover, will it be possible to
provide programming environments sophisticated enough
to make explicit parallel programming a viable means to
exploit the performance of these new machines? For many
computational problems, the design, implementation, and
understanding of efficient parallel algorithms can be a for-
midable challenge. Efficient parallel programs are more
difficult to write and understand than efficient sequential
programs, because the behavior of parallel programs can be
nondeterministic. Moreover, they are generally less porta-
ble than serial codes, because their structure may depend

* This work was supported by the National Science Foundation Science
and Technology Center Cooperative Agreement No. CCR-8809615.

185

critically on specific architectural features on the underlying
hardware (such as the way in which data sharing, memory
access, synchronization, and process creation are handled).

We have implemented a tool—called the Shared-Mem-
ory Access Pattern (SHMAP) program—to aid in the de-
velopment of high-performance algorithms that are porta-
ble across a range of high-performance computers. SHMAP
is useful in understanding how various algorithms access
memory, the effects of multiprocessors sharing data, and
the interaction of cache in a more complicated memory hi-
erarchy. This tool provides a graphical display of memory
access patterns in algorithms. Such patterns can be impor-
tant in understanding memory bottlenecks in computation-
ally intensive algorithms.

Section 2 discusses some of the motivation behind the
SHMAP tool. Section 3 describes the preprocessor and
postprocessor components of SHMAP in general, and Sec-
tion 4 describes the actions of SHMAP in particular. Sec-
tion 5 describes in detail the implementation of SHMAP
windows. Section 6 illustrates the parallel-processing capa-
bility of SHMAP. Section 7 briefly outlines the tracing func-
tions used to control the tracing operations. Section 8 gives
information about how to obtain the new tools. Finally,
Section 9 summarizes our efforts in understanding parallel
algorithms.

2. MOTIVATION FOR THE SHMAP TOOL

Several factors motivated our developing the tool de-
scribed here: the benefits of graphical representation, the

0743-7315/90 $3.00
Copyright © 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

186

problems raised by memory hierarchy, and the success we
had with earlier tool development.

2.1. Graphical Representation

In developing an algorithm, the initial definitions and
specifications are often done graphically on a blackboard
or at a desk with paper. A human can visualize the overall
structure of the algorithm far more easily from these graphi-
cal representations than from words and formulae. Unfor-
tunately, of course, the computer cannot. These drawings
and figures must eventually be translated to a computer lan-
guage in order to write a computer program. After the pro-
gram is written, one does not usually go back and view the
algorithm in execution in order to understand the flow of
the working program and data. Indeed, until recently, such
a task would have been impossible.

With a modern workstation environment, however, one
can envision going far beyond the notion of numerical out-
put from an algorithm. Today’s workstations make it possi-
ble to obtain a picture of how the algorithm proceeds and
enable the programmer to improve the implementation be-
fore it actually runs on high-performance computers.

2.2. Memory Hierarchy

The notion of visual aids to programming is certainly not
new. Indeed, the entire August 1985 issue of IEEE Com-
puter was devoted to this topic, and several of the articles
appearing in this issue are germane to this article. A number
of efforts are under way to provide parallel programming
tools[3,4,6,7, 12].

Our major objective has been to provide a common inter-
face that will allow researchers to e ploit existing hardware
in the near term. Initially, we developed a tool that traces
the flow of execution and processor use within a uniproces-
sor environment [5]. However, we soon realized that for
shared-memory systems involving memory hierarchy,
more detail was required.

2.3. Memory Hierarchy Issues

On modern high-performance computers, memory is or-
ganized in a hierarchy according to access time. This hierar-
chy takes the form of main memory, cache, local memory,
and vector registers. The basic objective of this organization
is to attempt to match the imbalance between the fast pro-
cessing speed of the floating-point units and the slow la-
tency time of main memory. In order to be successful, algo-
rithms must effectively utilize the memory hierarchy of the
underlying computer architecture on which they are imple-
mented.

The key is to avoid unnecessary memory references. In
most computers, data flows from memory into and out of
registers and from registers into and out of functional units,
which perform the given instructions on the data. Algo-

DONGARRA ET AL.

rithm performance can be dominated by the amount of
memory traffic rather than by the number of floating-point
operations involved. This situation provides considerable
motivation to restructure existing algorithms and to devise
new algorithms that minimize data movement.

For computers with memory hierarchy or for true paral-
lel-processing computers, it is often preferable to partition
the matrices into blocks and to perform the computation
by matrix-matrix operations on the blocks. This approach
provides for full reuse of data while the block is held in
cache or local memory. It avoids excessive movement of
data to and from memory and gives a surface-to-volume
effect for the ratio of data movement to arithmetic opera-
tions, i.e., O(n?) data movement to O(»>) arithmetic oper-
ations. In addition, on architectures that provide for parallel
processing, parallelism can be exploited in two ways: (1)
operations on distinct blocks may be performed in parallel;
and (2) within the operations on each block, scalar or vec-
tor operations may be performed in parallel.

The performance of these block algorithms depends on
the dimensions chosen for the blocks. It is beneficial to se-
lect the blocking strategy for each target machine, and then
develop a mechanism whereby the routines can determine
good block dimensions automatically.

Since most memory accesses for data in scientific pro-
grams are for matrix elements, which are usually stored in
two-dimensional arrays (column-major in Fortran), know-
ing the order of array references is important in determining
the amount of memory traffic. We plan to be able to take
an arbitrary linear algebra program, have its matrices
mapped to a graphics screen, and have a matrix element
flash on the screen whenever its corresponding array ele-
ment was accessed in memory.

The tool we developed to meet this objective is the pro-
gram SHMAP, which provides a visualization of the mem-
ory access patterns of a parallel program in a multiprocess-
ing, shared-memory environment.

3. FUNCTIONAL DESCRIPTION OF SHMAP

The program SHMAP involves two distinct entites: (1)
preprocessor instrumentation, accomplished by the Shared-
Memory Access Pattern Instrumentation (SHMAPI) pro-
gram; and (2) postprocessor display graphics, accomplished
by the Shared-Memory Access Pattern Animation
(SHMAPA) program.

3.1. SHMAPI

The SHMAPI preprocessor analyzes an arbitrary Fortran
program and, for each reference to a matrix element, gener-
ates a Fortran statement that calls a SHMAPI routine which
records the reference to the matrix element. Moreover,
since many programs dealing with matrices reference the
Basic Linear Algebra Subprograms (BLAS) [8, 9, 11], SH-
MAPI translates those calls into calls to SHMAPI routines

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

that understand the BLAS operations and records the ap-
propriate array references. The replaced routine records the
memory access to be made, as well as the number of float-
ing-point operations to be performed, and then calls the
Level 1, 2, or 3 BLAS originally intended. This approach
allows us to reduce the size of the trace file by recording a
range of values referenced per trace line, rather than a trace
line per matrix element.

The output of SHMAPI is a Fortran module that, when
compiled and linked with a SHMAPI library, executes the
original code and generates a readable ASCII file that con-
tains an encoded description of how the arrays in the pro-
gram have been referenced. Three types of trace lines are
generated: array definition, read access, and write access. If
a call to one of the BLAS has been made, the trace file may
contain information about a row or column access or both.
The name of the BLAS is recorded, and during playback
the name of the BLAS executed will be displayed. We also

T berter AR
CRPC
Sending the screen image to the default printer.
Fade speed [68] (] 188
Exec speed [100] ¢ NN 100
(Cachs) 3 R QD
Total:
Reads: 1825
Writes: 1195
Flops: $§375
sgemn
PE# Total:
Hits: @]
Nisses: 8]
Ratio: 6% (1]

1825
1195
S37§

Shared Memory Access Patterns
Directory: <es/dongarra/SCHED/SHMAPA

Caches: 1
PE’s: 1

187

record the amount of floating-point work that has taken
place for a given memory reference.

3.2. SHMAPA

Once a trace file is created, it may be used repeatedly in
different ways by SHMAPA to visualize the actions of algo-
rithms. In addition to simple trace events, such as loads and
stores, SHMAPA also can project access patterns for vari-
ous parallel events. These parallel events may themselves
contain subgroups of several sequential events that, al-
though executable in parallel with other events, must be ex-
ecuted sequentially in order among themselves. Figure 1
displays the output of SHMAPA for a view of LU decompo-
sition.

4. FEATURES OF SHMAPA

SHMAPA can analyze a given algorithm by using several
different system configurations, thus providing insight into

Trace file: tracs.lui
Cache size: 1 Policy: LRU
Accesses: T Off Time line: O off

Line size: 1
Active PE’s: O oft

A L T T R, T, K T ST T 8 A 3 K33 0

READS: 1

WRITES: |

e Do OO0 0000000 R0 00000 200000000 0000000000 00000000 00000000

A A A K A A S, B2 S AT KA S A% AT SRR B2, LSS L A SRR A S

R >

|
T

000000000000 0000000000 0000000 0000000002,

FIG. 1. LU decomposition.

188

the operation of the algorithm on various systems. The
speed of the animation is variable to allow the user to closely
examine the more critical aspects of the algorithm, yet
move quickly through the less interesting portions. The ani-
mation may be adjusted in other ways to emphasize locality
of reference and to reveal patterns of memory accesses. In
addition, SHMAPA displays a running tabulation of nu-
merical statistics as well as animated histograms. See Fig. 2
for a display of three algorithms for performing LU decom-
position. (The graphical representations for Figs. 1 and 2
are explained later in the paper.)

4.1. Multiple-Processor Configuration

The current SHMAPA tool models shared-memory par-
allel machines of up to 16 separate processing elements
(PEs). These PEs share one main memory of uncon-
strained size and up to 16 separate cache memories. A cache
memory is a high-speed buffer inserted between the proces-

Sending the screen image to the default printer.
Fade spesd [4]1 o NN | 10
Exec spoed [100] o I 10
Total:
4365 4365
3545 3548
115508 115500
sgeam

PE# Total:
Hits: @ []
Misses: @ [}
Ratio: 0% (L]

Reads:
writes:
Flops:

CRPC -- Shared Memory Access Patterns

DONGARRA ET AL.

sors and the main memory to capture those portions of the
contents of main memory that are currently in use. Since
cache memories are typically five to ten times faster than
main memory, they can reduce the effective memory access
time if carefully designed and implemented [2]. In the cur-
rent tool, only one layer of cache is supported between main
memory and the PEs. Hence, a PE may have only a single
cache between it and main memory. Although each PE is
assigned to at most one cache, several PEs may share a sin-
gle cache. For consistency, each PE is assigned a specific
cache to use when the cache is turned on.

The purpose of the tool is to display the patterns of ac-
cesses for algorithms. Thus the actual value of the data in
memory is inconsequential; the only characteristic neces-
sary for analysis is the location in memory. Hence, the PEs
are not actually modeled but merely represent the origin of
load and store events in a trace. A given PE may load or
store a memory location, but the data themselves are not
taken into consideration.

Directory: <es/dongarra/SCHED/SHMAPA
Line size: 1
Active PE’s: Cott

Trace file: tracs.luall
Policy: LRU
Time ne: Coff

Cache size: 1
Accesses: T off

Caches: 1
PE’s: 1

READS:

WRITES:

FIG. 2. Three algorithms performing LU decomposition.

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

Each PE has a number and a distinguishable color to
identify it when a memory access is made. The color is also
used in identifying a given PEs actions in the animated his-
tograms. It should be noted, however, that the PEs as well
as the caches are all considered to be identical, and are dis-
tinguished only for consistency. A window is used to display
the various sets of PE colors and their corresponding num-
berings. The colors vary depending on the number of PEs
configured for the system (see Fig. 3). .

The number of PEs and the number of caches are set with
separate pull-down menus. The number of PEs must be a
power of 2, but the number of caches needs only to be an
integer less than or equal to the number of PEs. Upon
changing either of these parameters, the cache-to-PE assign-
ments are recalculated, and the system is automatically re-
set and ready to continue where tracing was interrupted.
Note that the tracing must be temporarily stopped in order
to change the system configuration in any way.

189

4.2. Cache Configuration

As previously stated, all caches for any given system con-
figuration are identical. The characteristics of the caches are
quite flexible, however. A number of parameters can be
modified via pull-down menus, including cache size, line
size within the cache, and cache replacement policy. Cache
can also be turned off, so that the memory accesses proceed
directly to and from main memory without the intermedi-
ate cache layer.

Cache size is defined here as the number of words of
memory available within a given cache. The cache size can
be varied from 1 word to 65,536 words in powers of 2.

Cache line size is the smallest number of words of mem-
ory that may be loaded from or stored to main memory at
a given time. The relation of this parameter to cache size
affects the efficiency of the cache [2]. The cache line size
can also be varied from 1 to 65,536 words by powers of 2,
provided that the line size selected is less than the cache size.

CRPC
Sending the screen image to the default printer.
Fade speed [62] o NN] 100

Exec speed ([100] ¢ IR 100
A Qi)
PEN2 PESI PEMM
Reads: 2225 1565 1185 1398 6365 K
Writes: 883 295 12§ 455 1768
Flops: 6758 @] 3560 18250
sgenn sgoam
PE# Total:
Hits:] []
Misses: @ [}

Ratio: 0% [1]

Shared Memory Access Patterns
Directery: <{es/dongarrs/SCHED/SHMAPA

Caches: 1
PE’s: 4

Trace file: trace.Paralleld

Line size: 1
Active PE’s: O oft

Cache stze: 1
Accesses: Cott

Policy: LRU :
Tine Hne: Cott E

READS:

FIG. 3. Multiple processors.

190

For simplicity, each cache in SHMAPA is initialized with
a cache replacement policy which consists of placing new
cache lines into the next free sequential location. When a
cache miss occurs (in other words, when a desired cache
line is not available within the cache), the new cache line is
loaded into the next unused position in the cache. In this
way the cache fills up sequentially starting from the first po-
sition and continues until all positions are occupied. When
the cache becomes full, the selected cache replacement pol-
icy takes effect, and normal cache operation commences.

The cache replacement policies currently supported by
the tool include Least Recently Used (LRU), Least Fre-
quently Used (LFU), First-In First-Out (FIFO), Clock,
Last-In First-Out (LIFO), and Random. The LFU mecha-
nism chooses the line that has been used the fewest number
of times since it was loaded into the cache. The FIFO mech-
anism simply keeps track of the order in which lines were
loaded into cache and replaces lines in the same order. The
Clock mechanism is an approximation to LRU using FIFO,
but as lines are used, a usage bit is set so the line will be
skipped over as the FIFO queue is traversed. The LIFO
mechanism is similar to the FIFO except that instead of re-
placing the lines in the order they were loaded, the lines are
replaced in reverse order. The Random mechanism simply
generates a random line number and replaces that line.
These are the more commonly used cache replacement pol-
icies, but SHMAPA has provisions for installation of a wide
variety of other policies.

4.3. Memory Access Animation

SHMAPA displays the activity in memory as a result of
the actions of an algorithm. Specifically, SHMAPA graphi-
cally represents loads and stores dynamically over time. Al-
though memory can logically be considered one-dimen-
sional, SHMAPA displays memory as being two-dimen-
sional. Among other reasons, the visual space available on
graphics devices encourages use of two dimensions. In addi-
tion, the algorithms of interest deal with two-dimensional
matrices.

To simplify the image displayed to the user, two separate
windows or canvases are used to visualize the single shared
main memory. On one canvas, all loads from main mem-
ory are shown; on the other canvas, all stores to main mem-
ory are shown. To further clarify the meaning of the display,
the main memory canvases are sectioned into separate rec-
tangular regions that represent the different matrices. These
regions are scaled and arranged to fit into a given canvas.
Each of the “loads” and “stores” canvases displays the same
arrangement of matrix regions to provide consistent obser-
vation of the activity in each matrix.

Within a given matrix region, an actual location or word
of memory is represented by a small square area. All squares
in all matrix regions in both main memory canvases are

DONGARRA ET AL.

uniform in size. These squares are arranged in the two-di-
mensional regions in rows and columns corresponding to
those of the given matrices. Chosen arbitrarily yet appropri-
ate to Fortran column-major convention, the rows of a ma-
trix are displayed from the top of a region to the bottom,
and columns from left to right.

An access to a particular location in memory, or matrix
element, is represented by the illumination of the corre-
sponding square on one of the canvases. This illumination
will occur appropriately on either the load canvas or the
store canvas, in the appropriate matrix region, and at the
row and column location of the matrix element accessed,
and will be drawn in the color of the PE that made the ac-
cess.

These illuminations occur in succession over time to pro-
vide an animation of the memory accesses to the various
matrices. The time stamps from the trace file provide an
ordering of memory accesses only; hence, the animation re-
flects memory accesses only, with no breaks for computa-
tion. The “exec speed” determines the degree to which the
animation is paused between successive trace events. There
can be no pause at all, or a pause of up to a few seconds
between events.

To avoid having the canvas become a confusing blur of
color even at slow execution speeds, it is necessary to do
more than simply color elements on and off as accessed.
To provide a more fluid and continuous animation, each
memory access is gradually faded with time after its initial
illumination. The initial color fades through a number of
small discrete jumps which gradually approach black.
Eventually, the memory access will reach black and then
default back to the canvas background color. This approach
provides the user with enough visual information to see
when things have not been referenced in a while.

Each individual memory access is faded separately in re-
lation to the amount of time that has expired since it was
illuminated. Note that ‘“time” here refers to trace time,
which is examined at each trace event time stamp to deter-
mine whether a given access should be faded. The amount
of time between fade steps determines the fade speed. By
reducing the fade speed, accesses will be visible long enough
to be compared with subsequent accesses, thus providing
more understanding of the locality of reference. Patterns of
accesses over large time periods can all be seen simulta-
neously and their ages identified by color brightness. By ad-
justing the fade speed properly, the memory access patterns
will show various characteristics of the given algorithm.

Theoretically, some accesses might be hidden. For exam-
ple, if a PE were to access the same location a second time
before previous accesses (by itself or by a different PE) had
faded, the access could go undetected. To avoid this situa-
tion, if the color of the accessed location is still fully illumi-
nated from a previous access and has not yet been faded,
accesses are flashed to black before illuminating.

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

4.4. Cache Animation

The cache window is animated in the same way as main
memory, with similar fading of accesses over time. Cache
lines are displayed vertically from top to bottom as sets of
square elements. The cache canvases are sized to fit an inte-
ger number of cache lines vertically, sometimes resulting in
leftover space in the last row. The cache canvases are also
shaped to have the overall cache window result in an aes-
thetically proportioned rectangle.

SHMAPA uses a main memory update policy called
write-through-with-no-write-allocate (WTNWA). This
policy requires no manipulation of the cache on a store.
Rather, the updated value is stored directly to the main
memory location independent of whether the affected
cache line is loaded into cache. Thus, there is only one can-
vas per cache memory, since only loads are displayed. On a
load, the accessed element is illuminated individually ex-

Sending the screen image to the default prinmter.
Fade speed [69] [}

Exec speed [100] o NN 100
B)

IXA
Reads: 738 518 495 838 2375
Writes: 78 as J00 400 s
Flops: @ [] 1878 3580 5373

sgemn sgean

[41] Total:
Hits: d4e4 569 1033
Nisses: 438 561 1052
Ratio: 48% se% 4%

READS:

CRPC -- Shared Memory Access Patterns

191

cept in the case of a miss, where the entire cache line is illu-
minated (as well as the corresponding locations on the main
memory load canvas). On a store, the cache canvas is not
illuminated; only the proper location on the main memory
store canvas is colored (see Fig. 4).

4.5. Statistics Displayed

In addition to the animated memory access canvases,
three other canvases animate several of the statistics gath-
ered while tracing. The remaining statistics are displayed
numerically on the main panel.

The first of the three animated canvases is a sliding graph
which illustrates the number of actively executing PEs at
any given time. Since work may not always be available in
the parallel pool, some PEs will remain inactive for periods
of time. The graph outlines a vertical histogram that sums
the number of active PEs. The graph slides with time pro-

Directory: <es/dongarra/SCHED/SHMAPA
Caches: 2

PE’s: 4

Trace file: trace.Parallel
Line size: &

Active PE’s: Cots

Cache size: 256
Accesses: 0 off

Policy: LRU
Time line: Cott

L]

200000200000 000000000 00000200,

FIG.4. Cache animation.

192

portional to the time elapsed according to the trace event
time stamps. Hence, this time reflects actual execution time
including calculation, as opposed to the memory canvas an-
imation which does not. The graph is appropriately drawn
with the colors of those PEs that are active (see Fig. 5, the
canvas labeled “Number of active PE’s”).

The second animated canvas displays the total number
of accesses made to each memory location or matrix ele-
ment in the different matrices. This canvas is a horizontal
histogram that builds from left to right as the elements are
accessed. These matrix elements are arranged sequentially
from top to bottom in a one-dimensional sequence. Arbi-
trarily, this sequence is generated by concatenating one row
after another in the matrices. Each access added to a given
location is shown as a colored dot stacked to the right of the
previous access dots. The color of each dot reflects which
PE made each reference to that particular location (see Fig.
6, the canvas labeled “Number of references”).

CRPC --

Sending the screen image to the default printer.
Fade speed (60] o IENNNEENNNNNNN] 100
Exec speed [180] @ 180
0 O R s B B

rl X K 02 X ©xn
Reads: 2332 5176 4304 2488 2332 2392 2392 2392 2392
writes: SS8 3342 2678 654 (1] §S8 §S8 §58 58
Flops: 3368 3368 3360 3360 3368 3360 3366 3368 360
strsm strsm strsm strss strsa strsa strsa strsa strsa
cn Total:
Hits: @ []
Misses: @]
Ratto: @2 (2]
READS: 1 2 3 4 S 6 7 8

Shared Memory Access Patterns

DONGARRA ET AL.

The third and final animated canvas shows a time-line
history of accesses similar to the access histogram. Unlike
the access histogram which is stacked tightly against the left
edge, the time-line histogram is spread over the width of the
canvas. Each access is marked in a similar fashion as on the
access histogram, with each dot’s color representing the PE
making the access, but on the time-line histogram the hori-
zontal positioning has meaning. The entire width of the
canvas represents the entire length of time of execution of
the given trace. Each dot is placed between the left and right
edges of the canvas proportionate to the relation of its time
stamp to the total execution time (see Fig. 6, the canvas
labeled “Time”).

All of these animated canvases are turned on and off with
cycle switches on the main panel. To save system overhead,
the animated canvases are completely inactive when not
displayed. They are initialized when turned on, and only
then are statistics gathered and displayed.

Directory: <{es/dongarra/SCHED/SHMAPA
Caches: 1 Line size: 1

PE’s: 16 Active PE’s: Ton

Trace file: trace.smlui
Cache size: 1 Policy: LRU
Accesses: Coff Time line: Coff

23392
558
3360
strsa

Total:
43264
13848
53760

2382
§58
3368
strasa

2392
558
3360
strsa

2392
§38
3360
strsa

2392
538
3368
strsa

2392
538
3368
strsa

2392
538
3360
strsa

N

WRITES:

5
s
E:
S
kS

A A ARSI KA A8 3 A

3333233333333333.

FIG. 5. Multiple processors.

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

193

Sending the screen image to the default printer.

Fado spesd (6] o NN)10

Exec speed [100] o NN 100
PEML PE#3 PEMM Total:

4810 18788

1060 4785

14375 38500

sgonn

Reads: 576§
Vrites: 2090
Flops: 14375
sgenn sgeam
cn Total:
Hits: @ []
Misses: 8 [}
Retio: 0% (]

4580
1140
7078

3538
495
1875
sgoan

Number of references -->

CRPC -~ Shared Memory Access Patterns
Directory: <es/dongarra/SCHED/SHMAPA
Caches: 1

PE’s: 4

Trace file: trace.Paralleld
Cache stze: 1 Policy: LRV

Accesses: Con Time Vine: Con

Line size: 1
Active PE’s: Cotf

KT
0 n

ot

Wi
J R —

b
s T T

T T T Teeeescccccccsenanenn

FIG. 6. References over time.

In contrast, across the bottom of the main panel, various
statistics for the PEs and caches are always displayed. Run-
ning totals are kept for each statistic and displayed dynami-
cally during tracing. Overall running totals for each statistic
across all PEs or all caches are also displayed dynamically.
The displays are automatically adjusted to display statistics
for the proper number of PEs and caches.

The information displayed for the PEs consists of a tabu-
lation of loads, stores, and floating-point operations (flops)
executed during tracing. The flops are determined by spe-
cial trace events read in from the trace files during tracing.

The information displayed for the caches consists of a
tabulation of cache hits, cache misses, and the cache hit ra-
tio. Cache hits reflect the number of load accesses that were
satisfied through cache with previously loaded locations.
Cache misses reflect the number of load accesses in which
a cache line had to be loaded into the cache from main
memory to satisfy the access. The cache hit ratio i; the per-

centage of all accesses that resulted in cache hits. This ratio
describes the efficiency of the cache in satisfying the mem-
Ory accesses.

5. IMPLEMENTATION AND PORTABILITY
OF SHMAPA

The Shared Memory Access Patterns tool was engineered
in C language [1] through the use of the SunView window-
ing system. The tool consists of a number of windows, pan-
els, and canvases that together animate the memory ac-
cesses as described in the previous section. This section will
explain the operation of the more vital and unusual soft-
ware for SHMAPA. The trace file format, as well as the
method of efficiently processing the trace files, will be dis-
cussed. The matrix region mapping, cache mechanism and
window mapping, the color maps, and the memory access
flashing and fading will also be covered.

194
5.1. Trace File Format

As previously stated, the trace files are actually files con-
taining output dumped from modifier user applications.
The trace data consist mostly of numerical and some char-
acter information. These data represent various types of
trace events which are subsequently interpreted by
SHMAPA. An event begins with an integer event type
which determines the syntax of the remainder of the event.
All data are separated by white space, and new lines-are not
interpreted. The currently defined event types include ma-
trix definition, load, store, information message, flops count
and subroutine name, parallel start, parallel end, sequential
group start, and sequential group end.

The matrix definition event defines a new matrix to be
referenced by SHMAPA. The arguments to this event in-
clude a matrix ID and the number of rows and number of
columns in the matrix. The matrix ID is used by other
events to reference the given matrix. The ID is a unique
integer from 1 to the maximum allowable number of matri-
ces, which is a predefined constant. The number of rows
and number of columns are integers greater than 0.

The load and store events represent memory access re-
quests for particular sets of matrix elements. Both events
have as arguments a matrix ID, a starting row and column,
an ending row and column, and a time stamp. The matrix
ID must be in the valid range and for a matrix that has been
defined. Also the rows and columns referenced must exist
within the matrix size specified by the given matrix defini-
tion. The time stamp is a floating-point value representing
the program execution time elapsed when the event was
logged by the user application.

The information message event allows the user to specify
some comment about a particular matrix or operation oc-
curring in the application. The arguments for this event are
a matrix ID and a character string, including white space,
concluded by a new line. The matrix ID must be for a valid,
defined matrix. The information message is displayed as a
special text item on the main panel during tracing.

The flops and subroutine name event provides informa-
tion concerning the number of flops that have occurred dur-
ing the previous memory accesses, as well as the name of
the subroutine currently executing. The arguments to this
event are a matrix ID, an integer representing the flops
count, and a character string subroutine name. The matrix
ID must be for a valid, defined matrix. The flops count is
added to the running total kept for the particular PE execut-
ing this event, and a special text item for that PE displays
the subroutine name. The subroutine name can contain no
white space.

The last four events (the parallel start, parallel end, group
start, and group end events) are related and are used only
to control the combining or separation of events as sequen-
tial or parallel groups. These events have no real arguments,

DONGARRA ET AL.

except for character string labels that are discarded. These
labels serve only to clarify the trace for human observers.

5.2. Trace File Processing

Before a given trace file can be “loaded” for tracing, cer-
tain statistics about the file must be obtained. When the
LOAD button is clicked, the interactively selected file is ac-
tually preprocessed once completely before positioning at
the start for tracing. All the events for the entire trace are
loaded in, and information is saved about all matrices, the
length of time of execution, and the minimum time be-
tween event time stamps.

All matrix definitions are processed in this initial step. In
this way, all information is known from the beginning
about how many matrices will be used, as well as their sizes.
This information will be used to map all matrix regions into
the available space on the main memory canvas in one
complete step. It is not then necessary to repeat the time-
consuming operation of rearranging the matrix regions be-
cause another matrix is encountered.

By monitoring the time stamps of the trace events as they
are loaded in, the total trace execution time and the mini-
mum time between time stamps can be determined.
Knowledge of the total execution time makes possible the
time-line histogram. This histogram displays accesses pro-
portionate to the relation of elapsed time to total trace exe-
cution time. The minimum time between time stamps pro-
vides a granularity number for use with the active PEs slid-
ing graph. The graph uses this minimum time to scale the
distance that the graph slides with the passage of time, as
measured by the trace event time stamps.

Once the preprocessing step has completed, the matrix
region mapping operation is done, and all displays are reset
and initialized. At this time, the beginning of the trace file
is loaded in and converted to an internal representation.
There are several reasons for converting to this internal rep-
resentation.

The main reason is performance, considered first as
throughput. In an animation tool, it is best to have fast exe-
cution to provide fluid graphics. After converting to inter-
nal representation in one intensive I/ OP operation, all sub-
sequent references to the trace information can be made
from memory instead of secondary storage, thus increasing
the overall speed of processing the trace events. Rather than
repeatedly waiting for I/O devices, information can simply
be fetched immediately from memory. For the same reason,
response time performance is also increased. Since user in-
terface interrupts do have to wait for I/ O operations to fin-
ish aside from the initial loading period, response time will
be decreased. :

Another reason for loading the data into memory is flex-
ibility. The trace information in memory is randomly acces-
sible, as opposed to the trace file which provides sequential

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

access only. Hence, having trace events in memory allows
jumping and reverse tracing. Although neither of these op-
tions has been implemented, the capability exists and is
valuable.

Of course, considering for a moment the potential size of
trace files, it becomes immediately obvious that it is infeasi-
ble to load the entire file. The time taken to load a large
trace would be substantial and annoying. The memory re-
quired to store all of the trace event information would also
be quite extensive, even if stored in a condensed format.
These drawbacks actually lead to a more desirable solution,
however.

By loading small portions of the trace file at a time, only
a few thousand trace events, the benefits are still gained
without an unacceptable amount of time or memory. In
fact, we have observed in testing the tool that when sets of
only a few thousand events are used at a time, the time delay
required to load and convert the trace data is nearly imper-
ceptible. Rather, the break in animation to load the next
portion of the trace data is lost in the midst of the graphic
activity on the screen.

5.3. Internal Trace Information Representation

The trace information is converted internally into a hier-
archal structure of the work to be done. On the top level of
this hierarchy is the designation of pool entry. Pool entries
consist of one or more task entries, which are entries of the
next level down in the hierarchy. These task entries consist
of one or more entries of the lowest level, which are appro-
priately called trace entries since they store the original trace
data. The purpose of this hierarchy is to provide a clear ab-
straction of the work and to expedite division of work be-
tween multiple PEs.

The relation of the trace, task, and pool levels is stored in
arrays of appropriate trace, task, and pool structure entries.
The lowest trace level array is actually a sequential list of
the trace events, except for the parallel/group starts/ends,
in the order read from the trace file. The trace entry struc-
ture holds data only, with no pool hierarchy interconnec-
tion information. This structure includes an event type, or
opcode, and a matrix ID. The structure also has elements
that can be used to store the various different types of data
needed by trace events of all types. Several integer values, a
floating-point value for time stamps, and a character buffer
for strings and messages are all included.

The task and pool structures contain all the information
necessary for maintaining the pool hierarchy interconnec-
tions. This information is derived from the parallel/group
start/end trace events. The task and pool structures contain
similar information, each structure referencing the struc-
tures in the level below it.

The task structure contains a type that identifies a partic-
ular task as consisting of a single trace event or a group of

195

trace events. The structure also contains two index markers
which point to the specific trace array elements contained
in the task. These markers are simply integers that store the
trace structure array indices of the first and last trace array
elements of the task. The task structure also stores one more
marker to keep track of which trace event is currently await-
ing processing in the task.

The arrangement of trace events into tasks is generated
from the group start and end trace events. If a trace event
occurs by itself in the trace file and not between group start
and end events, it is considered a single task. In this case,
the task consists of just the one trace event. Otherwise, all
trace events that occur between a particular group start
event and its matching group end event will be considered
members of a group task.

The pool structure is identical to the task structure, but
represents a piece of work rather than a task. The piece of
work, in fact, contains tasks. The pool structure contains a
type value, begin and end pointers, and a current task
marker. Here the type may be either parallel or sequential
to designate whether the particular piece of work in the pool
can be processed by many or only one PE, respectively. The
begin and end pointers reference into the task structure ar-
ray to identify which specific tasks are a part of the piece
of work. The marker points to the task currently awaiting
assignment.

The arrangement of task events into pieces of work is gen-
erated from the parallel start and end trace events. If a task
is generated from any number of trace events that exist in-
dependently outside a parallel start and end events in the
trace file, then that one task constitutes a single sequential
piece of work in the pool. Otherwise, any number of tasks
generated from trace events that occur between a parallel
start event and a parallel end event will be combined into
one parallel piece of work.

The method of depleting the pool of work amounts to
processing pieces of work one by one in order. Each piece
of work is processed by assigning the tasks making up the
piece of work to PEs, which then execute the individual
trace events contained in those tasks. The tasks making up
a particular piece of work may be executed by several
different PEs, but all trace events in a given task, single or
group, must be processed by a single PE. Hence, only one
PE may process a sequential piece of work, which only con-
tains one task.

From the PE perspective, a given PE requests work and
can then receive a task containing one or more trace events.
The PE will execute these trace events in order until the task
is completed. When the task completes, the PE will request
another task from the current piece of work in the pool.
Meanwhile, other PEs are requesting tasks from the current
piece of work. All PEs with assigned tasks execute their trace
events in parallel. When there are no more tasks to assign,
the unassigned PEs wait for the PEs with task assignments

196

remaining to finish the execution of their tasks. Only when
all tasks within a given piece of work are completed can the
PEs receive tasks from the next piece of work. Hence, the
completion of a piece of work can be considered a type of
synchronization point, where all PEs must wait until all are
ready to proceed.

To keep track of which tasks and trace events have been
processed, the markers in the pool and task structures are
used. Receipt of a task will increment the pool structure task
marker to the next available task. A PE increments the task
structure trace marker through the trace events as it pro-
ceeds.

With the hierarchy defined in this way, all valid trace files
can be broken into pieces of work which are easily processed
by SHMAPA. Parallel and sequential work can be assigned
to any number of PEs requesting work while preserving al-
gorithm function and efficiently exploiting the parallelism
present.

5.4. Cache Mechanism

The cache mechanism for SHMAPA is internally repre-
sented by several data structures that store the current cache
states for each cache. An indexing structure provides quick
access to the structure which stimulates mapping of the
cache locations to main memory. The implementations of
cache replacement policies have been specially designed for
flexibility so that many diverse policies may be added easily.

The main data structure in the cache mechanism main-
tains the mapping information between cache and main
memory. This array of cache elements contains references
to the particular matrix ID and the address of the matrix
element’s data which it stores. Each cache element also
holds an index to the first cache element in each cache line
to expedite handling of cache misses.

To reduce searching time, an indexing array is arranged
to easily determine whether a desired matrix element is in
cache. Each index entry references the main cache structure
and points to the particular cache element that stores the
desired matrix element. If the matrix element is not in
cache, the index will point nowhere.

The cache replacement policies that determine which
cache line is replaced on a cache miss are carefully imple-
mented to allow flexibility and easy addition of more polic-
ies. Each cache line is provided with a status word for use
in identifying the desired replacement characteristic. When
a cache line is referenced, its status is updated as specified
by the particular policy chosen. Also, when a miss occurs
and a cache line must be replaced, the replacement is done
under the control of that policy.

Two distinct methods are used. Many of the standard
policies implemented by SHMAPA share similar character-
istics and can be implemented by general routines that op-
erate slightly differently depending on the precise policy in

DONGARRA ET AL.

effect. For these policies, the status updating is handled in
such a way as to allow replacement choices to be made iden-
tically for all such policies. For example, LRU and LFU
policies may share the same replacement choice routine.
The status update routine places a time stamp in the status
words for LRU and stores total references for LFU. Now, a
single routine that searches for the status word of smallest
magnitude can be used to choose the next cache line to be
replaced for both policies.

The other possible method requires separate routines for
each policy since they perform unusual and unique opera-
tions for cache replacement. To combine these two meth-
ods, global high-level status update and replacement choice
routines are created. These master routines pair each policy
specifically with its appropriate routines, and then calls
these particular routines depending on the currently active
policy. Policies that share the same routines will all be
paired with the same set of status update and replacement
choice routines and can take advantage of this overlap.
Meanwhile, other more unusual policies will use their spe-
cial unique routines. This method is implemented through
simple conditional blocks that choose which routines han-
dle the status and replacement manipulation for the current
policy. It is trivial to add a new policy by including another
case in the conditional block that references the new
policy’s routines.

5.5. Matrix Region Mapping

During the preprocessing step in loading a trace file, all
information regarding matrices is obtained. With this infor-
mation, regions can be defined on the main memory can-
vases for displaying accesses to the given matrices. The as-
signment of a matrix to a canvas region is consistent for
each of the of the two main memory canvases. In assigning
these regions, efficient use of the display space is the main
concern. The goal is to scale and arrange the regions in such
a way as to maximize the size of an individual matrix ele-
ment while minimizing vacant space between regions.

To avoid confusion and to simplify the mapping prob-
lem, the matrix regions are arranged in order by their matrix
IDs, as declared by the user in the trace file definitions. To
minimize vacant space, the rectangular regions are ar-
ranged side by side with adjacent sides parallel. The regions
are placed starting from the upper left corner of the canvas
and proceeding horizontally to the right. When the region
placement reaches the right edge of the canvas, it wraps
around and begins underneath, starting again from the left.
The number of regions per row depends on the individual
matrix sizes as well as the size of a matrix element square.
The size of a matrix element is specified by a matrix factor
which determines the number of pixels per side in each ele-
ment square displayed. This matrix factor is consistent
across all matrix regions. Setting the matrix factor deter-

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

mines the number of regions that will fit in a particular row
of regions on a canvas. Since the matrix sizes are static for
agiven trace, and the number of regions per row depends on
the matrix factor, this matrix factor is the only independent
variable parameter.

Hence, to find the most efficient arrangement given the
above constraints and the size of the main memory can-
vases, the matrix factor is varied. The initial solution tried
is with a matrix factor of 1, meaning that each matrix ele-
ment will be represented by a 1 X 1 pixel square. This is the
smallest possible matrix factor. If the matrix regions cannot
be arranged to fit when scaled by this factor, then no possi-
ble solution for matrix region arrangement exists, the matri-
ces cannot be mapped, and that particular trace file cannot
be used. Otherwise, if a solution is found for the initial fac-
tor, then other arrangements are tried with larger factors to
search for the most efficient solution. The positive integer
factors increase to approach the best factor, or the factor
that will provide the most efficient solution. The largest pos-
sible matrix factor is desired because it scales the matrix re-
gions to the largest dimensions, thus filling more of the
available space on the canvases. When a factor is found that
scales the matrix regions to a size too large to accommodate
a solution, then the previously tried factor is known to be
the best possible factor. The matrix region mapping for that
factor is then used for the trace.

Once the most efficient mapping is found, the placement
of the matrix regions is refined slightly to provide a more
aesthetic display. The vacant regions around the matrix re-
gions are adjusted to leave even borders and spaces between
matrix regions. This adjustment is done by separating and
centering the matrix regions evenly across the canvases both
vertically and horizontally.

5.6. Cache Window Mapping

Some amount of region mapping is done for the cache
display. This problem is simpler than the matrix region
mapping for several reasons. Since every cache is of identi-
cal characteristics, all individual cache regions should have
the same dimensions. The cache regions are displayed in
a dynamically created special window, so there are fewer
restraints on the overall canvas size. The regions are ar-
ranged in only one row, so the mapping actually requires
no placement but only size adjustment. The regions need
only be scaled, stretched, or compressed to fit into the de-
sired cache window size.

This fitting can be done in a similar way to the matrix
regions by gradually increasing a cache factor until the
cache window no longer fits on the display. The resulting
individual cache region dimensions for the given cache fac-
tor can be produced by a single calculation. This calculation
relates the number of cache elements, the cache line size,
and the number of caches to the desired cache window pro-

197

portions and maximum size. These proportions are derived
from the overall proportions of the pair of currently defined
SHMAPA main memory canvases. An aesthetic combina-
tion results when the cache window is placed over the main
SHMAPA window.

5.7. Color Map Manipulation

The colors used by SHMAPA to distinguish the actions
of different PEs are the result of extensive color map manip-
ulation. In fact, one of the more complex elements of the
SHMAPA software involves the generation of the color
map. A color map is a data structure containing the list of
colors available for use at any given time on a color display.
This structure is an array where each entry stores informa-
tion concerning a given color’s characteristics, specifically
the red, green, and blue (RGB) mixture which produces
that particular color on the display. The maximum color
map size is fixed by the window system, thus limiting the
number of colors available at any particular time. This also
restricts the number of allowable PEs configurable for SH-
MAPA, since many color entries are needed for the various
PE’s fading colors.

The complexity in generating the color map for SH-
MAPA exists because the colors used must be easily recog-
nized as distinct when mixed and displayed together. Gen-
erating a color map is in general a simple problem; however,
generating large sets of distinguishable colors requires care-
ful planning. Especially with SHMAPA, the colors used are
automatically generated depending on the number of PEs
represented. The color maps could certainly be statically de-
fined with reasonable effort if only a few small sets of PEs
were needed, but this would be infeasible for many large
sets.

Rather than deal with repeated complete generation of
different-sized color maps by hand, we constructed an auto-
mated method for color map generation. This automated
approach, given proper fine-tuning of parameters, creates
color maps of any desired size with a distinguishable set of
colors.

The method consists of combining a set of numerical
functions to generate the desired color map values. Since a
color is presented by its RGB mixture, these functions need
only set up the appropriate ratio between the red, green, and
blue intensities for each color. These intensities are actually
maintained as three discrete integer values which lie in the
possible range of intensities for the window system.

The functions used to generate these values are created
and combined in relation to the colors they produce. Given
three different base component colors (red, green, and
blue), there are only four interesting combinations. Since a
color need not be combined with itself, these combinations
are blue with red, red with green, green with blue, and the
combination of all three. For any given combination of col-

198 DONGARRA ET AL.

ors, many shades can be generated by the various intensity
ratios. Before a distinguishable set of colors is chosen from
these possible shades, they are collected to form an aesthetic
progression.

To produce this pleasing smooth arrangement of colors,
the shades generated for each combination as well as the
order of the combinations themselves are considered. The
order is set by the order of the generating functions as well
as the characteristics of those functions. In each of the two-
color combinations, the shades generated by the functions
start with one of the colors at maximum intensity and the
other at some low, but not minimum, intensity (see Fig. 7).
(Colors tend to have an unnoticeable effect for most of the
lower intensity levels, so it is not necessary to set the inten-
sity to the absolute minimum.) To generate the first half of
the shades, the function gradually increases the second
color in intensity until both colors are at maximum inten-
sity. The third unused color is turned offat minimum inten-

Sending the screen image to the default printer.
Fade speed [4] (N |] 100
Exec speed [100] ¢ NN 100
(Cache) & @

Total:
Reads: 1412 1412
Writes: 636 696
Fleps: @ (]

U #1 Total:
Hits: G608 (11}
Hisses: 804 804
Ratio: 43% 4%

CRPC -- Shared Memory Access Patterns

sity for all of these shades. When both colors are at the maxi-
mum, the first color is then gradually decreased to a mini-
mum intensity in generating the second half of the shades.
In this way, the resulting starting and ending shades are ap-
proximately pure base component colors.

If the color combinations are arranged properly with
matching pure component colors adjacent, the collection of
colors flows pleasingly from one shade to the next without
a sharp contrast. The order used for SHMAPA is as follows:
pure blue to purple (blue and red) to pure red, pure red to
orange (red and green) to pure green, pure green to aqua
(green and blue), and then to white. Note that the aqua
does not return back to pure blue, which was already used,
but instead adds red to produce white with all three colors
at maximum intensity.

For each of these color transitions, simple linear func-
tions are used to either increase or decrease the intensity
levels through the necessary ranges. These functions can be

Directory: <es/dongarra/SCHED/SHMAPA
Caches: 1 Line size: 1 Cache stze: 512

Active PE’s: 00" Accesses: cﬂ'f

Trace file: trace.mm
Pelicy: LRU

Time Vine: Coff

PE’s: 1

READS:

Wi
prAr
{tirtesetel

FIG.7. Matrix multiply example.

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

fine-tuned by adjusting the rate which intensity is increased
or decreased. Not all possible shades are actually needed, so
the functions only generate a particular number of shades
for a given color combination. By generating colors in even
spacing across the entire set of all possible shades, a color
map is generated with as many distinct colors as desired.
The quality of distinction between two colors is determined
by the space between the two shades, meaning the number
of other shades which could be generated between them.
Finally, once the number of desired colors has been cre-
ated, these colors are placed into a color map array, but
more than just these pure colors are necessary. All of the
colors need to be faded with time on the memory displays.
To accomplish this, the desired number of faded shades for
each color are included with the pure colors and placed into
the color map array in subsequent locations. These faded
shades are created by repeatedly lowering the intensities of
the base components that make up the pure color. This de-
crease occurs at a predefined constant decay rate. No at-
tempt to preserve the ratio of the three base components is
necessary, so this decay rate only represents a constant
value to be subtracted from each base component intensity
value. The magnitude of this decay rate determines the ex-
tent to which the faded shades eventually approach black.

5.8. Memory Access Flashing and Fading

For each load and store access event animated by SH-
MAPA, the information for the event is processed by a spe-
cial routine that appropriately illuminates the memory dis-
plays and fades the previously illuminated accesses. This
routine is also responsible for updating the animated graphs
and histograms, if activated.

The routine directs the drawing of the memory accesses
on one of the two main memory canvases, as determined
by the event opcode. Load accesses are drawn appropriately
on the load canvas, stores on the store canvas. Since trace
events actually reference blocks of several matrix elements,
all of these elements must be drawn at the same time in the
appropriate color of the PE making the access. When the
cache system is active, the elements are drawn one at a time
in order as they are searched for in the cache, since each
given element may be part of a separate cache line requiring
individual attention. Each element may need to be drawn
not only on the cache window but also on the main memory
load canvas depending on whether the element is found in
cache. If a cache miss occurs, all the elements in the cache
line must be drawn along with the originally requested ele-
ment in both the cache window and the main memory load
canvas. This is to reflect the loading of the line into cache.
When the cache system is turned off, all accesses for a given
trace event are displayed as a single block access. As an opti-
mization, the entire rectangular region is drawn all at once
on the main memory canvas.

199

The fading of colors is accomplished by storing informa-
tion for each matrix element while animating. Each ele-
ment has its own data structure which maintains a time
stamp and a color map index. The time stamp is set to that
of the trace event that last accessed that matrix element.
The color map index simply keeps track of which color was
last drawn to that element.

As the trace time passes, the current time stamp is com-
pared to that for each matrix element to decide when its
present color should be faded. With each new trace event,
each individual matrix element is considered separately for
fading. The fading occurs at a period determined by the fade
speed setting. If the matrix element time stamp has aged by
at least this period since the last fade, then the element is
redrawn in the next faded shade. The color map index for
that element is then adjusted to point to the new shade. The
faded shades for each color are located together in the color
map to allow a simple decrement for this adjustment.

Separate fading for each matrix element provides a more
accurate view to the user. Rather than fade all elements on
the display simultaneously, hence fading some elements too
soon or too late, each element is faded on its own time.
There is no blurring of the ordering of events by such a sim-
plification of the fading activity.

5.9. Portability

SHMAPA was implemented to simplify its porting to
different window systems. Currently it operates under ei-
ther SunView or X Version 11.

To facilitate portability, the amount of codes dependent
on the window system in use was minimized. Specifically,
generic routines were created for basic window system func-
tions. The window system is specified at compile time. Mac-
ros are included to make data type names equivalent (e.g.,
Panel_item in SunView is aliased to Widget when compil-
ing for X); to specify the program code to be compiled (e.g.,
X or Sunview code); and to draw lines, rectangles, and
highlight labels. In addition, some of the more complicated
routines were provided, such as those for copying pixels and
sliding window contents.

Separate files were created for the initialization and event
handling functions of SHMAPA. The initialization rou-
tines include the routines to set up the screens, initialize
windows, and install the color map. The event handlers are
the functions that process events generated by the user in-
terface. These are also significantly different for X Version
11 and SunView. Because of their length and dissimilarity,
these programs were separated into different files for each
of the window systems provided.

6. PARALLEL PROCESSING

Since our matrix algorithms use the BLAS, we simulate
the use of multiprocessors in the calls to the BLAS. (This is

200

indeed the way the LAPACK project is exploiting parallel
processing on shared-memory machines.) As an example,
we describe the additions that we made to the Level 3 BLAS
routine SGEMM.

SGEMM performs a matrix-matrix multiplication to up-
date a third matrix, C < a4B + BC. If we look closely,
we can see that each column of the resultant matrix can be
computed in parallel. In others words, each of the following
matrix-vector operations, cy; < aAby; + By, for j = 1,
. . ., nwhere n is the number of columns of B and C, can
be executed in parallel.)

The main loop of SGEMM is

DO50,J=1,N
CALL SGEMV (TRANS 4, NROWA, NCOLA,
$ ALPHA, 4, LDA, B(1,J), 1,
$ BETA, C(1,J), 1)
50 CONTINUE

which performs the matrix—vector operations described
above. To indicate the parallelism, we added calls to output
the desired information to the trace file. The main loop be-
came

call par(0)

DO5S0,J=1,N
call group(0)
call ops(idc,2*m=k,’ sgemv’)
call r(ida, ia,ia+nrowa—1,ja,ja+ncola—1)
call r(idb,ib,ib+nrowb—1,jb+ j—1,jb+j—1)
call r(idc,ic,ic+ m—1,jc+j—1,jc+j—1)
call w(idc,ic,ic+m—1,jc+j—1,jc+j—1)

call group(1)
CALL SGEMV (TRANSA, NROWA, NCOLA,
$ ALPHA, 4,LDA, B(1,J), 1,
$ BETA, C(1,J), 1)
50 CONTINUE
. call par(1)

The call to par(0) indicates the beginning of a parallel
section. A parallel section is divided into a set of groups each
of which represents one unit of computation and is inde-
pendent of all other groups within that section. Thus, all
groups in a parallel section can be executed concurrently.
The call to group(0) indicates the beginning of group. The
call to ops records the number of floating-point operations
performed during the computation and the name of the
subroutine performing the computation. The calls to r and
wrecord the load and write memory accesses of the subrou-
tine. The call to group(1) ends the current group, and the
call to par(1) ends the parallel section.

The resultant trace file, produced by the instrumented
Fortran program, has the same format as our original mem-
ory analysis tool, but with the following additions:

« Indicate the beginning of a parallel section:
6 Start parallel

DONGARRA ET AL.

« Indicate the end of a parallel section:
7 End parallel

« Indicate the beginning of a unit of computation:
8 Start group

« Indicate the end of a unit of computation:
9 End group

An example of the trace output is displayed below:

01 100 100
6 Start parallel
8 Start group
51 16strsv
1111611
11173211
21173211
9 End group

8 Start group
51 16strsv
1111611 0.95000
1117 3222 0.95000
2117 32 22 0.95000
9 End group

8 Start group

51 16strsv
1111611 0.95000
1117 3233 0.95000
2117 32 3 3 0.95000
9 End group

0.93333
0.93333
0.95000

7 End parallel

7. SHMAPA IN OPERATION

A number of simple functions are used in controlling the
tracing operation of SHMAPA. A row of buttons on the
main panel of the tool constitutes the central point of con-
trol. These buttons are labeled LOAD, GO, STOP,
CACHE, INFO, SCREEN DUMP, and QUIT. There are
also two sliders that control characteristics of the anima-
tion.

The LOAD, GO, and STOP buttons control the actual
tracing. The LOAD button commences processing and
loading of the trace file to be used to drive the tracing. The
file selected at the time the LOAD button is clicked is con-
sidered to be the file to load. The GO and STOP buttons
start and stop the tracing animation, respectively. After
loading a trace file, clicking GO starts the tracing, which will
continue until the entire file has been traced or until the

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

CRPC -- Shared Memory Access Patterns
Sending the screen image to the default printer. Directory: <es/dongarra/SCHED/SHMAPA
Fade speed [108] o 100 Caches: 16 Line size: 32
Exec speed [1001 ¢ NN 100 PE’s: 16 Active PE’s: Coff
(toad) (Go) (Stop) (Cache) (Into) »P)
Gosd %ﬁ PEF2 PEN3 PEM PEN7 PEN® PENS PEFO PEFI1 PEM2 PEM3 PENM4
Reads: 945 1439 1570 @ 615 1280 815 348 1548 788 545 19580 1165 1896
Writes: 128 225 275 @ 228 495 205 18 48 58 388 445 235 395
Flops: © 8125 o (]] 4875 o (] (]] 1875 7580 3508 3758
strsn sgenm sgemm sSgenm sgemm sgemm
C#M CF2 C#I3 C#4 CIS CIS CciT cN8s C¥S CHMe CM1 CH2 CHM3 CH¥4
Hits: @ (] [] (] (]]] o (] (]] (] s (]
Misses: 8 (] (]] (] (]] (] (]]] (] (] (]
Ratio: 6% (1) (1] [2] (2] X (13 (13 (13 [1] [1] (2] (1) (1]

Cache size: 1824

Trace file: trace.Parallel
Policy: LRU

Accesses: Coff Time Vine: Coff

PE#S PEMG Total:

55 o 15295

se0 9 3855

] [38625

c#15S C#16 Total:

(] []

° . .

" (13 "

201

FIG. 8. Control panel.

STOP button is clicked. To change the system configura-
tion during tracing, the STOP button may be clicked to
temporarily interrupt the trace. Then after configuration
changes have been made, GO may be clicked again to con-
tinue tracing where interrupted. Depending on the config-
uration change, some trace information may be lost at the
point of interruption.

The CACHE button turns the cache system on and off.
Cache is off by default when the tool is initiated, and with
cache off no cache window is displayed. Upon clicking the
CACHE button, the cache will be turned on and the current
interactively set cache configuration will be initialized. The
special cache animation window will then be displayed.
This window consists of a rectangle divided into the proper
number of identical smaller rectangles which each represent
an individual cache memory. Repeated clicking of the
CACHE button will successively turn the cache system off
and on. Cache configuration may be altered with the cache
on or off, but changes will take effect only if the cache is
turned on.

The INFO button is used for producing text output from
SHMAPA. IfINFO is clicked instead of GO when a file has
been loaded, then no animation will occur and only a text
description of the tracing will be produced. This description
can be controlled by various command line arguments to
SHMAPA which produce output of the desired length and
detail.

The SCREEN DUMP button is used to capture the cur-
rent raster image of SHMAPA to be output to laser printers.
This feature works with color or black-and-white printers.

The QUIT button exits the tool.

The two sliders on the main panel control the two anima-
tion characteristics manipulated by the tool. The Update
speed slider controls the length of time the memory refer-
ence is held on the screen before fading away. The Execu-
tion speed slider controls the speed at which the trace file is
processed; this slider expresses the event display speed as a
percentage of the fastest possible speed.

Figure 8 shows SHMAPA’s main user control interface.

8. AVAILABILITY OF OUR TOOLS

The software described in this report is available electron-
ically via netlib [10]. To retrieve a copy, one should send
electronic mail to netlib@ornl.gov. In the mail message, one
should type

send index from tools
send shmap from tools

UNIX shar files will be sent back. To build the parts, one
need only ship the mail file (after removing the mail
header) into an empty directory and type “make”.

9. CONCLUSIONS

SHMAP is intended to provide an animated view of a
program’s memory activity during execution. By playing
back a program’s execution, we are able to study how an
algorithm uses memory, to experiment with different num-
bers of processors and different memory hierarchy schemes,
and to observe their effects on the program’s flow of data.
Using such tools thus provides insight into algorithm be-
havior and potential bottlenecks in computationally inten-
sive parallel algorithms.

REFERENCES

1. Kernighan, B., and Ritchie, D. The C Programming Language. Pren-
tice-Hall, Englewood Cliffs, NJ, 1988.

. Hwang, K., and Briggs, F. Computer Architecture and Parallel Process-
ing, McGraw-Hill, New York, 1986.

. Ahuja, S., Carriero, N., and Gelernter, D. Linda and friends. IEEE
Comput. 19, 8 (Aug. 1986), 26-34.

. Bershad, B. N., Lazowska, E. D., and Levy, H. M. PRESTO: A system
for object-oriented parallel programming. Tech. Rep. 87-09-01, De-
partment of Computer Science, University of Washington, Sept. 1987.

. Brewer, O., Dongarra, J., and Sorensen, D. Tools to aid in the analysis

of memory access patterns for Fortran programs, Parallel Comput. 9,
(1988/1989), 25-35.

202

6. Browne, J. C., Azam, M., and Sobek, S. Architectural and language
independent parallel programming: A feasibility demonstration.
Tech. Rep., Department of Computer Science, University of Texas,
Austin, Feb. 15, 1988.

7. Carle, A., Cooper, K., Hood, R., Kennedy, K., Torczon, L., and War-
ren, S. A practical environment for Fortran programming. /EEE
Comput. 20, 11 (Nov. 1987), 75-89.

8. Dongarra, J. J., DuCroz, J., Duff, 1., and Hammarling, S. A set of level
3 Basic Linear Algebra Subprograms. Argonne National Laboratory
Report, MCS-P1-0888, Aug. 1988.

9. Dongarra, J. J., DuCroz, J., Hammarling, S., and Hanson, R. An ex-
tended set of Fortran Basic Linear Algebra Subprograms. ACM Trans.
Math. Software 14, 1 (Mar. 1988), 1-17.

10. Dongarra, J. J., and Grosse, E. Distribution of mathematical software
via electronic mail. Comm. ACM 30, 5 (May 1987), 403-407.

11. Lawson, C., Hanson, R., Kincaid, D., and Krogh, F. Basic Linear Al-
gebra Subprograms for Fortran usage. ACM Trans. Math. Sofiware 5,
(1979), 308-323.

12. Snyder, L. Parallel programming and the poker programming envi-
ronment. IEEE Comput. 17, 7 (July 1984), 27-36.

JACK DONGARRA is a Distinguished Scientist specializing in numeri-
cal algorithms in linear algebra at the University of Tennessee’s computer
science department and Oak Ridge National Laboratory’s mathematical
sciences section. Dongarra received a Ph.D. in applied mathematics from
the University of New Mexico in 1980, a M.S. in computer science from
the Illinois Institute of Technology in 1973, and a B.S. in mathematics
from Chicago State University in 1972. Professional activities include
membership in the Society for Industrial and Applied Mathematics and

Received June 1, 1989; revised January 10, 1990

DONGARRA ET AL.

also in the Association for Computing Machinery (ACM). He is also an
editor for Communications of the ACM, ACM Transaction on Mathemati-
cal Software, Journal of Distributed and Parallel Computing, International
Journal of Supercomputer Applications, Journal of Supercomputing, Paral-
lel Computing, and Research Monographs on Parallel and Distributed
Computing. He has published numerous articles, papers, reports, and tech-
nical memoranda and has given many presentations on his research inter-
ests.

ORLIE BREWER is a scientific assistant in the mathematics and com-
puter science department at Argonne National Laboratory. His interests
include parallel processing, graphics interfaces, and visualization in scien-
tific computing. He received the B.S. degree in mathematics from the Uni-
versity of Oklahoma in 1978 and the M.S. degree in computer science from
the University of Oklahoma in 1986 and is a member of ACM, IEEE Com-
puter Society, and SIAM.

JAMES ARTHUR KOHL received the B.S.C.E.E. degree in 1988 and
the M.S.E.E. degree in 1989 from the School of Electrical Engineering of
Purdue University in West Lafayette, Indiana. He is currently enrolled in
the Ph.D. program in the electrical and computer engineering department
of the University of Iowa. His research interests include graphic analysis of
parallel systems, and parallel computer architecture and software develop-
ment.

SAMUEL A. FINEBERG received the B.S.C.E.E. degree in 1988 and
the M.S.E.E. degree in 1989 from the School of Electrical Engineering of
Purdue University in West Lafayette, Indiana. He is currently enrolled in
the Ph.D. program in the electrical and computer engineering department
of the University of Iowa. His research interests include parallel computer
architecture and performance evaluation.

