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Abstract

Efficient sparse linear algebra cannot be achieved as a straightforward extension of the dense
case, even for concurrent implementations. This paper details a new, general-purpose unsym-
metric sparse LU factorization code built on the philosophy of Harwell’s MA28, with variations.
We apply this code in the framework of Jacobian-matrix factorizations, arising from Newton
iterations in the solution of nonlinear systems of equations. Serious attention has been paid
to the data-structure requirements, complexity issues and communication features of the algo-
rithm. Key results include reduced communication pivoting for both the “analyze” A-mode
and repeated B-mode factorizations, and effective general-purpose data distributions useful in-
crementally to trade-off process-column load balance in factorization against triangular solve
performance. Future planned efforts are cited in conclusion.
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Introduction

The topic of this paper is the implementation and concurrent performance of sparse, unsymmetric
LU factorization for medium-grain multicomputers. Our target hardware is distributed-memory,
message-passing concurrent computers such as the Symult s2010 and Intel iPSC/2 systems. For
both of these systems, efficient cut-through wormhole routing technology provides pair-wise com-
munication performance essentially independent of the spatial location of the computers in the
ensemble [2]. The Symult 52010 is a two-dimensional, mesh-connected concurrent computer; all ex-
amples in this paper were run on this variety of hardware. Message-passing performance, portability

and related issues relevant to this work are detailed in [7].

Questions of linear-algebra performance are pervasive throughout scientific and engineering com-
putation. The need for high-quality, high-performance linear algebra algorithms (and libraries)
for multicomputer systems therefore requires no attempt at justification. The motivation for the
work described here has a specific origin, however. Qur main higher-level research goal is the con-
current dynamic simulation of systems modelled by ordinary differential and algebraic equations;
specifically, dynamic flowsheet simulation of chemical plants (e.g., coupled distillation columns) [8].
Efficient sequential integration algorithms solve staticized nonlinear equations at each time point
via modified Newton iteration (cf., [3], Chapter 5). Consequently, a sequence of structurally identi-
cal linear systems must be solved; the matrices are finite-difference approximations to Jacobians of
the staticized system of ordinary differential-algebraic equations. These Jacobians are large, sparse
and unsymmetric for our application area. In general, they possess both band and significant off-
band structure. Generic structures are depicted in Figure 0. This work should also bear relevance
to electric power network/grid dynamic simulation where sparse, unsymmetric Jacobians also arise,

and also elsewhere.



Figure 0. Example Jacobian Matrix Structures.
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In chemical-engineering process flowsheets, Jacobians with main band structure, and lower-triangular struc-

ture (feedforwards), upper-triangular structure (feedbacks), and borders (global or artificially restructured
feedforwards and/or feedbacks) are common.

Design Overview

We solve the problem Az = b where A is large, and includes many zero entries. We assume that
A is unsymmetric both in sparsity pattern and in numerical values. In general, the matrix A will
be computed in a distributed fashion, so we will inherit a distribution of the coefficients of A (cf.,
Figures 2., 3.). Following the style of Harwell’s MA28 code for unsymmetric sparse matrices, we
use a two-phase approach to this solution. There is a first LU factorization called A-mode or
“analyze,” which builds data structures dynamically, and uses a user-defined pivoting function.
The repeated B-mode factorization uses the existing data structures statically to factor a new,
similarly structured matrix, with the previous pivoting pattern. B-mode monitors stability with a
simple growth factor estimate. In practice, A-mode is repeated whenever instability is detected.

The two key contributions of this sparse concurrent solver are: reduced communication pivoting,



Figure 1. Linked-list Entry Structure of Sparse Matrix.
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A single entry consists of a double-precision value (8 bytes), the local row (i) and column (j) index (2 bytes
each), a “Next Column Pointer” indicating the next current column entry (fixed j), and a “Next Row Pointer”
indicating the next current row entry (fixed i), at 4 bytes each. Total: 20 bytes per entry.

and new data distributions for better overall performance.

Following Van de Velde [11], we consider the LU factorization of a real matrix 4, A € RVXN Tt is

well known (e.g., [6], pp. 117-118), that for any such matrix A, an LU factorization of the form
PrRAPL = LU

exists, where PR, P are square, (orthogonal) permutation matrices, and L,U are the unit lower-
triangular, and upper-triangular factors, respectively. Whereas the pivot sequence is stored (two
N-length integer vectors), the permutation matrices are not stored or computed with explicitly.
Rearranging, based on the orthogonality of the permutation matrices, A = P£L0PC. We factor

A with implicit pivoting (no rows or columns are exchanged explicitly as a result of pivoting).



Therefore, we do not store L, U directly, but instead: L = PgiPo, U= Pgﬁ Pc. Consequently,
L =PgrLPL, U = PRUPL, and A = L(PLPR)U. The “unravelling” of the permutation matrices
is accomplished readily (without implication of additional interprocess communication) during the

triangular solves.

For the sparse case, performance is more difficult to quantify than for the dense case, but, for
example, banded matrices with bandwidth B can be factored with O(8%2N) work; we expect sub-
cubic complexity in N for reasonably sparse matrices, and strive for sub-quadratic complexity,
for very sparse matrices. The triangular solves can be accomplished in work proportional to the
number of entries in the respective triangular matrix L or U. The pivoting strategy is treated as
a parameter of the algorithm and is not pre-determined. We can consequently treat the pivoting
function as an application-dependent function, and sometimes tailor it to special problem structures
(cf., Section 7 of [9]) for higher performance. As for all sparse solvers, we also seek sub-quadratic
memory requirements in N, attained by storing matrix entries in linked-list fashion, as illustrated

in Figure 1.

For further discussion of LU factorizations and sparse matrices, see [6,4].

Reduced-Communication Pivoting

At each stage of the concurrent LU factoriza.tion, the pivot element is chosen by the user-defined
pivot function. Then, the pivot row (new row of U) must be broadcast, and pivot column (new
column of L) must be computed and broadcast on the logical process grid (¢f., Figure 2.), verti-
cally and horizontally, respectively. Note that these are interchangeable operations. We use this
degree-of-freedom to reduce the communication complexity of particular pivoting strategies, while

impacting the effort of the LU factorization itself negligibly.

We define two “correctness modes” of pivoting functions. In the first correctness mode “first row
fanout,” the exit conditions for the pivot function are: all processes must know p (the pivot process

row), the pivot process row must know ¢ (the pivot process column) as well as #, the p-local matrix



row of the pivot, and the pivot process must know in addition the pivot value and g-local matrix
column 7 of the pivot. Partial column pivoting and preset pivoting can be setup to satisfy these
correctness conditions as follows. For partial column pivoting, the kth row is eliminated at the
kth step of the factorization. From this fact, each process can derive the process row p and p-local
matrix Tow i using the row data distribution function. Having identified themselves, the pivot-
row processes can look for the largest element in local matrix row  and choose the pivot element
globally among themselves via a combine. At completion this places ¢, j and the pivot value in the
entire pivot process row. This completes the requirements for the “first row fanout” correctness
mode. For preset pivoting, the kth elimination row and column are both stored as p,i,4,J, and
each process knows these values without communication.! Furthermore, the pivot process looks up

the pivot value. Hence, preset pivoting satisfies the requirements of this correctness mode also.

For “first row fanout,” the universal knowledge of p and knowledge of the pivot matrix row i
by the pivot process row, allows the vertical broadcast of this row (new row of U). In addition,
we broadcast §, j and the pivot value simultaneously. This extends the correct value of § to all
processes, as well as j and the pivot value to the pivot process column. Hence, the multiplier (L)
column may be correctly computed and broadcast. Along with the multiplier column broadcast,
we include the pivot value. After this broadcast, all processes have the correct indices p,1,4,j and

the pivot value. This provides all that’s required to complete the current elimination step.

For the second correctness mode “first column fanout,” the exit conditions for the pivot function
are: all processes must know §, the entire pivot process column must know j, the pivot value,
and p. The pivot process in addition knows i. Partial row pivoting can be setup to satisfy these

correctness conditions. The arguments are analogous to partial column pivoting and are given in
(8]

For “first column fanout,” the entire pivot process column knows the pivot value, and local column
of the pivot. Hence, the multiplier column may be computed by dividing the pivot matrix column

by the pivot value. This column of L may then be broadcast horizontally, including the pivot value,

Memory unscalabilities can be removed very cheaply; see [8].



P and % as additional information. After this step, the entire ensemble has the correct pivot value,
and p; in addition, the pivot process row has the correct i. Hence, the pivot matrix row may be
identified and broadcast. This second broadcast completes the needed information in each process

for effecting the kth elimination step.

Hence, when using partial row or partial column pivoting, only local combines of the pivot process
column (respectively row) are needed. The other processes don’t participate in the combine, as
they must without this methodology. Preset pivoting implies no pivoting communication, except
very occasionally (e.g., 1 in 5000 times) as noted in [8] to remove memory unscalabilities. This

pivoting approach is a direct savings, gained at a negligible additional broadcast overhead. See also

(8]-

New Data Distributions

We introduce new closed-form O(1)-time, O(1)-memory data distributions useful for sparse matrix
factorizations and the problems that generate such matrices. We quantify evaluation costs in Table

0. Every concurrent data structure is associated with a logical process grid at creation (cf., Figure

I Table 0. Data-Distribution Function and Inverse Costs |
Distribution: p(I,P,M) v~ Yp,i, P, M)
One-Parameter (¢) || 5.5554 x 10! £ 5 x 10~3  4.0024 x 10! £ 7 x 1073
Two-Parameter (£) || 6.1710 x 10' +£1 x 10~2 4.2370 x 10! +8 x 1073
Block-Linear (1) | 5.4254 x 10! £7 x 10~  3.5404 x 10 + 5 x 1073

For the data distributions and inverses described here, evaluation time in ps is quoted for the Symult s2010
multicomputer. Cardinality function calls are inexpensive, and fall within lower-order work anyway — their
timing is hence omitted. The cheapest distribution function (scatter) costs ~ 15us by way of comparison.

2. and [7,8]). Vectors are either row- or column-distributed within a two-dimensional process grid.
Row-distributed vectors are replicated in each process column, and distributed in the process rows.

Conversely, column-distributed vectors are replicated in each process row, and distributed in the

process columns. Matrices are distributed both in rows and columns, so that a single process owns



Figure 2. Process Grid Data Distribution of Az = b.
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Representation of a concurrent matrix, and distributed-replicated concurrent vectors on a 4z4 logical pro-
cess grid. The solution of Az = b first appears in z, a column-distributed vector, and then is normally
“transposed” via a global combine to the row-distributed vector y.

a subset of matrix rows and columns. This partitioning follows the ideas proposed by Fox et al. [5]
and others. Within the process grid, coefficients of vectors and matrices are distributed according

to one of several data distributions. Data distributions are chosen to compromise between load-

balancing requirements and constraints on where information can be calculated in the ensemble.

Definition 1 (Data-Distribution Function)

A data-distribution function p maps three integers u(I,P,M) — (p,i) where I, 0 < I < M, is
the global name of a coefficient, P is the number of processes among which all coefficients are to
be partitioned, and M is the total number of coefficients. The pair (p,i) represents the process p
(0 < p < P) and local (process-p) name i of the coefficient (0 < ¢ < u*(p, P,M)). The inverse
distribution function u~'(p,i, P, M) ~ I transforms the local name i back to the global coefficient

name 1.



The formal requirements for a data distribution function are as follows. Let I? be the set of global
coefficient names associated with process p, 0 < p < P, defined implicitly by a data distribution

function u(e, P, M). The following set properties must hold:

mnI” = O, Vpi#p2, 0<p,p2<P
P-1
Uz

p=0

0,....M -1} = Iy

The cardinality of the set I?, is given by p!(p, P, M).

The linear and scatter data-distribution functions are most often defined. We generalize these
functions (by blocking and scattering parameters) to incorporate practically important degrees
of freedom. These generalized distribution functions yield optimal static load balance as do the
unmodified functions described in [11] for unit block size, but differ in coefficient placement. This

distinction is technical, but necessary for efficient implementations.

Definition 2 (Generalized Block-Linear)

The definitions for the generalized block-linear distribution function, inverse, and cardinality func-

tion are:
AB(I,P,M) — (p,1),
p = P-1-
me (|75 )
i = I-B(pl+0'(p-(P-1)),
while

A5l (p,i, P, M)

i+B((pl+0"(p-(P-1),

(15329

X (p, P, M)



(M mod B)9,

where B denotes the coefficient block size,

4

% if M mod B=20

M| +1 otherwise,
| %]

Ig = L% ’ Iléev'= b_l—IB)
I = -2 r = bmod P
- _P_, - ?
0 t<0
Ot) = { tk t>0,k>0 ,
1 t>0,k=0

o = {%EJ 0°(M mod B)

and where b > P.

For B = 1, a load-balance-equivalent variant of the common linear data-distribution function is
recovered. The general block-linear distribution function divides coefficients among the P processes
p=0,...,P—1 so that each IP is a set of coefficients with contiguous global names, while optimally
load-balancing the b blocks among the P sets. Coefficient boundaries between proccsses are on
multiples of B. The mazimum possible coefficient imbalance between processes is B. If B mod P #

0, the last block in process P — 1 will be foreshortened.

Definition 3 (Parametric Functions)
To allow greater freedom in the ..istribution of cocjficients am: a1g processes, we define a new,
two-parameter distribution function family, {. The B blocking parameter (just introduced in the

block-linear function) is mainly suited to the clustering of coefficients that must not be separated by

10



an interprocess boundary (again, see [8] for a definition of general block-scatter, o). Increasing B
worsens the static load balance. Adding a second scaling parameter S (of no impact on the static
load balance) allows the distribution to scatter coefficients to a greater or lesser degree, directly as
a function of this one parameter. The two-parameter distribution function, inverse and cardinality
function are defined below. The one-parameter distribution function family, , occurs as the special

case B =1, also as noted below:

. (p011'0) AOZIS
éps(I,P,M) — (p,i) =
(pr,i1) Ao <ls
where
_ l _ | %
s = |5 %= |55
(pO,iO) At AB(IaP,M)a
Ips = pols + Ao,
pr = Ipsmod P,
i = BS[I%S}+(iomodBS),
with

CS(Iy-P$M) = €I,S(I,P,M)a
an,‘g(p,P,M) = AuB(prP’M),
&, P,M) = M(p,P,M),

and where 7, b, etc. are as defined above. The inverse distribution function £~! is defined as

follows:

&s(p.i, P, M) — I = Xg'(p",i", P, M),

11



(pyi) A Z lS
(p2,%2) A<ls,

(")

BS

%]
s 1’

iy = BS(Is modls)+ (i mod BS),

A= g5 Bs = prar,

P2

with
CEI(P,i,P,M) = £;S(pai’PaM)'

For S = 1, a block-scatter distribution results, while for § > Serit = |1/2] + 1, the generalized

block-linear distribution function is recovered. See also [8].

Definition 4 (Data Distributions)
Given a data-distribution function family (u,u"l,uu) (v, V'l,u")), a process list of P (Q), M
(N) as the number of coefficients, and a row (respectively, column) orientation, a row (column)

data distribution G™V (G*) is defined as:

G = {(u,u“,u”);P,M},
respectively,
gl = {(V, V—I,Vﬁ);Q,N} .

A two-dimensional data distribution may be identified as consisting of a row and column distribution

defined over a two-dimensional process grid of P X Q processes, as G= (g’°W,g°°’).

Further discussion and detailed comparisons on data-distribution functions are offered in [8]. Figure

3. illustrates the effects of linear and scatter data-distribution functions on a small rectangular array

12



Figure 3. Example of Process-Grid Data Distribution

( %, Qs | 4,2 a6 | @3 40,7 | G0 ‘04 Cos8 \
a1 415 | 12 @16 | @13 Q17 | @10 CG14 418
azq Q25 | @22 G266 | @23 Q2,7 | G20 Q24 Q23

A00  A01 402 403 as1 a3s5 | az2 0G36 | @33 437 | @30 @34 438
ALO  AL1  AL2 413 a41 Q45 | Q42 Q46 | Q43 Q4,7 | Q40 Q4,4 Q48
A20  A21  A22 423 = asy1 Gass5 | @s2 Aase | @53 457 | @50 QG54 A58
A30  A31 432 433 a1 Qg5 | G2 QA66 | @63 A6,7 | G50 G4 G638

g az1 ars | ar2 are | ar3 ar7 | aro ara  arg

as1 Ggs5 | Gg2 dse | G83 4,7 | As0 G4 488
ag1 Q95 | Q92 QG96 | @93 QG977 | G0 Q94 Q98
\ a@10,1 @105 | 10,2 €106 | @103 @10,7 | 4100 @104 Q108

An 11 x 9 array with block-linear rows (B = 2) and scattered columns on a 4 x 4 logical pro-
cess grid. Local arrays are denoted at left by AP? where (p,q) is the grid position of the process on

G = ({(Ag,A;I,Ag);P =4,M= 11} , {(al,ofl,a{);Q =4,N= 9}) Subscripts (i.e., ay s) are the global
(I,J) indices.

of coefficients.

Performance vs. Scattering

Consider a fixed logical process grid of R processes, with Pz() = R. For the sake of argument,
assume partial row pivoting during LU factorization for the retention of numerical stability. Then,
for the LU factorization, it is well known that a scatter distribution is “good” for the matrix rows,
and optimal were there no off-diagonal pivots chosen. Furthermore, the optimal column distribution
is also scatter, because columns are chosen in order for partial row pivoting. Compatibly, a scatter
distribution of matrix rows is also “good” for the triangular solves. However, for triangular solves,
the best column distribution is linear, because this implies less intercolumn communication, as we
detail below. In short, the optimal configurations conflict, and because explicit redistribution is
expensive, a static compromise must be chosen. We address this need to compromise through the
one-parameter distribution function ( described in the previous section, offering a variable degree

of scattering via the S-parameter. To first order, changing S does not affect the cost of computing

13



the Jacobian (assuming columnwise finite-difference computation), because each process column

works independently.

It’s important to note that triangular solves derive no benefit from @ > 1. The standard column-
oriented solve keep one process column active at any given time. For any column distribution, the
updated right-hand-side vectors are retransmitted W times (process column-to-process column)
during the triangular solve — whenever the active process column changes. There are at least
Winin = Q — 1 such transmissions (linear distribution), and at most Wiz = N — 1 transmissions
(scatter distribution). The complexity of this retransmission is O(WN /P), representing quadratic
work in N for W ~ N.

Calculation complexity for a sparse triangular solve is proportional to the number of elements in
the triangular matrix, with a low leading coefficient. Often, there are O(N'*) with z < 1 elements
in the triangular matrices, including fill. This operation is then O(N'#/P), which is less than
quadratic in N. Consequently, for large W, the retransmission step is likely of greater cost than
the original calculation. This retransmission effect constrains the amount of scattering and size of

Q in order to have any chance of concurrent speedup in the triangular solves.

Using the one-parameter distribution with § > 1 implies that W ~ N/S, so that the retransmission
complexity is O(N%/SP). Consequently, we can bound the amount of retransmission work by
picking S sufficiently large. Clearly, S = Scrit is a hard upper bound, because we reach the linear
distribution limit at that value of the parameter. We suggest picking § = 10 as a first guess, and
S ~ v/N, more optimistically. The former choice basically reduces retransmission effort by an order
of magnitude. Both examples in the following section illustrate the effectiveness of choosing S by

these heuristics.

The two-parameter ¢ distribution can be used on the matrix rows to tradeoff load balance in the
factorizations and triangular solves against the amount of (communication) effort needed to com-
pute the Jacobian. In particular, a greater degree of scattering can dramatically increase the time
required for a Jacobian computation (depending heavily on the underlying equation structure and

problem), but importantly reduce load imbalance during the linear algebra steps. The communica-

14



tion overhead caused by multiple process rows suggests shifting toward smaller P and larger Q (a
squatter grid), in which case greater concurrency is attained in the Jacobian computation, and the
additional communication previously induced is then somewhat mitigated. The one-parameter dis-
tribution used on the matrix columns then proves effective in controlling the cost of the triangular

solves by choosing the minimally allowable amount of column scattering.

Let’s make explicit the performance objectives we consider when tuning 5, and, more generally,
when tuning the grid shape PzQ = R. In the modified Newton iteration, for instance, a Jacobian
factorization is reused until convergence slows unacceptably. An “LU Factorization + Backsolve”
step is followed by n “Forward + Backsolves,” with 7 ~ O(1) typically (and varying dynamically
throughout the calculation). Assuming an averaged 7, say n* (perhaps as large as five [3]), then

our first-level performance goal is a heuristic minimization of

TLU + (7]* + 1)TBaclc + n‘TForward

over S for fixed P,Q. n* > 1 more heavily weights the reduction of triangular solve costs vs.
B-mode factorization than we might at first have assumed, placing a greater potential gain on
the one-parameter distribution for higher overall performance. We generally want heuristically to
optimize

Troe + Tou + (0" + 1)TBack + 1" TForward

over S, P, @, R. Then, the possibility of fine-tuning row and column distributions is important,

as is the use of non-power-of-two grid shapes.

Performance

Order 13040 Example

We consider an order 13040 banded matrix with a bandwidth of 326 under partial row pivoting.

For this example, we have compiled timing results for a 16x12 process grid with random matrices

15



| Table 1. Order 13040 Band Matrix Performance

Distribution: (time in seconds)
Row  Column A-Mode B-Mode Back-Solve Solve
Scatter  S=1 1.140 x 10> 1.603 x 10> 1.196 x 10> 2.426 x 102
S=10 | 1.148 x 10® 1.696 x 10> 3.294 x 10! 6.912 x 10!
S=25 || 1.091 x 10® 1.670 x 10> 2.713 x 10!  5.752 x 10!
S=30 | 1.095x 10® 1.769 x 10> 2.653 x 10! 5.631 x 10!
S=40 |l 1.116 x 10> 2.157 x 10> 2.573 x 10! 5.472 x 10!
S=50 || 1.127 x 10> 2.157 x 10> 2.764 x 10' 5.743 x 10!
S=100 | 1.279 x 10° 4.764 x 10> 2.520 x 10! 5.367 x 10!
Linear [ 2.247x 10® 1.161x 10> 2.333 x 10! 4.993 x 10!

The above timing data, for the 16x12 grid configuration with scattered rows, indicates the importance of
the one-parameter distribution with S > 1 for balancing factorization cost vs. triangular-solve cost. The
random matrices, of order 13040, have an upper bandwidth of 164 and a lower bandwidth of 162. “Best”
performance occurs in the range S =~ 25...40.

(entries have range 0-10,000) using different values of S on the column distribution (see Table 1).
We indicate timing for A-mode, B-mode, Backsolves and Forward- and Backsolves together (“Solve”
heading). For this example, S = 30 saves 76% of the triangular solve cost compared to § = 1,
or approximately 186 seconds, roughly 6 seconds above the linear optimal. Simultaneously, we
incur about 17 seconds additional cost in B-mode, while saving about 93 seconds in the Backsolve.
Assuming 7* = 1 (n* = 0), in the first above-mentioned objective function, we save about 262
(respectively, 76) seconds. Based on this example, and other experience, we conclude that this

is a successful practical technique for improving overall sparse linear algebra performance. The

following example further bolsters this conclusion.

Order 2500 Example

Now, we turn to a timing example of an order 2500 sparse, random m. rix. The matrix has a

random diagonal, plus two-percent random fill of the off-diagonals; entries have a dynamic range of

16



0-10,000. Normally, data is averaged over random matrices for each grid shape (as noted), and over
four repetitive runs for each random matrix. Partial row pivoting was used exclusively. Table 2.
compiles timings for various grid shapes of row-scatter/column-scatter, and row-scatter / column-
(§ = 10) distributions, for as few as nine nodes and as many as 128. Memory limitations set the

lower bound on the number of nodes.

This example demonstrates that speedups are possible for this reasonably small sparse example with
this general-purpose solver, and that the one-parameter distribution is key to achieving overall
better performance even for this random, essentially unstructured example. Without the one-
parameter distribution, triangular solver performance is poor, except in grid configurations where
the factorization is itself degraded (e.g., 2x16). Furthermore, the choice of S = 10 is universally
reasonable for the @ > 1 grid shapes illustrated here, so the distribution proves easy to tune for
this type of matrix. We are able to maintain an almost constant speed for the triangular solves
while increasing speed for both the A-mode and B-mode factorizations. We presume, based on
experience, that triangular solve times are comparable to the sequential solution times — further
study is needed in this area to see if and how performance can be improved. The consistent A-mode
to B-mode ratio of approximately two is attributed primarily to reduced communication costs in

B-mode, realized through the elimination of essentially all combine operations in B-mode.

While triangular-solve performance exemplifies sequentialism in the algorithm, it should be noted
that we do achieve significant overall performance improvements between 6 nodes and 96 (16x6
grid) nodes, and that the repeatedly used B-mode factorization remains dominant compared to the
triangular solves even for 128 nodes. Consequently, efforts aimed further to increase performance
of the B-mode factorization (at the expense of additional A-mode work) are interesting to consider.
For the factorizations, we also expect that we are achieving non-trivial speedups relative to one

node, but we are unable to quantify this at present because of the memory limitations alluded to

above.
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Future Work, Conclusions

There are several classes of future work to be considered. First, we need to take the A-mode
“analyze” phase to its logical completion, by including pivot-order sorting of the L/U pointer
structures to improve performance for systems that should demonstrate sub-quadratic sequential
complexity. This will require minor modifications to B-mode (that already takes advantage of
column-traversing elimination), to reduce testing for inactive rows as the elimination progresses.
We already realize optimal computation work in the triangular solves, and we mitigate the effect

of Q > 1 quadratic communication work using the one-parameter distribution.

Second, we need to exploit “timelike” concurrency in linear algebra — multiple pivots. This has-
been addressed by Alaghband for shared-memory implementations of MA28 with O(N)-complexity
heuristics [1]. These efforts must be reconsidered in the multicomputer setting and effective varia-
tions must be devised. This approach should prove an important source of additional speedup for
many chemical engineering applications, because of the tendency towards extreme sparsity, with

mainly band and/or block-diagonal structure.

Third, we could exploit new communication strategies and data redistribution. Within a process
grid, we could incrementally redistribute L/U by utilizing the inherent broadcasts of L columns and
U rows to improve load balance in the triangular solves at the expense of slightly more factorization
computational overhead and significantly more memory overhead (nearly a factor of two). Memory
overhead could be reduced at the expense of further communication if explicit pivoting were used

concommitantly.

Fourth, we can develop adaptive broadcast algorithms that track the known load imbalance in the
B-mode factorization, and shift greater communication emphasis to nodes with less computational
work remaining. For example, the pivot column is naturally a “hot spot” because the multiplier
column (L column) must be computed before broadcast to the awaiting process columns. Allowing
the non-pivot columns to handle the majority of the communication could be beneficial, even though
this implies additional overall communication. Similarly, we might likewise apply this to the pivot

row broadcast, and especially for the pivot process, because it must participate in two broadcast
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operations.

We could utilize two process grids. When rows (columns) of U (L) are broadcast, extra broadcasts
to a secondary process grid could reasonably be included. The secondary process grid could work
on redistribution L/U to an efficient process grid shape and size for triangular solves while the
factorization continues on the primary grid. This overlapping of communication and computation
could also be used to reduce the cost of transposing the solution vector from column-distributed to

row-distributed, which normally follows the triangular solves.

The sparse solver supports arbitrary user-defined pivoting strategies. We have considered but not
fully explored issues of fill-reduction vs. minimum time; in particular we have implemented a
Markowitz-count fill-reduction strategy [4]. Study of the usefulness of partial column pivoting and

other strategies is also needed. We will report on this in the future.

Reduced-communication pivoting and parametric distributions can be applied immediately to con-
current dense solvers with definite improvements in performance. While triangular solves remain
lower-order work in the dense case, and may sensibly admit less tuning in S, the reduction of pivot
communication is certain to improve performance. A new dense solver exploiting these ideas is

under construction at present.

In closing, we suggest that the algorithms generating the sequences of sparse matrices must them-
selves be reconsidered in the concurrent setting. Changes that introduce multiple right-hand sides
could help to amortize linear algebra cost over multiple timelike steps of the higher-level algorithm.
Because of inevitable load imbalance, idle processor time is essentially free — algorithms that find
ways to use this time by asking for more speculative (partial) solutions appear of merit toward

higher performance.

Acknowledgements

We wish to acknowledge the dense concurrent linear algebra library provided by Eric Van de

Velde, as well as a prototype sparse concurrent linear algebra library, both of which were useful

19



springboards for this work.

The first author acknowledges partial support under DOE grants DE-FG03-85ER25009 and DE-
AC03-85ER40050. The second author (presently at the University of California, Santa Cruz)
received support for his 1989 Caltech Summer Undergraduate Research Fellowship (SURF) under
the same grants, and wishes to thank the Caltech SURF program for the opportunity to pursue

the research discussed in part here.

The software implementation of this research was accomplished using machine resources made avail-
able by the Caltech Computer Science sub-Micron System Architectures Project and the Caltech

Concurrent Supercomputer Facilities (CCSF). Caltech/Rice CRPC provides support, in turn, to
CCSF.

References

[1] Alaghband, G, “Parallel pivoting combined with parallel reduction and fill-in control,” Parallel
Computing 11, 1989, pp. 201-221.

[2] Athas W. C., and C. L. Seitz, “Multicomputers: Message-Passing Concurrent Computers,”
IEEE Computer, August 1988, pp. 9-24.

[3] Brenan, K. E., S. L. Campbell, L. R. Petzold, Numerical Solution of Initial- Value Problems in

Differential-Algebraic Equations, Elsevier, 1989.

[4] Duff, LS., A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford Univer-
sity Press, 1986.

[5] Fox, G., et al., Solving Problems on Concurrent Processors, Volume 1, Prentice Hall, March

1988.

[6] Golub, G. H., C. F. Van Loan, Matriz Computations, 2nd. Edition, John Hopkins University
Press, 1989.

20



[7] Skjellum, A., A. P. Leung, “Zipcode: A Portable Multicomputer Communication Library atop
the Reactive Kernel,” Proc. of DMCC5, Charleston, April 1990. Report CRPC-90-3.

[8] Skjellum, A., Concurrent Dynamic Simulation: Multicomputer Algorithms Research Applied to
Differential-Algebraic Process Systems in Chemical Engineering, Ph.D. Dissertation, California

Institute of Technology, Chemical Engineering, 1990. Report CRPC-90-4.

[9] Van de Velde, E. F., A Concurrent Direct Solver for Sparse Unstructured Systems, Caltech
C3P Report #604, March 1988.

[10] Van de Velde, E. F., The Formal Correctness of an LU-Decomposition Algorithm, Caltech C3P
Report #625, June, 1988.

[11] Van de Velde, E. F., Ezperiments with Multicomputer LU-Decomposition, Caltech / Rice Re-

port CRPC-89-1. To appear in Concurrency: Practice and Ezperience.

[12] Van de Velde, E. F., Adaptive Data Distribution for Concurrent Continuation, Caltech / Rice
Center for Research in Parallel Computation Report CRPC-89-4. Submitted to Num. Math.

21



Table 2. Order 2500 Matrix Performance

Distribution: (time in seconds)

Shape Column A-Mode B-Mode Back-Solve Solve Avgs
6x1 Scatter | 4.859 x 102  2.145 x 10 3.025 x 10°  6.696 x 10° 3
3x3 Scatter | 3.567 x 102  1.783 x 102 1.997 x 10'  4.115 x 10° 1
3x4 Scatter | 3.101 x 102  1.303 x 102 2.149 x 10'  4.452 x 10’ 1
4x3 Scatter | 2.778 x 102 1.526 x 102 1.728 x 10'  3.537 x 10’ 1
2x16 Scatter | 4.500 x 102  3.350 x 102 3.175 x 10°  1.101 x 10° 1
12x1 Scatter | 2.636 x 102  1.206 x 102 4.0188 x 10° 8.340 x 10° 3
16x1 Scatter | 2.085 x 102  1.000 x 10 4.856 x 10° 9.8744 x 10° | 3
8x2 Scatter | 2.013 x 102 9.41 x 10!  1.127 x 10  2.295 x 10? 3

S =10 | 1.997 x 10> 9.63x 10!  4.508 x 10°  9.399 x 10° 3
4x4 Scatter | 2.371 x 102  1.056 x 102 1.225 x 10'  3.549 x 10! 3
§$=10 |2.329%102 1.104x 102 4.192x 10°  9.406 x 10° 3
4x6 Scatter | 1.456 x 102  7.72x 10!  1.723 x 10!  3.528 x 10' 3
S=10 | 1.684 x 102 8.85x 10'  4.206 x 10°  9.303 x 10° 3
12x2 Scatter | 1.490 x 102  6.95 x 10  9.08 x 10° 1.851 x 10! 3
$=10 | 1.425 x 102 6.54 x 10  4.557 x 10°  9.439 x 10° 3
12x3 Scatter | 1.0429 x 102 5.39 x 10*  9.34 x 10° 1.898 x 10! 3
S=10 | 1.0382 x 102 5.42x 10  4.539 x 10°  9.390 x 10° 3
8x8 Scatter | 1.154 x 102 6.16 x 10  1.1082 x 10' 2.2906 x 10' | 3
S$=10 |1.145x 10> 6.64 x 10!  4.4600 x 10° 9.651 x 10° 3
12x6 Scatter | 6.470 x 10!  3.527 x 10!  9.410 x 10°  1.9141x 10' | 3
S=10 |6.265x 101  3.417 x 10!  4.555 x 10°  9.495 x 10° 3
16x6 Scatter | 5.014 x 10!  2.744 x 10!  9.085 x 10°  1.8327 x 10" | 3
S=10 |4.984 x 10!  2.905x 10! 5.2811 x 10° 1.0740 x 10* | 3
16x8 Scatter | 7.046 x 10!  3.879 x 10' 8.9535 x 10° 1.8243 x 10' | 3
S =10 | 6.70 x 10! 3.854 x 101  5.239 x 10°  1.0816 x 10 3

Performance as a function of grid shape and size, and S-parameter. “Best” performance is for the 16x6 grid
with S = 10.
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