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ABSTRACT

The rapid development of concurrent multicomputers calls for the corresponding
development of numerical methods that can most effectively be implemented on these
new machines. Domain decomposition is the general term used to describe methods
for solving boundary value problems which allow concurrent computations to occur
on different subdomains. The major emphasis in such methods has been on iterative
procedures by means of which the correct boundary data on the subdomains can be
determined. We show how to devise effective domain decomposition methods that are
not iterative, for two-point boundary value problems. As could be anticipated, these

methods are related to the original parallel shooting procedures introduced years ago.

1. Introduction

Our motivation for studying domain decomposition methods is the rapid
development of concurrent multicomputers (i.e. parallel processing). Indeed, this
work is an extension of earlier studies in this area [1,2] in which we introduced parallel
shooting (also termed multiple shooting). We stress in this paper the analytical
aspects of more general domain decomposition procedures and we do not employ
iterative methods for solving either the decomposed problem or its various numerical
approximations. One reason for this is that direct methods are more suitable for a
variety of auxiliary considerations (i.e. stability, continuation, bifurcation, etc.) that

may be relevant to the basic problems of interest.

The problems we consider are linear two-point boundary value problems for first

order systems of ordinary differential equations. Such systems arise naturally in many
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applications. Also, the method of lines reduces the approximate solution of various
P.D.E.-problems to these systems. Finally, we recall that Newton’s method applied
to solve nonlinear problems yields linear systems for each iteration. Thus, in general,
our studies can be relevant to the solution of a variety of nonlinear partial differential

equations problems.

The methods we shall employ rely only on the basic existence and uniqueness
theory for linear ordinary differential equations. As it turns out, essentially the same
existence and uniqueness theory is valid for systems of difference equations. Thus,
our reduction procedures for systems of ordinary differential equations automatically
yield corresponding decompositions for various systems of linear algebraic equations.
In particular, these analogous treatments are clear for linear algebraic systems whose

coefficient matrices are in block bi-diagonal or block tri-diagonal form.

2. First Order Systems

We consider the general linear two-point boundary value problem:

(1) Ly() = L + AWy = £(@0), a <t < b;

(2) By(t) = Ly(a) + Ry(b) = 8.

Here y(t), f(t), 8¢ R™ and A(t), L, R ¢ R**". The special case of separated boundary

conditions which frequently occurs is included by taking
L 0
LE( )}p,RE(A) }p’ﬁz(ﬂa) Cptq=n.
0/ }q R)}q By
Then (2) is simply:
(3) Ly(a)=8. , Ry(d)=5s.

The existence theory for (1),(2) is well known [2]. In terms of the fundamental

2



solution matrix Y(¢, s), defined as the solution of:
(4) LY (t,s)=0,a<t<b; Y(s,s)=1;

problem (1),(2) has a unique solution for each f(t)eC[a,b] and g iff the n x n

matrix
(5) Q@ = LY(a,s) + RY (b,s)

is NONSINGULAR. When Q is nonsingular, the solution of (1),(2) is given by:

t

y(®) = Y9+ [ Vit )e)ds

(6a)

=Y(ts)E+ yp(t) -
Here ¢ is the unique solution of
(6b) Q¢ = B— By,(t) .

3. Domain Decomposition

On the interval I, = [a, b] we introduce the subintervals (or subdomains) I; as:
(7a) I = [tj-1, 4], 1 =1,2,---,J,
where the endpoints satisfy
(7b) a=t, <t1 <---<tyj=b.
On each I; we consider the SUBDOMAIN PROBLEMS for v;(t)e R™:

(8a) Lv;(t) =f(t), telj ,
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(8b) Ljvj(tj-1) + Rjv(t;) = 0;
and for Vj(t)e R*™™:

(9a) LVj(t) =0, telj,
(9%) L;V;(tj-1) + R;Vj(tj) = M; .

Here M je]R""" are to be NONSINGULAR and the matrices L; and R; are assumed
to be such that

(10) Q] = LjY(tj—lvs) + R]Y(t.h s) ’ .7 = 172" . aJ

are NONSINGULAR. Then each of (8) and (9) have unique solutions. Further,
we have the fact that each V;(t) is NONSINGULAR. To see this, we use the
fundamental solution Y (¢,s) and the fact that V;(t) satisfies (9a), perhaps on an

extended interval to contain s, and note that
(11) Vi(t) = Y(t,9)Vs(s) -

Using this representation in (9b), we have that

M;j = [L;Y (tj-1,5) + R;Y (¢}, 9)]V5(s)
= Q;Vi(s) -

Since M; and Q; are nonsingular, the same is true of Vj(s) and thus also for V;(¢) for

all t.

Now we seek the solution of (1),(2) in the form:
(12) y(t) = vit) + Vi(t)yn; , teli , 5 =1,2,---,J .

Clearly, we need only insure the continuity of y(t) “n I, and that it satisfies the
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boundary conditions (2). Continuity, y(t; +0) = y(t; — 0), requires of (12) that
Vitr(t)mizr — Vi(ts)nj = vi(ts) — vin(t) , 7 =1,2,---,J = 1.
The boundary conditions require
LVi(a)n; + RVy(b)ny =B — Lvi(a) — Rv(b) =B.

We can write the above conditions as a linear system of nJ equations

(13a) an=B,
where
m B
(13b) = 72 B = vi(t1) — va(t1)
nJ vy—1(ty—1) — vi(ts-1)
and
[ LVi(a) RV;(b) \

-Vi(t1) Va(ta)

(14) a —Va(tz)  Va(ta)

\ ~Vioa(ti—1) Viltia))

For separated boundary conditions, as in (3), we write the boundary conditions at

to = a first and those at t; = b last, in which case @ becomes

([ LVa(a) \ }
() Va(t) )

S =

q+p
(15a) a

3
Il

q+p

Vici(ts=1) Vi(ti-1) |}
\ Rvs(®) ) )

q



This is a special block tri-diagonal form

(15b) a = [A;, B, Cjl ,
with
A\l r 0\}pr
c Aj = , Ci=| 4
(15e) ’ <0>}q (CJ)H

To show that @ is nonsingular when (1),(2) has a unique solution, we factor @ in

(14) as:

P P, --- Py Vi(a)
I -Vi(t1) Va(t1)

I Vici(ty-1) Vi(ti-1)

where
Py = RV;())Vy ' (ts-1);
P; = P Vi(t;)Vi (t-1) » 5= J — 1,-++, 25
P =L+ PVi(t)Vy ' (a) -
Since all Vj(t) are nonsingular, this factorization is valid. Also, the right-most matrix

factor is nonsingular, as it is block lower triangular with Vj(tj-1) as the diagonal

blocks. Thus, @ will be nonsingular iff P; is nonsingular. By recursion of the Pj, we
find that

Py = L+ R[Vs(ts)Vy ' (ts-1)] -+ Va(t) Vi (o)) -

However, recalling (11), it follows that

‘/J(t])‘/]_l(tl—l) = Y(tj,S)Y-l(tj_l,S) ) J = 1’27” : 7J )
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and so P; becomes
Py =L+ RY(t7,8)Y (to,s) ,
= [LY (a,s) + RY (b,s)]Y " Y(a,s),
= QY 1(a,s).
Thus, P; and hence @ are nonsingular. We do not advocate using the above

factorization to solve (13).

4. Parallel Numerical Implementation: General Case

To employ the indicated domain decomposition procedure to solve (1),(2) or
(1),(3), we must first solve the subdomain problems (8),(9) for j = 1,2,---,J. As
these problems are independent of each other, they can be solved concurrently if
J processors are available. Of course, some discrete procedure will be used and
so the v;(t) and Vj(t) are actually approximated either on some grid over I; for
finite difference methods or in some appropriate subspace for finite element, spectral
or collocation procedures. We do not discuss these aspects here and indeed all of
the above indicated procedures could be employed at the same time on different
subdomains if MIMD machines are used. Different nonuniform grids can be employed
on different subintervals, etc. However these calculations are done, they will probably
form the major part of the computing effort in both time and arithmetic operations.
They will supply the approximations to the elements of @ and B that we use to solve
(13a) for . Then we can use this solution in (12) to approximate y(t) over each
subdomain I;, and again this can be done concurrently. Thus we must examine the

solution of (13a), and we seek to do this in a parallel manner.
We rewrite (14) in the block notation:
B, Ay

A B
(16) a=|"" "

A; By

where each Aj and Bj is n x n for all j = 1,2,---,J. Now the system (13a) is
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decomposed in the BORDERED FORM

(17) a(:>=(g) , x,geRMU7D o g qeR.
~

Thus, @ is decomposed as

a B
(18a) a= ( 3, ° )
with
Bl Al
Ay Bs 0
(18b) Ay = . . ’ Bo =
Aj_1 By 0

and (17) becomes:

(19a) Qox+ Bt =g,

(19b) CTx+Bje=~.

To solve (19), we first find u and U from

(20) aou =g , aoU = Bo .

Then x in the form

(21) x=u—-U¢



will satisfy (19a). To find ¢, we use this x in (19b) to get
(22) [By— C{Ul¢=~—Cju.

To carry out this procedure, we introduce w and W where:

u; U] wi Wl
u; U, w2 W,
u= , U= , W= . , W=
uj_; Uj-1 Wj_1 Wi

Now (20) can be solved by first solving
(23) B_,‘Wj=gj , BjW;=A; , 7=12,---,J-1 ;

this can be carried out concurrently for all j < J — 1. Then we form, sequentially:

u =wy , ww;—Wug |
(24) 7j=2,3,---,J-1
Ur=W1 , Uj=-W;Uj—

Next, we must solve the n'* order system (22), which becomes:
(25) [By — AjUj1)é =n—Ajuj_y .
Using (24) and (25), we can evaluate (21) concurrently by forming:

(26) x;=u;—-Uj¢ , j=12,---,J-1.

Note that in the above algorithm only (24) and (25) are not concurrent procedures.
The main computations, on the other hand, occur in (23). Analyses of bordering

algorithms, when @y is singular or near singular, are contained in [3,4].
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5. Special Block Tridiagonal Case

To solve (13) when @ has the general block tridiagonal form (15b), we can proceed

in either of two obvious ways. First, say, factor as:

5 (1 % \
B Yo I X, .
(27¢) @ =DR= L :
. . . X]_]
br \ v, I )
or second, factor as:
(1% \ /5
Yo, 1 X5 B
(275) a=LD= ' ;
... . XJ_1 °
B
\ v; I ) !

Of course, the {X;} and {Y;} differ in each case. However, in (27a), zero columns
in the blocks A; and Cj are preserved in the corresponding Y; and Xj. In (27b), zero

rows in the A; and C; are preserved in the corresponding Y; and Xj.

Now, to treat (15a,b,c), we observe that zero rows occur, and hence we use the

factorization (27b). To carry this out, we need only solve, concurrently:

(28a) XiBjy1=C; , j=12,---,J—1;

(28b) Y:Bi1=A;i , i=23,---,J.

Note from (15c) that the X; and Y; have the form

(28¢) X~=<O>}p y-:(f/")}p
T\X)re T T \N0 )Y

Thus, we need only insert the caret, “*”, atop each of X;, Cj, ¥; and A; in (28) to

indicate the actual computations to be done. To solve (13a) using (15) and the above,
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we use:

(29a) Dn=¢

(29b) Le=B.

Clearly (29a) can be solved concurrently as

(30) Bii=¢ , j=1,2---,J.

Of course, to do this, we need the {¢;} which, from (29b), satisfy:

& + X186 =B,
(31) K£i+l+€i+Xi$i—l=Bi’i=2,3a"',']—1
Yi¢;_1+€, =By

From (28¢), in the first and last of (31), we see that the first p components of
¢, and the last ¢ components of ¢; are given by the corresponding components in
B; and By, respectively. Unfortunately, this trivial solution aspect ceases and the
remaining (n - J —n) unknowns are sparsely coupled in a block tridiagonal form. The

coupling is indicated by the block matrix @ of order n(J — 1) of the schematic form
( 9 X? X7 0 \
ye I? 0 O
0 0 " X? X7 0
0 Y? Ye I? 0 0

()
\ (Cw) ()
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The orders of these submatrices are:
(33) I7, X9eR¥*9; P, YPeRP*P ; XPeRI*?P Y9 RP*I .

Efficient concurrent algorithms for solving such systems are being developed.
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