Zipcode: A Portable
Multicomputer Communication Library
atop the Reactive Kernel

A. Skyellum
A.P. Leung
M. Moriar:

CRPC-TR90029
1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Zipcode:
A Portable Multicomputer Communication Library atop the Reactive Kernel
CRPC-90-3

Anthony Skjellum* Alvin P. Leung
Manfred Morari

California Institute of Technology
Chemical Engineering; mail code 210-41
Pasadena, California 91125

Abstract

Sophisticated multicomputer applications require efficient, flexible, convenient underlying
communication primitives. In the work described here, Zipcode, a new, portable communication
library, has been designed, developed, articulated and evaluated. The primary goals were: high
efficiency compared to lowest-level primitives, user-definable message receipt selectivity, as well
as abstraction of collections of processes and message selectivity to allow multiple, independently
conceived libraries to work together without conflict.

Zipcode works atop the Caltech Reactive Kernel, a portable, minimalistic multicomputer
node operating system. Presently, the Reactive Kernel is implemented for Intel iPSC/1, iPSC/2,
and Symult s2010 multicomputers and emulated on shared-memory computers as well as net-
works of Sun workstations. Consequently, Zipcode addresses an equally wide audience, and can
plausibly be run in other environments.

*Present address: Lawrence Livermore National Laboratory, Numerical Mathematics Group, 7000 East Avenue,
L-316, PO Box 808, Livermore, CA 94551. e-mail: tony@helios.linl.gov. (415)422-1161. FAX: (415)423-2993.

Introduction

Wide experience with first-generation point-to-point multicomputer node operating systems (such
as Intel’s NX) demonstrates the inadequacy of basic typed message systems for large applica-
tions. That is, simple message typing does not provide enough degrees-of-freedom or notational
elegance in message receipt selectivity for most situations. As is widely implemented in practi-
cal codes, an additional (typically one-shot) message-passing layer and queueing mechanism cover
the naked primitives, providing additional flexibility at the application level. The overhead of an
application-oriented layer can be made acceptably light, as we indicate below. However, the over-
heads associated with the underlying typed primitives are viewed excessive in that little or no value

is attributable to the hard-wired typing provided by the node operating system itself.

The Caltech Reactive Kernel (RK), by Seitz and co-workers, was designed with this theme in mind
[5,6,9]. These primitives provide no message typing at all; they are of high-efficiency, but too low-
level for direct application use. For determinism, pairwise message ordering is preserved. Multiple
processes per node are supported, with correctness independent of process placement, subject to
finite storage limitations. There is no intra-node shared memory. Finally, no explicit notion of
the underlying communication network is enforced on the application (e.g., binary n-cube-oriented

limitations/strategies); process placement remains, however, at the discretion of the application.

Application-oriented layers are created to specialize and abstract from the RK level on a case-by-
case basis; the layers’ functionality and, hence, overhead are chosen by the application programmer
as part of the overall software design process. The easy-to-understand, concise set of primitives in
RK is easily ported and, alternatively, readily emulated. Consequently, applications based on RK
stand an excellent chance of surviving changes of node architecture and communication network.
Furthermore, as discussed below, these primitives provide a rational basis for programming medium-

grain, shared-memory multiprocessors as well.

Unfortunately, individuality in design of the application message-passing layer leads not only to

repetition of effort but also to portability problems between programmers and projects, just as

incompatible vendor operating systems do between diverse multicomputers. These < -cts are fun-
damentally unacceptable, because we intend to create high-performance, portable multicomputer
codes with potentially long lifetimes. Furthermore, we want to create substantial libraries that
can be used together in a single program without the chance of message-passing conflicts because
of differing assumptions between those libraries, or with/within the application code itself. Con-
sequently, it is desirable to define a single, encompassing application message-passing layer with
high efficiency, portability and extensibility, that will be used well by a wide range of applications.

These are the main goals of Zipcode.

The Zipcode philosophy is as follows. First, only the application can properly define the nature,
style, and extent of message-passing receipt selectivity. There are arbitrarily many such patterns
of selectivity — they cannot be foreseen or implemented by the node operating system a priori.
Consequently, any node operating system that types messages is, in general, too restrictive, molds
message-passing style and notation unnecessarily, and imposes overhead to overcome such built-in
restrictions. Second, there may be arbitrarily many contexts of communication within a given
multicomputer application which, for correctness, cannot clash; no node operating system of which
we are presently aware supports multiple contexts. Third, the best node operating system is
the one that constrains the application least, both in function and overhead. Thus far, RK has
proven the most elegant underpinning because it imposes essentially no arbitrary restrictions on

the communication process, and is not ridden with features of dubious value but noticable cost.
Zipcode design features can be summarized as follows:

e Operates on process lists as the fundamental communication object with no predilection toward
hypercubes, gray codes, or powers of two.

¢ Uses message classes to decide how process lists are to be abstracted.

o Uses message contexts to decide in part on receipt selectivity.

¢ Uses message classes to decide in part on receipt selectivity.

e Inheritance techniques are used to derive additional message contexts.
e Five standard pre-defined message classes are provided, including grids.

¢ “Global operations” — combine and broadcast — are defined for several of the standard message
classes and are extensible to new classes.

o C macros are applied widely to avoid excess overheads.
¢ Message-debugging capabilities are inherent in message classes.
¢ The number of classes and contexts are definable and extensible at run time.

e Applications can set the current context and utilize terse, readable program notation for message
transmissions.

In our empirical experience, carefully coded ad hoc message layers imply a 10-15% overhead in
message startup cost compared to bare primitives. We observe comparable overheads for the
Zipcode system (about 20%). As a function of its design, rejection of a message during message
selection is nearly as cheap as in ad hoc layers. Message acceptance cost is, however, a function of
the complexity of the message class being requested. Queueing of received, undelivered messages

is discussed; the present use of a single queue is justified and alternatives are mentioned.

Zipcode has been run extensively on the Intel iPSC/2 and Symult s2010 systems, and on networks
of Sun workstations. Performance results (single message transmissions and global operations) are

quoted as a function of message length for the Symult s2010 implementation.

Nearly 60,000 lines of successful application code have already been developed relying on Zipcode.
Use of the layer as a pedestal for portable scientific/engineering numerical tools is in progress.

Thoughts on this and future planned improvements are mentioned in closing.

Design Discussion

In second-generation multicomputers, improvements in routing technology allow programmers sen-
sibly to ignore the underlying communication network and conceive of the computers as nodes on a
completely connected graph with uniform transmission costs. As Athas and Seitz point out [1], this
approximation holds well for small- to medium-sized multicomputers employing their cut-through,
wormhole routing technology. Figure 1. illustrates performance of application-level primitives on

the Symult s2010, which incorporates this routing technology.

Within the loose framework of communicating sequential processes [2], two programming paradigms

Figure 0. Schematic of a Zipcode Letter.

Postage

Alignment Padding
Letter: Zipcode format of a message
Zipcode: Integer indicating the letter context
Class: Integer indicating style of selectivity
PO Box: Class-dependent structure for selectivity
Envelope: Preamble structure containing PO Box, class, zipcode
Cover: The envelope with alignment padding
Stamp: Length in bytes of the cover

are commonly used: reactive programming, where processes progress asynchronously with compu-
tational decisions driven by the number and variety of messages received, and loosely synchronous
programming, where processes progress with intermittent, pre-specified synchronizations. Zipcode
supports both styles of programming by building on unblocked and blocked RK primitives, respec-

tively.

Type vs. Class vs. Context

A message class is a set of rules and a data specification used for defining message receipt selectivity,
and for discriminating correctly among incoming messages. A hypothetical class of messages (call
it ‘A’) might be “messages chosen based on their source, where the source is to be specified by
node number and process ID.” Given this message class, it’s possible to look for a message from
one or more acceptable sources, rejecting all others to a queue for future retrieval. For example,

we could request “the next message from (node 1, process 0)” or, equally well, “the next message

from (node 1 or 2, process 0).” That we can discriminate on source implies that the message must

include, however transparently, its source information: in this case, two integers. In Zipcode, we

call this the “PO Box” data.

The message class just discussed would not allow discrimination based on the particular aspect of the
process that sent a message, nor on the particular contents of a message. These possible deficiencies
can be handled in distinct ways. On one hand, we could define a more powerful class (denote ‘B’),
increasing the contents of its PO Box compared to the ‘A’ class: “messages chosen based on their
source, plus an integer type.” Given such a class, messages could be tagged appropriately by the
sender to indicate their contents and/or intended use. If we really want to indicate the contents
of the message by type, this is probably the most convenient approach. If, however, analogous
parts of the communicating processes produce messages that they want to keep exclusively among
themselves, addressing their messages in a narrow sense, it is more convenient to define a message
context. We call the integer that specifies context the “zipcode” because it states conceptually

“where” the message is to go within its destination process(es), but not in detail.

A message context is like a message type, but stronger — knowing the context implies knowing
who can participate in the transmission process. So, for example, we could pose receipt selectivity
as “Accept a class ‘B’ message from (node 0, process 0) in context 6 (or zipcode 6),” where “6”
indicates the specific phase of the computation for which the message is intended (such as a linear-
algebra subroutine operating on a set of related matrices using processes in a particular logical
configuration). So far, context is just an extra integer added for greater flexibility. However, it
leads immediately to further interesting capabilities. As stated, being part of a message context
implies knowing the participants: in the simplest instance, an explicit list of the participating
processes. A message class can specify indentifying information in PO Boxes in a number of ways,
and we could imagine altering the semantics of the PO Box to exploit this extra information. First,
we could assign an abstract name to each process in the process list. A class ‘A’ message could be
changed to have its receipt selectivity be “messages specified by their context and position (index) of
the source process in that context’s process list.” A request could be “accept an ‘A’ class message

in context 6 from abstract process name 30.” Once we abstract the basis of receipt selectivity,

context and class information together uniquely identify the message(s) we want to accept; each is

insufficient alone.

We need a terse, flexible notation, and message structure to permit multiple contexts and classes to
work together. Figure 0. illustrates the structure of a Zipcode “letter” — a message, plus enabling
information: the variable-length envelope/cover including its zipcode, PO Box, and other needed
structural data. The postal analogy in Zipcode carries quite far because a process creates and
mails a letter, first by grabbing and filling out a blank message, then by addressing its envelope,
and finally, by posting the entire object. Starting from a list of addressees, a class, and a zipcode
context, a canonical data object, a mailer, is constructed by Zipcode calls. A mailer is the object
used when creating, receiving, or posting letters within the system. From it, further contexts of
communication may be created via inheritance routines (by correctly deriving a communicating

subset of processes and making a new process list for them).

“No Class” Systems

Typical node operating systems are “no class” systems. Specifically, they are systems where the only
explicit classis “messages identified by a single integer,” and types are instantiations of that integer.
Types are most often bound at compile time by applications, and diverse applications usually
attach distinct semantic connotations to the same integer types, implying source-level conflicts.
Furthermore, all messages are in the same context, so there is no way to distinguish messages
intended for one phase of a process over another, to avoid such conflicts, except by the types

themselves.

Broadcast and combine operations require extension of typing for their deterministic implementa-
tion. It’s necessary to discriminate among messages based on their source. Consequently, typed
message systems must include extra header information invisible to the user, at least in those
messages destined to participate in a global operation — multiple classes, though invisible and

inaccessible, play a role even in these systems.

Reactive Kernel Primitives

For the purpose of this discussion, we need to define six of the RK primitives, fitting neatly into two
categories: message-generating (i.e., allocate, receive) and message-consuming (i.e., free, send), as

follows:

char *msg;
int length, node, pid;
int count, *proc_list;

Message-Generating Primitives:

msg = xmalloc(length);
msg = xrecv(); /* unblocked */
msg = xrecvb(); /% blocked */

Message-Consuming Primitives:

xsend(msg, node, pid);
xmsend(msg, count, proc_list);
xfree(msg) ;

Basically, messages are created by xmalloc(), sent via xsend() or xmsend() (multiple destina-
tions), and received via xrecv() (unblocked) or xrecvb() (blocked). Sending a message is equiv-
alent to an xfree() with the side-effect that the message is mailed to the specified destination(s).

This represents the complete message-passing notation of RK.

Zipcode Class-Independent Calls

Zipcode maintains the same basic naming convention and style as RK. For all classes, the same

calls are used for allocation, sending and receiving letters. Specific classes may define additional

8

calls to increase the convenience of use (see G2-Class calls further below). Small-y calls require
specification of the mailer relative to which a letter is to be created, sent or received. Big-Y calls
depend on the current mailer context established by Ypush()/Ypop() calls. As such, they omit

mailer arguments. The [yYImail() calls transmit to all addressees of a mailer.

char *letter;
ZIP_MAILER *mailer;

Context-setting Primitives:

Ypush(mailer);
Ypop() ;

Letter-Generating Primitives:

letter = ymalloc(mailer, length);

letter = yrecv(mailer); /* unblocked */
letter = yrecvb(mailer); /* blocked */
letter = Ymalloc(length);

letter = Yrecv!); /* unblocked */
letter = Yrecvb(); /* blocked */

Letter-Consuming Primitives:

ysend(mailer, letter, node, pid);
ymsend(mailer, letter, count, proc_list);
yfree(letter);

Ysend(letter, node, pid);

Ymsend(letter, count, proc_list);
Yfree(letter);

Abstraction to process-list addressees:

ymail (mailer, letter);
Ymail(letter);

Variations of the basic [yYlsend() and [yYImail() macros are provided for determining the
disposition of the letter’s PO Box information. The three versions alternatively use: a default
value for the PO Box, accept an argument as a pointer to the contents of the PO Box to be
used, or assume the PO Box is preset correctly in the letter’s envelope. [yYImail() applied
to appropriately inherited child mailers, allows specification of arbitrary, user-defined subsets of

recipients of the original mailer’s addressees.

Any host/node data-format conversions to the cover information are automatically performed with-

out any user intervention. This feature causes additional load only in the host process.

Mailer Creation

Mailers are created through a loose synchronization between the members of the proposed mailer’s
process list. A single process creates the process list, places itself first in the list, and initiates
the “mailer-open” call with this process information; it’s called the “Postmaster” for the mailer, as
initiator. The other participants receive the process list as part of the synchronization procedure. A
special reactive process, “The Postmaster General,” maintains and distributes zipcodes as mailers
are opened; essentially the zipcode count is a single location of shared memory. Class-independent

mailer creation:

ZIP_MAILER #*mailer; /* mailer pointer */

10

ZIP_CLASS *class; /* class spec. */

ZIP_ADDRESSEES *addr; /* addressee list */

ZIP_MAILER #*parent; /* parent, if any */

void *extra; /* class extra data */

int *copyflg; /* copying flags */

short int *zipcode; /* zipcode, if known */

ZIP_MAILER *(*xinherit)(); /* overrides for inheritance */

mailer = yopen(class, addr, extra, parent, copyflg, zipcode, inherit);

Typical call:

mailer = yopen(class, addr, NULL, NULL, NULL, NULL, NULL);

Pre-Defined Letter Classes

Y-Class mail is used mainly for Zipcode internal mechanisms. The PO Box information is a
single short integer type. Global operations cannot be implemented for this class, because of its

intentional simplicity.

Z-Class mail is a general purpose class. Process names are abstracted to a single integer (based
on position in the process list); receipt-selectivity is based on that source name. Global operations
are implemented for this class, with analogous calling sequences to the G2-Class 2D-grid global

operations noted below.

G1-Class mail is a 1D-grid-abstraction class, similar to Z-Class mail.

G2-Class mail is a 2D-grid-abstraction class. A PzQ grid naming abstraction is attached to the
process list; each process is specified by a (p,¢) pair (e.g., in the PO Box). Through inheritance,

row and column mailers are defined in each process as the appropriate subsets of the 2D grid. This

11

class has received the most extensive use because of the natural application to linear algebra and

related computations [7].

Class-specific primitives for G2-Class mail have been defined for both higher efficiency and better
abstraction. Small-g calls require mailer specification while big-G calls do not, analogous to the y-

and Y-type calls defined generically above.

int p, q; /* source or destination */

Letter-Generating Primitives:

letter = g2Recv(mailer,p, q); /* unblocked */

letter = g2Recvb(mailer, p, q); /* blocked */
letter = G2Recv(p, q); /* unblocked */
letter = G2Recvb(p, q); /* blocked */

Letter-Consuming Primitives:

g2Send(mailer, letter, p, q);
G2Send(letter, p, 9);

Global operations combine and broadcast (fanout) are defined and have been highly tuned for this
class. Combines are over arbitrary associative-commutative operators specified by (*comb_fn) ().

Broadcasts share data of arbitrary length, assuming all participants know the source:

void (*comb_fn)(); /* operation */
void *buffer; /* data/result */
int size, items; /* data specifications */

12

g2_combine(mailer, buffer, comb_fn, size, items);
G2_combine(buffer, comb_fn, size, items);

void *data; /* data/result */
int length; /* length of data */

int orig_p, orig_q; /* origin */

g2_fanout(mailer, &data, &length, orig_p, orig.q);
G2_fanout(&data, &length, orig_p, orig._q);

G2-Grid mailer creation:

int P, Q; /* grid shape */

mailer = g2_grid_open(P, Q, addr, zipcode);

A much more general version, _g2_grid_open(), (analogous to yopen()) is also available.

G3-Class mail is a 3D-grid-abstraction class. A PzQzR grid naming abstraction is attached to
the process list, analogously to the G2-Class 2D-grid primitives. This class should prove very useful

in defining operations such as matrix-matrix multiplications in an unrestrictive setting.

The Zipcode Queue

Message selectivity implies that some messages will have to be stored on a queue that the Zipcode
layer must maintain; there is no push-back mechanism in RK. In our experience, multicomputer
codes do not accumulate very many messages on the queue; typically not more than five. We have
therefore chosen the simplest possible queueing arrangement: a linked list with linear access from
oldest to newest. Hashing by zipcode and/or class could also be implemented, but thus far appears

superfluous.

13

Performance

We quantify performance in three categories: single transmission timings, broadcast operations,
and combine operations, which we consider in turn. For each case, we have restricted our attention
to lengths that are even, to avoid severe penalities from data copying (i.e., bcopy()) operations

that are incurred for odd-length messages.

Figure 1. Graph of 2D-Grid Primitive transmission timings on a 16-node Symult s2010.

1500
i a
. a -
1000 -
- 4
3 4
Q 4
B .
3
.o S00 -
B -
0 T T v T v T T T v
0 2000 4000 6000 8000 10000

L: Message Length (Bytes)

A fit yields: T = 260.25 + 0.12660Lus, where T is time in ps, and L is the message length in bytes. An
underlying RK transmission costs approximately 7' = 220.0 + 0.1Lus, unoptimized (vs. T =200.0+0.1Lps
optimized).

Single Transmissions

Single-transmission performance is measured using a quiescent ensemble, through which a single

Zipcode letter is passed around many, many times among random destinations. The performance

14

illustrated in Figure 1. is for a 16-node machine, where G2-Class 2D-grid primitives were employed.
There is a stair-stepping cost increase as a function of length. This is expected because of 256-
byte pages used by RK to pass messages. Based on a least-squares fit of the data, we conclude
that a reasonably conservative measure for the startup cost of G2-Class primitives is 260.25us
compared to about 220us for the bare RK primitives. With optimized compilation, RK startup
time drops to about 200us; this savings would be reflected directly in reduced Zipcode startup
time. Furthermore, no optimizations, either by register keyword usage or optimized compilation

have yet been employed on the Zipcode layer. Such optimizations are expected further to improv-

performance, perhaps as much as 10us for the Symult implementation.

From this performance, we can estimate the systemic granularity of the Symult s2010, at the
application level. Defining the granularity as Teomm/Tcalc, We 1eport Teomm [Teate = 46, with
Teomm = 260.25us, and Teqe = 5.57ps. Teqic is the highly optimized time for the double-precision

floating point operation a = a + b * ¢ (vs. 13.785us, unoptimized). See also [7].

Global Operations

There are two global operations broadcast (fanout) and combine (recursive doubling) [8]. They are

extensible to all classes whose receipt selectivity includes source information.

Broadcast is a one-to-all concurrent fanout operation. This has been implemented so that the
originating process sends [log, N] letters, for N participants; completion is in [log, N1 ‘me. Other
tree approaches are possible, and have potential merit in load-balancing situations. The key feature
of broadcast is its lesser performance penalty for non-powers of two vis a vis combine, so it should
be used whereever possible. Figures 2a., 2b., illustrate performance for the G2-Class 2D-grid
primitives. They are only slightly cheaper than the combine primitives (Figure 3.) for powers of
two. For non-powers of two, the difference is more dramatic (see [7] for further discussion). A
least-squares fit of the timing data for lengths from 4...10,084, representative of performance for

all nodes counts from N = 2...128,is T = (4.1926 x 102 + 4.0138 x 107! L)log, N + (3.5611 x

15

Time (us)

Figure 2a. Graph of 2D-Grid Broadcast Primitive Timings on a Symult s2010.

102 + 1.4140 x 1071 L)us where T is the time in ps, and L is the length in bytes. Finally, a linear
transmission regime for small N has been implemented but is not reflected here. It produces lower

overhead when N < 4.

Combine is the usual associative-commutative global operation, completed in logarithmic time
in the number of processes. Figure 3. illustrates performance for powers of two, for the G2-
Class 2D-grid primitive case. Non-powers of two are substantially more expensive; in the worst
case, roughly twice the cost of combine for the next highest power of two. A least-squares fit

of the timing data for lengths from 4...10,084, valid for power-of-two nodes N = 2...128, is

16

T = (6.0766 x 102 + 4.3976 x 10~ L)log, N + (2.9994 x 102 + 2.7555 x 10~ L)us where, again, T is

the time in us, and L is the length in bytes.

Both the broadcast and combine primitives exemplify the high-frequency stepping characteristic,
which results from the 256-byte pages used for message transmission by RK. At each page boundary,
a small additional startup cost is incurred. Furthermore, both operations illustrate a “trough” of
improved performance, beginning at lengths somewhat beyond 5,000 bytes, and ending at roughly
8,192 bytes. This trough is thought to be a memory-allocation effect within RK; memory pages

are managed and dispensed at the lowest level in 8,192 byte (8K) pages.

“Virtual Distributed Memory”

In some circles, it’s popular to try to hide distributed memory characteristics by introducing a
notion of “global virtual shared memory” that constructs, in principle, a shared-memory paradigm
for multicomputing. This follows the tacit assumption that multicomputers are hard to program,
while multiprocessors are easy to program, and that shared-memory ideas should be spread to
the multicomputer regime insofar as possible, thereby reducing the effort inherent in multicom-
puter computation. Lacking evidence to suggest efficient realizations of this scheme are possible,
we suggest the diametric opposite — “virtual distributed memory.” We consider the distributed-
memory paradigm to be the more practical model for concurrent computation on medium-grain
multiple-instruction, multiple-data multicomputers and multiprocessors alike. We define uniform
message-passing primitives for multicomputers and multiprocessors, and achieve portability and
high performance for both classes of machines, encapsulating any special features of the memory
hierarchy in higher-level data distributions. Data distribution is handled at the application-level,
rather than directly and unportably in the communications layer. Applications are written for
correctness independent of data distribution, with performance depending heavily on the appropri-
ate data-distribution(s) (e.g., scatter distribution vs. linear distribution in multicomputer linear

algebra computations). The effects of locality of data are still left as tuning parameters for the

17

application programmer, but systematically so.

We contend that this approach not only promotes portability, but also rationalizes medium-grain
multiprocessor programming, while promoting modular, object-oriented algorithms. Instead of
hiding bottlenecks and unscalabilities in the form of shared-memory hotspots and critical sections,
the “virtual distributed memory” approach — multiprocessor support for communicating sequential
processes — makes explicit the synchronizations, and data dependencies that render multiprocessor

code quite challenging to debug or extend to many processors, if not to develop at the outset.

RK ports readily to multiprocessor environments or can be emulated. We are aware of a six-
processor Sequent Symmetry implementation by Hamrén and Mattisson, achieving message-startup
times of 250us, competitive with the Symult s2010 multicomputer at roughly 200 — 220us (3,
5]; they indicate no explicit per-byte message transmission costs because global memory pointers
are used to emulate message passing. This performance results with one process per processor,
with much lower performance evident with multiple processes per processor. The Sequent RK
implementation is based on Unix System V shared-memory primitives and should itself port to
other archetypical multiprocessors (e.g., BBN Butterflies, multi-headed Crays). Given the RK
underpinning, Zipcode and the whole body of Zipcode-compatible codes port immediately to such
multiprocessor environments also. A full discussion of this class of implementations with ported

RK /| Zipcode performance will be addressed in a future paper.

Conclusions, Future Work

In typical multicomputer programs, a layer of communication primitives is constructed above those
provided by the operating system. Early point-to-point node operating systems, such as Intel’s NX,
pre-defined the style and abstraction of message typing. (The decision that messages are typed
per se is already a strong assumption.) Consequently, application programs were forced either to
conform to the pre-defined style, or to ignore the typing feature, and add additional typing overhead

of their own. The Caltech Reactive Kernel (RK) was designed with this experience in mind, and

18

Figure 2b. Graph of 2D-Grid Broadcast Primitive Timings on a Symult s2010.

35000- '
30000 /,
_ 5 e
g 25000- //
© 20000 V’/, ,
™ 15000 //1,///"/7
100002 4/4;,:74__
5000- ’é;’f‘/ [
1} el I RN I

0 2500 5000 7500 10000 12500
Message Length (bytes)

Times quoted for 2, 4, 8, 16, 32, 64, and 128 node configurations. Linear-linear graph exemplifies low- and
high-frequency behavior.

overcomes the design flaw simply by omitting low-level typing altogether. RK consequently presents
a set of message primitives that must be augmented for any non-trivial application. Application
programs define ad hoc extensions to pattern message passing according to their needs, yet such
layers often imply incompatibility between any two application programs or subroutine libraries.
The key design principle underlying Zipcode s that a single, extensible layer above RK is suitable for
the vast majority of multicomputer applications, thereby avoiding fundamental incompatibilities

before they arise, and also eliminating duplication of effort in application-level message-passing

design.

We foresee RK as the low-level portability standard for multicomputers and multiprocessors in the

1990’s, much as Unix is projected to become the operating system standard of 1990’s personal com-

19

puters, workstations and supercomputers alike. The flexible features of Zipcode make it a suitable
basis for many application codes and libraries, promoting both portability, and codes of complexity
whereever RK is implemented or emulated. Zipcode, as a portability pedestal for multicomputer
applications, encapsulates the interprocessor hardware characteristics, while encouraging the de-
velopment of codes whose correctness is independent of data distribution. Data distributions can

subsequently be used to tune for high performance in a hardware- and application-conscious way.

The key features of Zipcode are: its design for extensibility, allowing the definition of many classes
of communication and hence message receipt selectivity; support for abstraction of process lists into
convenient working groups for communication; the ability to define many non-interfering communi-
cation contexts based on process lists with instantiation at runtime rather than compile-time; and
the derivation of additional communication contexts through inheritance. Use of Zipcode implies
acceptable overhead compared to the pervasive one-shot message-passing layers of most multicom-
puter applications. We asserted at the outset of this work that message-passing generality could be
achieved with very little additional overhead compared to one-shot layers. This has subsequently

been achieved in Zipcode.

For the future, we foresee several classes of improvements and a wider range of implementations,
both for new and extant multicomputers, and for medium-grain multiprocessors, as noted above.
We foresee the creation of a slightly more extensive pool of general-purpose message classes, based
on user feedback. We expect to extend grid-based primitives to provide grid-to-grid data transfor-
mations. In the area of debugging, we intend more dramatic growth. We expect to introduce more
sophisticated macros and function calls to allow for automated detection of many communication-
related errors, as well as better monitoring of the Zipcode queue. We do not plan to replace the
queueing mechanism at present, but we do expect to make small definitional changes to allow the

queueing mechanism to be application re-defined.

Experience with Zipcode suggests ways to extend RK for overall higher performance of the applica-
tion. In particular, implementation of broadcast and combine by RK can be posed in a completely

general way, consistent with its unrestrictive philosophy; however, such implementations could take

20

advantage of important hardware optimizations and produce much faster primitives overall. The

extant Zipcode calls would layer transparently above such new primitives (see [7]).

A numerical toolbox consisting of Zipcode-based applications is under construction and refinement.
The advantages of the Zipcode basis will include portability and compatibility between a number
of numerical libraries from several sources, working primarily, at present, with G2-Class 2D-grid

primitives. This too will be the subject of a future paper.

Figure 3. Graph of 2D-Grid Combine Primitive Timings on a Symult s2010.

40000
35000
30000
25000
20000
15000
10000-

5000;

Times (us)

N\,
N

7 :‘I/
A~
]

Oj'IT"IIIIIIIITI LEL L LA BB

0 2500 5000 7500 10000 12500
Message Length (bytes)

Times quoted for 2, 4, 8, 16, 32, 64, and 128 node configurations.

21

Acknowledgements

The authors wish to acknowledge both the initial and recent suggestions of Lena Peterson and Sven
Mattisson, as well as early input from Eric Van de Velde, all of whose previous experiences with
and examples of “one-shot” message-passing layers provided valuable motivations for this work.
We wish also to acknowledge Wen-King Su for his insightful advice over the last eightteen months,

and Prof. Charles L. Seitz who offered helpful suggestions and encouragement.

The first author acknowledges partial support under DOE grants DE-FG03-85ER25009 and DE-
AC03-85ER40050. The second author (then at the University of California, Santa Cruz; presently
at Syracuse University) received support for his 1989 Caltech Summer Undergraduate Research
Fellowship (SURF') under the same grants, and wishes to thank the Caltech SURF program for the

opportunity to pursue the research discussed in part here.

Zipcode was developed using machine resources made available by the Caltech Computer Sci-

ence Submicron System Architecture Project and the Caltech Concurrent Supercomputer Facilities

(CCSF). Caltech/Rice CRPC provides support, in turn, to CCSF.

This paper, as a student contribution, won the student-contest prize for best contribution in
the “operating systems” area at the Fifth Distributed Memory Computing Conference (DMCCS5),
Charleston, April 1990.

References

[1] Athas W. C., and C. L. Seitz, “Multicomputers: Message-Passing Concurrent Computers,”
IEEE Computer, August 1988, pp. 9-24.

[2] Hoare, C. A. R, “Communicating Sequential Processes,” CACM 21(8), August 1978, pp. 666-
677.

(3] Mattisson, S. — Personal communication, April 1990.
[4] Seitz, C. L, “The Cosmic Cube,” CACM, 28(1), January 1985, pp. 22-33.

[5] Seitz, C. L., et al., The C Programmer’s Abbreviated Guide to Multicomputer Programming,
Caltech Computer Science, Report Caltech-CS-TR-88-1, January 1988.

22

[6] Seizovic, J., The Reactive Kernel, California Institute of Technology, Computer Science, Report
Caltech-CS-TR-88-10, 1988.

[7] Skjellum, A., Concurrent Dynamic Simulation: Multicomputer Algorithms Research Applied to
Differential- Algebraic Process Systems in Chemical Engineering, Ph.D. Dissertation, California
Institute of Technology, Chemical Engineering, 1990. Report CRPC-90-4.

[8] Stone, H. S., High-Performance Computer Architecture, Addison-Wesley, 1987.

[9] Su, Wen-King, Reactive-Process Programming and Distributed Discrete-Event Simulation,
Ph.D. Dissertation, California Institute of Technology, Computer Science, 1989, Report
Caltech-CS-TR-89-11.

23

