Concurrent Dynamic Simulation:
Multicomputer Algorithms Research
Applied to Ordinary Differential-
Algebraic Process Systems in
Chemical Engineering

A Skyellum

CRPC-TR90030
May, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Center for Research on Parallel Computation (CRPC-90—4)

CONCURRENT DYNAMIC SIMULATION:
MULTICOMPUTER ALGORITHMS RESEARCH
APPLIED TO
ORDINARY DIFFERENTIAL-ALGEBRAIC
PROCESS SYSTEMS
IN CHEMICAL ENGINEERING

Dissertation by
Anthony Skjellum

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
California Institute of Technology
Division of Chemistry & Chemical Engineering

Pasadena, California

1990
(Submitted May 21, 1990)

Copyright © 1990 Anthony Skjellum
All Rights Reserved

iii

This work is dedicated respectfully to the memory of

Professor William H. Corcoran,

and also in memory of

Professor William F. Bergquist,
Roland A. Haugh,

and

John Manley

for knowledge, ideas and ideals. ..

iv

Sonnet LX

Like as the waves make toward the pebbled shore,

So do our minutes hasten to their end;

Each changing place with that which goes before,

In sequent toil all forwards do contend.

Nativity, once in the main of light,

Crawls to maturity, wherewith being crown’d,

Crooked ellipses 'gainst his glory fight,

And Time that gave doth now his gift confound.

Time doth transfix the flourish set on youth

And delves the parallels in beauty’s brow,

Feeds on the rarities of nature’s truth,

And nothing stands but for his scythe to mow;
And yet to times in hope my verse shall stand,
Praising thy worth despite his cruel hand.

— Shakespeare

Sonnet XIX

When I consider how my light is spent,
Ere half my days, in this dark world and wide,
And that one Talent which is death to hide,
Lodg’d with me useless, though my Soul more bent
To serve therewith my Maker, and present
My true account, lest he returning chide;
“Doth God exact day-labor, light denied,”
I fondly ask; But patience to prevent
That murmur, soon replies, “God doth not need
Either man’s work or his own gifts; who best
Bear his mild yoke, they serve him best; his State
Is Kingly. Thousands at his bidding speed
And post o’er Land and Ocean without rest:
They also serve who only stand and wait.”

— Milton

*

Acknowledgements

Many years have passed since I began my studies at Caltech. . . more than a decade.
Respectfully, I wish to acknowledge collectively all the people, whether mentioned
below or not, who have helped me and/or became friends along the way.

Foremost, I wish to thank my advisor Prof. Manfred Morari. His guidance, al-
ternate prodding and patience during the uncertain, difficult “middle years” are all
deeply appreciated. His “conceptual-block-busting” approach to research has taught
me much about what it means to be a researcher. For this, and for the opportunity
he gave me to study toward my Ph.D. at Caltech, I am grateful. I am also thankful
to Profs. John Seinfeld and George Gavalas for allowing me to continue in the Ph.D.
program after my M.S. degree in Chemical Engineering, and for the 1985 Rockwell
Fellowship they awarded me in this connection.

Equally, I wish to thank my parents for their unwavering spiritual (and financial)
support, selflessness and kindness over my years at Caltech. They are undoubtedly the
two pillars of strength, without which my studies would never have been as successful.
Their “support system” to me during my last months has made an otherwise tension-
packed time livable.

Regards also to Profs. Fred Shair, Joel Franklin and Charles Seitz for their en-
couragement and moral support over many years, and for their general suggestions
toward my research as the members of my thesis committee. I am also indebted to Dr.
Paul Messina for his many helpful suggestions as the fifth member of my committee,

who participated meaningfully despite myriad commitments.

vii

I wish heartily to thank Mr. Lee F. Browne, Director of Secondary School Relations
and Special Student Programs. Through his intensive summer courses in chemistry,
physics, and calculus, I gained the proficiency needed to begin as a Caltech under-
graduate; I also remember the support of Profs. Tom Apostol and Jerry Pine for my
admission to Caltech. I especially wish to remember Prof. Ricardo Gomez for his
friendship, good advice, and for the hospitality he and his wife Clara extended over
the years, including “serious” croquet matches, a tradition I try to carry on. I wish to
thank Yekta Giirsel for his herculean efforts as physics teaching assistant nonpareil,
tutor at-large, and for his friendship.

I wish to ackowledge Prof. Eugene Cowan for his valuable advice as my second
undergraduate advisor, after the untimely death of Prof. William Corcoran. Prof.
Cowan’s extensive assistance with my experimental senior thesis was extremely kind
and beyond all reasonable expectations; this work proved an important lesson in the
difficulty of research. I wish to acknowledge Prof. Geoffrey Fox for his support of my
1983 SURF project, and for his help and advice in those years.

I wish to acknowledge former Caltech Profs. Eric Herbolzheimer and Greg
Stephanopoulos for the best taught courses in engineering, ChE 103abc, Transport
Phenomena. They really made an effort to make the topics understandable and in-
teresting. Special thanks to former Prof. Jens Lorenz for his excellent Applied Math
courses in optimization and numerical methods for PDE’s. These were far and away
the best teachers I encountered during my ten plus years at Caltech.

I wish to thank Prof. Charles Seitz for his efforts in creating the multicomputer
revolution and for practical concurrent systems software and machines, without which
this research could only be hypothetical. I am grateful to Sven Mattisson () and
Lena Peterson (<) of Lund Institute of Technology, Dept. of Applied Electronics
(and irregularly of Caltech Computer Science) for their extensive collaboration, CON-

CISE simulation software, and continuing dialogue. Eric Van de Velde kindly shared

viii

his dense and prototype sparse concurrent linear algebra software and multicomputer
programming ideas with me through his AMa/CS course, serving as springboards for
some of the concurrent numerical libraries I have created. Alvin Leung contributed
genuinely to this research through his efforts as a 1989 Caltech Summer Undergradute
Research Fellow (SURF).

Wen-King Su and Chris Lee (of Computer Science) have been instrumental in
surmounting difficulties with the Symult s2010 multicomputer, from a software point-
of-view. Sharon Brunett of Caltech Concurrent Supercomputer Facilities (CCSF) has
complementarily been a tremendous help in the systems and hardware aspects of using
this multicomputer. Each of them contributed importantly, and often in very timely
ways, to the furtherance of this work. Arlene DesJardins was very helpful and patient
in Sun-usage and disk-consumption-related issues. Thanks guys!

Thanks to Drs. K. E. Brenan, S. L. Campbell, and Linda Petzold, for sharing
advance drafts of their monograph Numerical Solution of Initial- Value Problems in
Differential-Algebraic Equations, which proved very helpful in the creation of the
Concurrent DASSL system described herein (chapter 6).

Thanks also to Prof. Michael F. Doherty of the University of Massachusetts,
Amberst, who kindly shared his group’s Fortran-based thermodynamic routines and
database with the Morari research group. From this code, I developed a numerically
compatible C version used by the proto-Cdyn multicomputer simulator also described
in chapter 6.

Profs. Gustaf Sdderlind and Sven Mattisson (both of Lund Institute of Technol-
ogy) offered timely, helpful input concerning the underlying numerical properties of
CONCISE, which is essential to the contents of appendix E, and to our future planned
extensions of Waveform Relaxation to chemical engineering problems.

Dr. John Gustafson of Ames Laboratory-ISU (formerly of Sandia National Labora-

tories), kindly shared the machine-readable form of his well-known scaled performance

ix

diagrams, some of which appear in the supplementary discussion on performance in
appendix F.

I wish to acknowledge partial support under the following DOE contracts: DE-
FG03-85ER25009 and DE-AC03-85ER40050, representing one-quarter of my total
graduate support over the six years, and including additional travel support. Thanks
to Geoffrey Fox for making this money available to my advisor expressly for my sup-
port. I acknowledge the Caltech Computer Science Submicron System Architectures

Project and CCSF for making multicomputer resources and host machines available.

Turning to the Morari research group and the department. .. The friendship and
advice of my officemates Profs. Claudio Scali and Sigurd Skogestad during their salad
days at Caltech are recalled fondly. My officemates Lionel (“gee-guys”) Laroche, Jay
(“oh-no”) Lee, and Eliana (“M-A-K-H-L-O-U-F as in Frank”) Makhlouf, have been
continual sources of fun and excitement since their arrival in the office in 1986-87.
Jay and Lionel are now “senior group members,” with the awful burden of upholding
the best traditions of the group (and holding down the rest). Thanks also to Jay for
many full-contact table tennistsu matches.

I wish to recall the significant help and comraderie of Henrik Andersen, Lionel
Laroche and Jay Lee, and the friendship of Dan Laughlin, Richard Colberg, Pierre
Grosdidier, and Marc Gelormino (who also endured many enervating, High Speed
pinball tourneys). Finally, Evanghelos (“EZ”) Zafiriou and Dan Rivera were irre-
sponsible for including me in their running battles on the nature of life, the universe,
artificial intelligence, evolution, religion, mysticism, psychology, the opposite sex,
STAR TREK, politics, robust control, Vanna White (<~), and obscure nonlinear
combinations of these topics. Their repartee evidently continues to-date, mainly un-

resolved, and occasionally re-implicating Jorge Mandler, to his utter chagrin.

As far as Caltech at large, thanks to Cindy Akutagawa for many years of friend-
ship, many thanks to Carol Mastin and her Graduate Office co-workers for their strong
support of my multi-year activities involving the Graduate Student Council (GSC),
including three editions of The Technique, and for help in my graduation process;
thanks to Stan Borodinsky for GSC fiscal help, to Edith Huang for troff-related help
in the dim times; grateful thoughts to Donna Johnson, April Olson, Kathy Lewis, Pat
Houseworth, Helen Dewitt and Christina Conti, in the department, Carolyn Merkel of
SURF, and Sylvia Ford, Barbara Anderson, and Fred Kemp et al. at the Bookstore,
all for many little instances of assistance. The staff of Millikan library’s Inter-library
Loan Office have assisted me throughout my years at Caltech; Ken Sweet and his
staff of the Millikan bindery service have been extremely helpful, conscientious, and
resourceful. Thanks to everyone at the Caltech Alumni Association and fellow mem-
bers of its Board of Directors for their well wishes and sincere friendship, especially
Gary Stupian, Rhonda MacDonald, and Arlana Bostrom. I extend fond wishes to my
teammates from the last three Divergent Grads (V?) C-league softball teams.

Special thanks to LGL for visiting Hawaii in June, 1985.

xi

Vel

Concurrent Dynamic Simulation:
Multicomputer Algorithms Research
Applied to
Ordinary Differential-Algebraic Process Systems
in Chemical Engineering

by

Anthony Skjellum

Abstract

We consider systematic parallel solution of ordinary differential-algebraic equa-
tions (DAE’s) of low index (including stiff ODE’s). We target multicomputers,
message-passing concurrent computers, such as Intel’s iPSC/2 hypercube and the
Symult 52010 2D mesh. The programming model is reactive and/or loosely synchro-
nized communicating sequential processes.

We present new approaches to efficient application-level message passing through
the Zipcode communication layer (built upon the Caltech Reactive Kernel), which is
shown to be both portable and effective for complex multicomputer codes. Zipcode
promotes the elegant expression of message passing in large applications, an important
sub-goal.

We present closed-form O(1)-memory, O(1)-time data distributions providing
parametric control over degree of coefficient blocking and scattering. These new dis-
tributions permit effective formulations of the DAE’s and higher sparse linear algebra
performance.

We present results for concurrent sparse, unsymmetric linear algebra. A two-phase

approach is used, like Harwell’'s MA28. New results include: reduced communication

Xiii

pivoting and improvement of triangular-solve performance via the parametric distri-
butions: LU factorization load balance is traded against solve performance. Overall
performance is thereby increased. Good factorization speedups are attained for ex-
amples, but exploitation of multiple concurrent pivots remains a needed extension.
Triangular solves prove disappointing on an absolute scale, despite significant effort.

Two approaches to concurrent simulation are developed: the Waveform Relax-
ation (Picard-Lindeléf) methodology extends to binary distillation simulation and
further; it is inherently very concurrent. We address the aphievable concurrent per-
formance of sequential approaches via Concurrent DASSL, which extends Petzold’s
DASSL algorithm to multicomputers. A simulation driver for arbitrary networks of
distillation columns is described. For a 9009-integration-state system with seven dis-
tillation columns, we demonstrate a speedup of approximately five. The low speedup
is attributable to the simplicity of the thermodynamic model used, and the nearly
narrow-banded Jacobian structure. Other chemical-engineering systems could per-
form substantially better.

We suggest Waveform Relaxation as the key focus of future research for the par-
ticular distillation problem class cited. We indicate future areas for application of
Concurrent DASSL, and suggest ways to improve its concurrent performance, cou-

pled with improvements in sparse linear algebra.

xiv

Contents

Acknowledgements

List of Tables

1 Introduction
1.1 Concurrent Computation Research for Chemical Engineering
1.1.1 Motivations and Philosophy
1.1.2 Applications in Chemical Engineering
1.2 Concurrency & Multicomputers
1.2.1 Multicomputers vs. Multiprocessors
1.2.2 Operating Systems
1.3 Thesis Overview
2 Concurrent Simulation Paradigms
2.1 Introduction
2.2 Basic Computing Issues
221 Nomenclature,
2.2.2 The Concurrency Diagram
2.3 Choiceof Algorithm
2.3.1 Waveform Relaxation Motivating Example
232 ADirect Example.
2.4 Multicomputing Programming
2.5 Fundamental Building Blocks
2.5.1 Grids and Communication, Primitive Operations
2.5.2 Selected Concurrent Operations
3 Multicomputer Communication Layers
3.1 Imtroduction
3.2 Zipcode Design Discussion
3.21 Typevs. Class vs. Context
322 “NoClass” Systems.t v v v i vt
3.2.3 Reactive Kernel Primitives
3.24 Zipcode Class-Independent Calls
325 MailerCreation
3.2.6 Pre-Defined Letter Classes

Xv

...............................

Abstract
List of Figures

3.2.7 The Zipcode Queue
3.3 Performance v v v it e e e e e e e e e e e e e
3.3.1 Single Transmissions« ..o
3.3.2 Global Operations
3.4 “Virtual Distributed Memory” oL
3.5 Conclusions, Future Work

Concurrent Data Distributions
4.1 Introduction v v i i e e e e e e e e e e e e e e e e e e e
4.2 New Data Distributions« o ottt e i

Concurrent Sparse Linear Algebra

5.1 Introduction o . o i it e e
5.2 Design Overview
5.3 Reduced-Communication Pivoting
5.3.1 Formalism i
5.3.2 Advantageso
5.4 Performance vs. Scattering
5.5 Performance e
5.5.1 Order 13040 Example.,
5.5.2 Order 2500 Example
5.6 Future Work, Conclusions

Concurrent DASSL

6.1 Introduction & i i i e e e e e e e e e
6.2 Mathematical Formulation '
6.3 proto-Cdyn — Simulation Layer
6.3.1 Template Structure
6.3.2 Problem Preformulation,
6.4 Concurrent Formulation,
6.4.1 OVEIVIEW .+ v v v i i e e e e e e e e e e e e e e e e
6.4.2 Single Integration Step oL
6.5 Chemical Engineering Example
6.6 ConclUSIONS v v v v v e
Waveform Relaxation for Distillation Simulation
7.0 Introduction o v i i i i et e e e e e e e e e e e e e e e
7.2 ‘Idea’ of Waveform Relaxation
7.3 The Binary Distillation Model
74 The TRAY Template« oo it i it oo
7.5 Motivating Convergence
7.6 Summary, Discussion, Conclusions

Conclusions, Future Proposed Work and Recommendations
8.1 Perspective and Summary o0

xvi

8.2 Recommendations for the Future 141

8.3 Specific Future Work L L 143

A More Concurrency Kernels 146
Al Definitions, 146
A2 Kernels., 149
A.2.1 Vector Transpose Operations 150

A22 InnerProducts, 153

B Zipcode Internals and Use 157
B.1 Conventions 157
B.2 DataStructures 158
B.2.1 Local Structures 158

B.2.2 Letter Structures 160

B.2.3 Illustrative Macros/Calls 162

B3 G2-ClassCalls. 164
B.4 Interstitial Layers 165
B.5 Suggested Additions to the Reactive Kernel 166

C Derivations of Data Distributions 171
C.1 Definitions and Descriptions 171
C.1.1 Conventional Functions 172

C.1.2 Block Versions 173

C.1.3 Generalized Families 176

C.2 SelectedProofs 183
C.3 Weak Data Distributions 186

D Details on Concurrent Sparse Linear Algebra 191
D.1 BasicAlgorithms 192
D.2 SparsityIssues. 201
D.2.1 Indexation @ i 201

D.2.2 LU Factorizationu.... 202

D23 A-mode 204

D24 B-mode 205

D.2.5 TriangularSolves 206

E Details on Waveform Relaxation 209
E.1 CONCISE’s Problem Formulation 209

F On Concurrent Performance 213
F.1 Scaled Performance Definitions 214
F.2 Why “Scaled Speedup” is not our Favorite Performance Measure . . . 216

G Abridged UNITY Notation 221
Bibliography 229

xvii

List of Figures

...........

...........

...........

1.1 Schematic Natural Gas Pipeline Distribution Network
1.2 Industrial Coupled Reactor-Distillation Flowsheet
1.3 Multicomputer Schematic
1.4 Multiprocessor Schematic
1.5 Prototypical Multicomputer Damon Display . . .

1.6 Five-Dimensional Binary n-cube Multicomputer Schematic

1.7 Symult s2010 Multicomputer Schematic.

2.1 The Concurrency Diagram

...........

2.2 Schematic of a Logical Two-Dimensional Process Grid

2.3 Recursive Doubling Schematic
2.4 Matrix-Vector Product Schematic on a 4x4 Grid .

2.5 Broadcast Type #1 Schematic
2.6 Broadcast Type #2 Schematic
2.7 Broadcast Type #3 Schematic
3.1 Schematic of a Zipcode Letter

3.2 Zipcode G2-Class 2D-Grid Primitive Performance
3.3 2D-Grid Broadcast Primitive Timings Surface . .

3.4 G2-Class 2D-Grid broadcast Timings
3.5 G2-Class 2D-Grid combine Timings
4.1 Process Grid Data Distribution of Az=b
4.2 Distribution Example
5.1 Example Jacobian Structures
5.2 Linked-List Sparse Structure Schematic
6.1 Single Integration Step Blocks
7.1 The CONCISE TRAY Template.

7.2 A Single Feed Column in the CONCISE paradigm

A.1 Step #1 of the transpose_row_to_column operation
A.2 Step #2 of the transpose_row_to_column operation
A.3 Step #3 of the transpose_row_to_column operation

B.1 Zipcode Generic Mailer Geneology

xviii

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

M Ov N

List of Tables

4.1

5.1
5.2

6.1
7.1

Data Distribution Function Timings 68
Order 13040 Example Timing Data 92
Order 2500 Example Timing Data 96
Order 9009 Simulation Example 116
Nomenclature for TRAY Template 127

XX

B.2

D.1
D.2
D3
D.4
D.5
D.6
D.7
D.8

F.1
F.2

Zipcode G2-Class 2D-Grid Mailer Geneology 163

Algorithm LU-1. o oot 194
Algorithm TRI-I oo ot 195
Algorithm LU-la . . . oo v vttt 196
Algorithm LU-2, “Practical” LU Factorization, Part I. 197
Algorithm LU-2, “Practical” LU Factorization, Part IL. 198
Algorithm FWD-2, “Practical” Forward-Solve 199
Algorithm BCK-2, “Practical” Back-Solve Algorithm 200
Computation of Growth Factory 204
The Scaled Performance Diagram 214
The Scaled Performance Diagram Revisited 216

Xix

Chapter 1

Introduction

Abstract

This introductory chapter is divided roughly into three parts: first, a motivating
discussion of concurrent computation and multicomputers, and, second, a discus-
sion of the potential applications and benefits of, and research challenges to highly
concurrent computation in chemical engineering. Third, we outline the contents of
the thesis, indicate the temporal progression of the research summarized here, and

indicate further background and motivations for this work.

1.1 Concurrent Computation Research for Chemical En-
gineering

The topic of this thesis is large-scale, concurrent dynamic simulation in chemical en-
gineering. We have centered on distillation column networks as the application, but
high-performance solution of this unit operation is but our exemplar, not our exclu-
sive end-goal. We are intent rather on opening a new area of chemical-engineering

research.

2 CHAPTER 1. INTRODUCTION

Figure 1.1. Schematic Natural Gas Pipeline Distribution Network

7 Q== N

SOURCE LOAD

N
N

% % LOAD

1.1.1 Motivations and Philosophy

We see high-performance computation research as an important intellectual activity
in chemical engineering that builds on the strong extant chemical-engineering tra-
ditions of modeling and simulation, and on the application of applied mathematics,
computer science, electrical/computer engineering, and computer-aided design to im-
portant chemical-engineering problem domains. We see the current need for such
high-performance computation in order to generate solutions for fundamental and
practical investigations alike, and to help generate better understanding of chemical-
engineering systems and models in the research environment. For the future, we
expect these systems to function in on-line capacities also, yielding more efficient, eco-
nomical operations in plants and other large-scale systems. In on-line applications, we
imagine that concurrent supercomputer simulations and optimizations could conceiv-
ably account for significant improvements in operational flexibility, quality control,

safety, emissions standards, competitiveness and, ultimately, profitability. Massive

Concurrent Computation Research. .. | 3

concurrency is arguably the most important source of such future high-performance
computation, because it skirts important physical limitations of sequential devices.
These potential benefits will be impossible without careful research into concur-
rent computation and numerical algorithms. We must, however, simultaneously take
the structure and features of chemical-engineering applications into account. As such,
this is to be a genuine interdisciplinary activity, impractical without the motivation of
chemical-engineering problems, and impossible without high-quality computer-science
methodologies and applied-mathematical techniques. Finally, we must provide for
technology transfer to applied research and to industry, in the form of effective con-
current software tools. Though algorithms research has been and is to remain the
fundamental goal of our work, practical representations of our methods and findings
are needed, not only to prove their supposed validity, but because it will undoubt-
edly prove impractical for commercial ventures to consider such costly and elaborate
efforts on their own, at least for the foreseeable future. In effect, we must help lower
the economic barriers to concurrent computing, as well as the conceptual barriers. It
is clear that the cost of concurrent supercomputer hardware will be small compared
to the true cost of the high-quality software needed to drive the hardware to high

performance for non-trivial applications.

1.1.2 Applications in Chemical Engineering

We foresee a number of important applications for concurrent computers in chemical
engineering: first, as reflected by the work of this thesis, in dynamic flowsheet simula-
tions; second, in the combined economic optimization and simulation of such systems,
eventually on-line. Furthermore, we see the application of concurrency research in
fluid mechanics to the many fluid-mechanics problems that arise in chemical engineer-
ing, although we have not considered such problems in the present work. Thirdly, we

imagine applying methods for simulation and optimization to systems that are them-

4 CHAPTER 1. INTRODUCTION

selves large-scale spatially, such as the trans-Canada gas pipeline. Specifically, the
economic optimization of natural gas distribution networks is an important goal, and
a concurrent supercomputer would provide a route to such improved performance (see
Figure 1.1). In an ideal situation, we would apply model-predictive receding-horizon
control to the system, utilizing the simulations generated by the concurrent computer
as the nonlinear model for the large-scale system (see [26,31]).

There are a large number of parameter-estimation applications arising in various
specialties within chemical engineering; identification is also an important related
area. For these fields, it would be interesting to investigate the potential impact of
concurrency on present practice. In general, for control, the availability of faster and
more detailed simulations is known to be of value. For example, our work leads the
way to higher speed simulation of coupled distillation columns. The availability of
faster accurate simulations will permit control studies for these systems. In particular,
we are interested in solving an industrial problem as depicted in Figure 1.2. The
main part of this example involves about five thousand integration states. We have
already successfully solved problems with an excess of nine thousand states with our
concurrent simulator (see chapter 6), although not of the complex structure depicted
in the figure. We are therefore confident of our ability to address this coupled reactor-
distillation sequence effectively within the next one to two years, based on current
algorithms, software sophistication, and future planned work.

Our algorithms and software realizations are not limited to chemical engineering
systems specifically, except for the distillation simulation driver proto-Cdyn detailed
in chapter 6. The Concurrent DASSL integration engine (see chapter 6), and sparse
concurrent linear solver (see chapter 5) discussed here are suitable for a number of
applications. We imagine applying this technology to electrical power network grid
simulations, and possibly directly to natural gas pipeline simulation, as suggested by

Chua [13]. Petzold’s original Fortran-based DASSL (upon which our concurrent C

W

6 CHAPTER 1. INTRODUCTION

Figure 1.3. Multicomputer Schematic

Communications Netwo‘>

T
ONOEO

i 9\
0%

dise=

1.2 Concurrency & Multicomputers

The primary goal of this effort is to obtain orders-of-magnitude speedup in wall-

clock execution time by using large, distributed-memory, medium-grain computer

Figure 1.4. Multiprocessor Schematic
<Communicauons Network

TS
@& @) @

J

={

O

Concurrent Computation Research. .. 5

code is modeled) has also been applied extensively to combustion problems, and to
many other systems involving ordinary differential-algebraic equations of low index,
and including parabolic PDE’s solved by the method of lines [9]. Our work opens
the possibility of parallelizing this large body of applications readily while maintain-
ing the present, high-quality numerical characteristics of DASSL. Achievable perfor-
mance for each application under this transformation to concurrency will vary. Higher
performance will, of course, require special attention to problem characteristics and

peculiarities, on a one-by-one basis.

Figure 1.2. Coupled Reactor-Distillation Flowsheet

FEEDSTOCK
1.
FEEDBACK OF REACTANTS
LC
> > —_—
()
> > > STORAGE
| TANK
> > — S ~
”» NINE-COLUMN SEQUENCE
THREE

REACTORS
IN PARALLEL

1.2. CONCURRENCY & MULTICOMPUTERS 7

ensembles (“parallel processing”) [40,41,6,20]. The secondary goal is to harness mul-
ticomputers to solve large problems that prove too large for effective solution on
mainframe technology (see Figure 1.3.). Though solution speed is still important
for the latter case, the higher priority is the ability to solve these previously out-of-
reach problems at all. The availability of greater computational power should also
drive the modelling process: engineers will be able to consider more complex, com-
putationally demanding models than are currently feasible. The tertiary goal is the
production of high-quality software realizations of our algorithms suitable for wider
use and expansion. In this way we dramatically lessen the entry cost of further work
in multicomputation for chemical engineering. We are largely unconcerned with the
aggregate of CPU cycles used to accomplish these computational ends. Appropriate
concurrent algorithms obtain cost-effective, high-end computing for specific problems
and advance the understanding of how distributed-memory, message-passing multi-
computers can be efficiently applied to additional complex engineering applications.

Present technology offers hardware scalability to large ensembles and currently
available commercial products incorporate up to 2,048 computational nodes [25], each
with workstation power. These machines support medium-grain computational tasks,
requiring nominally fifty to six hundred floating-point operations between communi-
cations for fifty-percent efficiency. Extant high-end machines offer one gigabyte of
random-access storage (distributed among the ensemble nodes), 100,000 flops to two
megaflops per node (scalar floating point) and, optionally, nodal vector processing
capability (not covered here) [6].

The next generation multicomputer machines will provide ten megaflops per node
scalar speed, creating true supercomputers in ensembles with a handful of nodes.
Initially, such machines will have relatively slow communication, but this will improve
over time [7,6]. We will be ready to utilize these machines when they become widely

available in two to three years’ time.

8 CHAPTER 1. INTRODUCTION

1.2.1 Multicomputers vs. Multiprocessors

A multicomputer is a message-passing concurrent computer, while a multiprocessor
is a shared-memory concurrent computer (see Figures 1.4., 1.3.). Our keen inter-
est in multicomputers stems from the ability to scale such machines to large en-
semble sizes. Eventually, hybrid machines incorporating small node-count multipro-
cessors are likely. In such systems, the large-scale concurrency will pertain to the
multicomputer-like features, with fine-grain concurrency exploited within each mul-
tiprocessor cluster.

The most common multicomputers are binary n-cube machines. These machines,
first realized in the Caltech Cosmic Cube [40], have been commercialized by a number
of vendors. Many machines based on two-dimensional meshes are also in commercial
production, based mainly on the Inmos transputer technology. A binary n-cube
(“hypercube”) and two-dimensional mesh architecture are represented symbolically
in Figures 1.6, 1.7. The Intel iPSC/2 is an example of the former, while the Symult
(Ametek/ketemA) 52010 machine is an example of the latter. Both utilize advanced
message-passing technology developed at Caltech [6]. The work described in this
thesis is compatible with both of these machines.

While for first generation systems nearest-neighbor communication proved much
cheaper than far-neighbor communication, advances in routing technology have re-
duced this effect dramatically [6]. As such, we advocate programming the machines
without attention to their underlying hardware connectivity. Currently, the majority
of multicomputer research is really “hypercube” research, done with attention to the
specifics of the underlying architecture, which is certain to decrease the lifetime of the
resulting applications dramatically (while skewing their directions in ways likely to be
unimportant in the very near term). For example, in a later prototype, the DARPA
Touchstone machine, initially a binary-n-cube-connected machine, will advance to a

faster version of the identical mesh-backplane technology used by the Symult s2010

1.3. THESIS OVERVIEW 9
[7]-

1.2.2 Operating Systems

The Reactive Kernel / Cosmic Environment node operating system developed by Seitz
et al. at Caltech is likewise a high performance solution to portability between mul-
ticomputers, and an elegant basis for complex multicomputer applications. Though
manufacturers are still quibbling over their parochial operating systems, and commer-
cial companies are likewise promulgating further monstrosities, we expect this operat-
ing system to emerge over time, just as Unix has emerged as the vendor-independent
operating system for workstations [43,6,41] (see also chapter 3).

The elegance of the Reactive Kernel / Cosmic Environment is exemplified in part
by its ability to provide a unified interface for many different types of multicomputers,
multicomputer emulation (and hence debugging), and distributed-parallel computa-

tion over networks of NFS-networked machines (see Figure 1.5).

1.3 Thesis Overview

From 1987-1988, we studied Waveform Relaxation, as an outgrowth of earlier interest
in “tearing” methods for dynamic simulation in chemical engineering. Our work thus
far in this area is contained in chapter 7. Its strategic location near the end of the
thesis is not to relegate it, but to suggest that it is the more forward-lpoking area of
research, and relates most closely to planned future work.

From 1988 on, we have worked on the development of efficient parallelizations of
high-quality sequential algorithms. To do so, we began by analyzing the communi-
cation needs for complex multicomputer applications. The outgrowth of this study
is the Zipcode communication layer described in chapter 3. All of the remaining
software developed for this thesis depends on the underlying Zipcode layer, which is

itself built upon the Caltech Reactive Kernel.

10 CHAPTER 1. INTRODUCTION

Figure 1.5. Prototypical Multicomputer Dzemon Display

o Scheduling policy for the 192-node S2010 (:52010) ----——--- *
| Mon-Fri 0900-1800: <ihr runs, open scheduling. ALL OTHER TIMES: by I
| reservation only; send requests to sharonQperseus.ccsf.caltech.edu.

I
| To see the schedule, type ’'peek schedule sharon’. |
* *

CUBE DAEMON version 7.2, up 86 days 23 hours on host ganymede

{ } 6n s2010 , b:0000 [perseus :52010] 39.7m
{csp25A_12x3 tony } 37n s2010 , b:0014 [perseus :52010] 42.0s
{csp25B_12x3 tony } 37n s2010 , b:0009 [perseus :5S2010] 42.0s
{ csp25_12x3 tony } 37n s2010 , b:0008 [perseus :52010] 48.0s
{csp25B_12x2 tony } 25n s2010 , b:0013 [perseus :52010] 15.1m
{ kalon tony 1} 25n s2010 , b:0011 [perseus :52010] 15.2m
{ zephyr tony 1} 25n s2010 , b:0010 [perseus :52010] 15.2m
{ } 20n s2010 , b:0000 [psyche :ginzu] 19.7h
{ SVEN1 concise} 2n s2010 , b:0014 [mercury :ginzu] 3.3n
{ LENA4 concise} 2n s2010 , b:0012 [mosaic :ginzu] 8.7m
{ LENA5 concise} 3n s2010 , b:000c [mosaic :ginzu] 11.2m
{ LENA3 concise} 2n s2010 , b:000f [mosaic :ginzu] 2.1n
{ LENA6 concise} 3n s2010 , b:000e [mosaic :ginzu] 2.6n
{ } 16n ghost cube , b:0000 [mosaic :sparcomatic] 1.1d
{ } 16n ghost cube , b:0000 [solo :mimic] 1.3d
{ } 4d ipsc2 cube , b:0000 [ipsc2 iPSC2] 2.0d
{ } 3d cosmic cube, b:0000 [venus fly trap] 3.9d
{ } 2n ghost cube , b:0000 [mercury skjellum] 10.0d
{ first dasilva} 2d non cube , b:0000 [stun3h] 65.6d
{ schedule sharon } 3d non cube , b:0000 [perseus] 1.24

GROUP {csp25_12x3 tony} TYPE reactive IDLE 0.0s

(-1 0) newcsparsetestl 126s 17r 0q [perseus 15797] 39.0s

(-1 -1) SERVER 17s 17r 0q [perseus 15786] 45.0s
(-1 -2) FILE MGR 0s or 0q [perseus 15788] 45.0s
(== -—-) CUBEIFC 9s 179r Oqw [perseus 15225] 47.0s

The Reactive Kernel / Cosmic Environment supports remote hosting transparently over
NFS-networks. Users on different machines across the network may space-share a wide
variety of real concurrent machines (Symults, iPSC/2’s,iPSC/1’s), and simulated machines
(“Ghost” and “non” cubes). Ghost cubes provide distributed parallel processing across
many networked CPU’s; non cubes operate on a single workstation.

1.3. THESIS OVERVIEW

Figure 1.6. Five-Dimensional Binary n-cube Multicomputer Schematic

/ 001
000 00001

010 0101]
000,
0110 01104
of1 00101 \
01111 h11
001 0011
\

01 1110 1110
10101
1111 11710
0111

10110

11001 11000

10001
1 /

10010 \ \ 11011 11010

Cube vertices represent computer nodes. Each node of a binary n-cube, or “hypercube,”

has exactly n connections to “nearest neighbors.” Here, each vertex is connected to five
other vertices.

12 CHAPTER 1. INTRODUCTION

Figure 1.7. Schematic of a Two-Din 'nsional Mesh Multicomputer

The Symult s2010 architecture uses a two-dimensional communication network with parallel
channels along with an improved routing mechanism for much higher message-passing per-
formance than first-generation multicomputers, as described in [6]. Mesh “edges” provide
a rich potential source of input-output bandwidth.

Beginning in Autumn 1988, and continuing through the end of that year, we
developed the first release of Concurrent DASSL, based on earlier study of the DASSL
integration code, a standard solver for ordinary differential algebraic problems of low
index [9]. This work was intended to provide a general purpose simulation tool, and
was to include concurrency features to enable reaching the “parallelized” achievable
concurrent performance of applications built upon it. At that time, we interfaced a
version of Eric Van de Velde’s dense concurrent linear algebra to it, to form an initial
simulation engine [57].

During the first half of 1989, we developed a single-column simulation driver above
Concurrent DASSL. This early prototype was replaced by a more powerful prototype
during the subsequent six months, which we call proto-Cdyn. As its name indicates,
this too is a prototype simulation driver for Concurrent DASSL; currently, it can

generate simulations of arbitrary networks of distillation columns with a fixed tray

1.3. THESIS OVERVIEW 13

model.

Simultaneous to the creation of proto-Cdyn, we developed a new concurrent sparse
solver, whose main results are summarized in chapter 5. This work was done together
with Alvin P. Leung, a Caltech “SURF” fellow. Work on improving this algorithm
continued through the end of 1989.

During the early part of 1990, we completed the union of Concurrent DASSL and
the sparse solver, and initiated various tests and runs. Chapters 6 and 5 summarize
some of these results, respectively.

The several appendices include additional details on the thesis work, including
further discussions of the sparse solver, Concurrent DASSL, Zipcode, as well as data

distribution derivations.

14

CHAPTER 1. INTRODUCTION

Chapter 2

Concurrent Simulation Paradigms

Abstract

In this chapter, we cover the basic driving forces in concurrent computation (bot-
tlenecks, granularity, scalability, load imbalance), and the importance of the chosen
numerical algorithm. Abstractly, we describe the numerical challenges to be met and
indicate concurrency issues. In this connection, we outline a conservative philosophy
for passing from the sequential to the concurrent regime based on rough measures
of achievable concurrent performance; this route to concurrency attains parallelism
in existing numerical algorithms without changing convergence properties. New nu-
merical techniques, in constrast, potentially offer higher concurrent performance, yet
forsake the “safe ground” of known numerical properties, requiring significant new

numerical analysis, heuristic techniques, and experimentation.

2.1 Introduction

By a concurrent simulation paradigm, we mean a fuzzy set of numerical methods ap-
plicable to a fuzzy target set of problems. For example, we know that ODE-methods
for numerical solution of ordinary differential-algebraic equations (DAE’s) of low in-
dex are applicable to a large set of problems in engineering. Within this collection
of methods, there are a number of ways to set up the predictor-corrector equations,

and linear algebra can be solved directly or iteratively via various algorithms (de-

15

16 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

pending on problem structure). Furthermore, there are competitive algorithms for
error, step-size and order control. We can parallelize various aspects of these meth-
ods while preserving numerical properties, and the methods will still apply to the
same fuzzy target set as they did sequentially. We also recognize that the concurrent
performance will depend heavily on the particular properties of the problems to be
solved, even though convergence will be unchanged as we pass to the new concurrent
solution approaches.

If we seek higher performance for specific problems, we will have to modify the
numerical methods to account for problem characteristics. For example, we may find
ways to extract timelike parallelism in the algorithms. Then, the fuzzy target set
will get smaller (because we introduce some stronger assumptions). Alternatively, if
we start with a new method designed explicitly for high concurrency like Waveform
Relaxation, then we will have to explore its effectiveness for many applieations in
order to gauge its fuzzy target set of applicability somewhat. We will still have to
develop special methods for improved performance for particular problems. However,
in this case, we are working on less certain grounds.

In this thesis, we investigate aspects of both approaches, though we have con-
centrated more heavily on the parallelization of the extant numerical techniques for
DAE solution. The dual simulation paradigms — existing numerical methods, and
new numerical methods — should be considered for each new application class we need
to address. Parallelized existing numerical methods establish first the lower bound
for concurrent performance and are consequently a conservative, though important,
starting point.

Understanding the fundamental driving forces of concurrency is important to our
investigation. They are covered in the next section. Then, we return to the idea of the
“choice of algorithm” in the following section, including examples of two approaches

to a simple system of differential equations. On a more practical note, we conclude

2.2. BASIC COMPUTING ISSUES 17

this chapter with a discussion of multicomputer programming style, including grid-
oriented data distribution and example concurrent operations. Understanding the

basic operations is also important to framing effective algorithms for multicomputers.

2.2 Basic Computing Issues

Amdahl’s law is an often-quoted (and misquoted) measure of the upper limit on
achievable performance for a concurrent algorithm [3,19,32]. It is a fundamental state-

ment that sequential bottlenecks limit the ability of concurrency to provide speedup.

2.2.1 Nomenclature

Definition 2.1 (Relative Speedup) Given a fized algorithm A and problem (or
problem-size) P with erecution time T, when solved by means of p independent pro-

cesses, the relative speedup is defined as

S, = (2.1)

<353

Definition 2.2 (Fair Speedup) Given a fized algorithm A and problem (or
problem-size) P with ezecution time T, when solved by means of p independent pro-

cesses, the fair speedup is defined as

(2.2)

where T, is the time for the most efficient sequential algorithm ezecuting on a single

process, assuming sufficient storage capacity (and with no memory-hierarchy effects).

18 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

Definition 2.3 (Relative Efficiency) The relative efficiency of a fized algorithm

A with problem P (solved by means of p independent processes) is given by

T =

N |
o
w
p

Definition 2.4 (Fair Efficiency) The fair efficiency is defined as

<S>
h-]
I
|5

in analogy to the relative efficiency.

Definition 2.5 (Amdahl’s Law) Let T,, the time for solving a problem P with
fized algorithm A, be parametrized in a € [0,1] by
(1-ao)Ti

T, = ofy+———, (2.5)

where a is the (presumed fized) inherently sequential fraction of computation. Then,

the relative speedup S, is limited by

1
P 1+4(p-1a a+(l-a)/p ~

i
R

(2.6)

for any p. S is also the order-of-magnitude of the number of independent processes
that may be efficiently used to solve A. Evidently, a large sequential fraction a severely

limits performance, as one might expect intuitively.

Definition 2.6 (Memory-Imposed Performance Limitations) On a real ma-
chine, there is a minimum number of independent processes Rmin (on separate com-
putational nodes) needed to effect -lgorithm A on problem P, because of memory
requirements. If Rnin < ™!, then memory requirements don’t constitute an impor-

tant limiting effect. However, if Rpin ~ @~!, or Rpyin > a~', memory requirements

2.2, BASIC COMPUTING ISSUES 19

probdbly pose an important limitation on achievable concurrent performance. Too

many nodes are likely to slow a calculation (see section 2.2.2).

We seek algorithms capable of using hundreds or more independent processes,
and Amdahl’s law establishes that any algorithm capable of high performance cannot
inherently possess a significant sequential fraction. Sometimes, other performance
quantities are mentioned in connection with concurrency (skirting this fact). For
example, one can vary the amount of per-process work while holding the number
of processes fixed. Alternatively, the amount of per-process work can be held fixed
while indefinitely increasing the number of processes. Neither of these indicates the
speedup potential of a particular algorithm for a particular problem (or problem
size) at fixed accuracy, the measure we consider most important for our applications.
Consequently, it is unsurprising that these other measures, which are outside the
assumptions of Amdahl’s “law,” can readily violate its limitations. See appendix F,
as well as [25].

Finite communication bandwidth imposes a further limitation on the practically
achievable performance of a concurrent algorithm. Except for problems totally lacking
communication between processes (often called embarrassingly parallel), communica-
tion costs must be accounted for and efficient strategies are normally important to
the overall performance of the algorithm. A simple design equation, denoted the
“granularity design equation,” helps in the semi-empirical performance evaluation of

existing algorithms and in the top-down design of new concurrent algorithms.

Definition 2.7 (Granularity Design Equation) Let v be the startup cost in us
needed for transmitting a message between any two processes. Let § be the per-operand
(i.e., per 8-bytes for double precision real numbers) incremental cost of a message
transmission, also in us. Let T be an appropriate measure in us for the cost of a
basic operation (e.g., double-precision multiplication), let n be the number of operands

forming the message, and let o be the operations per operand needed to form the

20 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS
message. Then, the granularity design equation is as follows:

~y+nb
T0 ’

Toper(n,0) = (2.7)

where Typer 15 @ measure of the per-operand cost of the message transmission. For
typical multicomputers, v ~ 250us, § ~ lus, and 7 ~ 5us. Consequently, assum-
ing these values, for a message of ten operands, with ten operations per operand,
Toper(10,10) = 5.16. Thus, for this scenario, the cost of computation and communi-
cation are 10:1 in favor of computations per operand. By comparison (with the same
hardware parameters), Toper(1,1) = 50, but this is much too harsh a measure of the

natural granularity of the system.

This design equation should be applied wherever possible a priori in the top-down
design of concurrent algorithms to determine the communication and computation
characteristics needed to achieve high performance for a particular application. At
that design stage, the computer (and hence the 7, 4, § may be chosen within bounds),
as can the n, o, representing the choice of algorithm, and the grain size for the problem

formulation.

Definition 2.8 (Process Grain Size) For a given operation, if its Toper ~
Toper(1,1), it is said to be fine-grain, while if its Toper K Toper(1,1), it is said to

be coarse grain.

Definition 2.9 (Systemic Grain Size) Given a fized, large amount of memory,
we could divide it between myriad simple processors each with a few kilobytes. This
constitutes a fine-grain machine. A coarse-grain multiprocessor, like a Cray, would
store the entire memory in a few (1-8) nodes. In between are the medium-grain
multicomputers we consider in this thesis. They have several megabytes of memory,

and up to several hundred nodes. See also [37].

2.2. BASIC COMPUTING ISSUES 21

The final generic source of inefficiency! in a concurrent algorithm is load imbal-
ance among processes. Whenever processes must wait for the receipt of data, there
are lost CPU-cycles that could otherwise have contributed to speedup. There are
many sources of load imbalance in the complex, inhomogeneous calculations arising
in engineering. For instance, the cost of model evaluation is a strong function of the
physical device (e.g., transistor vs. resistor) or unit (e.g., variable cost of distillation
tray thermodynamics). Load imbalance also occurs in homogeneous operations (like
linear algebra computations) because of static distribution divisibility problems. Real-
world applications won’t normally divide evenly between the processes involved and
there are consequently an unequal number of equations per process. Furthermore,
processes become dynamically imbalanced in procedures like Gaussian elimination
(equivalently, LU Factorization) where matrix elements become inactive as the elimi-
nation proceeds. Static techniques for the improvement of load balance are mentioned
in chapter 4 and, in brief, below.

Flatt ([19]) indicates extended Amdahl’s-law arguments for computational models
including communication and load-imbalance effects, which we build upon here. We

begin again with a more detailed model of the execution time:

(1-a)
P

T, = (a+ +<(p)) T, (2.8)

where ¢(p) is a measure of overheads, such as communication and load imbalance;

¢(1) = 0. Substituting Equation 2.8 into the definition for speedup, Equation 2.1,

_ P — 1
% = 1+ (p—1)a+ps(p) a+(1-a)/p+s(p) (29)

1See (25, pages 636-637) concerning other sources of inefficiency.

22 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

The overhead ¢(p) itself can be modelled as follows for p > 1:

s(p) = sologzp+al(p—1)+ ¢ (% - 1) . (2.10)

The only “reasonable” term is ¢;/p, since it decreases as we increase the number
of computers. We wish to create algorithms with high ¢, and low a, ¢, . We
interpret ¢ as global-communication costs from broadcasts and combines. These
fortunately grow only slowly in p. The ¢;-term comes from several possible sources:
first, communication between the host and node processes, which must evidently be
held to a minimum; inefficient communication structure between nodes (or graphically
dense problem connectivity), and load imbalance effects worsening with increasing p.
The ¢,-term represents overheads like packing and unpacking of data (for shipment
between processes), that parallelize as we increase the number of processes. The
next section views sequential fraction and overhead in a qualitative way, through a

“Concurrency Diagram.”

2.2.2 The Concurrency Diagram

Flatt ([19]) points out, “The characteristics of the algorithms used or required for a
given problem may be much more important than the details of the hardware im-
plementation of the parallel system.” We reflect on this theme in the “Concurrency
Diagram,” Figure 2.1. In the diagram, ideal performance is indicated by two thick,
slope-minus-one lines for two hypothetical algorithms - a “best” sequential algorithm
when parallelized intelligently, and a “best” concurrent algorithm for the same prob-
lem (or problem size). Actual performance curves for the hypothetical algorithms
appear above the ideal lines, as labeled. The x-axis depicts the quantity of node re-
sources dedicated to the solution of the problem, whereas the y-axis depicts the benefit

(decreased time) as a function of resources. On this log-log plot, we have normalized

2.2. BASIC COMPUTING ISSUES 23

the quantity of resources applied by the number of computational grains, and the
time by the sequential time of the “best” sequential algorithm; these normalizations
are of secondary importance.

Evidently, the “best” sequential algorithm will tend to have a higher o, and lower
overall ¢ than the “best” concurrent algorithm. Hence, it will outperform the latter
initially. In fact, as a result of the overheads in the “best” concurrent algorithm, this
procedure will not even break even with T,., until we expend resources p. (So, for
machines of low parallelism, we will never see advantage from the “best” concurrent
algorithm.) However, as the sequential fraction begins to dominate for the “best”
sequential algorithm, its actual performance becomes lazy, eventually tailing upward.
This happens much later for the “best” concurrent algorithm, which is still speed-
ing up well for resources comparable to p*. At p*, the algorithms have equivalent
performance; beyond that, the “best” concurrent algorithm proves superior.

Of course, we have to work to design the “best” concurrent algorithm so that it has
these desirable qualities. This will prove non-trivial, in general. We also note that,
sometimes, the process of searching for new concurrent algorithms actually generates
a better sequential algorithm. In this case, we must relabel our diagram so that,
again, the “best” sequential algorithm has the lowest time for the single-processor
limit (see, for example, [59]). Otherwise, we are artificially inflating our results — we
do not wish to claim “superlinear speedup” any more than we could credibly claim
perpetual motion.

The “Concurrency Diagram” is a powerful means of expression of concurrency
ideas, including the ability to compare algorithms run on different machines. The
log-log plot has the distinct advantage that we can completely drop normalization
constants if desired (plotting CPU time vs. resources), and remove the arbitrary
scale factor that invariably plagues speedups. As such, we recommend it as the

standard for presentation of performance results in concurrent computation.

24 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

Figure 2.1. The Concurrency Diagram

Best Concurrent
Algorithm's Overhead

A

N

i’arallelized "Best"
Sequential Algorithm
Performance
o

B —

Algorithm of ultimately
higher concurrent
performance

log T / Tseq: Normalized CPU time

Ideal
Performance

>

-og G

-log G

log N /G : Nodes normalized by Computational Grains

The Concurrency Diagram illustrates the trade-offs between the “best” parallelized sequen-
tial algorithm and the “best” concurrent algorithm. The former has a higher sequential
fractic:, but lower overhead compared to the latter. The “best” concurrent algorithm has
additional (parallelizable) overhead, but a smaller sequential fraction, allowing it to achieve
higher speedups when many nodes are used (large-resource limit, beyond p*).

2.3. CHOICE OF ALGORITHM 25
2.3 Choice of Algorithm

Beginning in the late 1960’s and continuing through the early 1980’s, many “phys-
ically motivated,” hierarchical coordination-decomposition methods (e.g., [44]) were
forwarded for the solution of large-scale engineering problems. These methods, based
on a partition of an optimization or simulation problem into multiple subproblems
(each corresponding, perhaps vaguely, to some subsystem of the modelled system),
relied heavily upon central coordination, the process by which, through iteration, the
subproblem solutions could ultimately be brought into agreement (reach a global so-
lution). This style of problem formulation is most often unattractive, in retrospect,
for several reasons: non-trivial central coordination imposes an unacceptably large se-
quential fraction on a computation, thereby stunting speedup; the formalism doesn’t
begin to expose the important (spacelike and/or timelike) concurrency in the prob-
lem, problems must be ‘contorted’ to fit within the offered numerical framework, and
there is no established performance for these iterative methods (e.g., for a restricted
problem class), even assuming they eventually converge to the correct solution. Kuru
comments on their shaky mathematical justification as well [29].

The lesson derived from the abovementioned research efforts is that, for multicom-
puters, we should first evaluate the achievable performance of high-quality sequential
algorithms that have been suitably generalized to incorporate concurrency. Some-
times, there are several well-known sequential procedures, but the best concurrent
algorithm need not correspond to the most efficient sequential algorithm. Therefore,
the search needn’t be limited to just the considered “best” algorithm. In any event,
this conservative pattern of migration to concurrent computing preserves the numer-
ical properties of the corresponding sequential algorithm and this invariance is highly
desirable. We may furthermore discover that the achievable concurrent performance
is sufficiently good that further efforts become practically unjustified. If so, our effort

terminates at this point with a useful concurrent production code.

26 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

In other instances, we find that the applications contain hidden concurrency. For
example, important chemical and electrical applications are modelled by large, stiff
systems of ordinary differential-algebraic equations. Integration procedures that in-
corporate a global timestep must be limited by the high-frequency effects in order
to provide desired accuracy (assuming implicit solution methods), even though these
dynamics may be unimportant or parasitic. In random-access memory devices, for
example, there is a high degree of latency; that is, only a small fraction of the bits
are changed per unit time, and there is normally a pattern to the storage accesses.
In a chemical plant, a number of units might, for some minutes or hours, operate
sensibly at a steady state while others are changing dramatically. It makes perfect
sense that latent parts of the system should be simulated with much larger integra-
tion time steps with active parts being integrated with appropriately smaller steps.
This policy would avoid the wasteful work of model evaluation in the quiescent part
of the system at the very least. The Waveform Relaxation algorithm described in
[47,49] can potentially address this need and be applied both to chemical as well as
electrical engineering simulations. Of course, the numerical analysis underlying this
class of methods is still a subject of intensive research, as are the heuristics needed

for high-performance implementations.

2.3.1 Waveform Relaxation Motivating Example

The basic Waveform Relaxation method (Picard-Lindeldf iterations) is analogous
to the standard Gauss-Jacobi or Gauss-Seidel iterations used to solve a linear sys-
tem of equations. However, Waveform Relaxation operates on groups of function
approximations rather than on groups of real values. As an example, expanding on

Vandewalle ([60]), consider the following problem (a pair of coupled ODE’s) where

2.3. CHOICE OF ALGORITHM 27

we shall iterate in the Gauss-Seidel sense:

i=y, z(0)=0, (2.11)

y=-z, y(0)=1. (2.12)

Let the initial guess (iteration k = 0) be

zo(t) =0, yo(t) =1, (2.13)
and solve for k =1
i'l = Y = xl(t) ={, (214)
. t?
= -1 = yt)=1- o1 (2.15)

where, in the Gauss-Seidel sense, the new z-approximation, z,(t), is used immediately

in the computation of y;(t). Repeating the procedure for k = 2:

Gy=y o z(t)=t— ;_3; (2.16)
2=-2, = y(t)=1- ;—2; + o (2.17)
In the limit as k£ — oo, we get
zw(t) = ,Z.% (: 2;)221’; = sin(t), (2.18)
ye(t) = 3T 1)”2 = cos(t). (2.19)
=0

By inspection, the Waveform Relaxation method has this key property: Each sub-

28 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

system is computed independently. In this example, a system of two equations is
reduced to two scalar systems whose iterative integrations are independently com-
puted. Iterative solution is the price of decoupling.

There is an important catch in this example. Because we chose the Gauss-Seidel
update mechanism, there is inherent sequentialism in the completion of each iteration.
The z-equation will always be one iteration ahead of the y-equation (in this variable
ordering). Gauss-Jacobi iteration removes this sequentialism at the expense of slower

convergence (twice as many iterations here):

I, = Y = n1(t)=t,
h = -1 = n(t)=1,
T, = y1 = zo(t) =t,
. 12
Yo = -1 = yt)=1- oIk
) 3
T3 = Y = .‘B3(t) =t - -3—!,
. 12
Y3 = —z2 = y3(t)=1- o1
] A
Ty = Y3 => T4(t) =t - 30
) 2 ¢
Y4 = —T3 = y4(t)=l—§-'+a

At each k-iteration, the equations may be solved independently and simultaneously,
but converge more slowly.

In practical implementations, ordered collections of time-value pairs are used to
represent function approximations (“waveforms”) on finite intervals. Unlike our for-
mal integration in the above examples, implicit numerical integration procedures

independently select time steps in each subsystem. These time steps are optimized

2.3. CHOICE OF ALGORITHM 29

to reflect local error criteria. Interpolation provides approximate function values at
desired points. For large, sparse systems that arise in circuit simulation and flow-
sheet simulation, the advantages of a multirate integration method may more than
compensate for the extra work of multiple outer iterations incurred by the splitting
into independent subsystems (for instance, “global” linear algebra is avoided).

From the above examples, we can already see potential complications with Wave-
form Relaxation and it’s only fair to indicate these from the outset. First, we have
to wonder if the method will converge at all for interesting problems. Fortunately,
convergence is provable under mild circumstances for purely differential equations,
and is also under investigation for differential-algebraic equations ([30,36,35]). Sim-
ple distillation networks, and general circuit networks modelled by nodal analysis,
meet these criteria (see [47,32]). In more complicated circumstances (like discontin-
uous model equations and systems with purely algebraic equations), convergence is
not clear cut. Furthermore, the central issue beyond convergence is performance. If
many outer iterations are required, all the benefit accrued from the splitting will be
lost.

We note finally that, for the above example, the best co-norm approximations for
n-term representation of the cosine and sine functions are not the Taylor expansions
(as evolved by the example procedures) but, instead, particular Chebyshev polynomi-
als of order n. Consequently, the approximation error produced by Waveform Relax-
ation will in no sense be uniform over the interval of integration, strongly motivating
algorithmic heuristics to improve performance. In particular, we will have to parti-
tion the problem into sub-intervals (“time windows”) in order to obtain reasonable

accuracy and performance [32].

2.3.2 A Direct Example

Consider again the example Equations 2.11, with initial conditions Equations 2.13.

We consider the numerical solution by an ODE method with fixed step size k. For

30 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

compactness of notation, let

(=

z = , (2.20)
v
(

A = 01 , (2.21)
\—1 0

and

z = Az. (2.22)

We discretize the time-derivative by the backward Euler method (which is consis-

tent):
a(k+1)~ 2EF ll)l‘z(k), (2.23)
where t = hk. Then, briefly,
z(k+1) = (I—-hA)'z(k), £=0,1,... (2.24)
with
0
z(0) = . (2.25)
1

For small enough k, we will recover an accurate solution (O(h)-accurate method); the
method is stable for large h as well, though inaccurate.
For this approach to the numerical solution, we were forced to solve a linear system

of equations at each k-iteration:

(I—hA)z(k+1) = z(k). (2.26)

Were the original ODE’s nonlinear, we would have aad to solve a pair of nonlinear

2.4. MULTICOMPUTING PROGRAMMING 31

equations at each k-iteration via Newton-Raphson iteration, in turn requiring multiple
linear-equation solutions for convergence to the solution. The linear equations could
be solved by LU Factorization, in which case the linear-system solution represents
a strong synchronization between the equations - there is limited concurrency in
the factorization, and less in the triangular solves, which are particularly sequential.
However, this solution approach has rather nice numerical properties. Step-size is
selected simply to control the solution error; stability is not a problem because we
selected an implicit method.

These two approaches point up a fundamental trade-off in concurrency. Concur-

rency must usually be traded-off against convergence.

2.4 Multicomputing Programming

A straightforward programming model is offered by the multicomputer operating
system of choice, Caltech’s Reactive Kernel / Cosmic Environment. This environment
1s available on a number of parallel and standard computers. Thus, our applications
port immediately between Symult s2010 and Intel iPSC/1, iPSC/2 multicomputers
as well as Sequent multiprocessor systems and conventional ether-networks of Sun
workstations. On real multicomputers, the space-sharing concept is supported. This
feature allows multiple users to share a single multicomputer; each user gains exclusive
access to a portion of the system, which logically appears as a smaller, independent
multicomputer [41].

The programmer defines a single host process that provides an interface to the
outside world, spawns node processes, and most often serves as the light scheduler
(or coordinator) for the entire calculation. Each computer node may support one or
more independent time-shared processes. An important feature of the system is that
program correctness is independent of the mapping of logical processes to physical

processes on actual computer nodes. Conventional, unaugmented languages such as

32 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

C and Fortran-77 are supported (although Fortran-77 is poorly suited to the needs of
multicomputer programming, notably for its lack of data structures, pointer variables,
and dynamic memory allocation). Each process is, in short, a traditional sequential
program with the added ability to transmit and receive messages via subroutine-
based primitives (communicating sequential process) [27]. These primitives provide
untyped, blocked and unblocked message passing of arbitrary length messages. In our
applications, we include an application-oriented communications layer atop the Reac-
tive Kernel functions and thus avoid direct reference to the fundamental primitives.
We cover this in detail in chapter 3.

The programming model guarantees that message order is preserved between any
pair of processes. There are no synchronization primitives, shared memory, or other
multiprocessing mechanisms. Both node and host processes have access to Unix-like

system commands in addition to the basic communication primitives.

2.5 Fundamental Building Blocks

This section describes fundamental concurrent procedures that underly our applica-
tion codes. In this connection, we abstract to logical process grids, see Figure 2.2.
We describe linear-algebra procedures at a qualitative level within the grid formal-
ism. The ideas developed here are helpful when we describe the Concurrent DASSL

integration algorithm in chapter 6.

2.5.1 Grids and Communication, Primitive Operations

The key operations that connect parts of an ensemble calculation in a multicomputer
are the communication steps. The Reactive Kernel provides very low-level commands
with the intent that applications should tailor their own primitives on top of the basic
operations. We’ve defiied a set of higher-level operations realized in the Zipcode

system, some qualitative features of which are described here.

34 CHAPTER 2. CONCURRENT SIMULATI ON PARADIGMS

contrast, addressees need the ability selectively to “screen” their messages based on
the sender, and other information that we’]l discuss next.

In general, we don’t think of the R processes in a process list as a linear collection
numbered 0... R — 1 but rather attach a higher-level of abstraction. We define one
or more process grids based on this process list. A process grid of P x Q = R maps
two integers (p,q) — (0...R — 1), the actual process list range. Importantly, this
effort is hidden from the application. Any reasonable number of grids can be defined
at the outset of program execution, and message selectivity provides for screening
messages based both on their source and their grid association. To post a message, a
process selects a grid and specifies one or more coordinate pairs (e.g., (p1,q1)) as the
message’s destination (or destinations). Broadcasting a message to an entire process
grid is also supported.

A natural consequence of the grid abstraction is the definition of subgrids. In our
experience to date, we have worked exclusively with row and column subgrids. As
we shall see when exploring simple concurrent algorithms, data will often have to be
shared between members of a process column or between members of a process row.
Broadcasting information from one row (column) process to the entire row (columnn)
is an important example. Forming a sum of data (e.g., a norm) is another row- or

column-oriented operation.

Grid-Independent Programming

It is germane to point out the importance of our support for a multiplicity of grids
involving the same or distinct lists of processes. Previous message systems (with
which we are familiar) have neglected this capability, thereby condemning applica-
tion programs to select one grid and retain it for the entire calculation. Single-grid
concurrent programming is not adequate for complex applications because different

computational phases may justifiably require different logical grid shapes (and, more

2.5. FUNDAMENTAL BUILDING BLOCKS 35

generally, sizes).

In our convention, every distributed data structure is associated with a grid at
creation. Vectors are either row- or column-distributed within a two-dimensional grid.
Row-distributed vectors are replicated in each process column, and distributed in the
process rows. Conversely, column-distributed vectors are replicated in each process
row, and distributed in the process columns. Matrices are, however, distributed both
in rows and columns, so that a single process is alloted a subset of matrix rows and
columns. Distribution of the data is a natural consequence of our desire to apportion
computing between multiple processes and, ideally, to derive non-trivial speedup.

We also are at liberty to decide how the coefficients of a vector are to be dis;
tributed. For example, for a row-distributed N-vector z, each member of the zeroth
process row could receive the first r elements? (20,--.,2,-1), the first process row,
(zry. .., 22,—1), and so forth, with the last (P —1st) process row receiving the final ele-
ments (zx—,,...,zn-1). This is called a linear distribution of the coefficients and has
the effect of keeping neighboring coefficients in a vector together as much as possible.
For many types of vector-vector operations, this distribution will prove adequate.

Linear row and column distributions of a matrix are generally inefficient for LU
factorization. It’s common in LU factorization for nearby rows of the matrix to be
eliminated in turn. Elimination will tend to deactivate processes completely as it
proceeds, thereby reducing the overall efficiency of the concurrent computation by
grossly imbalancing the work load of various processes. For such operations, we have
to scatter coefficients, placing coefficient neighbors in separate processes. Below, we’ll
discuss two vector-oriented operations where linear distributions will be acceptable.
For LU factorizations, we imagine using scattered row and column distributions.
Contrarily, the linear distribution is best column-distribution for the triangular solves

proceeding LU factorization (see chapters 4 and 5).

2For simplicity of exposition, assume here that N = rP, something that won’t generally happen.

36 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

The choices of process grid and linear/scattered coefficient distributions are de-
signed to improve concurrent performance. Individual pro s calculations can be
written to work within a given distribution without particular attention to its details.
For example, a process instantiation at location (p,q) of a grid can adapt to the size
and shape of the grid; most often, it will be unconcerned whether its data is scattered
or linearly distributed: functions that transform between global and local indices hide
this complexity (see chapter 4). So, for example, the identical LU factorization code
would function (though inefficiently) on a linear-linear distribution of 2 x 8 processes
and, in another instance, on a scattered-scattered distribution of 9 x 3 processes, or
in a single process on a 1 x 1 grid.

Grid- and data-distribution-independent programming is essential to the construc-
tion of complex multicomputer applications. Without this underlying support, too
many repetitions of programming effort are inevitable, seriously reducing the cost
effectiveness of this computing technology and, at the very least, severely slowing the

pace at which it can be brought into practical, widespread use.

2.5.2 Selected Concurrent Operations
The “Combine” Operation — Recursive Doubling

Recursive doubling is the ubiquitous operation of multicomputer programming that

lets us accumulate data in an efficient way. It is defined as follows:

Definition 2.10 (Combine: Recursive Doubling) Given R processes (belonging
to a process list L, or grid G), a homogeneous data object O containing r (ostensibly
unrelated) items in each process, and an associative, commutative, binary combina-
tion procedure F that successively combines the corresponding items in two instances
of O (e.g., a function that performs normal vector addition on two r-vectors of real
numbers), the recursive doubling procedure produces the combined result in each of the

R processes in [log, R] steps. This procedure is symbolized in Figure 2.3. See also

2.5. FUNDAMENTAL BUILDING BLOCKS

Figure 2.3. Recursive Doubling Schematic

fxgg
ZX%{

7

37

With 23 participants, the recursive doubling procedure completes in three steps, illustrating

its logarithmic complexity in the number of participants.

38 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

[51].

Each step involves the cost of locally combining two instances of O to yield O,
the cost of transmitting the object O’ via F, and the cost of receiving another object
O". 1t is crucial that the overall cost have a logarithmic dependence in R, because
the communications are a direct overhead of concurrency.

For example, we can apply combine to a row- (column-) distributed vector to
produce the norm of that vector by suitable choice of the combination function, F.
First, the sum of squares of all the coefficients local to each process are formed. Then,
the local sums (one scalar in each process) are in turn summed via combine. As it

turns out, we will always apply combine to a process grid (or subgrid).

Broadcasts

Broadcasts, or fanouts, differ from combines in that a single process possesses the en-
tire result initially, and wishes to share this with other processes as quickly as possible.
All processes must know who the originator is for deterministic implementation of the
procedure. This type of operation occurs prevalently in multicomputer applications,
for example, in linear algebra codes. Although it can be emulated with combine,
broadcasts are less inefficient than combines when a non-power-of-two participants
are utilized. Hence, it is an important operation in its own right.

Figures 2.5, 2.6, and 2.7 depict threes styles of broadcast possible among eight
participants. The time for completion of the first is [log, R] for R participants. The
second and third variations require one more communication phase each, [log,R] +1.
Here we indicate the style of transmission, but we say nothing about which processor
should appear where in the communication tree (this is beyond our current scope).
Though the Type #1 broadcast is currently implemented in our production codes,
the Types #2 and #3 approaches are also of interest. Because they off-load the

originating process, these other forms of broadcast might be utilized adaptively in

2.5. FUNDAMENTAL BUILDING BLOCKS 39

algorithms where the originator is naturally load-imbalanced (overworked) compared
to the recipients. This occurs in linear algebra for the column of processes containing

the pivot element. These ideas remain for future investigations.

Figure 2.4. Matrix-Vector Product Schematic on a 4x4 Grid

01 2 3 0 1 2 3
J L L[C3

0000 Socn GG
0000 C0Co 0o an
. nogn” 5 BB B
. O[O0 /500 3

11[]Lﬁ/l 1
(%]

The vector x is replicated in the process rows and distributed in the process columns
compatibly with the columns of A. The vectors b and y are replicated in the process
columns and distributed in the process rows compatibly with the rows of the A matrix.

The Weighted-Vector Sum

Many vector-oriented operations occur in our applications, requiring the summation

of distributed vectors.

Definition 2.11 (WVS: Weighted-Vector Sum) Given three vectors x, y, and
2, all compatibly distributed according to grid G (row (column) replicated and column
(row) distributed), and two scalar quantities c,, c;, the weighted-vector sum is defined

as z = X + cgy.

40 CHAPTER 2. CONCURRENT SIMULATION PARADIGMS

As might be expected, completion time is proportional to the length of the largest

local vector. The WVS operation involves no com::unication.

The Matrix-Vector Product

This fundamental operation comes into play as a kernel for iterative linear algebra.
It clearly illustrates the importance of vector distribution within a grid and is conse-

quently instructive.

Definition 2.12 (MVP: The Matrix-Vector Product) Given a grid G, an M x
N matriz A distributed on G, a column-distributed N-vector x (distributed as if it
were a row of A but replicated in each process row) and row-distributed M -vectors
y, b (each distributed as if they were columns of A but replicated in each process

column), the matriz-vector product is defined as y = Az + b.

To effect this operation, each process performs its local matrix-vector product by
“dotting” each row of the local matrix with the local x vector, and then adding the
local vector b to this newly formed quantity. This sequence of operations produces
the local contribution to y which, by recursive doubling across the process rows,
produces the global y vector, distributed in the process rows and replicated in the

process columns. This procedure is illustrated for a 4x4 process grid in Figure 2.4.

2.5. FUNDAMENTAL BUILDING BLOCKS 41

Figure 2.5. Broadcast Type #1 Schematic

O O O O

This broadcast (fanout) requires the optimum number of communication phases, [log, R]
for R participants, but loads the originating node most heavily. This is the mechanism for
broadcasts currently used in the Zipcode layer described in chapter 3.

Figure 2.6. Broadcast Type #2 Schematic

This broadcast requires [log, R] + 1 communication phases for R participants. However, it
requires at most two sends from any node.

42 CHAPTER 2. CON CURRENT SIMULATION PARADIGMS

Figure 2.7. Broadcast Type #3 Schematic

O O

This broadcast procedure is like Type #1, except that it accepts an extra communication
phase in return for off-loading the originating process, which in this scenario sends only one
message.

Chapter 3

Multicomputer Communication Layers

Abstract

Sophisticated multicomputer applications require efficient, flexible, convenient un-
derlying communication primitives. In the work described here, Zipcode, a new,
portable communication library, has been designed, developed, articulated and eval-
uated. The primary goals were as follows: high efficiency compared to lowest-level
primitives, user-definable message receipt selectivity, as well as abstraction of collec-
tions of processes and message selectivity to allow multiple, independently conceived
libraries to work together without conflict.

Zipcode works atop the Caltech Reactive Kernel, a portable, minimalistic multi-
computer node operating system. Presently, the Reactive Kernel is implemented for
Intel iPSC/1, iPSC/2, and Symult s2010 multicomputers and emulated on shared-
memory computers as well as networks of Sun workstations. Consequently, Zipcode

addresses an equally wide audience, and can plausibly be run in other environments.

3.1 Introduction

Wide experience with first-generation point-to-point multicomputer node operating
systems (such as Intel’s NX) demonstrates the inadequacy of basic typed message sys-
tems for large applications. That is, simple message typing does not provide enough

degrees-of-freedom or notational elegance in message receipt selectivity for most situ-

43

44 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

ations. As is widely implemented in practical codes, an additional (typically one-shot)
message-passing layer and queueing mechanism “>ver the naked primitives, providing
additional flexibility at the application level. The overhead of an application-oriented
layer can be made acceptably light, as we indicate below. However, the overheads
associated with the underlying typed primitives are viewed excessive in that little
or no value is attributable to the hard-wired typing provided by the node operating
system itself.

The Caltech Reactive Kernel (RK), by Seitz and co-workers, was designed with
this theme in mind [41,43,52]. These primitives provide no message typing at all;
they are of high efficiency, but prove too low-level for direct application use. For
determinism, pairwise message ordering is preserved. Multiple processes per node
are supported, with correctness independent of process placement, subject to finite
storage limitations. There is no intra-node shared memory. Finally, no explicit notion
of the underlying communication network is enforced on the application (e.g., binary
n-cube-oriented limitations/strategies); process placement remains, however, at the
discretion of the application.

Application-oriented layers are created to specialize and abstract from the RK
level on a case-by-case basis; the layers’ functionality and, hence, overhead are chosen
by the application programmer as part of the overall software design process. The
easy-to-understand, concise set of primitives in RK is easily ported and, alternatively,
readily emulated. Consequently, applications based on RK stand an excellent chance
of surviving changes of node architecture and communication network. Furthermore,
as discussed below, these primitives provide a rational basis for programming medium-
grain, shared-memory multiprocessors as well.

Unfortunately, individuality in design of the application message-passing layer
leads not only to repetition of effort but also to portability problems between pro-

grammers and projects, just as incompatible vendor operating systems do between

3.1. INTRODUCTION | 45

diverse multicomputers. These effects are fundamentally unacceptable, because we
intend to create high-performance, portable multicomputer codes with potentially
long lifetimes. Furthermore, we want to create substantial libraries that can be used
together in a single program without the chance of message-passing conflicts be-
cause of differing assumptions between those libraries, or with/within the application
code itself. Consequently, it is desirable to define a single, encompassing application
message-passing layer with high efficiency, portability and extensibility, that will be
used well by a wide range of applications. These are the maijn goals of Zipcode.

The Zipcode philosophy is as follows. First, only the application can properly
define the nature, style, and extent of message-passing receipt selectivity. There are
arbitrarily many such patterns of selectivity — they cannot be foreseen or implemented
by the node operating system a priori. Consequently, any node operating system
that types messages is, in general, too restrictive, molds message-passing style and
notation unnecessarily, and imposes overhead to overcome such built-in restrictions.
Second, there may be arbitrarily many contexts of communication within a given
multicomputer application which, for correctness, cannot clash; no node operating
system of which we are presently aware supports multiple contexts. Third, the best
node operating system is the one that constrains the application least, both in function
and overhead. Thus far, RK has proven the most elegant underpinning because it
imposes essentially no arbitrary restrictions on the communication process, and is not
ridden with features of dubious value but noticeable cost.

Zipcode design features can be summarized as follows:

o Operates on process lists as the fundamental communication ob ject with
no predilection toward hypercubes, gray codes, or powers of two.

o Uses message classes to decide how process lists are to be abstracted.
e Uses message classes to decide in part on receipt selectivity.

o Uses message contexts to decide in part on receipt selectivity.

46 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

o Inheritance techniques are used to derive additional message contexts.
e Five standard pre-defined message classes are provided, including grids.

e “Global operations” — combine and broadcast — are defined for several of
the standard message classes and are extensible to new classes.

o C macros are applied widely to avoid excess overheads.

o Message-debugging capabilities are inherent in message classes.
e The number of contexts is definable and extensible at run time.
e Classes can be added readily.

e Applications can set the current context and utilize terse, readable pro-
gram notation for message transmissions.

In our empirical experience, carefully coded ad hoc message layers imply a 10-
15% overhead in message startup cost compared to bare primitives. We observe
comparable overheads for the Zipcode system (conservatively, about 20%). As a
function of its design, rejection of a message during message selection is nearly as
cheap as in ad hoc layers. Message acceptance cost is, however, a function of the
complexity of the message class being requested. Queueing of received, undelivered
messages is discussed; the present use of a single queue is justified and alternatives
are mentioned.

Zipcode has been run extensively on the Intel iPSC/2 and Symult s2010 systems,
and on networks of Sun workstations. Performance results (single message transmis-
sions and global operations) are quoted as a function of message length for the Symult
s2010 implementation.

Nearly 70,000 lines of successful application code have already been developed
relying on Zipcode. Use of the layer as a pedestal for portable scientific/engineering
numerical tools is in progress. Thoughts on this and future planned improvements

are mentioned in closing.

3.2. ZIPCODE DESIGN DISCUSSION 47
3.2 Zipcode Design Discussion

In second-generation multicomputers, improvements in routing technology allow pro-
grammers sensibly to ignore the underlying communication network and conceive of
the computers as nodes on a completely connected graph with uniform transmission
costs. As Athas and Seitz point out [6], this approximation holds well for small-
to medium-sized multicomputers employing their cut-through, wormhole routing
technology. Figure 3.2. illustrates performance of application-level primitives on the
Symult s2010, which incorporates this routing technology.

Within the loose framework of communicating sequential processes [27], two pro-
gramming paradigms are commonly used: reactive programming, where processes
progress asynchronously with computational decisions driven by the number and va-
riety of messages received, and loosely synchronous programming, where processes
progress with intermittent, pre-specified synchronizations. Zipcode supports both
styles of programming by building on unblocked and blocked RK primitives, respec-

tively.

48

CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

Figure 3.1. Schematic of a Zipcode Letter

EEREED KX R E)

llzggtlarge Message
Zipcode
Alignment Padding
Letter: Zipcode format of a message
Zipcode: Integer indicating the letter context
Class: Integer indicating style of selectivity

PO Box: Class-dependent structure for selectivity

Envelope: Preamble structure containing PO Box, class, zipcode
Cover: The envelope with alignment padding

Stamp: Length in bytes of the cover

3.2. ZIPCODE DESIGN DISCUSSION 49

3.2.1 Type vs. Class vs. Context

A message class is a set of rules and a data specification used for defining message
receipt selectivity, and for discriminating correctly among incoming messages. A
hypothetical class of messages (call it ‘A’) might be “messages chosen based on their
source, where the source is to be specified by node number and process ID.” Given this
message class, it’s possible to look for a message from one or more acceptable sources,
rejecting all others to a queue for future retrieval. For example, we could request “the
next message from (node 1, process 0)” or, equally well, “the next message from (node
1 or 2, process 0).” That we can discriminate on source implies that the message must
include, however transparently, its source information: in this case, two integers. In
Zipcode, we call this data the “PO Box.”

The message class just discussed would not allow discrimination based on the
particular aspect of the process that sent a message, nor on the particular contents
of a message. These possible deficiencies can be handled in distinct ways. On one
hand, we could define a more powerful class (denote ‘B’), increasing the contents of
its PO Box compared to the ‘A’ class: “messages chosen based on their source, plus
an integer type.” Given such a class, messages could be tagged appropriately by the
sender to indicate their contents and/or intended use. If we really want to indicate the
contents of the message by type, this is probably the most convenient approach. If,
however, analogous parts of the communicating processes produce messages that they
want to keep exclusively among themselves, addressing their xﬁessages in a narrow
sense, it is more convenient to define a message context. We call the integer that
specifies context the “zipcode” because it states conceptually “where” the message is
to go within its destination process(es), but not in detail.

A message context is like a message type, but stronger — knowing the context
implies knowing who can participate in the transmission process. So, for example, we

could pose receipt selectivity as “Accept a class ‘B’ message from (node 0, process 0)

50 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

in context 6 (or zipcode 6),” where “6” indicates the specific phase of the computation
for which the message is intended (such as a linear-algebra subroutine operating on
a set of related matrices using processes in a particular logical configuration). So
far, context is just an extra integer added for greater flexibility. However, it leads
immediately to further interesting capabilities. As stated, being part of a message
context implies knowing the participants: in the simplest instance, an explicit list of
the participating processes. A message class can specify indentifying information in
PO Boxes in a number of ways, and we could imagine altering the semantics of the
PO Box to exploit this extra information. First, we could assign an abstract name
to each process in the process list. A class ‘A’ message could be changed to have
its receipt selectivity be “messages specified by their context and position (index) of
the source process in that context’s process list.” A request could be “accept an ‘A’
class message in context 6 from abstract process name 30.” Once we abstract the
basis of receipt selectivity, context and class information together uniquely identify
the message(s) we want to accept; each is insufficient alone.

We need a terse, flexible notation, and message structure to permit multiple con-
texts and classes to work together. Figure 3.1. illustrates the structure of a Zipcode
“letter” — a message, plus enabling information: the variable-length envelope/cover
including its zipcode, PO Box, and other needed structural data. The postal anal-
ogy in Zipcode carries quite far because a process creates and mails a letter, first
by grabbing and filling out a blank message, then by addressing its envelope, and
finally, by posting the entire object. Starting from a list of addressees, a class, and
a zipcode context, a canonical data object, a mailer, is constructed by Zipcode calls.
A mailer is the object used when creating, receiving; or posting letters within the
system. From it, further contexts of communication may be created via inheritance
routines (basically, by correctly deriving a communicating subset of processes and

making a new process list for them).

3.2. ZIPCODE DESIGN DISCUSSION 51

3.2.2 “No Class” Systems

Typical node operating systems are “no class” systems. Specifically, they are systems
where the only explicit class is “messages identified by a single integer,” and types
are instantiations of that integer. Types are most often bound at compile time by
applications, and diverse applications usually attach distinct semantic connotations to
the same integer types, implying source-level conflicts. Furthermore, all messages are
in the same context, so there is no way to distinguish messages intended for one phase
of a process over another, to avoid such conflicts, except by the types themselves.
Broadcast and combine operations require extension of typing for their determin-
istic implementation. It’s necessary to discriminate among messages based on their
source. Consequently, typed message systems must include extra header information
invisible to the user, at least in those messages destined to participate in a global
operation — multiple classes, though invisible and inaccessible, play a role even in

these systems.

3.2.3 Reactive Kernel Primitives

For the purpose of this discussion, we need to define six of the RK primitives, fitting
neatly into two categories: message-generating (i.e., allocate, receive) and message-

consuming (¢.e., free, send), as follows:

char *msg;
int length, node, pid;
int count, *proc_list;

Message-Generating Primitives:

msg = xmalloc(length);
msg = xrecv(); /* unblocked */
msg = xrecvb(); /* blocked */

Message-Consuming Primitives:

52 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

xsend(msg, node, pid);
xmsend (msg, count, proc_list);
xfree(msg) ;

Basically, messages are created by xmalloc(), sent via xsend() or xmsend()
(multiple destinations), and received via xrecv() (unblocked) or xrecvb () (blocked).
Sending a message is equivalent to an xfree() with the side-effect that the message is
mailed to the specified destination(s). This represents the complete message-passing

notation of RK.

3.2.4 Zipcode Class-Independent Calls

Zipcode maintains the same basic naming convention and style as RK. For all classes,
the same calls are used for allocation, sending and receiving letters. Speciﬁc classes
may define additional calls to increase the convenience of use (see G2-Class calls
further below). Small-y calls require specification of the mailer relative to which a
letter is to be created, sent or received. Big-Y calls depend on the current mailer
context established by Ypush()/Ypop() calls. As such, they omit mailer arguments.

The [yYlmail() calls transmit to all addressees of a mailer.

char *letter;
ZIP_MAILER *mailer;

Context-setting Primitives:

Ypush(mailer);
Ypop Q) ;

Letter-Generating Primitives:
letter = ymalloc(mailer, length);
letter = yrecv(mailer); /#* unblocked */
letter = yrecvb(mailer); /* blocked */
letter = Ymalloc(length);

3.2. ZIPCODE DESIGN DISCUSSION 53

letter
letter

Yrecv(); /* unblocked */
Yrecvb() ; /* blocked */

Letter-Consuming Primitives:

ysend(mailer, letter, node, pid);
ymsend (mailer, letter, count, proc_list);
yfree(letter);

Ysend(letter, node, pid);
Ymsend(letter, count, proc_list);
Yfree(letter);

Abstraction to process-list addressees:

ymail(mailer, letter);
Ymail(letter);

Variations of the basic [yY]send() and [yYImail() macros are provided for de-
termining the disposition of the letter’s PO Box information. The three versions
alternatively use a default value for the PO Box, accept an argument as a pointer to
the contents of the PO Box to be used, or assume the PO Box is preset correctly in the
letter’s envelope. [yYlmail() applied to appropriately inherited child mailers, allows
specification of arbitrary, user-defined subsets of recipients of the original mailer’s
addressees. Similarly, variations of the [yYlrecv[b] () calls are provided to control
receipt selectivity based on a default PO Box, a PO Box specified as an extra ar-
gument, or obviating PO-Box-based selectivity entirely, accepting the next message
in the correct zipcode context. Lower-level calls allow replacement of the receipt-
selectivity routine (the delivery function), in order to allow flexible user-defined in-
terpretations of the PO Box data in an incoming letter. The latter feature can be
used to define “wildcard” message receipt selectivity, for example.

Any host/node data-format conversions to the cover information are automatically
performed without any user intervention. This feature causes additional load only in

the host process.

54 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

3.2.5 Mailer Creation

Mailers are created through a loose synchronization beiween the members of the
proposed mailer’s process list. A single process creates the process list, placing itself
first in the list, and initiates the “mailer-open” call with this process information; it’s
called the “Postmaster” for the mailer, as initiator. The other participants receive
the process list as part of the synchronization procedure. A special reactive process,
“The Postmaster General,” maintains and distributes zipcodes as mailers are opened;

essentially the zipcode count is a single location of shared memory.

Class-independent mailer creation:

ZIP_MAILER *mailer; /* mailer pointer */

ZIP_CLASS =*class; /* class spec. */

ZIP_ADDRESSEES *addr; /* addressee list */

ZIP_MAILER *parent; /* parent, if any */

void *extra; /* class extra data */

int *copyflg; /* copying flags */

short int *zipcode; /* zipcode, if known */

ZIP_MAILER =*(**inherit)(); /* overrides for inheritance */

mailer = yopen(class, addr, extra, parent, copyflg, zipcode, i werit);

Typical call:
mailer = yopen(class, addr, NULL, NULL, NULL, NULL, NULL);

3.2.6 Pre-Defined Letter Classes

Y-Class mail is used mainly for Zipcode internal mechanisms. The PO Box infor-
mation is a single short integer type. Global operations cannot be implemented for

this class, because of its intentional simplicity.

Z-Class mail is a general purpose class. Process names are abstracted to a single

integer (based on position in the process list); receipt-selectivity is based on that

3.2. ZIPCODE DESIGN DISCUSSION 35

source name. Global operations are implemented for this class, with analogous calling

sequences to the G2-Class 2D-grid global operations noted below.
G1-Class mail is a 1D-grid-abstraction class, similar to Z-Class mail.

G2-Class mail is a 2D-grid-abstraction class. A P x @ grid naming abstraction
is attached to the process list; each process is specified by a (p, q) pair (e.g., in the
PO Box). Through inheritance, row and column mailers are defined in each process
as the appropriate subsets of the 2D grid. This class has received the most extensive
use because of the natural application to linear algebra and related computations (see
chapters 2, 5).

Class-specific primitives for G2-Class mail have been defined for both higher effi-
ciency and better abstraction. Small-g calls require mailer specification while big-G

calls do not, analogous to the y- and Y-type calls defined generically above.

int p, q; /* source or destination */

Letter-Generating Primitives:

letter = g2Recv(mailer,p, q); /* unblocked */
letter = g2Recvb(mailer, p, q); /* blocked */
letter = G2Recv(p, q); /* unblocked */
letter = G2Recvb(p, q); /* blocked */

Letter-Consuming Primitives:

g2Send (mailer, letter, p, q);
G2Send (letter, p, q);

Global operations combine and broadcast (fanout) are defined and have been
highly tuned for this class (see schematics of these operations in Figures 2.3, 2.5, 2.6,

2.7). Combines are over arbitrary associative-commutative operators specified by

56 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

(*comb_fn) (). Broadcasts share data of arbitrary length, assuming all participants

know the source:

void (*comb_fn)(); /* operation */
void *buffer; /* data/result */
int size, items; /* data specifications */

g2_combine(mailer, buffer, comb_fn, size, items);
G2_combine(buffer, comb_fn, size, items);

void *data; /* data/result */
int length; /* length of data */
int orig_p, orig_q; /* origin */

g2_fanout(mailer, &data, &length, orig_p, orig_q);
G2_fanout(&data, &length, orig_p, orig_q);

G2-Grid mailer creation:
int P, Q; /* grid shape */

mailer = g2_grid_open(P, Q, addr, zipcode);

A much more general version, _g2_grid_open(), (analogous to yopen()) is also

available. See also appendix B.

G3-Class mail is a 3D-grid-abstraction class. A P X @ X R grid naming abstraction
is attached to the process list, analogously to the G2-Class 2D-grid primitives. This
class should prove very useful in defining operations such as matrix-matrix multipli-

cations in an unrestrictive setting.

3.2.7 The Zipcode Queue

Message selectivity implies that some messages will have to be stored on a queue
that the Zipcode layer must maintain; there is no push-back mechanism in RK. In

our experience, multicomputer codes do not accumulate very many messages on the

3.3. PERFORMANCE 57

queue; typically not more than five. We have therefore chosen the simplest possible
queueing arrangement: a linked list with linear access from oldest to newest. Hashing

by zipcode and/or class could also be implemented, but thus far appears superfluous.

3.3 Performance

We quantify performance in three categories: single transmission timings, broadcast
operations, and combine operations, which we consider in turn. For each case, we
have restricted our attention to lengths that are even, to avoid severe penalities from

data copying (i.e., bcopy()) operations that are incurred for odd-length messages.

Figure 3.2. Graph of 2D-Grid Primitive Transmission Timings on a 16-node Symult
52010

1500
o]
g A
1000 -
-)
=2
Q r
é -
.. 500 4
E -
0 L T T T T T T T g
0 2000 4000 6000 8000 10000
L: Message Length (Bytes)

A fit yields: T = 260.25 4+ 0.12660Lus, where T is time in ps, and L is the message
length in bytes. An underlying RK transmission costs approximately T' = 220.0 + 0.1Lus,
unoptimized (vs. T = 200.0 + 0.1Lus optimized).

58 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

3.3.1 Single Transmissions

Single-transmission performance is measured using a quiescent ensemble, through
which a single Zipcode letter is passed around many, many times among random
destinations. The performance illustrated in Figure 3.2. is for a 16-node machine,
where G2-Class 2D-grid primitives were employed. There is a stair-stepping cost
increase as a function of length. This is expected because of 256-byte pages used
by RK to pass messages. Based on a least-squares fit of the data, we conclude
that a reasonably conservative measure for the startup cost of G2-Class primitives
1s 260.25us compared to about 220us for the bare RK primitives. With optimized
compilation, RK startup time drops to about 200us; this savings would be reflected
directly in reduced Zipcode startup time. Furthermore, no optimizations, either by
register keyword usage or optimized compilations, have yet been employed on the
Zipcode layer. Such optimizations are expected further to improve performance,
perhaps as much as 10us for the Symult implementation.

From this performance, we can estimate the systemic granularity of the Symult
s2010, at the application level, an important determining factor in the top-down
design of concurrent algorithms. For the granularity design equation, v = 260.25us,
and § ~ .126us; 7,. is the highly optimized time for the double-precision floating

point operation a@ = a + b * ¢ (vs. 13.785us, unoptimized). See also Seitz et al. [41].

3.3.2 Global Operations

There are two global operations broadcast (fanout) and combine (recursive doubling)
[51]. They are extensible to all classes whose receipt selectivity includes source infor-

mation.

Broadcast is a one-to-all concurrent fanout operation. This has been implemented

so that the originating process sends [log,N] letters, for N participants; completion

NCE
MA
FOR

PER

3.3.

59

oJe p n a
g
1

35000
30000
25000
20000
15000
10000
5000

>
iy

Time (us)

60 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

is in [log,N] time (see Figure 2.5). Other tree approaches are possible, and have
potential merit in load-balancing situations (see Figures 2.6, 2.7). The key feature of
broadcast is its lesser performance penalty for non-powers of two vis-a-vis combine,
so it should be used wherever possible. Figures 3.3., 3.4. illustrate performance for
the G2-Class 2D-grid primitives. They are only slightly cheaper than the combine
primitives (Figure 3.5.) for powers of two. For non-powers of two, the difference
is more dramatic (see appendix B for further discussion). A least-squares fit of the
timing data for lengths from 4...10,084, representative of performance for all node

counts from N =2...128, is

T = (4.1926 x 10% +4.0138 x 107! L)log, N (3.1)

+(3.5611 x 10 +1.4140 x 107 L)us (3.2)

where T is the time in us, and L is the length in bytes. Finally, a linear transmission
regime for small NV has been implemented but is not reflected here. It produces lower

overhead when NV < 4.

Combine is the usual associative-commutative global operation, completed in log-
arithmic time in the number of proce:ses. Figure 3.5. illustrates performance for
powers of two, for the G2-Class 2D-grid primitive case while Figure 2.3. illustrates
the operation qualitatively for eight participants. Non-powers of two are substan-
tially more expensive; in the worst case, roughly twice the cost of combine for the
next highest power of two. A least-squares fit of the timing data for lengths from

4...10,084, valid for power-of-two nodes N = 2...128, is

T = (6.0766 x 10? + 4.3976 x 10~'L)log, N

+ (2.9994 x 10% +2.7555 x 10~ L)us (3.3)

3.4. “VIRTUAL DISTRIBUTED MEMORY” 61

where, again, T is the time in gs, and L is the length in bytes.

Both the broadcast and combine primitives exemplify the high-frequency stepping
characteristic, which results from the 256-byte pages used for message transmission by
RK. At each page boundary, a small additional startup cost is incurred. Furthermore,
both operations illustrate a “trough” of improved performance, beginning at lengths
somewhat beyond 5,000 bytes, and ending at roughly 8,192 bytes. This trough is
thought to be a memory-allocation effect within RK; memory pages are managed

and dispensed at the lowest level in 8,192 byte (8K) pages.

3.4 “Virtual Distributed Memory”

In some circles, it’s popular to try to hide distributed memory characteristics by in-
troducing a notion of “global virtual shared memory” that constructs, in principle, a
shared-memory paradigm for multicomputing. This follows the tacit assumption that
multicomputers are hard to program, while multiprocessors are easy to program, and
that shared-memory ideas should be spread to the multicomputer regime insofar as
possible, thereby reducing the effort inherent in multicomputer computation. Lack-
ing evidence to suggest efficient realizations of this scheme are possible, we suggest
the diametric opposite — “virtual distributed memory.” We consider the distributed-
memory paradigm to be the more practical model for concurrent computation on
medium-grain multiple-instruction, multiple-data multicomputers and multiproces-
sors alike. We define uniform message-passing primitives for multicomputers and
multiprocessors, and achieve portability and high performance for both classes of
machines, encapsulating any special features of the memory hierarchy in higher-level
data distributions. Data distribution is handled at the application-level, rather than
directly and unportably in the communications layer. Applications are written for
correctness independent of data distribution, with performance depending heavily on

the appropriate data-distribution(s) (e.g., scatter distribution vs. linear distribution

62 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

in multicomputer linear algebra computations). The effects of locality of data are
still left as tuning parameters for the application programmer, but systematically so.

We contend that this approach not only promotes portability, but also rational-
izes medium-grain multiprocessor programming, while promoting modular, object-
oriented algorithms. Instead of hiding bottlenecks and unscalabilities in the form
of shared-memory hotspots and critical sections, the “virtual distributed memory”
approach — multiprocessor support for communicating sequential processes — makes
explicit the synchronizations, and data dependencies that render multiprocessor code
quite challenging to debug or extend to many processors, if not to develop at the
outset.

RK ports readily to multiprocessor environments or can be emulated. We are
aware of a six-processor Sequent Symmetry implementation by Hamrén and Mattis-
son, achieving message-startup times of 250us, competitive with the Symult s2010
multicomputer at roughly 200 —220us [33,41]; they indicate no explicit per-byte mes-
sage transmission costs because global memory pointers are used to emulate message
passing. This performance results with one process per processor, with much lower
performance evident with multiple processes per processor. The Sequent RK imple-
mentation is based on Unix System V shared-memory primitives and should itself port
to other archetypical multiprocessors (e.g., BBN Butterflies, multi-headed Crays).
Given the RK underpinning, Zipcode and the whole body of Zipcode-compatible
codes port immediately to such multiprocessor environments also. A full discussion
of this class of implementations with ported RK / Zipcode performance will be ad-

dressed in a future paper.

3.4. “VIRTUAL DISTRIBUTED MEMORY” 63

Figure 3.4. Graph of 2D-Grid Broadcast Primitive Timings on a Symult s2010
35000-

30000 /

25000 ///// :

Time (us)

20000- A —
15000 /'//{//
; //\r/

10000 -
. 1 A
5000- 4 _—
] ="

0 2500 5000 7500 10000 12500
Message Length (bytes)

Times quoted for 2, 4, 8, 16, 32, 64, and 128 node configurations. Linear-linear graph
exemplifies low- and high-frequency behavior.

64 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

Figure 3.5. Graph of 2D-Grid Combine Primitive Timings on a Symult s2010
40000
35000
30000
25000
20000 ,///
150005 7

100003
50003

yd

-
AN
77

ALa lasaalassilsssalanss

Times (us)

AN

o+ttt

0O 2500 5000 7500 10000 12500
Message Length (bytes)

Times quoted for 2, 4, 8, 16, 32, 64, and 128 node configurations.

3.5 Conclusions, Future Work

In typical multicomputer programs, a layer of communication primitives is con-
structed above those provided by the operating system. Early point-to-point node
operating systems, such as Intel’s NX, pre-defined the style and abstraction of message
typing. (The decision that messages are typed per se is already a strong assumption.)
Consequently, application programs were forced either to conform to the pre-defined
style, or to ignore the typing feature, and add additional typing overhead of their
own. The Caltech Reactive Kernel (RK) was designed with this experience in mind,
and overcomes the design flaw simply by omitting low-level typing altogether. RK
consequently presents a set of message primitives that must be augmented for any

non-trivial application. Application programs define ad hoc extensions to pattern

3.5. CONCLUSIONS, FUTURE WORK 65

message passing according to their needs, yet such layers often imply incompatibility
between any two application programs or subroutine libraries. The key design princi-
ple underlying Zipcode is that a single, extensible layer above RK is suitable for the
vast majority of multicomputer applications, thereby avoiding fundamental incompat-
ibilities before they arise, and also eliminating duplication of effort in application-level
message-passing design.

We foresee RK as the low-level portability standard for multicomputers and mul-
tiprocessors in the 1990’s, much as Unix is projected to become the operating system
standard of 1990’s personal computers, workstations and supercomputers alike. The
flexible features of Zipcode make it a suitable basis for many application codes and
libraries, promoting both portability, and codes of complexity wherever RK is im-
plemented or emulated. Zipcode, as a portability pedestal for multicomputer appli-
cations, encapsulates the interprocessor hardware characteristics, while encouraging
the development of codes whose correctness is independent of data distribution. Data
distributions can subsequently be used to tune for high performance in a hardware-
and application-conscious way.

The key features of Zipcode are its design for extensibility, allowing the defini-
tion of many classes of communication and hence message receipt selectivity; support
for abstraction of process lists into convenient working groups for communication;
the ability to define many non-interfering communication contexts based on process
lists with instantiation at runtime rather than compile-time; and the derivation of
additional communication contexts through inheritance. Use of Zipcode implies ac-
ceptable overhead compared to the pervasive one-shot message-passing layers of most
multicomputer applications. We asserted at the outset of this work that message-
passing generality could be achieved with very little additional overhead compared to
one-shot layers. This has subsequently been achieved in Zipcode.

For the future, we foresee several classes of improvements and a wider range of

66 CHAPTER 3. MULTICOMPUTER COMMUNICATION LAYERS

implementations, both for new and extant multicomputers, and for medium-grain
multiprocessors, as noted above. We foresee the creation of a slightly more exten-
sive pool of general-purpose message classes, based on user feedback. We expect
to extend grid-based primitives to provide grid-to-grid data transformations. In the
area of debugging, we intend more dramatic growth. We expect to introduce more
sophisticated macros and function calls to allow for automated detection of many
communication-related errors, as well as better monitoring of the Zipcode queue.
We do not plan to replace the queueing mechanism at present, but we do expect to
make small definitional changes to allow the queueing mechanism to be application
re-defined.

Experience with Zipcode suggests ways to extend RK for overall higher perfor-
mance of the application. In particular, implementation of broadcast and combine
by RK can be posed in a completely general way, consistent with its unrestrictive
philosophy; however, such implementations could take advantage of important hard-
ware optimizations and produce much faster primitives overall. The extant Zipcode
calls would layer transparently above such new primitives (see appendix B).

A numerical toolbox consisting of Zipcode-based applications is under construction
and refinemen:. The advantages of the Zipcode basis will include portability and
compatibility between a number of numerical libraries from several sources, working
primarily, at present, with G2-Class 2D-grid primitives and variants. This will be the

subject of a future paper.

Chapter 4

Concurrent Data Distributions

Abstract

Mappings between global and local coefficient names are fundamental to the control
of data locality in multicomputation. Prior to this work, the prevalent forms of data
distribution were the simple linear and scatter distributions, which we relegate to
appendix C. Here, we have generalized the linear and scatter distributions by intro-
ducing parameters into the closed-form O(1)-time, O(1)-memory distributions. Now,
we can explore the degree of coefficient blocking and scattering incrementally, and
test strategies for improvement of concurrent algorithms with these new adjustable
parameters. In chapter 5, we demonstrate the effectiveness of these new distributions.

Derivations are reserved for appendix C.

4.1 Introduction

We introduce new closed-form O(1)-time, O(1)-memory data distributions useful not
only for concurrent linear algebra and overlying problems that use it, but also gener-
ally for concurrent computations. We quantify evaluation costs in Table 4.1.

Every concurrent data structure in our grid-oriented computations is associated
with a logical process grid at creation (cf., Figure 4.1., chapters 2 and 3). Vec-
tors are either row- or column-distributed within a two-dimensional process grid.

Row-distributed vectors are replicated in each process column, and distributed in the

67

68 CHAPTER 4. CONCURRENT DATA DISTRIBUTIONS

[Table 4.1. Data-Distribution Function and Inverse Costs |

Distribution: p(I, P, M) g~ (p,i, P, M)
One-Parameter ({) | 5.5554 x 10" £5 x 1073 4.0024 x 10' £ 7 x 10~3
Two-Parameter (§) || 6.1710 x 10 £1 x 1072 4.2370 x 10' £ 8 x 10~3

Block-Linear (A) [5.4254 x 10’ £7 x 1073 3.5404 x 10' +5 x 10~3

For the data distributions and inverses described here, evaluation time in us is quoted
for the Symult s2010 multicomputer. Cardinality function calls are inexpensive, and fall
within lower-order work anyway — their timing is hence omitted. The cheapest distribution
function (scatter) costs =~ 15us by way of comparison.

process rows. Conversely, column-distributed vectors are replicated in each process
row, and distributed in the process columns. Matrices are distributed both in rows
and columns, so that a single process owns a subset of matrix rows and columns.
This partitioning follows the ideas proposed by Fox et al. [20] and others. Within
the process grid, coefficients of vectors and matrices are distributed according to one
of several data distributions. Data distributions are chosen to compromise between
load-balancing requirements and constraints on where information can be calculated

in the ensemble.

4.2 New Data Distributions

Definition 4.1 (Data-Distribution Function) A data-distribution function u
maps three integers p(I, P, M) — (p,i) where I, 0 < I < M, is the global name of a
coefficient, P is the number of processes among which all coefficients are to be parti-
tioned, and M is the total number of coefficients. The pair (p,1) represents the process
p (0 < p < P) and local (process-p) name i of the coefficient (0 < i < p*(p, P, M)).
The inverse distribution function p~(p,1, P, M) — I transforms the local name i back

to the global coefficient name I.

4.2. NEW DATA DISTRIBUTIONS 69

Figure 4.1. Process Grid Data Distribution of Az = b

0 1 2 3 0 1 2 3
C— C3I C3 3
0
et b hd L b = b J
C— 31 C3a 3
' |
= C 3 {3 icCc3
2
N R WS R) U6 By B 6N - - - -
—t 1 {1 [
H— pr—— P— p—y P -
s [{1
X

i

Representation of a concurrent matrix, and distributed-replicated concurrent vectors on a
4x4 logical process grid. The solution of Az = b first appears in z, a column-distributed
vector, and then is normally “transposed” (or “converted”) via a global combine to the
row-distributed vector y. See appendix A.

The formal requirements for a data distribution function are as follows. Let I?
be the set of global coefficient names associated with process p, 0 < p < P, defined
implicitly by a data distribution function u(e,P,M). The following set properties
must hold:

I NI” = wa VPl #p% 0 SPI,P2 <P (41)
P-1
Uz = {0,...,.M -1} = Iy. . (4.2)

p=

70 CHAPTER 4. CONCURRENT DATA DISTRIBUTIONS

Figure 4.2. Example of Process-Grid Data Distribution

[@01 Gos | Go2 Goe | Go3 do7 | Goo Go4 Gog \
11 15 | Q1,2 Q16 | Q13 Q17 | Q10 Q14 Q18
az,1 Q25 | Q2,2 Q26 | Q23 Q27 | G20 Q24 QA28

a a a a a a a a a

A%0 401 402 403 aS.l as,s 3,2 aa.s as,s 3,7 aa.o a3.4 3,8
4, , Q4,2 6 3 Q47 4,0 4 Q4

A0 Al Al2 413 1 Q45 4 4,3 a4 4,4 Q48
A0 A1 A22 423 = as1 ass | @52 Q56 | @53 QAs57 | 50 Q54 QA58
A30 431 432 433 d¢,1 Qde5 | Q6,2 Q66 | @63 Q6,7 | Q60 Q64 dgs8
¢ ary Grs | A7 a7e | G73 arz | arp arg arg

ag1 ags | Gg,2 QGge | g3 Qag7 | dgo Ag4 Qagg
dg,1 Q495 | Ag2 Qdg9e | @93 Ag7 | G90 Q94 ag9s
\ a10,1 10,5 | @10,2 Q10,6 | 10,3 Q10,7 | @10,0 @10,4 Q10,8 /

An 11x9 array with block-linear rows (B = 2) and scattered columns on a 4x4 logical
process grid. Local arrays are denoted at left by A™? where (p,q) is the grid position of
the process on G = ({(/\Q,Az'l,z\uz);P =4,M = 11} ,{(a’l,afl,ag);Q =4,N = 9}) Coef-
ficient Subscripts (i.e., a7 s) are the global (I, J) indices.

The cardinality of the set I?, is given by p*(p, P, M). We attach an implicit ordering

to the coefficient sets as follows:

= (I8, 1, ..., P panyy), (4.3)
where
If = p~\(p,1, P, M). (4.4)

Generically, we will denote distribution functions that work on matrix columns
and row-distributed vectors by. ¢, and matrix rows and column-distributed vectors
by v.

The linear and scatter data-distribution functions are most often defined. We
generalize these functions (by blocking and scattering parameters) to incorporate
practically important degrees of freedom. These generalized distribution functions

yield optimal static load balance as do the ungeneralized functions described in [57]

4.2. NEW DATA DISTRIBUTIONS 71

(see also appendix C) for unit block size, but differ in coefficient placement. This

distinction is technical, but necessary for efficient implementations.

Definition 4.2 (Generalized Block-Linear) The definitions for the generalized

block-linear distribution function, inverse, and cardinality function are

/\B(I,PsM) = (pai):

e porem (B ER) e
i = I—B(pz+@1(p-(P-r))), (4.6)
while
M5l (p,i, P,M) = i+B((pl+©'(p— (P~), (4.7)
A(p,P,M) = B ([ﬁ%—’lj - 9) + (M mod B)4, (4.8)

where B denotes the coefficient block size,

(

% if M mod B=0

L [%J + 1 otherwise,

Is = %J o o=b-1-Ip , (4.10)
[= L%J’ r=bmod P, (4.11)
0 t<0
O t) = { - t>0, k>0 , (4.12)

L1 t>0, k=0

6 = l’-‘}}lj ©°(M mod B) (4.13)

72 CHAPTER 4. CONCURRENT DATA DISTRIB UTIONS

and where b > P.

t -~ B = 1, a load-balance-equivalent variant of the common linear data-
distribution function is recovered. The general block-linear distribution function di-
vides coefficients among the P processes p=0,...,P — 1 so that each I is a set of
coefficients with contiguous global names, while optimally load-balancing the b blocks
among the P sets. Coefficient boundaries between processes are on multiples of B.
The mazimum possible coefficient imbalance between processes is B. If M mod B # 0,

the last block in process P — 1 will be foreshortened.

Definition 4.3 (Generalized Block-Scatter) The generalized block-scatter distri-

bution, inverse and coefficient-cardinality function are, in turn, as follows:

os(I,P,M) = (P-l-(f;;v mod P),(4.14)

B ([?J —1- [iJ) + I mod B) (4.15)

— (p,1),

o5\ (p,i, P,M) = B (((b+ p) mod P) + P [%J) +(imod B)— I, (4.16)

oh(p, P, M) = My(p, P, M), (4.17)

where B, Ip, b and so forth are as defined above.

For B = 1, a load-balance-equivalent variant of the common scatter distribution is
recovered, and the divisibility condition defining b becomes redundant. The generalized
block-scatter distribution function divides coefficients into B-sized blocks with contigu-
ous global names, and scatters such blocks among the P processes p = 0,...,P —1,

while optimally load-balancing the b blocks among the P processes. If M mod B #0,

4.2. NEW DATA DISTRIBUTIONS 73

the last block in process P — 1 will be foreshortened.

Definition 4.4 (Parametric Functions) To allow greater freedom in the distri-
bution of coefficients among processes, we define a new, two-parameter distribution
function family, €. The B blocking parameter (just introduced in the block-linear and
block-scatter functions) is mainly suited to the clustering of coefficients that must not
be separated by an interprocess boundary. Increasing B worsens the static load bal-
ance. Adding a second scaling parameter S (of no impact on the static load balance)
allows the distribution to scatter coefficients to a greater or lesser degree, directly as
a function of this one parameter. The two-parameter distribution function, inverse
and cardinality function are defined below. The one-parameter distribution function
family, ¢, occurs as the special case B =1, also as noted below:

o) Ao >
tas(I,P,M) — (p,i) = (Po,io) Ao 21s (4.18)

(plail) AO < IS)

where
l = _l. Ao = I'_zo_J (4 19)
S = 15]” "° T LBS) '
(po,io) « (I, P, M), (4.20)
Igs = pols+ Ao, (4.21)
pp = Ipsmod P, (4.22)
i, = BS [%J+(io mod BS), (4.23)
with
(es(I,P,M) = &i,s(1,P,M), (4.24)

5 s(p, P,M) = Xj(p, P, M), (4.25)

74 CHAPTER 4. CONCURRENT DATA DISTRIBUTIONS

¢s(p,P,M) = MN(p, P, M), (4.26)

and where r, b, and so forth are as defined above. The inverse distribution function

€71 is defined as follows:

E}S(pviaP?M) - I = B * o P M) (427)
. (p2) A>ls
(p7,¢%) = (4.28)
p2, z2 A< IS ’
I
2 [BSJ (430)
12 = BS(Iggmodls)+ (i mod BS), (4.31)
with

Csl(psz PM) = ElS(Pal P, M). (4.32)

For S =1, a variant block-scatter distribution results (but not o, in general), while for
S > Saiu = [1/2] + 1, the generalized block-linear distribution function is recovered.

See also appendiz C.

Definition 4.5 (Data Distributions) Given a data-distribution function family
(171, 8Y) ((v,v™1, 1)), a process list with P (Q) participants, M (N) as the num-
ber of coefficients, and a row (respectively, column) orientation, a row (column) data

distribution G™°% (g°°‘) ts defined as:

G = {(u,n7", ") P, M},

4.2. NEW DATA DISTRIBUTIONS

=1

t

respectively,

gl = {(u,u'l, v Q, N} .

A two-dimensional data distribution may be identified as consisting of a row and

column distribution defined over a two-dimensional process grid of P x @) processes,

as g = (graw,gcol)'

Further discussion and detailed comparisons on data-distribution functions are offered
in appendix B. Figure 4.2. illustrates the effects of linear and scatter data-distribution

functions on a small rectangular array of coefficients.

76

CHAPTER 4. CONCURRENT DATA DISTRIBUTIONS

Chapter 5

Concurrent Sparse Linear Algebra

Abstract

Efficient sparse linear algebra cannot be achieved as a straightforward extension of
the dense case, even for concurrent implementations. This chapter details a new,
general-purpose unsymmetric sparse LU factorization code built on the philosophy of
Harwell’s MA28, with variations. We apply this code in the framework of Jacobian-
matrix factorizations, arising from Newton iterations in the solution of nonlinear
systems of equations (see chapter 6). Serious attention has been paid to the data-
structure requirements, complexity issues and communication features‘ of the algo-
rithm. Key results include reduced communication pivoting for both the “analyze”
A-mode and repeated B-mode factorizations, and effective application of the general-
purpose data distributions introduced in chapter 4, which prove useful in the incre-
mental trade-off of process-column load balance in LU factorization against triangular
solve performance. Future planned efforts in concurrent sparse linear algebra are cited

in conclusion.

5.1 Introduction

The topic of this chapter is the implementation and concurrent performance of
sparse, unsymmetric LU factorization for medium-grain multicomputers. Our tar-

get hardware is distributed-memory, message-passing concurrent computers such as

7

78 CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

the Symult s2010 and Intel iPSC/2 systems. For both of these systems, efficient cut-
through wormhole routing technology provides pair-wise communication performance
essentially independent of the spatial location of the computers in the ensemble [6].
Message-passing performance, portability and related issues impacting multicomputer
algorithms have already been detailed in earlier chapters.

Questions of linear-algebra performance are pervasive throughout scientific and
engineering computation. The need for high-quality, high-performance linear algebra
algorithms (and libraries) for multicomputer systems therefore requires no attempt
at justification. The motivation for the work described here has a specific origin,
however. Our main higher-level research goal is the concurrent dynamic simulation
of systems modelled by ordinary differential and algebraic equations; specifically, dy-
namic flowsheet simulation of chemical plants (e.g., coupled distillation columns);
see chapter 6. Efficient sequential integration algorithms solve staticized nonlinear
equations at each time point via modified Newton iteration (cf., [9, Chapter 5]).
Consequently, a sequence of structurally identical (or nearly identical) linear systems
must be solved; the matrices are finite-difference approximations to Jacobians of the
staticized system of ordinary differential-algebraic equations. These Jacobians are
large, sparse and unsymmetric for our application area. In general, they possess
both band and significant off-band structure. Generic structures are depicted in Fig-
ure 5.1. This work should also bear relevance to electric power network /grid dynamic

simulation where sparse, unsymmetric Jacobians also arise, and also elsewhere.

5.1. INTRODUCTION 79

Figure 5.1. Example Jacobian Matrix Structures

NN \

3¢
¥

In chemical-engineering process flowsheets, Jacobians with main band structure, and lower-
triangular structure (feedforwards), upper-triangular structure (feedbacks), and borders
(global or artificially restructured feedforwards and/or feedbacks) are common.

80

CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

Figure 5.2. Schematic of Linked-list Entry Structure for Sparse Matrices

e

Value Value
Local Row Local Row
Local Column Local Column
Next Row Next Row
® Next Column P Next Column
Value Value
Local Row Local Row
Local Column Local Column
Next Row Next Row /
Next Column ® Next Column

i

Value
Local Row
Local Column

1

Next Column

J
|

L

A single entry consists of a double-precision value (8 bytes), the local row (i) and column
(j) index (2 bytes each), a “Next Column Pointer” indicating the next current column entry
(fixed j), and a “Next Row Pointer” indicating the next current row entry (fixed i), at 4
bytes each. Total: 24 bytes per entry. There are additional storage overheads as well, as

detailed in appendix D.

5.2. DESIGN OVERVIEW 81
5.2 Design Overview

We solve the problem Az = b where A is large, and includes many zero entries.
We assume that A is unsymmetric both in sparsity pattern and in numerical val-
ues. In general, the matrix A will be computed in a distributed fashion, so we will
inherit a distribution of the coefficients of A (see Figures 4.1, 4.2). Following the
style of Harwell’s MA28 code for unsymmetric sparse matrices, we use a two-phase
approach to this solution. There is a first LU factorization called A-mode or “an-
alyze,” which builds data structures dynamically, and uses a user-defined pivoting
function. The repeated B-mode factorization uses the existing data structures stati-
cally to factor a new, similarly structured matrix, with the previous pivotal sequence
(“preset pivoting”). B-mode monitors stability with a simple growth factor estimate
(see appendix D). In practice, A-mode is repeated whenever instability is detected.
The two key contributions of this sparse concurrent solver are reduced communica-
tion pivoting, and effective application of new data distributions for better overall
performance.

Following Van de Velde [57], we consider the LU factorization of a real matrix A,
A € RVXN_ 1t is well known (e.g., [22, pages 117-118]), that for any such matrix A,

an LU factorization of the form
PRAPL = LU (5.1)

exists, where Pg, Pc are square, (orthogonal) permutation matrices, and L,U are the
unit lower-triangular, and upper-triangular factors, respectively. Whereas the pivot
sequence is stored (two N-length integer vectors), the permutation matrices are not
stored or computed with explicitly. Rearranging, based on the orthogonality of the
permutation matrices,

A=PRLUPc. (5.2)

82 CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

We factor A with implicit pivoting (no rows or columns are exchanged explicitly as a

result of pivoting). Therefore, we do not store L, U directly, but instead:

L = PLipg, (5.3)

U = PLUP.. (5.4)
Consequently,

L = PRrLPT, (5.5)

U = PRrUPEL, (5.6)
and

A= L(PLPR)U. (5.7)

The “unravelling” of the permutation matrices is accomplished readily (without im-
plication of additional interprocess communication) during the triangular solves (see
appendix D).

For the sparse case, performance is more difficult to quantify than for the dense
case, but, for example, banded matrices with bandwidth B can be factored with
O(B%N) work; we expect sub-cubic time complexity in N for reasonably sparse ma-
trices, and strive for sub-quadratic time complexity for very sparse matrices. The
triangular solves can be accomplished in work proportional to the number of entries
in the respective triangular matrix L or U. The pivoting strategy is treated as a
parameter of the algorithm and is not pre-determined. We can consequently treat
the pivoting function as an application-dependent function, and sometimes tailor it
to special problem structures (see [53, Section 7)) for higher performance. As for all
sparse solvers, we also seek sub-quadratic space complexity in N, attained by storing

matrix entries in linked-list fashion, as illustrated in Figure 5.2.

5.3. REDUCED-COMMUNICATION PIVOTING 83

For further discussion of LU factorizations and sparse matrices, see [22,16].

5.3 Reduced-Communication Pivoting

At each stage of the concufrent LU factorization, the pivot element is chosen by the
user-defined pivot function. Then, the pivot row (new row of U) must be broadcast,
and pivot column (new column of L) must be computed and subsequently broadcast
on the logical process grid (cf., Figure 4.1.), vertically and horizontally, respectively.
Note that these are interchangeable operations. We use this degree-of-freedom to re-
duce the communication complexity of particular pivoting strategies, while impacting
the effort of the LU factorization itself negligibly. First we describe the methodology,

then we explain its advantages qualitatively in the following section.

5.3.1 Formalism

We define two “correctness modes” of pivoting functions: “first row fanout” and
“first column fanout.” Each of these modes has specific exit requirements for the user-
defined pivot function. After defining these correctness modes, we indicate how partial
row pivoting, partial column pivoting and preset pivoting satisfy these correctness

modes. Before delving into this discussion, we defined the terms to be used.

Definition 5.1 (Terms) We consider a process grid of shape P x Q. Then, we
denote by p (§) the process row (resp., column) containing the matriz row (resp.,
column) with the current pivot element. By i, we denote the local matriz row indez in
process row p, and by j, the local matriz column in process column §. The quadruple
P, 4,1, 7 uniquely specifies the location of the current pivot element in the ensemble,
and in the matriz itself. By k, we denote the current iteration of the LU factorization

procedure in the following commentary.

Lemma 5.1 (First Row Fanout) If the “first row fanout” correctness mode ezit

conditions for the pivot function are defined as follows:

84 CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

o All processes have the correct p,
o The pivot process row (row p) has the correct § and %,

e The pivot process has the correct pivot value and 7,

then, the LU Factorization with row broadcast preceding column broadcast is correct
(apart from pivoting-strategy induced pathologies'), provided that the local values for
D, 4, i, j, and the pivot value are also broadcast whenever a row or column broadcast

is performed.

Proof For “first row fanout,” the universal knowledge of p and knowledge of the
pivot matrix row i by the pivot process row, allow the correct vertical broadcast of this
new row of U. In addition, the broadcast extends the correct value of § to all process
columns, and the correct value of 7 and the pivot value are extended to the entire
process column §. Since all processes now have the correct §, the column broadcast
becomes feasible, once the multiplier column has been computed in process column
g. Since the process column § has both the correct value of j, and the correct pivot
value, the multiplier (L) column may be correctly formed and then broadcast among
the process columns. The incidental broadcast of the pivot value with the multiplier
column broadcast extends the correct pivot value to all processes. Each process now
contains the correct pivot-index quadruple, and the correct pivot value, and hence

can proceed with the local elimination step for iteration k. |

Lemma 5.2 (Partial Column Pivoting Correctness) Partial column pivoting
can be set up to satisfy “first row fanout” correctness, assuming a “strong” row data

distribution function, as described ezclusively in chapter 4. See also appendices C, D.

Proof For partial column pivoting, the kth row is eliminated at the kth step of the

factorization. From this fact, each process can derive the process row p and p-local

'In general, specialized pivoting strategies may not find a stable pivot if they fail to perform
complete pivoting. This is always at issue in LU factorization, and unrelated to the reduced-
communication strategies in our present discussion.

5.3. REDUCED-COMMUNICATION PIVOTING 85

matrix row 7 using the row data distribution function. Having identified themselves,
the pivot-row processes can look for the largest element in local matrix row i and
choose the pivot element globally among themselves via a combine. The remaining
processes perform no pivoting-related communication. At completion, this places ¢, j
and the pivot value in the entire pivot process row. This completes the requirements

for the “first row fanout” correctness mode. | |

Lemma 5.3 (Preset Pivoting Correctness) Preset pivoting can be set up to sat-
isfy “first row fanout” correctness, assuming that the pivot quadruple for the kth iter-
ation is pre-stored in each process. For large problems, storing all the pivot quadruples
in each process causes an unacceptable memory unscalability. However, this unscala-
bility can be removed cheaply with occasional broadcast communications (“pivot win-

dowing”) as described in appendices C, D.

Proof For preset pivoting, the kth elimination row and column are known, stored
in each process as p, 1, g, j. Furthermore, the pivot process contains the correct pivot
value. Hence, preset pivoting satisfies the requirements of the “first row fanout”

correctness mode. | |

Lemma 5.4 (First Column Fanout) If the “first column fanout” correctness

mode ezit conditions for the pivot function are defined as follows:

e All processes must know ¢,
o The entire pivot process column must know j, the pivot value, and p,

e The pivot process must, in addition, know 2,

then, the LU Factorization with column broadcast preceding row broadcast is correct
(apart from pivoting-strategy induced pathologies), provided that the local values for
P, 4, 1, j, and the pivot value are also broadcast whenever a row or column broadcast

is performed.

86 CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

Proof For “first column fanout,” the entire pivot process column knows the correct
pivot value, and local column of the pivot. Hence, the multiplier column may be
computed by dividing the pivot matrix column by the pivot value. This column of L
may then be broadcast horizontally, including the pivot value, p and i as additional
salient information. After this step, the entire ensemble has the correct pivot value,
and p; in addition, the pivot process row has the correct i. Hence, the pivot matrix
row may be identified and broadcast by the pivot process row. This second broadcast
completes the needed information in each process for effecting the kth elimination

step. |

Lemma 5.5 (Partial Row Pivoting Correctness) Partial row pivoting can be
set up to satisfy “first column fanout” correctness, assuming a “strong” column data

distribution function, as described ezclusively in chapter 4. See also appendices C, D.

Proof For partial row pivoting, the kth column is eliminated at the kth step of
the factorization. From this fact, each process can derive the process column ¢ and
¢-local matrix row j using the column data distribution function. Having identified
themselves, the pivot-column processes can individually select their largest element
in the local matrix column j and then choose (among themselves) the globally largest
pivot element via a combine. The remaining processes perform no pivot-related com-
munication. At completion, this places the correct p, i and pivot value in the entire
pivot process column. This completes the requirements for the “first column fanout”

correctness mode. |

Hence, when using partial row or partial column pivoting, only local combines of
the pivot process column (respectively, row) are needed. The other processes don’t
participate in the combine, as they must without this methodology. Preset pivoting
implies no pivoting communication, except very occasionally (e.g., 1 in 5000 times)

as detailed in appendix D to remove memory unscalabilities. This pivoting approach

5.3. REDUCED-COMMUNICATION PIVOTING 87

is a direct savings, gained at a negligible additional broadcast overhead. See both of

the appendices mentioned above.

5.3.2 Advantages

For A-mode factorization, communication costs are reduced if we utilize either partial
row or partial column pivoting. Specifically, we eliminate the combine over all grid
processes in favor of a combine only on the pivot column (resp., row). The other
processes in the grid overlap part or all of fixed costs of entering the broadcast func-
tion in “receive mode.” Furthermore, we no longer synchronize all the processes, so
we don’t necessarily pay the full performance penalty of imbalances. The less syn-
chronous algorithm may allow some imbalances to wash out. Since the only combine
operation is now over a subgrid, the use of non-powers of two for the grid shape can
also be contemplated reasonably.

For B-mode factorization, communication costs are always reduced dramatically.
Preset pivoting implies no generic pivot-induced communication, as just described
in the previous section (see clarifications in appendix D). The only iteration-by-
iteration communication steps are the broadcasts of the rows and columns of U and
L, respectively. It is even more reasonable to consider non-powers-of-two for the
grid shapes for B-mode, in view of the absence of combines. Actually, two combines
are used, one before the B-mode factorization, and one after it; they implement the
growth-factor test. This is, however, a secondary overhead to the algorithm.

Some applications will use A-mode more frequently than others; some applications
may conceivably use B-mode only seldom or not at all. It’s important to note that
we have made contributions to improved performance for both the more expensive
A-mode factorization procedure, and for the cheaper repeated B-mode factorization,
that assumes we are factoring a matrix of the known structure built-up in A-mode.

One reason we care about non-power-of-two grid shapes is that they allow finer

88 CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

optimization of the overall performance, both when considering the work involved in
calculating the matrix in the ensemble, and also considering the triangular solves.
So, not only does the reduction in pivotal communication speedup both A-mode and
B-mode factorizations, it also implicitly allows tuning for better triangular solve per-
formance, since we can select grid shapes more finely. Our main contribution to
improved triangular solves comes, however, from the use of compromise data distri-

butions and this is discussed next.

5.4 Performance vs. Scattering

Consider a fixed logical process grid of R processes, with P x @ = R. For the sake
of argument, assume partial row pivoting during LU factorization for the retention
of numerical stability. Then, for the LU factorization, it is well known that a scatter
distribution is “good” for the matrix rows, and optimal were there no off-diagonal
pivots chosen. Furthermore, the optimal column distribution is also scatter, because
columns are chosen in order for partial row pivoting. Compatibly, a scatter distribu-
tion of matrix rows is also “good” for the triangular solves. However, for triangular
solves, the best column distribution is linear, because this implies less intercolumn
communication, as we detail below. In short, the optimal configurations conflict,
and because explicit redistribution is expensive, a static compromise must be chosen.
We address this need to compromise through the one-parameter distribution function
¢ described in the previous chapter, offering a variable degree of scattering via the
S-parameter. To first order, changing S does not affect the cost of computing the
Jacobian (assuming columnwise finite-difference computation), because each process
column works independently (also, see comments in the next chapter).

It’s important to note that triangular solves derive no benefit from @ > 1. The
standard column-oriented solves keep one process column active at any given time.

For any column distribution, the updated right-hand-side vectors are retransmitted W

5.4. PERFORMANCE VS. SCATTERING 89

times (process column-to-process column) during the triangular solve — whenever the
active process column changes. There are at least Wp,;, = @ — 1 such transmissions
(linear distribution), and at most Wie: = N — 1 transmissions (scatter distribution).
The complexity of this retransmission is O(W N/ P), representing quadratic work in
N for W ~ N.

The time complexity for a sparse triangular solve is proportional to the number
of elements in the triangular matrix, with a low leading coefficient. Often, there are
O(N'<) with £ < 1 elements in the triangular matrices, including fill. This operation
is then O(N'=/P), which is less than quadratic in N. Consequently, for large W,
the retransmission step is likely of greater cost than the original calculation. This
retransmission effect constrains the amount of scattering and size of @ in order to
have any chance of concurrent speedup in the triangular solves.

Using the one-parameter distribution with S > 1 implies that W = N/S, so that
the retransmission complexity becomes O(N?/SP). Consequently, we can bound the
amount of retransmission work by picking S sufficiently large. Clearly, S = St is a
hard upper bound, because we reach the linear distribution limit at that value of the
parameter (see chapter 4). We suggest picking S ~ 10 as a first guess, and S ~ VN,
more optimistically. The former choice basically reduces retransmission effort by an
order of magnitude. Both examples in the following section illustrate the effectiveness
of choosing S by these heuristics.

The two-parameter ¢ distribution can be used on the matrix rows to trade-off
load balance in the factorizations and triangular solves against the amount of (com-
munication) effort needed to compute the Jacobian. In particular, a greater degree
of scattering can dramatically increase the time required for a Jacobian computation
(depending heavily on the underlying equation structure and problem), but impor-
tantly reduce load imbalance during the linear algebra steps. The communication

overhead caused by multiple process rows suggests shifting toward smaller P and

90 CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

larger @ (a squatter grid), in which case greater concurrency is attained in the Ja-
cobian computation, and the additional communication previously induced is then
somewhat mitigated. The one-parameter distribution used on the matrix columns
then proves effective in controlling the cost of the triangular solves by choosing the
minimally allowable amount of column scattering.

Let’s make explicit the performance objectives we consider when tuning S, and,
more generally, when tuning the grid shape P x @ = R. In the modified Newton
iteration, for instance, a Jacobian factorization is reused until convergence slows un-
acceptably. An “LU Factorization + Backsolve” step is followed by n “Forward +
Backsolves,” with n ~ O(1) typically (and varying dynamically throughout the cal-
culation). Assuming an averaged 7, say n" (perhaps as large as five [9]), then our

first-level performance goal is a heuristic minimization of
Trv + (0" + 1)TBack + 1" TForward (5.8)

over S for fixed P,Q. n* > 1 more heavily weights the reduction of triangular solve
costs vs. B-mode factorization than we might at first have assumed, placing a greater
potential gain on the one-parameter distribution for higher overall performance. We

generally want heuristically to optimize

T.la.c + TLU + (77‘ + l)TBGck + n.TFomard (5-9)

over S, P, Q, R. Then, the possibility of fine-tuning row and column distributions is

important, as is the use of non-power-of-two grid shapes.

[y

5.5. PERFORMANCE 91

5.5 Performance

5.5.1 Order 13040 Example

We consider an order 13040 banded matrix with a bandwidth of 326 under partial
row pivoting. For this example, we have compiled timing results for a 16x12 pro-
cess grid with random matrices (entries have range 0-10,000) using different values
of S on the column distribution (see Table 5.1). We indicate timing for A-mode,
B-mode, Backsolves and Forward- and Backsolves together (“Solve” heading). For
this example, S = 30 saves 76% of the triangular solve cost compared to S = 1, or
approximately 186 seconds, roughly 6 seconds above the linear optimal. Simultane-
ously, we incur about 17 seconds additional cost in B-mode, while saving about 93
seconds in the Backsolve. Assuming n* = 1 (n* = 0), in the first above-mentioned
objective function, we save about 262 (respectively, 76) seconds. Based on this exam-
ple, and other experience, we conclude that this is a successful practical technique for
improving overall sparse linear algebra performance. The following example further

bolsters this conclusion.

5.5.2 Order 2500 Example

Now, we turn to a timing example of an order 2500 sparse, random matrix. The
matrix has a random diagonal, plus two-percent random fill of the off-diagonals;
entries have a dynamic range of 0-10,000. Normally, data is averaged over random
matrices for each grid shape (as noted), and over four repetitive runs for each random
matrix. Partial row pivoting was used exclusively. Table 5.2. compiles timings for
various grid shapes of row-scatter/column-scatter, and row-scatter/column-(S = 10)
distributions, for as few as six nodes and as many as 128. Memory limitations set the
lower bound on the number of nodes.

This example demonstrates that speedups are possible for this reasonably small

92

CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

Table 5.1. Order 13040 Band Matrix Performance

Distribution (time in seconds)
Row Column A-Mode B-Mode Back-Solve Solve
Scatter S=1 1.140 x 10°® 1.603 x 102 1.196 x 10> 2.426 x 102
S=10 || 1.148 x 103 1.696 x 10> 3.294 x 10* 6.912 x 10!
S=25 | 1.091 x 10® 1.670 x 102 2.713 x 10" 5.752 x 10!
S=30 | 1.095 x 10 1.769 x 102 2.653 x 10' 5.631 x 10°
S=40 1.116 x 10® 2.157 x 102 2.573 x 10 5.472 x 10!
S=50 1.127 x 10 2.157 x 10* 2.764 x 10! 5.743 x 10!
S=100 | 1.279 x 10> 4.764 x 10> 2.520 x 10' 5.367 x 10!
Linear | 2.247 x 10® 1.161 x 10 2.333 x 10' 4.993 x 10!

The above timing data, for the 16x12 grid configuration with scattered rows, indicates the
importance of the one-parameter distribution with § > 1 for balancing factorization cost
vs. triangular-solve cost. The random matrices, of order 13040, have an upper bandwidth
of 164 and a lower bandwidth of 162. “Best” performance occurs in the range S = 25...40.

sparse example with this general-purpose solver, and that the one-parameter distribu-
tion is key to achieving overall better performance even for this random, essentially
unstructured example. Without the one-parameter distribution, triangular solver
performance is poor, except in grid configurations where the factorization is itself
degraded (e.g., 2x16). Furthermore, the choice of S = 10 is universally reasonable
for the Q > 1 grid shapes illustrated here, so the distribution proves easy to tune
for this type of matrix. We are able to maintain an almost constant speed for the
triangular solves while increasing speed for both the A-mode and B-mode factoriza-
tions. We presume, based on experience, that triangular solve times are comparable
to but somewhat worse than the sequential solution times — further study is needed
in this area to see if and how performance can be improved. The consistent A-mode

to B-mode ratio of approximately two is attributed primarily to reduced communi-

5.6. FUTURE WORK, CONCLUSIONS 93

cation costs in B-mode, realized through the elimination of essentially all combine
operations in B-mode.

While triangular-solve performance exemplifies sequentialism in the algorithm, it
should be noted that we do achieve significant overall performance improvements
between 6 (6x1) nodes and 96 (16x6 grid) nodes, and that the repeatedly used B-
mode factorization remains dominant compared to the triangular solves even for 128
nodes. Consequently, efforts aimed further to increase performance of the B-mode
factorization (at the expense of additional A-mode work) are interesting to consider.
For the factorizations, we also expect that we are achieving non-trivial speedups
relative to one node, but we are unable to quantify this at present because of the

memory limitations alluded to above.

5.6 Future Work, Conclusions

There are several classes of future work to be considered. First, we need to take
the A-mode “analyze” phase to its logical completion, by including pivot-order sort-
ing of the L/U pointer structures to improve performance for systems that should
demonstrate sub-quadratic sequential complexity. This will require minor modifica-
tions to B-mode (that already takes advantage of column-traversing elimination), to
reduce testing for inactive rows as the elimination progresses. We already realize op-
timal computation work in the triangular solves, and we mitigate the effect of Q > 1
quadratic communication work using the one-parameter distribution.

Second, we need to exploit “timelike” concurrency in linear algebra — multiple
pivots. This has been addressed by Alaghband for shared-memory implementations
of MA28 with O(N)-complexity heuristics [1,2]. These efforts must be reconsidered
in the multicomputer setting and effective variations must be devised. This approach
should prove an important source of additional speedup for many chemical engineering

applications, because of the tendency towards extreme sparsity, with mainly band

94 CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA

and/or block-diagonal structure.

Third, we could exploit new communication strategies and data redistribution.
Within a process grid, we could incrementally redistribute L/U by utilizing the in-
herent broadcasts of L columns and U rows to improve load balance in the triangular
solves at the expense of slightly more factorization computational overhead and sig-
nificantly more memory overhead (nearly a factor of two). Memory overhead could
be reduced at the expense of further communication if explicit pivoting were used
concommitantly.

Fourth, we can develop adaptive broadcast algorithms that track the known load
imbalance in the B-mode factorization, and shift greater communication emphasis
to nodes with less computational work remaining. For example, the pivot column is
naturally a “hot spot” because the multiplier column (L column) must be computed
before broadcast to the awaiting process columns. Allowing the non-pivot columns
to handle the majority of the communication could be beneficial, even though this
implies additional overall communication. Similarly, we might likewise apply this
to the pivot row broadcast, and especially for the pivot process, because it must
participate in two broadcast operations (see Figures 2.6, 2.7).

We could utilize two process grids. When rows (columns) of U (L) are broadcast,
extra broadcasts to a secondary process grid could reasonably be included. The sec-
ondary process grid could work on redistribution L/U to an efficient process grid shape
and size for triangular solves while the factorization continues on the primary grid.
This overlapping of communication and computation could also be used to reduce or
nearly mask the cost of transposing the solution vector from column-distributed to
row-distributed, which normally follows the triangular solves.

Further, we may wish to consider the formulation of local elimination steps in a
way suitable for nodal vector computation on future systems. This will primarily be

of interest for very large sparse matrices, and is mainly a sequential optimization of

5.6. FUTURE WORK, CONCLUSIONS 95

the nodal code, despite its potential importance.

The sparse solver supports arbitrary user-defined pivoting strategies. We have
considered but not fully explored issues of fill-reduction vs. minimum time; in par-
ticular we have implemented a Markowitz-count fill-reduction strategy [16]. Study of
the usefulness of partial column pivoting and other strategies is also needed. We will
report on this in the future.

Reduced-communication pivoting and parametric distributions can be applied im-
mediately to concurrent dense solvers with definite improvements in performance.
While triangular solves remain lower-order work in the dense case, and may sensibly
admit less tuning in S, the reduction of pivot communication is certain to improve
performance. A new dense solver exploiting these ideas is under construction at
present. Some of the notions speculatively referred to above will also be considered
in the dense case.

In closing, we suggest that the algorithms generating the sequences of sparse
matrices must themselves be reconsidered in the concurrent setting. Changes that
introduce multiple right-hand sides could help to amortize linear algebra cost over
multiple timelike steps of the higher-level algorithm. Because of inevitable load im-
balance, idle processor time is essentially free — algorithms that find ways to use this
time by asking for more speculative (partial) solutions appear of merit toward higher

performance.

96 CHAPTER 5. CONCURRENT SPARSE LINEAR ALGEBRA
[Table 5.2. Order 2500 Matrix Performance
Column (time in seconds)
| “hape || Distrib. A-Mode B-Mode Back-Solve Solve
6x1 Scatter | 4.859 x 102 2.145 x 10* 3.025 x 10° 6.696 x 10°
3x3 Scatter | 3.567 x 102 1.783 x 10> 1.997 x 10 4.115 x 10! 1
3x4 Scatter | 3.101 x 10> 1.303 x 102 2.149 x 10* 4.452 x 10! 1
4x3 Scatter | 2.778 x 102 1.526 x 102 1.728 x 10* 3.537 x 10! 1
2x16 Scatter | 4.500 x 102 3.350 x 102 3.175 x 10° 1.101 x 10! 1
12x1 Scatter | 2.636 x 102 1.206 x 10> 4.0188 x 10° 8.340 x 10° 3
16x1 || Scatter | 2.085 x 10> 1.000 x 10> 4.856 x 10° 9.8744 x 10° | 3
8x2 Scatter | 2.013 x 102 9.41 x 10' 1.127 x 10* 2.295 x 10! 3
S =10 |1.997 x 102 9.63 x 10' 4.508 x 10° 9.399 x 10° 3
4x4 Scatter | 2.371 x 102 1.056 x 102 1.225 x 10! 3.549 x 10? 3
S=10 |2329 x 102 1.104 x 10> 4.192 x 10° 9.406 x 10° 3
4x6 Scatter | 1.456 x 10> 7.72 x 10! 1.723 x 10' 3.528 x 10! 3
S =10 |1.684 x 10> 8.85x 10! 4.206 x 10° 9.303 x 10° 3
12x2 Scatter | 1.490 x 102 6.95 x 10! 9.08 x 10° 1.851 x 10! 3
S =10 | 1.425 x 102 6.54 x 10 4.557 x 10° 9.439 x 10° 3
12x3 || Scatter | 1.0429 x 10> 5.39 x 10! 9.34 x 10° 1.898 x 10! 3
S =10 |1.0382 x 10> 5.42 x10* 4.539 x 10° 9.390 x 10° 3
8x8 Scatter | 1.154 x 102 6.16 x 10' 1.1082 x 10' 2.2906 x 10 | 3
S=10 [1.145x 102 6.64 x 10' 4.4600 x 10° 9.651 x 10° 3
12x6 Scatter | 6.470 x 10 3.527 x 10! 9.410 x 10° 1.9141 x 10! 3
S =10 | 6.265 x 10" 3.417 x 10! 4.555 x 10° 9.495 x 10° 3
16x6 Scatter | 5.014 x 10 2.744 x 10 9.085 x 10° 1.8327 x 10? 3
S =10 |4.984 x 101 2.905 x 10 5.2811 x 10° 1.0740 x 10! 3
16x8 Scatter | 7.046 x 10! 3.879 x 10! 8.9535 x 10° 1.8243 x 10! 3
S =10 |6.70 x 10! 3.854 x 10! 5.239 x 10° 1.0816 x 10* | 3

Performance as a function of grid shape and size, and S-parameter; all cases have scattered

rows. “Best” performance is for the 16x6 grid with § = 10.

Chapter 6
Concurrent DASSL

Abstract

The accurate, high-speed solution of systems of ordinary differential-algebraic equa-
tions (DAE’s) of low index is of great importance in chemical, electrical and other
engineering disciplines. Petzold’s Fortran-based DASSL is the most widely used se-
quential code for solving DAE’s. We have devised and implemented a completely
new C code, Concurrent DASSL, specifically for multicomputers and patterned on
DASSL. In this chapter, we address the issues of data distribution and the perfor-
mance of the overall algorithm, rather than just that of individual steps.v Concurrent
DASSL is designed as an open, application-independent environment below which lin-
ear algebra algorithms may be added in addition to standard support for dense and
sparse algorithms. The user may furthermore attach explicit data interconversions
between the main computational steps, or choose compromise distributions. A “prob-
lem formulator” (simulation layer) must be constructed above Concurrent DASSL,
for any specific problem domain. We indicate performance for a particular chemical
engineering application, a sequence of coupled distillation columns. Future efforts are

cited in conclusion.

97

98 CHAPTER 6. CONCURRENT DASSL

6.1 Introduction

In this chapter, we discuss the design of a general-purpose integration system for
ordinary differential-algebraic equations of low index, following up on our more pre-
liminary discussion in [48]. The new solver, Concurrent DASSL, is a parallel, C-
language implementation of the algorithm codified in Petzold’s DASSL, a widely used
Fortran-based solver for DAE’s [38,9], and based on a loosely synchronous model of
communicating sequential processes [27]. Concurrent DASSL retains the same nu-
merical properties as the sequential algorithm, but introduces important new degrees
of freedom compared to it. We identify the main computational steps in the inte-
gration process; for each of these steps, we specify algorithms that have correctness
independent of data distribution.

We cover the computational aspects of the major computational steps, and their
data distribution preferences for highest performance. We indicate the properties
of the concurrent sparse linear algebra as it relates to the rest of the calculation.
We describe the proto-Cdyn simulation layer, a distillation-simulation-oriented Con-
current DASSL driver which, despite specificity, exposes important requirements for
concurrent solution of ordinary DAE’s; the ideas behind a template formulation for
simulation are, for example, expressed.

We indicate formulation issues and specific features of the chemical engineering
problem - dynamic distillation simulation. We indicate results for an example in this
area, which demonstrates the feasibility of this method, but the need for additional
future work, both on the sparse linear algebra, and on modifying the DASSL algorithm
to reveal more concurrency, for example, amortizing the cost of linear algebra over

more candidate solutions in the algorithm.

6.2. MATHEMATICAL FORMULATION 99

6.2 Mathematical Formulation

We address the following initial-value problem structure consisting of combinations
of N linear and/or nonlinear coupled, ordinary differential-algebraic equations over
the interval t € [To, T}]:

IVP(F,u,Z,,[T,,T1]; N, P):

F(Z,Z,u;t) =0, te [T, T, (6.1)

Z(t =To) = Zo, Z(t =To) = Zo, (6.2)

with unknown state vector Z(t) € RV, known external inputs u(t) € RY, where
F(e;t) — RV and Zo,Zo € RV are the given initial-value and derivative vectors, re-
spectively. We will refer to Equation 6.1’s deviation from O as the residuals or residual
vector. Evaluating the residuals means computing F(Z,Z, u;t) (“model evaluation”)
for specified arguments Z, Z, u and t.

DASSL’s integration algorithm can be used to solve systems fully implicit in Z
and Z and of index zero or one, and specially structured forms of index two (and
higher) [9, Chapter 5], where the index is the minimum number of times that part or
all of Equation 6.1 must be differentiated with respect to ¢ in order to express Z as a
continuous function of Z and ¢ [9, page 17].

By substituting a finite-difference approximation D;Z for 7., we obtain:
Fp(Zi;7) = F(Z;, DiZi,u;;t = 13) = 0, (6.3)

a set of (in general) nonlinear staticized equations. A sequence of Equation 6.3’s will
have to be solved, one at each discrete time ¢t = 7;, ¢ = 1,2,..., M?, in the numerical

approximation scheme; neither M nor the 7;’s need be pre-determined. In DASSL,

land more at trial timepoints which are discarded by the integration algorithm.

100 CHAPTER 6. CONCURRENT DASSL

the variable step-size integration algorithm picks the 7;’s as the integration progresses,

based in part on its assessment of the local error. The discretization operator for Z,

D, varies during the numerical integration process and hence is subscripted as D;.
The usual way to solve an instance of the staticized equations, Equation 6.3, is

via the familiar Newton-Raphson iterative method (yielding Z; = Z{°):

ZH = ZF — ¢(VZFp(Z7;)} 'Fo(Zf5m),

k=0,1,... (6.4)

given an initial, sufficiently good approximation Z9. The classical method is recovered
for mi = k and ¢ = 1, whereas a modified (damped) Newton-Raphson method
results for my < k (respectively, ¢ < 1). In the original DASSL algorithm and in
Concurrent DASSL, the Jacobian VzFp(Z) is computed by finite differences rather
than analytically; this departure leads in another sense to a modified Newton-Raphson
method even though m; = k and ¢ = 1 might always be satisfied. For termination, a
limit k < k* is imposed; a further stopping criterion of the form ||Z5*! — Zf|| < € is
also incorporated (see Brenan et al. [9, pages 121-124]).

Following Brenan et al., the approximation D;Z is replaced by a BDF-generated

linear approximation, @Z + 3, and the Jacobian

oF oF
VzF.5(Z;1) = VzF(Z,aZ + B,u;t) = — +a—= , (6.5)
g az az Z:aZ+ﬁ

where, from this approximation, we define Fo5(Z;7;) in the intuitive way. We then
consider Taylor’s Theorem with remainder, from which we can easily express a for-
ward finite-difference approximation for each Jacobian column (assuming sufficient

smoothness of F, g) with a scaled difference of two residual vectors:

Fop(Z +6;7) — Fap(Zi) = {VaF.p(Zim)}e + O (II5113) (6.6)

6.2. MATHEMATICAL FORMULATION 101

By picking §; proportional to e;, the jth unit vector in the natural basis for ®V,
namely 6; = d;je;, Equation 6.6 yields a first-order-accurate approximation in d; of

the jth column of the Jacobian matrix:

Fop(Z + 651) —Fap(Zsmi
d;

) = {VzFa'a(Z;T;)}eJ’ + O(dJ)a

j=1,..,N (6.7)

Each of these N Jacobian-column computations is independent and trivially paral-
lelizable. It’s well known, however, that for special structures such as banded and
block n-diagonal matrices, and even for general sparse matrices, a single residual can
be used to generate multiple Jacobian columns [9,16]. We discuss these issues as part
of the concurrent formulation section below.

The solution of the Jacobian linear system of equations is required for each
k-iteration, either through a direct (e.g., LU-factorization) or iterative (e.g.,
preconditioned-conjugate-gradient) method. The most advantageous solution ap-
proach depends on N as well as special mathematical properties and/or structure
of the Jacobian matrix VzFp. Together, the inner (linear equation solution) and
outer (Newton-Raphson iteration) loops solve a single time point; the overall algo-
rithm generates a sequence of solution points Z;, : =0,1,..., M.

In the present work, we restrict our attention to direct, sparse linear algebra as
described in chapter 5, although future versions of Concurrent DASSL will support the
iterative linear algebra approaches by Ashby, Lee, Brown, Hindmarsh et al. [5,10].
For the sparse LU factorization, the factors are stored and reused in the modified
Newton scenario. Then, repeated use of the old Jacobian implies just a forward
and back-solve step using the triangular factors L and U. Practically, we can use
the Jacobian for up to about five steps [9]. The useful lifetime of a single Jacobian

evidently depends somewhat strongly on details of the integration procedure [9].

102 CHAPTER 6. CONCURRENT DASSL
6.3 proto-Cdyn — Simulation Layer

To use the Concurrent DASSL system on other than toy problems, a simulation layer
must be constructed above it. The purpose of this layer is to accept a problem
specification from within a problem domain, and formulate that specification for
concurrent solution as a set of differential-algebraic equations, including any needed
data. On one hand, such a layer could explicitly construct the subset of equations
needed for each processor, generate the appropriate code representing the residual
functions, and create a set of node programs for effecting the simulation. This is
the most flexible approach, allowing the user to specify arbitrary nonlinear DAE’s.
It has the disadvantage of requiring a lot of compiling and linking for each run in
which the problem is changed in any significant respect (including but not limited to
data distribution), although with sophisticated tactics, parametric variations within
equations could be permitted without re-compiling from scratch, and incremental
linking could be supported.

We utilize a template-based approach here, as we do in the Waveform-Relaxation
paradigm for concurrent dynamic simulation (chapter 7). This is akin to the AS-
CEND II methodology utilized by Kuru and many others [29]. It is a compromise
approach from the perspective of flexibility; interesting physical prototype subsys-
tems are encapsulated into compiled code as templates. A template is a conceptual
building block with states, non-states, parameters, inputs and outputs (see below).
A general network made from instantiations of templates can be constructed at run-
time without changing any executable code. User input specifies the number and
type of each template, their interconnection pattern, and the initial value of systemic
states and extraneous (non-state) variables, plus the value of adjustable parameters
and more elaborat- iata, such as physical properties. The addition of new kinds of
templates requires. however, new subroutines for the evaluation of the residuals of

their associated DAE’s, and also for interfacing to the remainder of the system (e.g.,

6.3. PROTO-CDYN — SIMULATION LAYER 103

parsing of user input, interconnectivity issues). With suitable automated tools, this
addition process can be made straightforward to the user.

Importantly, the use of a template-based methodology does not imply a degrada-
tion in the numerical quality of the model equations or solution method used. We
are not obliged to tear equations based on templates or groups of templates as is
done in sequential-modular simulators [61,14], where “sequential” refers in this sense
to the stepwise updating of equation subsets, without connection to the number of
computers assigned to the problem solution.

Ideally, the simulation layer could be made universal. That is, a generic layer of
high flexibility and structural elegance would be created once and for all (and without
predilection for a specific computational engine). Thereafter, appropriate templates
would be added to articulate the simulator for a given problem domain. This is
certainly possible with high-quality simulators such as ASCEND II and Chemsim (a
recent Fortran-based simulator driving DASSL and MA28 [4,38,15]). Even so, we have
chosen to restrict our efforts to a more modest simulation layer, called proto-Cdyn,
which can create arbitrary networks of coupled distillation columns. This restricted
effort has required significant effort, and already allows us to explore many of the
important issues of concurrent dynamic simulation. General-purpose simulators are
for future consideration. They must address significant questions of user-interface in
addition to concurrency formulation issues.

In the next paragraphs, we describe the important features of proto-Cdyn. In

doing so, we indicate important issues for any Concurrent DASSL driver.

6.3.1 Template Structure

A template is a prototype for a sequence of DAE’s which can be used repeatedly
in multiple, distinct instantiations. Normally, but not always, the template corre-

sponds to some subsystem of a physical-model description of a system, like a tank

104 CHAPTER 6. CONCURRENT DASSL

or distillation tray. The key characteristics of a template are: the number of inte-
gration states it incorporates (typically fixed), the number of non-state variables it
incorporates (typically fixed), its input and output connections to other templates,
and external sources (forcing functions) and sinks. State variables participate in the
overall DASSL integration process. Non-states are defined as variables which, given
the states of a template alone, may be computed uniquely. They are essentially local
tear variables. It is up to the template designer whether or not to use such local
tear variables: They can impact the numerical quality of the solution, in principle.
Alternative formulations, where all variables of a template are treated as states, can
be posed, and comparisons made. Because of the superlinear growth of linear algebra
complexity, the introduction of extra integration states must be justified on the basis
of numerical accuracy. Otherwise, they artificially slow down the problem solution,
perhaps significantly. Non-states are extremely convenient, and practically useful;
they appear in all the dynamic simulators we have come across.

The template state and non-state structure implies a two-phase residual compu-
tation. First, given a state Z, the non-states of each template are updated on a
template-by-template basis. Then, given its states and non-states, inputs from other
templates and external inputs, each template’s residuals may be computed. In the
sequential implementation, this poses no particular nuisances, other than two evalu-
ation loops over all templates. However, in concurrent evaluation, a communication
phase intervenes between non-state updates and residual updates. This communi-
cation phase transmits all states and non-states appearing as outputs of templates
to their corresponding inputs at other templates. This transmission mechanism is

considered further below under the concurrent formulation section 6.4.

6.3. PROTO-CDYN — SIMULATION LAYER 105

6.3.2 Problem Preformulation

In general, the “optimal” ordering for the equations of a dynamic simulation will
in general be too difficult to establish?, because of the NP-hard issues involved in
structure selection. However, many important heuristics can be applied, such as
those that precedence order the nonlinear equations, and those that permute the
Jacobian structure to a more nearly triangular or banded form [16]. For the proto-
Cdyn simulator, we skirt these issues entirely, because it proves easy to arrange a
network of columns to produce a “good structure” — a main block tridiagonal Jacobian
structure with off-block-tridiagonal structure for the intercolumn connections, simply
by taking the distillation columns with their states in tray-by-tray, top-down (or
bottom-up) order.

Given a set of DAE’s, and an ordering for the equations and states (i.e., rows
and columns of the Jacobian, respectively), we need to partition these equations
between the multicomputer nodes, according to a two-dimensional process grid of
shape P x Q = R. The partitioning of the equations forms, in main part, the so-
called “concurrent database.” This grid structure is illustrated in 4.1. In proto-Cdyn,
we utilize a single process grid for the entire Concurrent DASSL calculation. That
is, we don’t currently exploit the Concurrent DASSL feature that allows explicit
transformations between the main calculational phases (see below). In each process
column, the entire set of equations is to be reproduced, so that any process column
can compute not only the entire residual vector for a prediction calculation, but also,
any column of the Jacobian matrix.

A mapping between the global equations and local equations must be created. In
the general case, it will be difficult to generate a closed-form expression for either

the global-to-local mapping or its inverse (that also require < O(N) storage). At

2Qptimality per se hinges on what our objective is. If, for instance, we want minimum time
for LU factorization, still the objective of minimum fill-in does not guarantee minimum time in a
concurrent setting.

106 CHAPTER 6. CONCURRENT DASSL

most, we will have on a hand a partial (or weak) inverse in each process, so that the
corresponding global index of each local index will be available. Furthermore, in each
node, a partial global-to-local list of indices associated with the given node will be
stored in global sort order. Then, by binary search, a weak global-to-local mapping
will be possible in each process. That is, each process will be able to identify if a global
index resides within it, and the corresponding local index. A strong mapping for row
(column) indices will require communication between all the processes in a process
row (respectively, column). In the foregoing, we make the tacit assumption that it
is an unreasonable practice to use storage proportional to the entire problem size N
in each node, except if this unscalability can be removed cheaply when necessary for
large problems. See appendix C.

The proto-Cdyn simulator works with templates of specific structure — each tem-
plate is a form of a distillation tray and generates the same number of integration
states. It therefore skirts the need for weak distributions. Consequently, the entire row
mapping procedure can be accomplished using the closed-form general two-parameter
distribution function family ¢ described in chapter 5, where the block size B is chosen
as the number of integration states per template. The column mapping procedure
is accomplished with the one-parameter distribution function family ¢ also described
in chapter 5. The effects of row and column degree-of-scattering are described in

chapter 5 with attention to linear algebra performance.

6.4 Concurrent Formulation

6.4.1 Overview

Next, we turn to Equation 6.1’s (that is, IVP’s) concurrent numerical solution via
the DASSL algorithm. We cover the major computational steps in abstract, and we
also describe the generic aspects of proto-Cdyn in this connection. In the subsequent

section, we discuss issues peculiar to the distillation simulation.

6.4. CONCURRENT FORMULATION 107

Broadly, the concurrent solution of IVP consists of three block operations:
startup, dynamic simulation, and a cleanup phase. Significant concurrency is ap-
parent only in the dynamic simulation phase. We will assume that the simulation
interval requested generates enough work so that the startup and cleanup phases
prove insignificant by comparison and consequently pose no serious Amdahl’s-law
bottleneck. Given this assumption, we can restrict our attention to a single step of
IVP as illustrated schematically in Figure 6.1.

In the startup phase, a sequential host program interprets the user specification
for the simulation. From this it generates the concurrent database: the templates
and their mutual interconnections, data needed by particular templates, and a distri-
bution of this information among the processes that are to participate. The processes
are themselves spawned and their respective databases are mailed to them. Once
they receive their input information, the processes re-build the data structures for in-
terfacing with Concurrent DASSL, and for generating the residuals. Tolerances and
initial derivatives must be computed and/or estimated. Furthermore, in each process
column, the processes must rendezvous to finalize their communication labeling for
the transmission of states and non-states to be performed during the residual calcula-
tion. This provides the basis for a reactive, deadlock-free update procedure described
below.

The cleanup phase basically retrieves appropriate state values and returns them
to the host for propagation to the user. Cleanup may actually be interspersed in-
termittently with the actual dynamic simulation. It provides simple bookkeeping of
the results of simulation and terminates the concurrent processes at the simulation’s
conclusion.

The dynamic simulation phase consists of repetitive prediction and correction
steps, and marches in time. Each successful time step requires the solution of one or

more instances of Equation 6.3 — additional timesteps that converge but fail to satisfy

108 CHAPTER 6. CONCURRENT DASSL

error tolerances, or fail to converge quickly enough, are necessarily discarded. In the

next section, we cover the aspects of these operations in more detail, for a single step.

6.4.2 Single Integration Step

The Integration Computations of DASSL are a fixed leading-coefficient,
variable-stepsize and order, backward-differentiation-formula (BDF) implicit integra-
tion scheme, described clearly in [9, Chapter 5] and outlined in [38]. Concurrent
DASSL faithfully implements this numerical method, with no significant differences.
Test problems run with the DASSL Fortran code and the new C code (on one and
multiple computers) certify this degree of compatibility.

The sequential time complexity of the integration computations is O(N), if con-
sidered separately from the residual calculation called in turn, which is also normally
O(N) (see below). We pose these operations on a P x Q = R grid, where we as-
sume that each process column can compute complete residual vectors. Each process
column repeats the entire prediction operations: there is no speedup associated with
@ > 1, and we replicate all DASSL BDF and predictor vectors in each process column.
Taller, narrower grids are likely to provide the overall greatest speedup, though the
residual calculation may saturate (and slow down again) because of excessive vertical
communication requirements — It’s definitely not true that the Rzl shape is optimal
in all cases.

The distribution of coefficients in the rows has no impact on the integration op-
erations, and is dictated largely by the requirements of the residual calculation itself.
In practical problems, the concurrent database cannot be reproduced in each process
(cf., [58]), so a given process will only be able to compute some of the residuals. Fur-
thermore, we may not have complete freedom in scattering these equations, because
there will often be a tradeoff between the degree of scattering and the amount of

communication needed to form the entire residual vector.

6.4. CONCURRENT FORMULATION 109

The amount of O(N) integration-computation work is not terribly large — there is
consequently a non-trivial but not tremendous effort involved in the integration com-
putations. (Residual computations dominate in many if not most circumstances.)
Integration operations consist mainly of vector-vector operations not requiring any
interprocess communication and, in addition, fixed startup costs. Operations include
prediction of the solution at the time point, initiation and control of the Newton
iteration that “corrects” the solution, convergence and error-tolerance checking, and
so forth. For example, the approximation D; is chosen within this block using the
BDF formulas. For these operations, each process column currently operates inde-
pendently, and repetitively forms the results. Alternatively, each process column
could stride with step Q, and row-combines could be used to propagate information
across the columns (chapter 3). This alternative would increase speed for sufficiently
large problems, and can easily be implemented. However, because of load-imbalance
in other stages of the calculation, we are convinced that including this type of syn-
chronization could be an overall negative rather than positive to performance. This
alternative will nevertheless be a future user-selectable option.

Included in these operations are a handful of norm operations, which constitute
the main interprocess communication required by the integration computations step;
norms are implemented concurrently via recursive doubling (combine) see Stone [51],
and chapters 2, 3. Actually, the weighted norm used by DASSL requires two recursive
doubling operations, each combines a scalar: first to obtain the vector coefficient
of maximum absolute value, then to sum the weighted norm itself. Each can be
implemented as Q independent column combines, each producing the same result
repetitively, or a single Q-striding norm, that takes advantage of the column-wise
repetition of information, but utilizes two combines over the entire process grid. Both
are supported in Concurrent DASSL, although the former is the default norm. As

with the original DASSL, the norm function can be replaced, if desired.

110 CHAPTER 6. CONCURRENT DASSL

Single Residuals are computed in prediction, and as needed during correction.
Multiple residuals are computed when forming the finite-difference Jacobian. Single
residuals are computed repetitively in each process column, whereas the multiple
residuals of a Jacobian computation are computed uniquely in the process columns.

Here, we consider the single residual computation required by the integration com-
putations just described. Given a state vector Z, and approximation for 7, we need
to evaluate F(Z,Z,7;) = Fp(Z, ;). The exploitable concurrency available in this step
is strictly a function of the model equations. As defined, there are N equations in
this system, so we expect to use at best N computers for this step. Practically, there
will be interprocess communication between the process rows, corresponding to the
connectivity among the equations. This will place an upper limit on P < K (the
number of row processes) that can be used before the speed will again decrease: we
can expect efficient speedup for this step provided that the cost of the interprocess
communication is insignificant compared to the single-equation grain size. (The gran-
ularity design equation defined in chapter 2 is useful in making judgements in this

connection.)

Jacobian Computation There is evidently much more available concurrency in
this computational step than for the single residual and integration operations, since,
for finite differencing, N independent residual computations are apparently required,
each of which is a single-state perturbation of Z. Based on our overview of the
residual computation, we might naively expect to use K x N processes effectively;
however, the simple perturbations can actually require much less model evaluation
effort because of latency [16,29], which is directly a function of the sparsity structure
of the model equations, Equation 6.1. In short, we can attain the same performance
with much less than K x N processors.

In general, we'd like to consider the Jacobian computation on a rectangular grid.

6.4. CONCURRENT FORMULATION 111

For this, we can consider using P x Q = R to accomplish the calculation. With a
general grid shape, we exploit some concurrency in both the column evaluations and
in the residual computations, with Tj,. pxg=r the time for this step, Sj.c,pxg=r the
corresponding speedup, T, p the residual evaluation time with P row processes, and

Sres, p the apparent speedup compared to one row process:

TJuc,PXQ:R ~ [N/Q] X Tres,p, (68)
N
SJac,PxQ:R ~ W X Srea,P’ (69)

assuming no shortcuts are available as a result of latency. This timing is exemplified
in the example below, which does not take advantage of latency.

There is additional work whenever the Jacobian structure is rebuilt for better
numerical stability in the subsequent LU factorization (A-mode). Then, O(N?/PQ)
work is involved in each process in the filling of the initial Jacobian. In the normal
case, work proportional to the number of local non-zeroes plus fill elements is incurred

in each process for re-filling the sparse Jacobian structure.

Exploitation of Latency has been considered in the Concurrent DASSL frame-
work. We currently have experimental versions of two mechanisms, both of which
are designed to work with the sparse-matrix structures associated with direct, sparse
LU factorization (see chapter 5). The first is called “bandlike” Jacobian evaluation.
For a banded Jacobian matrix of bandwidth 3, only B residuals are needed to eval-
uate the Jacobian. This feature is incorporated into the original DASSL, along with
a LINPACK banded solver. In Concurrent DASSL, collections of Jacobian columns
are placed in each process column, according to the column data distribution, which
thus far is picked solely to balance LU factorization and triangular-solve performance
(chapter 5). In each process column, there will be “compatible” columns that can be

evaluated using a single, composite perturbation. Identification of these compatible

112 CHAPTER 6. CONCURRENT DASSL

columns is accomplished by checks on the bandwidth overlap condition. Columns
that possess off-band structure are stricken from the list and evaluated separately.
Presumably, a heuristic algorithm could be employed further to increase the size of
the compatible sets, but this is yet to be implemented. The same algorithm “greedy”
algorithm of Curtis et al. used for the sequential reduction of Jacobian computation
effort would be applied independently to each process column (see comments by [186,
Section 12.3]). Then, clearly, the column distribution effects the performance of the
Jacobian computation, and the linear-algebra performance can no longer be viewed
so readily in isolation.

We have also devised a “blocklike” format, which will be applied to block n-
diagonal matrices that include some off-block entries as well. Optimally, fewer residual
computations will be needed than for the banded case. The same process column-
by-process column compatible sets will be created, and the Curtis algorithm can also
be applied. Hopefully, because of the less restrictive compatibility requirement, the.
“blocklike” case will produce higher concurrent speedups than that attained using
the conservative bandlike assumption for Jacobians possessing blocklike structure.

Comparative results will be presented in a future paper.

The LU Factorization Following the philosophy of Harwell’s MA28, we have in-
terfaced a new concurrent sparse solver to Concurrent DASSL, the details of which are
quoted in chapter 5. In short, there is a two-step factorization procedure: A-mode,
which chooses stable pivots according to a user-specified function, and builds the
sparse data structures dynamically; and B-mode, which re-uses the data structures
and pivot sequence on a similar matrix, but monitors stability with a growth-factor
test. A-mode is repeated whenever necessary to avoid instability. We expect sub-
cubic time complexity and sub-quadratic space complexity in NN for the sparse solver.

We attain acceptable factorization speedups for systems that are not narrow banded,

6.4. CONCURRENT FORMULATION 113

and of sufficient size. We intend to incorporate multiple pivoting heuristic stategies,
following [2], further to improve performance of future versions of the solver. This

may also contribute to better performance of the triangular solves.

Forward- and Back-solving Steps take the factored form
PrAPL = LU,

with L unit lower-triangular, U upper-triangular, and permutation matrices Pg, Pc,
and solve Az = b, using the implicit pivoting approach described in chapter 5. Se-
quentially, the triangular solves each require work proportional to the number of
entries in the respective triangular factor, including fill-in. We have yet to find an
example of sufficient size for which we actually attain speedup for these operations, at
least for the sparse case. At most, we try to prevent these operations from becoming
competitive in cost to the B-mode factorization; we detail these efforts in chapter 5.
In brief, the optimum grid shape for the triangular solves has @ = 1, and P some-
what reduced than what we can use in all the other steps. As stated, P small seems
better thus far, though for many examples, the increasing overhead as a function of

increasing P is not unacceptable (see chapter 5 and the example below).

Residual Communication is an important aspect of the proto-Cdyn layer. As
indicated in the startup-phase discussion, the members of a process column initially
share information about the groups of states and non-states they will exchange during
a residual computation. For residual communication, a reactive transmission mecha-
nism is employed, to avoid deadlocks. Each process transmits its next group of states
to the appropriate process and then looks for any receipt of state information. Along
with the state values are indices that directly drive the destinations for these values.

This index information is shared during the startup phase and allows the messages to

114 CHAPTER 6. CONCURRENT DASSL

drive the operation. Through non-blocking receives, this procedure avoids problems
of transmission ordering. Regardless of the template structure, at most one send and

receive is needed between any pair of column processes.

6.5 Chemical Engineering Example

The algorithms and formalism needed to run this example amount to about 70,000
lines of C code including the simulation layer, Concurrent DASSL, the linear algebra
packages, and support functions (See chapters 3, 5).

In this simulation, we consider seven distillation columns arranged in a tree-
sequence, working on the distillation of eight alcohols: methanol, ethanol, propan-1-ol,
propan-2-ol, butan-1-ol, 2-methyl propan-1-ol, butan-2-ol, and 2-methyl propan-2-ol.
Each column has 143 trays. Each tray is initialized to a non-steady condition, and the
system is relaxed to the steady state governed by a single feed stream to the first col-
umn in the sequence. This setup generates suitable dynamic activity for illustrating
the cost of a single “transient” integration step.

We note the performance in Table 6.1. Because we have not exploited latency in
the Jacobian computation, this calculation is quite expensive, as seen for the sequen-
tial times on a Sun 3/260 depicted there. (The timing for the Sun 3/260 is quite
comparable to a single Symult s2010 node and was lightly loaded during this test
run.) As expected, Jacobian calculations speedup efficiently, and we are able to get
approximately a speedup of 100 for this step using 128 nodes. The A-mode linear al-
gebra also speeds up significantly. The B-mode factorization speeds up negligibly and
quickly slows down again for more than 16 nodes. Likewise, the triangular solves are
significantly slowe- than the sequential time. It should be noted that B-mode reflects
two orders of mag: :tude speed improvement over A-mode. This reflects the fact that
we are seeing almost linear time complexity in B-mode, since this example has a nar-

row block tridiagonal Jacobian with too little off-diagonal coupling to generate much

6.5. CHEMICAL ENGINEERING EXAMPLE 115

fill-in. It seems hard to imagine speeding up B-mode for such an example, unless
we can exploit multiple pivots. We expect multiple-pivot heuristics to do reasonably
well for this case, because of its narrow structure, and nearly block tridiagonal struc-
ture. We have used Wilson Equation Vapor-Liquid Equilibrium with the Antoine
Vapor equation. We have found that the thermodynamic calculations were much
less demanding than we expected, with bubble-point computations requiring “1 + €”
iterations to converge. Consequently, there was not the greater weight of Jacobian
calculations we expected beforehand. Our model assumes constant pressure, and no
enthalpy balances. We include no flow dynamics and include liquid and vapor flows
as states, because of the possibility of feedbacks.

Were we to utilize latency in the Jacobian calculation, we could reduce the se-
quential time by a factor of about 100. This improvement would also carry through
to the concurrent times for Jacobian solution. At that ratio, Jacobian computation to
B-mode factorization has a sequential ratio of about 10:1. As is, we achieve legitimate
speedups of about five. We expect to improve these results using the ideas quoted
elsewhere here and in chapter 5.

From a modeling point-of-view, two things are important to note. First, the in-
troduction of more non-ideal thermodynamics would improve speedup, because these
calculations fall within the Jacobian computation phase and Single-Residual Com-
putation. Furthermore, the introduction of a more realistic model will likewise bear
on concurrency, and likely improve it. For example, introducing flow dynamics, en-
thalpy balances and vapor holdups makes the model more difficult to solve numerically
(higher index). It also increases the chance for a wide range of step-sizes, and the
possible need for additional A-mode factorizations to maintain stability in the inte-
gration process. Such operations are more costly, but also have a higher speedup.
Furthermore, the more complex models will be less likely to have near diagonal dom-

inance; consequently more pivoting is to be expected, again increasing the chance

116 CHAPTER 6. CONCURRENT DASSL

| Table 6.1. Order 9009 Dynamic Simulation Data
B (time in seconds)

Grid Shape || Jacobian A-mode B-mode Back-Solve Solve
1x1 64672.2 | 5089.96 61.82 2.5 4.7
8x1 6870.82 || 1024.41 47.827 15.619 30.825
16x1 3505.13 || 547.625 52.402 19.937 39.491
32x1 1829.93 || 316.544 56.713 24.383 47.692
64x1 1060.40 || 219.148 77.302 39.942 59.553
32x4 491.526 || 181.082 71.482 57.049 101.994
64x2 520.029 || 161.052 82.696 46.013 86.935

128x1 608.946 || 170.022 90.905 37.498 67.982

Key single-step calculation times with the 1x1 case run an unloaded Sun 3/260 (similar
performance-wise to a single Symult s2010 nod=) for comparison. The Jacobian rows were
distributed in block-linear form, with B = 9, 1. :.ecting the distillation-tray structure. The
Jacobian columns were scattered. This is a seven-column simulation of eight alcohols, with
a total of 1,001 trays. See chapter 5 for more on data distributions.

for overall speedup compared to the sequential case. Mainly, we plan to consider
the Waveform-Relaxation approach more heavily, and also to consider new classes of

dynamic distillation simulations with Concurrent DASSL.

6.6 Conclusions

We have developed a high-quality concurrent code, Concurrent DASSL, for the so-
lution of ordinary differential-algebraic equations of low index. This code, together
with appropriate linear algebra and simulation layers, allows us to explore the achiev-
able concurrent performance of non-trivial problems. In chemical engineering, we

have applied it thus far to a reasonably large, simple model of coupled distillation

6.6. CONCLUSIONS 117

columns. We are able to solve this large problem, which is quite demanding on even
a large mainframe because of huge memory requirements and non-trivial computa-
tional requirements; the speedups achieved thus far are legitimately at least five, when
compared to an efficient sequential implementation. This illustrates the need for im-
provements to the linear algebra code, which are feasible because sparse matrices will
admit multiple pivots heuristically. It also illustrates the need to consider hidden
sources of additional timelike concurrency in Concurrent DASSL, perhaps allowing
multiple right-hand sides to be attacked simultaneously by the linear algebra codes,
and amortizing their cost more efficiently. Furthermore, the performance points up
the need for detailed research into the novel numerical techniques, such as Waveform

Relaxation, which we have begun to do as well (see chapter 7).

118 CHAPTER 6. CONCURRENT DASSL

Figure 6.1. Major computational blocks of a Single Integration Step

Integration Computations:
BDF Coefficients / Prediction
Error Estimates / Convergence Tests
Step-size Selection, etc.

One Residual
Computation

Finite-Difference
Iteration Matrix
Computation

B |
» &
1
-

N Residual
Computations

LU Factorization
Procedure

Forward / Back
Solution Step

A single step in the integration begins with a number of BDF-related computations, includ-
ing the solution “prediction” step. Then, “correction” is achieved through Newton iteration
steps, each involving a Jacobian computation, and linear-system solution (LU factorization
plus forward- / back-solves). The computation of the Jacobian in turn relies upon multiple
independent residual calculations, as shown. The three items enclosed in the dashed oval
(Jacobian computation (through at most N Residual computations), and LU factorization)
are, in practice, computed less often than the others — the old Jacobian matrix is used in
the iteration loop until convergence slows intolerably.

Chapter 7

Waveform Relaxation for Distillation
Simulation

Abstract

Our goal of orders-of-magnitude speedup strongly motivates the use of novel algorith-
mic approaches for large-scale simulation. As discussed in chapter 2, the sequential
fraction, communication overheads, and load-imbalance effects may drastically limit
the performance potential of parallelized sequential algorithms. In this chapter, we
indicate the formulation of a specific form of dynamic distillation simulation — binary
distillation with constant relative volatility thermodynamics — within the Waveform
Relaxation (Picard-Lindeldf) paradigm, a method whose modern origin is in electri-
cal engineering circuit simulation [30,62,39,36,46,32,17,37]. The key points of this
chapter are as follows: first, that it’s possible to formulate simple DAE-based chemi-
cal engineering models within an existing Waveform Relaxation software framework,
second, there is evidence to suggest that the method should be effective at least for
stiff ODE systems, based on electrical-engineering experience, and, third, that there
is reasonable hope to apply Waveform Relaxation to more general low-index DAE’s
arising in chemical engineering, though still much study and practical experience are
clearly required to achieve this goal.

Initially, we are developing a simplified binary distillation simulation using Wave-
form Relaxation. This numerical technique has proven successful for the concurrent

simulation of very large-scale integrated (VLSI) circuits [30,62,39,32,17,37] and is

119

120 . Waveform Relaxation. ..

therefore a potentially promising approach. Rather than an end in itself, however, we
expect that results of this research effort will prove relevant to more general concur-
rent dynamic simulation including rigorous multicomponent distillation and chemical
process flowsheeting. We describe the implementation effort (which generalizes the
pre-existing CONCISE VLSI circuit simulator, [32,37]), the simplified distillation
model, design issues and current status including a sketch of the underlying algo-
rithm. Appendix E discusses existing convergence theory for Waveform Relaxation,
and looks at distillation models in more detail within the context of proving conver-

gence. A motivating example appeared in chapter 2.

7.1 Introduction

Cost-effective, high-speed computing is essential in many aspects of chemical-
engineering practice, notably for the simulation of large-scale dynamic systems. The
arrival of powerful, highly concurrent message-passing multicomputers potentially
offers such economical large-scale computing capability [6,20]. Development of ap-
propriate, efficient algorithms which realize this potential must therefore become an
important area of ongoing research and development in chemical engineering. We seek
algorithms suitable for use with many processes (that is, one hundred to one thou-
sand or more) rather than a handful. Only such algorithms can deliver the orders-of-
magnitude speedup needed to expedite large-scale chemical engineering computations.
Finally, one should note that the approach followed here does not exclude the possible
advantages of vectorization on a process-by-process basis; this additional source of
speedup remains a higher-order effect peculiar to individual processes that need not
be considered initially (see, however, [59]).

To motivate our choice of application, we note that the distillation column and its
variants are arguably the most important class of unit operations in chemical plants;

we have consequently chosen dynamic distillation simulation as a primary target for

7.1. INTRODUCTION ' 121

concurrent simulation. Notably, dynamic models most often consist of differential-
algebraic systems with stiff, nonlinear ordinary differential equations modeling fluid
flow, mass and energy balances, as well as nonlinear algebraic equations modeling
the vapor-liquid equilibrium. In simplified models, fluid flow dynamics are neglected,
increasing the number of algebraic equations. A multicomponent system with a prac-
tical number of columns involves thousands of equations, as we have seen in chapter 6.
Furthermore, accurate physical property calculations for vapor-liquid equilibrium can
be outstandingly arduous. In short, detailed dynamic models normally have huge
computing requirements [28]. Presently, we work with a highly simplified binary dis-
tillation model with simple vapor-liquid equilibrium (constant relative volatility). A
set of stiff, coupled nonlinear ordinary differential equations result if we exclude net-
work feedbacks; a differential-algebraic system results otherwise. Importantly, even
the simpler of these two models still captures three of the central simulation issues:
problem stiffness, large scale, as well as complications resulting from coupling between
columns in multiple-column simulations.

It is natural to seek highly concurrent algorithms for distillation simulation in
order to reduce the time needed to obtain a simulation. However, to make effec-
tive use of many communicating sequential processes in a multicomputer, it remains
essential (for a fixed problem or problem size) to avoid sequential bottlenecks (as
indicated by Amdahl’s law; [19,3,32] and chapter 2) as well as gross imbalance of the
computational load among the processes. From the outset, we want to re-emphasize
the importance of algorithms which can work effectively with one hundred to one
thousand processes or more in order to yield orders-of-magnitude speedup. Finding
such solution procedures is much more difficult than that of developing algorithms
for four or eight-headed machines wherein a significantly large sequential fraction of
computation remains permissible. These factors strongly motivate the investigation

of new computational algorithms for the simulation of large-scale systems. In the last

122 Waveform Relaxation. ..

chapter, we obtained limited speedup for our large-scale distillation problem using
a carefully parallelized sequential method, though this work is amenable to further
performance improvements.

In this connection, we have embraced the Waveform Relazation methodology, a
subject of intensive research in the area of concurrent VLSI circuit simulation where it
has proven effective [32,37]. Efficient implementations of Waveform Relaxation have
minor inherent sequentialism and fall, consequently, in the loose category of “efficient
concurrent algorithms” - see chapter 2. Temporal latency of subsystems can, further-
more, be exploited naturally by multirate integration [46,32] incorporated therein,
implying reduced computational effort for latent subsystems and, correspondingly,
the opportunity for greater overall speedup in the total simulation. Because of the
particular success of Mattisson’s CONCISE simulator for VLSI circuit simulation via
Waveform Relaxation [32,37], we have formulated the binary distillation model within
this program. By building upon and generalizing an extant system, we also avoid the
redundancy of effort inherent in creating an entirely new concurrent simulation pro-
gram. The important and difficult questions of dynamic load balancing are reserved

for future consideration.

7.2 ‘Idea’ of Waveform Relaxation

Recall the initial-value problem IVP defined in the previous chapter, Equation 6.1.
For the computation of Z;, we could, alternatively, formulate the inner iteration as
independent, scalar, Newton-Raphson iterations, given an initial approximation Z°

(e.g., Z° = Z;_,) where Z = (24, Z3,...,2n)":

ZH = z’f-(

J

OFp;(Z7*, Z%;m)\ 7
2 JaZj 1 XFDj(Zf,Z?;ej;Ti)v (7,-1)

j=1)-‘-,N, k=0,1,...

7.2. ‘IDEA’ OF WAVEFORM RELAXATION 123

yielding Z°, 3 =1,..,, N. In each of these N independent scalar iteration processes,
all Z,; 1=1,..N) remain at the constant values provided initially. After the jth scalar
iteration process converges, it broadcasts its new value Z° to the other < N-1
processes that need it, and which reserve it for future use. When all N processes have
converged and the data broadcasts are also completed, each process has available a

new approximation

20 — Z® = (22°,29,...,Z%)". (7.2)

The inner iterations are repeated as necessary (restarting with k = 0) until a
global stopping criterion is satisfied. When (if) convergence is achieved, Z; — Z*.
In short, assuming convergence with reasonable speed (topics beyond our current
scope), we have uncovered useful concurrency with this iterative approach while each
iterative process is reduced to a straightforward scalar procedure [32].

In a Waveform Relaxation scheme, we apply this same sort of idea to waveforms
of values (elements of a function space defined on subintervals of [To,T1]) in each
process instead of to single real values as just illustrated. It is worthwhile to note
that many types of Waveform Relaxation algorithms are possible; for example, the
approach developed in [39] differs markedly from that used in CONCISE and which
which we outline next.

In the following, we define waveforms by underlined symbols such as Z;, which
specifically connotes the entire function Z;(t) for t € [ta,ts) € [To, T1], a subinterval
of interest; Z is defined as the vector of waveforms (21,2325 --» ZN)T. Numerically,
waveforms are stored as discrete, ordered sets of time-value pairs; this data is inter-
polated to provide waveform values at any particular time in the interval [t,, ty)-

The task of the jth inner iteration is the construction of _Z_f given ZX-1 by solving

the following scalar differential or algebraic equation on [ta, to):

K-1 K-1 K rK-1 K-1\T
Fj((—Z—-l v 9 &y a_Z_.j a_Z_j+1 ,o--,_Z_N))

124 Waveform Relaxation. ..

(2 2 LY) =0 (7.3)
yielding _Zf{ , where F; is defined to be the jth component of the original (undis-
cretized) differential-algebraic system, Equation 6.1. It should be emphatically clear
from the notation that the waveforms not local to process j are held fixed: only the
jth waveform is updated in process j. Once the jth process completes its waveform,
it broadcasts this waveform to other processes that need it, according to the structure
of the DAE’s. Furthermore, upon completion of all N waveform integrations as well
as their transmissions, each process has the part of ZK available that it needs, and
can repeat the inner iteration process (as necessary) to obtain ZK+! and so forth,
until a stopping criterion is satisfied.

The specific details of the integration procedure are not unimportant to the wave-
form iteration: it is of central importance both for VLSI circuit and distillation
simulation applications that the integrator work effectively for stiff systems (includ-
ing systems with purely algebraic equations). In particular, CONCISE employs a
backward-differentiation formula approach which implements a predictor-corrector
algorithm for each point in the integration; for details see [45,32,8,9]. This variable
step-order integration algorithm attempts to minimize the number of steps required to
perform the waveform integration consistent with error control based on a measure of
the local truncation error. In this way, latent processes compute waveforms with less
time-value points than more active processes. Correspondingly, there is a reduction
in the amount of computational effort associated with latent states. Furthermore,
the local truncation error tolerances are reduced with increasing K-iteration to ‘en-
courage’ more accuracy in later iterations while allowing early iterations to be less
accurate.

The foregoing discussion captures the very basic idea of Waveform Relaxation,

while ignoring many of the practically important issues dealt with in CONCISE (in

7.3. THE BINARY DISTILLATION MODEL 125

order to enhance convergence/performance) including:

e Efficient scheduler with small sequential fraction.

o Works over subintervals of waveforms.

e Dynamic waveform splitting strategy.

e ‘Breakpoint’ Strategy following input discontinuities.
e Ability to cluster tightly coupled states.

e Optional direct solution of clustered states.

e Provision for several outer iteration schemes.

It is beyond the scope of this discussion to describe CONCISE in complete detail
although further structural details are mentioned below in conjunction with distilla-
tion simulation. We refer you to the theses by Mattisson and Peterson which provides
more elaborate discussions [32,37].

At this juncture, we turn to a discussion of the binary distillation model.

7.3 The Binary Distillation Model

The following assumptions are made with respect to the binary distillation model.
It is worthwhile to reiterate that the model chosen here is not intended to reflect
state-of-the-art distillation simulation. As discussed above, we chose this simplified
model to illustrate important issues in concurrent distillation simulation that will
carry over to more complicated and correspondingly realistic models. Here, we follow

the standard simplified modelling assumptions utilized in [50]:

e Constant molar flows: L, V.
o No vapor holdup on trays.

e Immediate vapor response.

126 Waveform Relaxation. . .

e Constant liquid holdup on trays: M.

o Immediate liquid response.

o Negligible flow dynamics between trays.

o Vapor-liquid equilibrium attained on each tray.
e Perfect mizing attained on each tray.

e Perfect level control in condensers and reboilers.
o Isobaric operation.

e Constant relative volatility vapor-liquid equilibrium.

A distillation column is constructed of vertically connected trays (stages) upon
which mass transfer (physical separation) is accomplished between a contacted vapor
and liquid phase; countercurrent vapor and liquid flow streams link column trays.
Side feed (draw) streams add (remove) liquid and/or vapor to (from) column trays
providing bypasses and feedbacks as well as linking multiple columns. Figure 7.1.
presents an abstract model of the TRAY template, the format in which the tray
equations outlined below are realized in CONCISE; Figure 7.2. illustrates a single-feed
column utilizing TRAY templates set up in various configurations. These differential-

algebraic equations have six states:

z[i] Light component liquid phase composition.
y[t) Light component vapor phase composition.
L[{] Liquid flow rate out bottom of tray.

V[i] Vapor flow rate out top of tray.

M([i] The tray’s constant liquid holdup.

2d[i] Flashed draw composition variable.

In what follows, the constant & is the relative volatility parameter; Table 7.1.

presents a summary of nomenclature for these equations as well as for Figures 7.1., 7.2

7.3. THE BINARY DISTILLATION MODEL

Table 7.1. Nomenclature for the TRAY Template
(comments appropriate for Model #3)
Holdup
M[i] |Ext.Input Holdup for TRAY i
M[i] | Non-State Output of Holdup
Liquid Input from TRAY i+1
L[i+1] State Flow rate
x[i+1] State Light component composition
Vapor Input from TRAY i-1
V[i+1] State Flow rate
y[i+1] | Non-State Light component composition
Normal Vapor Feed Inputs
VA[i] — Flow rate
yili] — Light component composition
Normal Vapor Feed Inputs
LA[i] — Flow rate
x{[i] — Light component composition
Flashed Feed
F[i] — Flow rate
z1[i] — Light liquid composition
affi] — Quality of the feed
Normal Draw (External Inputs)
Vd[i] — Vapor Flow rate
Ld[i] — Liquid Flow rate
Normal Draw (Outputs)
Vd[i] — Vapor Flow rate
y(i] — Light component vapor composition
Ld[i] — Liquid Flow rate
x[i] — Light component liquid composition
Flashed Draw (External Inputs)
Fd([i — Flow rate
qd(i] — Quality
Flashed Draw (Outputs)
Fd[i] — Flow rate
qd|i] — Quality
zd[i] State Composition
Vapor Output to TRAY i+1
VI[i] State Flow rate
vyl | Non-State Light component composition
Liquid Output to TRAY i-1
L{i] State Flow rate
x[i] State Light component composition

127

128 | Waveform Relaxation. ..

(for brevity, we omit various technical details concerning flash mode operation of the
side streams).

Mole (or mass) balance of light component:

Mp)ili] = (Lli+1)ali+1) +(V[i-1)yli - 1])
= (L) <fa)) + (Vi1 wle))) (7:4)

Vapor-liquid equilibrium (constant relative volatility formulation):

. a z[i)
vl = TG - Dl (7.5)
Immediate liquid, vapor response, respectively:
L[i] = L[i + 1] + Lf[i] — Ld[s] (7.6)
Vi) = V[i = 1] + Vf[i] - Vd[i] (7.7)
Constant liquid holdup:
M[ij £ M[i] (7.8)
Flashed draw composition variable:
zd[i] = qd[i] z[s] + (1 — gd[i])y[s] (7.9)

By the notation “M{:] 2 M[i),” we mean that the holdup variable M([z] assumes

whatever value is externally set for it.

7.4 The TRAY Template

CONCISE implements circuit simulation via an eztended nodal formulation where

7.4. THE TRAY TEMPLATE 129

Figure 7.1. The CONCISE TRAY Template

L[i+1] VIi]
x[i+1] M(i] ylil
Vdli]
{Fdlil}
VATil, yflil Vdli], ylil
——
{F[il, =flil} {(Fdlil, zdlil}
FEED Tray Template #i DRAW
(-, offil} - qd[il}
——
LAi], xfTi] Ldlil, xI[il
{qdlil}
Ldli]
LI[i] M[i] VIi-1]

x[i] yli-1]

130 Waveform Relaxation. ..

each ungrounded nexus of circuit device terminals establishes a node [32]. For circuit
simulation, the equation F(Z,Z,u;t) = 0 implies the usual statement of Kirchoff’s
current law (KCL) for an electrical network; namely, The algebraic sum of currents
leaving any node is zero. In that context, the state variables (nodes) Z represent
voltages; it is therefore voltage waveforms which are iterated in CONCISE when
applied to circuit simulation.

The nonlinear mathematical model associated with any particular circuit element
(e.g., capacitor, MOS transistor) is represented in CONCISE as a device. A device is
realized in the simulator with a series of functions and subroutines that implement the
mathematical model and also manage associated information/database requirements.
At present, we restrict our attention solely to issues involving the mathematical model.
As stated in the previous section, the equations of binary distillation are housed as
the “seventeen-terminal” TRAY template depicted in Figure 7.1. A distillation tray is
simulated by connecting a TRAY template to six nodes, which correspond directly to
the states L,V, M, z,y,2d. Furthermore, in order to establish, for example, a vapor
flow stream from tray i — 1 to tray ¢ of the same column, two designated terminals of
TRAY template i associated with that vapor inflow are connected to states V, y of tray
i — 1. Other terminals of a TRAY template may be connected to ground (implying
a zero value) or to external inputs. In this way, a general set of coupled, binary
distillation columns can be realized using only the single TRAY template type. For
example, Figure 7.2. captures the six different instantiations of the TRAY template
needed to create the single-feed column illustrated there.

CONCISE evaluates a circuit on a node-by-node rather than a device-by-device
basis. Consequently, the evaluation of a single node is an important primitive func-
tion. Each node maintains a list of device terminals connected to it; associated with
those terminals are functions coded to return the derivative (Z) and state (Z) con-

tribution associated with the connection; there are, as expected, six such functions

7.4. THE TRAY TEMPLATE 131

associated with the TRAY template. As a result of the nodal formulation, a de-
vice routine requires only the state values of the node under evaluation as well as
the states of the other nodes connected to the device (neighbor nodes) in order to
arrive at its contributions to Z and Z. Although each state of a distillation tray
typically has three terminals tied to it in view of the nearest-neighbor connectivity
of a column (ignoring side streams), one TRAY template provides the entire state
and derivative contribution. The other connections are, in effect, read-only. Hence,
the tray equations remain in their natural format (modulo a conventional minus sign
for derivatives). Therefore, while the TRAY template conveniently houses the struc-
tured, nonlinear differential-algebraic equations, the modeling equations need not be
contorted to fit within the CONCISE framework.

For the purpose of solving the distillation trays, the six states of a single tray will
almost certainly be clustered, because they are tightly coupled. As such, they will be
solved together using a stiff DAE solution approach (in turn using a direct method
for the linear systems arising in its Newton iterations) as a single process. We pose

several possible numerical structures for these six states.

Model #1 The clustered states fall into two structural categories: Inputs: L,V,M
_ if no feedbacks are envisaged, then the flows need not be integration states.

Differential-Algebraic States: = and y and zd; Non-States: none.

Model #2 The clustered states fall into two structural categories: Inputs: M is
non-dynamic and depends solely on external inputs and/or states of other trays.

Differential-Algebraic States: L, V,z ,y and zd; Non-States: none.

Model #3 The clustered states fall into three structural categories: Inputs: M
is non-dynamic and depends solely on external inputs and/or states of other trays.

Differential-Algebraic States: L, V, z and zd; Non-States: y. We “tear” the vapor

132 Waveform Relaxation. ..

composition variable in this model (see also chapter 6).

Model #4 The clustered variables fall into three structural categories: Inputs:
M, L and V - no feedbacks assumed; Differential-Algebraic States: L, V, z and
zd; Non-state: y. We “tear” the vapor composition variable in this model (see also
chapter 6).

Though the backward-differentiation-formula approach to integration can acco-
modate algebraic equations per se, there remains a fundamentally different issue as-
sociated with the Inputs. They admit no correction in the integration algorithm since
their waveforms are based entirely on node waveforms determined outside the cluster.
For each time point computed in a waveform update, the differential-algebraic states
(see various models) are handled together and their implicit integration governs at
which time points the Inputs need evaluation. Thus, although the Inputs can be
evaluated before the integration of x and y for any appropriate ¢ in the waveform
interval, the meaningful time points for such evaluations are not available a priori.
In order to address these differential-algebraic issues properly within CONCISE, we
introduced general three-phase integration logic that supports the three categories of

variables just outlined.

7.5 Motivating Convergence

Issues of consistency, stability, convergence and performance are obviously central
to the success of Waveform Relaxation for the dynamic simulation of distillation
columns; these concepts are considered elsewhere [30,36,46] in general and for the
VLSI-circuit context. Convergence is also movitated in [32,37]. Consistency implies
that, as a supposed global stepsize A — 0, the numerical formula recovers the orig-
inal, undiscretized differential equations; performance implies that, in addition to

convergence of the numerical scheme that the speed of convergence be acceptable.

7.5. MOTIVATING CONVERGENCE

Figure 7.2. A Single Feed Column in the CONCISE paradigm

(Distillate
VIN], y[N] Stream)

External inputs which
establish, respectively: }

Liquid flow rate and constant, L0 M L
equal tray holdups: L, M: * *
Partial -i-> L, yIN]
Condenserx

(Ficticious Draws

Tray #N 0, x[N]
1)
vy
°+’° ;’ T_\Ty?’ ooy

F, zf #Ng

(External l«s‘mif ‘ * *
Inputs) Computation

qi —P Tray

l b x| o

0,0 f1

l<l— pas
T
»ua—P

Tray #2

EEyY
Partial 0, y[1]

Reboiler

(Ficticious Draws)

Tray #1 Vv, x[1]
i

Bottoms: L{1] M v Establishes Vapor
x[1] 0 Flow Rate
(External Input)

133

134 Waveform Relaxation. ..

At present, we merely point out that the same motivation offered in [32] for MOS
circuits also applies at least to binary distillation Model #4 discussed here; namely,
a sufficient condition for convergence is that each node be connected to a grounded
capacitance (see also [30]). In our present context, this requirement only concerns the
dynamic states — for Model #4 it is sufficient to consider the light liquid component
z state; Inputs and Non-States as described above are not subject to integration as
such.

So, we consider a version of Model #4 mentioned above wherein L, V, M are the
non-dynamic input variables, z is dynamic, and y is a non-state, and we ignore zd.
Define the sole differential equation describing = for the jth tray (using unembold-
ened, subscripted scalars instead of variables with bracketed indices henceforth for

compactness of notation) by:

F; = -Mjij+ Linzin+Viay-1 + Lz f;

+Vfjyfi — Ly + Lfj)z; — (Visa + VEi)y; =0 (7.10)

Discretizing the time derivative using a backward differentiation formula yields an

approximation of the form:
. ao
:c,-(t = T;) ~ 717,'(7‘,‘) —Bj(T,'_l,...,T,'_k+1), (711)

where B;(...) is the part of the backward-differentiation expression independent of
z;(;) while ag/h is the “derivative operator” at ¢t = ;. For the backward Euler
method, this approximation is simply:

z;(:) — xj('ri—l). (7.12)

Ti — Ti-1

i‘j(t = T,') =~

Inserting the more general approximation, the IVP model and forming the relevant

7.6. SUMMARY, DISCUSSION, CONCLUSIONS 135

(tridiagonal band) Jacobian matrix entries yields:

aai’;f = - a—’fMj — (Ljs1 + Lf;) = (Vi=a + Vi) X %’ (7.13)
% _ V_vj—lg%’ (7.14)
g:ii - L (7.15)
and
0y; a (7.16)

9z; (1+(a-1)z;)"

where only the diagonal entry of the jth row (Vj) depends on h.

For h sufficiently small, ao/h becomes large enough so that the Jacobian is diago-
nally dominant in view of the constant, non-zero holdups M; Vj, a quantity analogous
to a grounded capacitance [30,32). Off tridiagonal-band elements cannot depend on
ao/ h explicitly because states do not directly couple to derivatives of other states (cf,
nodal formulation vs. modified nodal formulation [32]). Hence, the same sufficient
condition that leads to Waveform Relaxation convergence in [30,32] applies equally
well to the binary distillation model. However, to be ultimately satisfactory, an in-
depth analysis (not offered here) is clearly in order and we discuss this further in

appendix E.

7.6 Summary, Discussion, Conclusions

The need for cost-effective high speed computing is essential in many areas of chemical
engineering; notably, the simulation of large-scale dynamic systems is routinely com-
putationally demanding. The advent of powerful, highly concurrent message-passing

multicomputers offers real potential for such economical supercomputing provided

136 Waveform Relaxation. ..

that concurrent algorithms can be developed that avoid both gross load imbalance
and sequential bottlenecks. Noting that the problem of dynamic distillation simula-
tion is both a demanding computational problem class and also of real importance
in chemical engineering, we undertook the implementation of concurrent simulation
for simplified, binary distillation. Even this modest framework retains the central as-
pects of stiffness, inter-column coupling as well as large-scale and is therefore a good
starting point. Our target machines are general, multiple-instruction, multiple data
multicomputers with asynchronous, point-to-point communication routines (e.g., In-
tel iPSC/2, Symult s2010). We emphasize that the ultimate goal of this research is to
develop efficient concurrent simulation techniques for relevant, demanding chemical
engineering systems, rather than singularly for (binary) distillation.

In order to develop a simulator with a small sequential fraction and therefore
the potential for thousand-process concurrency and orders-of-magnitude speedup, we
followed the lead of VLSI-circuit simulation researchers where the Waveform Re-
lazation paradigm has proven successful [30,62,39,36,46,32,17,37]. In the foregoing,
we describe the basic ideas behind this methodology and we also indicate several
of the important heuristic aspects of the CONCISE VLSI-circuit simulator designed
to improve convergence/performance; CONCISE is our starting point for concurrent
dynamic simulation with Waveform Relaxation. The use of an existing, mature sim-
ulation system allows us to avoid the major replication of coding effort inherent in a
fresh programming start.

We present the assumptions behind the binary distillation model and indicate
how the nonlinear differential-algebraic equations are housed within CONCISE, in
this instance within a TRAY Template, a seventeen-terminal circuit device analogue.
We illustrate (with a single-feed column example) how the TRAY template covers
the panoply of tray configuration requirements for the formulation of a distillation

column network. This is important, because the implementation of multiple devices

7.6. SUMMARY, DISCUSSION, CONCLUSIONS 137

requires significant one-time (formulation) effort as well as modest additional runtime
overhead. Furthermore, we describe the important issues involved in the integration
of the tray equations and the additional features that have had to be added to the
implicit integration routines in order to deal with the three classes of state variables
incorporated in these equations (pure inputs, coupled differential-algebraic states,
non-states). We also motivated convergence of Waveform Relaxation for the binary
distillation model in the same sense as done by Mattisson in [32].

Some of the remaining tasks not addressed in this chapter include, broadly:

e Verification of results against a sequential distillation simulator.
o Extension to more rigorous thermodynamics.
¢ Extension to multicomponent systems.

e Enhanced software framework that allows the easy incorporation of new
templates (i.e., problem classes) and will permit a variety of chemical
engineering simulations to be evaluated with Waveform Relaxation.

e Extended software capability that allows competing Waveform Relaxation
approaches (e.g., [39]) to be compared fairly.

e Extension to systems modeled with partial differential equations, incor-
poration of multigrid methods and efficient implementation /extension of
Waveform Relaxation ideas enunciated in [60,59] for PDE systems.

138 | Waveform Relaxation. ..

Chapter 8

Conclusions, Future Proposed Work and
Recommendations

Abstract

This chapter draws together the seven preceeding chapters, as well as the appendices
that follow, summarizing the progress implied by this thesis work. We indicate some
of the research issues that should be tackled in the upcoming years to make con-
current computation an effective, widespread methodology for chemical engineering
research and practice. We also indicate a number of practical problems that must be
resolved. For example, we indicate the changes in academic and industrial attitudes
towards computational algorithms research that are needed to permit new generations
of chemical engineers to become literate, effective computational engineers as well.
In this discussion, we indicate our recommendations not only for future work, but
also for the study of concurrent computation on applications in chemical engineering
other than our present focus, simulation of systems of differential-algebraic equations

(dynamic flowsheet simulation).

8.1 Perspective and Summary

First, I wish to consider how far we’ve come in the six years constituting the span
of this thesis research. In July 1984, when this work began, there were no commer-

cial concurrent computers available and the experimental machines built at Caltech

139

140 Conclusions. . .

were in their infancy. The prospective for per-node floating point performance was
about 50,000 flops, with memory capacities of no more than 512K bytes. We ex-
pected to have machines with 32-128 nodes. Communication latency between near
neighbors could be around 2,000 microseconds, and much more for far neighbors. Sys-
tems’ Software-wise, we expected almost nothing — a C compiler, and low-abstraction,
hypercube-oriented operating systems (no point-to-point communication primitives
and no debugging support). Stability of the hardware and software were also ques-
tionable. Application software (like linear algebra codes) were non-existent.

In the intervening years, several generations of commercial machines have come
into being, and concurrent supercomputers are in the offing, each node capable of
producing many megaflops, and running a Mach (Unix-like) operating system kernel.
Even now, per-node memories of 4M bytes are now common; message passing tech-
nology wit application-level latency of 250 microseconds exist (with two orders of
magnitude lower latency at the primitive hardware level). Scalar floating point from
100,000 to two million flops are commonplace. Machines of up to 2,048 nodes are
expected shortly. Operating systems are much improved (including point-to-point
communication); the standard C and Fortran languages are available and many ven-
dors have stable compiler and operating-system products, though not all. There is
some support for debugging. Until recently, it has been virtually impossible to find
a vendor-independent application code of high-quality and portability that can plug
into a new application or research program (though we have now created some). No
convenient, general purpose, portable abstractions of message passing were available
to improve programmability of complex applications until we addressed this need
ourselves.

As far as chemical engineering, we had absolutely nothing in 1984 for multicom-
puters, and no experience for how to program them nor of what to expect. Now, we

have experience with the parallelization of extant high-quality sequential algorithms,

8.2. RECOMMENDATIONS FOR THE FUTURE 141

and with the utilization of novel numerical techniques. We have high quality algo-
rithms and their realizations in working codes for integration of systems of differential-
algebraic equations, solution of linear systems of sparse, unsymmetric matrices, and
many support libraries. We have a clear idea of achievable concurrent performance,
of bottlenecks, and of the important features of a chemical-engineering problem class
that dictate the degree of performance we might expect, for example the Jacobian
structure, or the per-equation work in thermodynamic calculations. We have the
ability to simulate distillation column networks with two simulation paradigms. Most
importantly, with the ideas, algorithms and working production codes developed in
this thesis work, we can begin to attack many more chemical-engineering problems
in the future. We also expect to be ready to harness concurrent supercomputers
when they arrive in the next two to three years. As such, our work has reacted to
the existing multicomputer technology, and also anticipates future machines through
portability factors, and careful design for data-distribution-independent correctness
of the algorithms. In the next year, we will create a multicomputer toolbox to provide
a portable basis for additional multicomputer research and developrnenf in chemical

engineering, and beyond.

8.2 Recommendations for the Future

The most important fact to realize in multicomputer research is that there is a deli-
cate balance between the computational science and the application area - both are
needed, as we pointed out in the introduction to this work. However, there is also
a delicate balance between algorithms research and implementation, both are also
needed, though implementation has a “low-brow” reputation. In fact, to the uniniti-
ated, the entire area of multicomputer algorithms research appears to be a mundane
exercise in code implementation, or a “support activity.” Undertaken correctly, this

research area is far apart from those antiquated notions.

142 Conclusions. . .

Chemical engineers need to know more about computation rather than just about
Fortran programming. They need to know more about applied mathematics (like
well-posedness), and about some of the fundamental limitations of computing (like
complexity and uncomputability). Since supercomputers are meant to be the key
mechanism for greater understanding of physical systems and models in the future,
each engineer will need to understand concepts, theory and practice of computational
science in order to be able to generate the research and complex tools needed to in-
vestigate important, complex chemical engineering systems. Some chemical engineers
will have to specialize in this area, but all chemical engineers will have to become more
literate. They will also have to develop better practices for their software realizations
of research and applied work, because software and related data will increasingly
become the fundamental representation of new knowledge and technology.

The antiquated notions will have to be overcome in academia first, otherwise un-
dergraduate and graduate engineers will not be exposed to an open-minded attitude
concerning computation. It will be the key role of the academic environment to create
new computational knowledge for industry, because industry (at least U.S. industry)
is too keenly aware of its quarterly bottom-line, and cannot invest the many years
needed to see concurrent computation to its fruition. However, academia can produce
the needed knowledge and technology transfer to industry, in order to overcome this
barrier. First, however, computational science will have to be accepted as a legitimate
research activity within the field. The profession does not need “parallel computing”
as its next bandwagon, only to be dropped again after a few years. It needs accep-
tance, and concerted research effort. Many applications in chemical engineering are
suitable for high performance computing; there is much new knowledge to be gained
by investigating nature and systems with a high performance computational tool as
well.

So, another balance must be struck in this work. We must be application driven on

8.3. SPECIFIC FUTURE WORK 143

the one hand. We have problems of importance, and we need to make them tractable.
Or, we have problems we need to solve more effectively, in order to open new pathways
to higher efficiency operations. On the other hand, and of equal importance, we
must develop a basis of algorithmic understanding and understanding of concurrent
supercomputation, and ask what problems we can attack given this knowledge. This
latter approach is frowned upon as the “solution looking for a problem.” Intellectually,
both a top-down and a down-up approach are needed, however. One drives the other.

There are many theoretical problems to be solved in concurrent computation and
modeling. Probably, the most important intellectual effort will go into the creation
of new classes of concurrent algorithms that are most suitable for classes of concur-
rent machines. This research need will not be easily satisfied. Complementarily, we
must solve a number of engineering-type problems: the creation of complex software
systems (computer-aided design) for the purpose of doing high-performance compu-
tational science. We will need to learn how to utilize computer-aided design ideas
from scratch, to some extent. We will need to do more than what computer scientists
and engineers can themselves do for us — we will need to create “environments,”

tools and knowledge suitable for our own problems.

8.3 Specific Future Work

Apart from the above sincere statements of philosophy and needed changes, we plan
extensions to the present research work. As indicated in chapters 6 and 7, novel nu-
merical approaches are evidently key to high performance dynamic simulation of DAE
systems. We propose to explore both “semi-classical” and completely new approaches.
To do so, we will investigate ways to change the DASSL algorithm incrementally for
higher concurrency. On the other hand, we will investigate the numerical properties
and practical validity of Waveform Relaxation for interesting systems. We will explore

higher performance concurrent sparse solvers, and the utilization of iterative linear

144 Conclusions. . .

algebra as a further means to widen the applicability (and increase the performance)
of Concurrent DASSL.

The algorithms we develop will be of minor interest if there are no means to
generate and solve complex engineering problems with them. To do so, we must in-
vest time and research plus development effort toward the creation of more powerful
simulation layers (problem formulators). In doing so, we will engage ourselves in
the research issues of problem formulation, equation ordering, model representation,
and the fundamental tradeoffs between concurrency and convergence. We must look
again at all the well-established flowsheeting ideas, and at the object-oriented sys-
tems. They must be rethought fundamentally now that concurrency is to be the new
degree of freedom. Of course, our research will specialize to include the current ideas
(sequential case) as a special case.

Finally, we need to import more knowledge from applied mathematics to make
this all happen. We need to understand more subtle aspects of numerical algorithms
if we plan to create novel algorithmic approaches. We also need to stay abreast of
general-purpose methods (like new types of iterative linear algebra) that may Be of
real interest, but as yet unused in common chemical engineering practice. We need to
develop a basis for communication with other engineering disciplines. Now, because
of notation and practice in electrical engineering, for example, it is very difficult to
discuss the similarities and differences of our respective applications under the Wave-
form Relaxation paradigm. We need to extend the formal notations of our respective
areas to create better modelling notions, and promote better communication. We
plan to continue collaboration with electrical engineers to learn more about their ap-
plications, and see if we can encompass our respective problem domains in a single
concurrent simulation paradigm.

Final'v, we need to make industry function better by putting key test systems

into effect with industrial partners, proving the validity of this future work. This will

8.3. SPECIFIC FUTURE WORK 145

prove easiest in off-line applications; we believe that some big-return dynamic on-line
simulation/optimization problems (like pipelines) will also be good testing grounds
for our new research. After all, the goal of chemical engineering research is ultimately

to improve practice.

Appendix A

More Concurrency Kernels

Abstract

We define additional concepts involving data locality and concurrency kernels — basic
operations with interesting properties. For some of the kernels, we follow the lead of
Van de Velde and others [54,55,20].

Except as noted, the data distributions mentioned here are assumed to be strong,
such as those introduced in chapter 4 and at the beginning of appendix C. However,
we extend parts of our discussion to weak data distributions with the help of further

definitions and considerations from appendix C.

A.1 Definitions

To unify the discussion of kernels, we discuss data distribution projections first.

Definition A.1 (Data-Distribution Projection) A data-distribution projection

is a mapping of the form
Tyou-1(pyiy P, M; Q,N) = v (47 (.3, P, M), @, N) = (g,5) (A1)
which ezists for all (p,1) if and only if N > M, where
6" = {(wu) P, M}, (A.2)

146

A.1. DEFINITIONS 147

" = {(v,v™!,1");Q, N}, (A3)

are data distributions, and where (p,1) ((g,7)) is a valid image in the data distribution

G! (resp., G''). Equation A.1’s “nverse” is defined as:

Tyores (9, Qs N3 P, M) = o (v™4(0,5, @, N), P, M) = (p,1), (A-4)

as ezpected, which ezists for all (g,5) if and only if M > N.

We immediately restrict attention to the case M = N. Then, Equation A.1 gives
the process q and local offset j in distribution G of the coefficient I = p~*(p,i, P, N),
where (p,1) is a process and local coefficient indez in distribution G'. Equation A.4

provides the inverse mapping (¢,J) — (p,7)-

Data-distribution projections are used in the transformation and identification of in-
variant properties of coefficients. For example, the set of diagonals of a matrix in a
process are deduced through a data-distribution pro jection. Furthermore, the conver-
sion of a row-oriented concurrent vector to a column-oriented concurrent vector (or
vice-versa), requires a data-distribution projection in each process of the underlying
process grid; we will return to these points below.

In the practical applications just cited, a weaker form of data-distribution projec-

tion is used, as follows:
Definition A.2 (Local Projection) Assuming M = N, the local projection of G’
onto G is defined in each process p, 0 <p < P, as

. j forg=p
Twm‘1 (P, (N P, Q’ N) =) (A5)

—1 otherwise

148 APPENDIX A. MORE CONCURRENCY KERNELS

and

. it forp=gq
Tyou”‘ (q’J’ Qa P’ N) = ’ (AG)

—1 otherwise

where —1 connotes “none.”

Equation A.5 (A.6), gives the local coefficient j (resp., i) corresponding to local
coefficient i (resp., j), or —1 if there is no such local correspondence. These projections
indicate the intraprocess invariants of a change of data distribution. Clearly, each of
these mappings can be computed once, and stored using memory in each process p,

0 < p < P, proportional to p!(p, P, N) (resp., v!(p, @, N)).

Lemma A.1 (Local Projections & Weak Distributions) The local projections
are correct if weak data distributions w, v substitute for the strong data distributions

i, v in Equations A.5, A.6. See appendiz C for more details.

Proof We prove correctness for Equation A.5. Equation A.6 follows analogously.
By definition of a weak data distribution, inside a process p the global coefficient [=
w™Y(p,i, P, N) corresponding to the local coefficient 7 is well defined. Consequently,
the first part of the local projection may be calculated. Secondly, given any global
coeficient I, the weak distribution v can identify the p-local coefficient corresponding
to t..:s global coefficient, or flag the absence (by —1) of such correspondence within

the process p. Therefore, v(I,Q, N) immediately completes the local projection,

Tvow" (pa ia P’ Qa N)’ (A7)

as claimed. |

Corollary A.1 (Mixtures of Strengths) The local data-distribution projections
below (section A.2) are correct if either strong data distribution p or v in Equa-

tions A.5, A.6 is replaced by a weak data distribution.

A.2. KERNELS 149
Proof By inspection. “h

Corollary A.2 (Continued Correctness of Kernels) Important consequences of
the previous lemma and its first corollary are that concurrency kernels depend-
ing on local projections; transpose_row_to_column, transpose_column_to_row, and

skew_inner_product (defined below) remain correct.

Proof By inspection. |

A.2 Kemels

In chapter 2, we introduced selected concurrent operations: combine, broadcast,
weighted-vector sum, and matrix-vector product. The former two are common in
all multicomputing; the latter two are prevalent in the implementation of linear al-
gebra operations other than LU factorization (see [55]). We also had occasion to
discuss norms of concurrent vectors in chapter 6, in conjunction with the discussion
of Concurrent DASSL.

Here, we introduce three additional concurrency kernels of interest. The first two
are closely related: transpose_row_to_column and transpose_column_to_row. The for-
mer converts a row-distributed concurrent vector arrayed on a two-dimensional logical
process grid G to a column-oriented concurrent vector on the same grid. The second
kernel does the opposite: a column-distributed vector is transformed into a row-
distributed vector. The third kernel is a special version of inner product, “skew inner
product.” It forms the inner product of a row-distributed and a column-distributed
vector; in connection with it, we also discuss the regular inner product operation, a
slight generalization of an unweighted norm operation. Skew inner product illustrates
the importance of pipelining operations in sequence in a multicomputer. The same
operation can be accomplished first by “transposing” one vector into the same distri-

bution as the second, and then by performing a standard inner product. However, the

150 APPENDIX A. MO. © CONCURRENCY KERNELS

latter requires two combine operations instead of one. Skew inner product is useful
in the definition of a multicomputer conjugate gradient kernel, but we don’t pursue

this further here.

Figure A.1. Step #1 of the transpose_row_to_column operation

00 00 00 00
1 1 1 |
2 2 2 2
00 00 00 00
3 3 3 3
4 4 4 4
00 00 00 00
5 5 5 5
6 6 6 6
00 00 00 00
7 7 7 7
8 8 8 8

Preparation for converting a row-oriented vector (1,2,3,4,5,6,7,8)T to a column-oriented
format on a 4 X 4 process grid. The destination column-oriented vector has all its elements
set to zero initially.

A.2.1 Vector Transpose Operations

Sometimes, vectors must be “transposed” from a row-distributed format to column-
distributed format, or vice-versa. A good example of this arises in the back-solve stage
of LU factorization, where the right-hand-side vector b is posed in a row-distributed
fashion, but the solution vector = emerges in a column-distributed fashion. Almost
always, z must be “transposed” back to a row-distributed format.

Below, we refer to vectors defined on a two-dimensional process grid ¢ =

A.2. KERNELS ' 151

(Q"“",Q“"), formed from row and column data distributions

v = {(u,n",)i P, M},

and

g = (1.

See chapter 4 for further commentary.

Definition A.3 (transpose_row_to_column) The originating row-distributed vector is
denoted z, while the final column-distributed vector is denoted y. Both are defined on
G. In each process, all the elements of y are initialized to zero. Then, in each pro-
cess p, 0 < p < P, elements corresponding to the local projection coefficients of G™*
onto G are copied from their locations in the local vector z to the local vector y.
Remaining elements in each local y vector remain zero. Finally, and independently
in each process column, the local y vectors are combined (vertically on the grid) using
element-by-element addition as the associative-commutative combination operation.
This has the effect of propagating the completed y vector to each process row, appro-
priately distributed in the process columns. Element-by-element addition can be used
because we initialized all elements of the y vectors to zero before copying based on

local projections.

Figure A.l. illustrates the initial state for an eight-element, row-distributed vector
z=(1,2,3,4,5,6,7, 8)T on a 4 x 4 process grid. In the figure, the column-distributed
vector has been initialized to zero. For this example, we choose a linear row distri-
bution (p =)) and a scatter column distribution (v = &). In Figure A.2., copying of
elements according to the local projections has been accomplished. The rest of the
elements remain zero. In Figure A.3., the column-wise combine operations have been

effected, completing the conversion.

APPENDIX A. MORE CONCURRENCY KERNELS

Figure A.2. Step #2 of the transpose_row_to_column operation

10 20 00 00
1 1 1 1
2 2 2 2
00 00 30 40
3 3 3 3
4 4 4 4
05 06 00 00
S S S S
6 6 6 6
00 00 07 08
7 7 7 7
8 8 8 8

According to the local projection of coefficients, appropriate elements are copied into the
column-oriented vectors. The remaining elements in the column-oriented vector are un-
touched and remain zero.

Figure A.3. Step #3 of the transpose_row_to_column operation

15 26 37 48
1 1 1 1
2 2 2 2
15 26 37 48
3 3 3 3
4 4 4 4
15 26 37 48
5 5 5 5
6 6 6 6
15 267 37 48
8 8 8 8

Applying a combine to each process column converts the representation of Step #2 in
Figure A.2 to the final form depicted here. The combination operation is a simple element-
by-element addition.

A.2. KERNELS 153

Definition A.4 (transpose_column_to_row) The operation is analogous to trans-
pose_row_to_column. The originating column-distributed vector is denoted y, while
the final row-distributed vector is denoted . Both are defined on G. Initially, in
each process p, 0 < p < P, all elements of the local vector = are set to zero. Then,
corresponding to the local projection of G onto Gm¥, selected elements from y are
copied into z. Finally, and independently in each process row, the local = vectors are
combined (horizontally on the grid), to complete the transformation. Again, element-
by-element addition is used as the associative-commutative operation. Initialization
of x to zero at the outset allows for the negligible “bookkeeping” inherent in this con-

version procedure.

A.2.2 Inner Products

First we define conventional inner products per, for example, [54,55]. Then we con-

sider a new kernel, the skew inner product.

Definition A.5 (Inner Product) The simplest inner product zTy of two con-
current vectors = and y involves a pair of compatibly arrayed row-distributed (or
column-distributed) vectors. In the simplest form, each process column (resp., row)
works independently to form the inner product of two row-distributed (resp., column-
distributed) vectors. First, the local inner products are formed in each process, then
a column-wise (resp., row-wise) combine is effected to complete the inner product in
each process column (resp., row). For the row-oriented case, this procedure has a maz-
imum speedup potential of P, the number of process rows, and communication com-
plezity O([log; P]), in view of the column-wise combines. For the column-oriented
case, this procedure has a mazimum speedup potential of Q, the number of process
columns, and a communication complezity of O([log, Q1), because of the row-wise

combine operations.

154 APPENDIX A. MORE CONCURRENCY KERNELS

Alternatively, as suggested by Van de Velde, and as noted in chapter 6, we can
elect further to reduce the computation effort in the inner product calculation at the
ezpense of greater communication. We consider only the row-distributed case for
brevity. If process column ¢, 0 < g < Q, computes only one of every Q terms of
its local inner product (Q-striding), and starts with local coefficient j = q, then the
process columns produce no repetitive terms in the inner product. A combine over
the whole process grid (more communication than before) sums the global result. The

mazimum potential speedup is now PQ, while the communication complezity becomes

O([log, PQ1)-

Either of these approaches is arguably better for differing circumstances, grid
shapes, and load-balance characteristics of operations preceeding and proceeding the

inner product.

Definition A.6 (Skew Inner Product) Skew inner product combines the ideas of
transpose_row_to_column (or equivalently transpose_column_to_row) and the striding
inner product. One valid definition is as follows. |
Given a row-distributed vector and a column distributed vector y, we again wish
to form zTy, the inner product. Starting in each process with a local sum equal to
zero, we form the inner product of x terms with compatible y terms according to the
local projection of the row distribution onto the column distribution. FEach process
subsequently contains a unique part of the overall sum. A global combine over the

whole grid completes the inner product calculation.

Using the alternative projection produces the same value for the inner product, but
different partial sums in each process (in general) prior to the combine.

We note in closing that the outer product zy” (a rank-1 matrix) can be formed
without any communication, provided that z and y are row- and column-oriented

vectors, respectively. If either vector is ill-oriented, it must first be “transposed” to

A.2. KERNELS 155

the appropriate orientation.

156 APPENDIX A. MORE CONCURRENCY KERNELS

Appendix B
Zipcode Internals and Use

Abstract

This appendix provides a more detailed look at the design and structure of Zipcode; it
supplements the discussion of chapter 3. The purpose of this supplemental discussion
is to make the Zipcode mechanisms clearer, to promote further applications in the
Zipcode notation, and to render existing Zipcode-based applications amenable to
study. For the sake of brevity, this discussion remains far from exhaustive. We
consider data structures and a selected subset of “internal” and “public” primitives.
We also mention ideas for augmenting the existing Reactive Kernel specification to
allow greater efficiency for Zipcode global functions.

The following discussion relies on an understanding of Figure 3.1. as well as the

rest of chapter 3.

B.1 Conventions

There are two classes of primitives in Zipcode, “internal” and “public.” Internal
primitives, whether macros or function calls, begin with an underscore character.
By convention, underscore-macros are subject change in structure, specification, and
naming, and should not be used in applications. Nonetheless, their properties illus-
trate important features of the workings of this communication layer, and must be

included. The second class, public primitives, whether realized as macros or func-

157

158 APPENDIX B. ZIPCODE INTERNALS AND USE

tion calls, begin with alphabetic letters, and are admitted for use by applications.
Nominally, these calls are not expected to change. We try not to draw distinctions
between macros and function calls, except where this is essential, because such details
may change between versions and also depending on conditional-compilation flags set
within the system. In general, macros are used whenever possible to reduce software

overheads.

B.2 Data Structures

First, we review the process-local data structures used by Zipcode. Then, we consider

the data structures that play a role within letters.

B.2.1 Local Structures

Local structures are used to defined Zipcode objects such as mailers, addressee lists,

and classes of mail.

Class As discussed in chapter 3, Zipcode classes define the style of receipt selectivity

of letters. Within a process, a Zipcode class is represented as follows:

typedef struct zip_class

{
short stamp; /* cost of this class of mail */
short class; /* numerical value for this class */

union y_cover *(*dlvry)();
/* default "receipt selection" fn. */

void (*po_ctoh)(); /* Node to Host conversion of PO Box */
void (*po_htoc)(); /* Host to Node conversion of PO Box */
short 1_pobox; /* length of PO Box structure */

short po_count; /* 2nd argument to conversion routines */

} ZIP_CLASS;

including a stamp, the length of the “cover” (the aligned preamble constructed from

B.2. DATA STRUCTURES 159

the “envelope” information plus padding), a unique pre-defined class number, and
a default style for receipt selectivity defined through a function pointer (*dlvry) ().
The remaining tags are two function pointers and supplemental parameters for con-
verting the PO Box area when a letter arrives at or exits the host process, which
may have a different architecture (and, consequently, data formats) than the node

processes. This is transparent to the applications, as noted in the main text.

Addressees are the main point of Zipcode - maintaining and utilizing a set of
participants for letter transmissions. In the current version, all lists are explicit enu-
merations of {node, pid}-pairs. Furthermore, in each process, the name of the process
is itself promoted to the beginning of the list, being permuted with whatever process
is actually first in the list (the “postmaster” or “PM” process). This permutation,
indicated by the permute tag, is useful for broadcasting operations that exclude the
originating process. (The permute tag is equal to the offset of the local process in

the original unpermuted list.)

typedef struct zip_addressees

{
int n_addressees; /* number of addressees */
int *addressees; /* list of addressees */
int permute; /* permutation for local rearrangement */

} ZIP_ADDRESSEES;

Mailer A mailer is the culmination of the previous data structures. Given a class
structure cl, a zipcode (context number), and addressees addr, a basic mailer is
realized. In addition, a mailer contains a default PO Box area denoted pobox, used
by specific macros as the default data with which to mark letters before transmission
or upon which to base receipt selectivity. Furthermore, a class-dependent extra
area is supported that, as needed, may contain parameters associated with a given

instantiation of a class (such as the grid shape P x @Q x R of a three-dimensional

160 APPENDIX B. ZIPCODE INTERNALS AND USE

grid). Finally, inheritance is indicated by linkages to parents and childen; linkages
are determined at the time the mailer is created. Particular children are created by
default, but others may be created by the application with no loss of generality; the
desired properties of children are determined by their specializations of their parent’s
addressee list. Any number of children may be defined, but it was initially convenient
to pose them in three categories for easier pointer access. While this choice is largely

arbitrary, it proves convenient from an internal, implementation point-of-view.

typedef struct zip_mailer

{
ZIP_CLASS cl; /* mail class information */
short zipcode; /* zipcode for the mailer */
void *pobox; /* "receipt selection" information */
void *extra; /* extra mailer-specific data */
struct zip_mailer *rome; /* ultimate parent x/
struct zip_mailer *parent; /* immediate parent x/
struct zip_mailer *schild; /* sinister child[ren] */
struct zip_mailer *dchild; /* dexterous child[ren] */

struct zip_mailer *ichild; /* illegitimate child[ren] */
ZIP_ADDRESSEES addr; /* this mailer’s addressees: */

} ZIP_MAILER;

B.2.2 Letter Structures

Next, we consider a subset of the data structures that comprise letters - envelopes
and covers. We present the Y-class envelope and cover as an example. Others are
quite similar in structure. The envelope for Y-class mail is defined as follows:

typedef short Y_POBOX;
#define L_Y_POBOX sizeof(Y_POBOX)

typedef struct y_envlp /* Y-class mail Envelope. */
{
/* Primary data shared by all mail classes */

B.2. DATA STRUCTURES 161

short zipcode; /* mailer identification */
short class; /* class of mail */
short stamp; /¥ length of header */
short unused; /* makes mini alignment */

/* used in queueing of received letters: */
union y_cover *next;

/* Receipt selectivity for Y-class: */
Y_POBOX pobox;

} Y_ENVLP;
#define L_Y_ENVLP sizeof(Y_ENVLP)
#define Y_SHORTS 4 /* # of shorts leading all envelopes */

Other mail classes replace the PO Box structure pobox, but must retain the tags
that preceed it. In the preceding, the next pointer is used to build linked lists
of messages in the receive queues, thereby reducing overheads for queueing at the
negligible expense of slightly longer transmissions.

The Y-class cover is created by aligning the envelope in a union, where
L_ZIP_ALIGN is the appropriate alignment length (e.g., 4 bytes), | and where
L_ZIP_SHORT = sizeof (short) accounts for the “return postage” at the end of the

cover, as follows:

#define Y_MODL ((L_Y_ENVLP + L_ZIP_SHORT) J L_ZIP_ALIGN)
#define Y_DIVL ((L_Y_ENVLP + L_ZIP_SHORT) / L_ZIP_ALIGN)
#define Y_ALIGN (L_ZIP_ALIGN * (Y_DIVL + !(!Y_MODL)))

typedef union y_cover

{
Y_ENVLP env;
char align[Y_ALIGN]; /* alignment length */

} Y_COVER;

162 APPENDIX B. ZIPCODE INTERNALS AND USE

Figure B.1. Zipcode Generic Mailer Geneology

Process List
Process list less self Process List less self & PM
schild dchild
Y
Process list less PM
ichild

This figure illustrates the hierarchy of mailers created by yopen(), independent of class. In
practice, the yopen() call is used thus far for the creation of Y- and Z-class mailers.

B.2.3 Illustrative Macros/Calls

Reflecting on the basic structure of Zipcode covers (padded envelopes), the following
macros are used to transform between letter pointers, pointers used by the appli-
cation level to refer to Zipcode letters, and envlp pointers, pointers referring to vthe
start of letter envelopes, and manipulated exclusively by the Zipcode layer. The in-
verse mapping letter — envlp is accomplished via the “return postage,” a second
copy of the cover’s length. It’s stored in the short word prior to the beginning of
the letter space addressed by letter; an area at the end of the cover’s alignment
padding. This issue arises because different classes of mail have envelopes (and hence
covers) of arbitrarily different lengths. The forward mapping envlp +— letter uses
the stamp value stored at a constant offset from the beginning of the envelope for all

classes of mail.

Letter-to-Envelope Conversion:

#define _y_lstamp(letter) ((int))(((short *)(letter))([-1]))
#define _y_ltoe(letter) ((((char *)(letter)) - _y_lstamp((letter)))

B.2. DATA STRUCTURES 163

Figure B.2. Zipcode G2-Class 2D-Grid Mailer Geneology

G2 Grid plus PM

J

G2 Grid | ichild

G2 Row Mailer G2 Column Mailer
J schild dchild J
G2 Row Mailer less self G2 Column Mailer less self
schild dchild
Y
G2 Grid Mailer less self
ichild

This figure illustrates the hierarchy of mailers created by _g2 grid open() and
g2grid_open(), the more commonly used call. “G2 Grid plus PM” differs from “G2
Grid” only if the initiating process (the postmaster or “PM™) is not part of the logical grid.
The mailer pointer returned by these functions is actually “G2 Grid.” Row and Column
children are also created, as noted.

and

Envelope-to-Letter Conversion:

#define _y_etol(envlp) (((char *)(envlp))+(Y_ENVLP *)envlp)->stamp))

These conversions are used pervasively in the Zipcode system.

The following illustrates how letters are allocated and freed:

#define ymalloc(mailer, length)

((mailer) ? (_ymalloc((length), ((mailer)->cl.stamp))) : NULL)
#define yfree(letter)

((letter) ? Xfree(_y_ltoe((letter))) : ZIP_ERR)

164 APPENDIX B. ZIPCODE INTERNALS AND USE

where _ymalloc() is the low-level call that allocates letters of all classes using
xmalloc(), while accounting for the need for Zipcode covers.
A number of class-independent transmission macros are supported, exemplified

by the following:

Class-Independent Transmission Workhorse:

#define ypomsend(mailer, letter, c, d, PO) \
{ \
if ((mailer) && (letter) && (c > 0) && (d != NULL)) \
{ \
Y_COVER *covr = (Y_COVER *)_y_ltoe((letter)); \
covr -> env.zipcode = (mailer) -> zipcode; \
covr -> env.class = (mailer) -> cl.class; \
\
if (PO) \
{ \
bcopy((char *)(PO), \
(char *)&(covr -> env.pobox), \
(mailer) => cl.l_pobox); \
} \
\
Xmsend ((char *)covr,(c),(d)); \
} \
else if(letter) yfree(letter); \
\
letter = NULL; \
}

Finally, as noted in the text, yopen() is the class-independent means for creation

of mailers. In Figure B.1. we note the hierarchy of mailers created by this call.

B.3 G2-Class Calls

Several G2-Class 2D-grid primitives were introduced in chapter 3. Here, we intro-
duce two more. When entering a function that uses G2-Class mail, it is necessary
to determine the grid shape P x @, as well as the current processes’ location on the

grid (p,q). Often this information is housed only in the mailer (though some appli-

B.4. INTERSTITIAL LAYERS 165

cations may choose to duplicate this information). The following context-dependent
(with respect to the mailer most recently stacked with Ypush()) calls provide simple
access to these four quantities, while hiding the structure of the G2-Class extra area,
something with which applications needn’t concern themselves directly:
G2_PQ(P, Q); /* set variables (P,Q) to grid shape */
G2_pq(p, q); /* set variables (p,q) to grid position */
These are the preferred forms for accessing grid information from G2-Class mail-
ers. The context-independent calls require more machinery, and are omitted here for
brevity.

In passing, we indicate the hierarchy of G2-Class 2D-grid mailers created by
g2-grid_open() and _g2_grid open(). This is illustrated in Figure B.2. Note that
this hierarchy is hard-wired by the former function, but can be bypassed by the latter

for more elaborate applications.

B.4 Interstitial Layers

We note that it may prove interesting to interpose a communication protocol between
the Reactive Kernel (RK) primitives and Zipcode. Possible uses of such “interstitial”
layers are debugging support, and a mechanism to provide reactive multicast message
support at a very low level [34], basically a broadcast mechanism, albeit of a narrow
scope. That Zipcode does not preclude such added functionality is as important as
the more specific comments that follow.

Interstitial layers are functionally invisible to the Zipcode system, but necessarily
impact performance. They replace the RK functions xsend(), xmsend (), xrecv(),
xrecvb(), xmalloc() and xfree() with functional look-alikes. The Zipcode header
file defines macros Xsend(), Xmsend (), Xrecv(), Xrecvb(), Xmalloc() and Xfree()
to facilitiate softer compile-time binding to the actual RK primitives; Zipcode macros

and calls refer only to the capital-X macros. For example, by conditional compilation,

166 APPENDIX B. ZIPCODE INTERNALS AND USE

a debugging layer can be activated that provides diagnostics between the RK level
and Zipcode-level calls; this is done by changing the definitions of the capital-X
macros to refer to debugging primitives, which themselves call the RK primitives in
turn. Currently, the debugging formulation does not alter the contents of Zipcode
letters, but this could be changed in a more sophisticated debugging mechanism
(e.g., extended PO Boxes with diagnostic quantities such as checksums). Softening
the runtime-binding to the RK primitives can also be considered through the use of
function pointers, implying a small additional indirection overhead for each call.

A multicast layer would augment the RK message with a preamble, just as the Zip-
code layer adds a preamble to form letters. The multicast mechanism would be han-
dled through a low-level queueing mechanism below Zipcode that would selectively
retransmit specially packaged “chain letters” after receiving them via conventional
xrecv[b] () calls, and before (possibly) placing them on the local Xrecv[b] () queue
for receipt by Zipcode-layer functions. The chain letter’s preamble, in general, must
contain delivery information, such as an explicit {node, pid}-list of recipients, and
a checklist mechanism to indicate which recipients have already had the chain letfer
delivered. Any valid distribution mechanism may be chosen, independent of the Zip-
code mailer and letter conventions, so long as the apparent RK-defined functionality
(e.g., the pairwise ordering property of messages between processes) is maintained.
The payload of the chain letter might itself be a Zipcode letter of a particular class, or

could be completely invisible to the Zipcode queues, depending on application needs.

B.5 Suggested Additions to the Reactive Kernel

Much higher performance for the entire Zipcode system would result if the system
could be defined at the “reactive handler” level - the level upon which the public RK

primitives are constructed. This would imply machine-dependent implementations

B.5. SUGGESTED ADDITIONS TO THE REACTIVE KERNEL 167

of Zipcode. Unfortunately, machine-level access will not be uniformly feasible across
architectures, because of vendor restrictions and so forth. We propose a compromise:
a few, extended RK-compatible primitives, that can be supported at an efficient
hardware level by RK or by similar operating systems. This approach addresses
the need for higher efficiency at two levels: first, efficient RK implementations seem
likely for a number of machines and, second, other operating systems over time may
upgrade to be RK functional look-alikes or upward compatible. Existing Zipcode
global operations combine and broadcast would layer naturally atop these added
primitives, requiring no change to programs written in the Zipcode notation.

Additions to RK of this nature are evidently planned, and we are hopeful that
our suggestions will be considered seriously in the formation of its extended “user
interface” for global concurrent operations.

Combine operation We propose the following user interface:
xcombine(proc_list_spec, buffer, comb_fn, size, nitems);

where proc_1ist_spec contains the following tags:

o The number of participating processes, N,
and

e An array of processes specified by (node, pid)
or

e A user-specified function pointer implementing a bijection that maps 0,..., N —

1 — {node,pid} pairs
where buffer is a storage block of length items x size bytes containing the initial
local contribution to the result, and the result at termination of the combine. The
function pointer comb_fn addresses a canonical associative-commutative combination

operation, with the following calling format:

168 APPENDIX B. ZIPCODE INTERNALS AND USE

comb_fn(bufferi, buffer2, size, items)
void *bufferl, *-uaffer2; /* data to be ‘combined’ */
int size, items; /* size and number of objects */

We use many different comb_fn’s in practice. It is practically important not to
be restricted to a few arbitrarily chosen operations. However, if one could provide a
much faster version for a few key operations, this option would also be interesting,
but which operations would one pick? The choices would have to be application-
motivated, and would quickly become parochial; however, a reasonable set might be
logical operations for integers, plus min/max, sum, difference, and product of integers
and reals, including the possibility to identify the process that produced the extremal
result for min/max. Independently, we are certain that fast synchronizations are a

useful special case of combine that need to be defined:
xsync(proc_list_spec);

Messages transmitted by xcombine(), xsync() must of course be invisible to the

xrecv[b] () calls.

Broadcast The broadcast (fanout) operation, as mentioned repeatedly in this the-
sis, starts with a single source process; all participants know the source. After a
logarithmic number of steps in the number of participants, each participant has the

result that originated in the source process. We propose the following calling sequence:

xfanout (proc_list_spec, source_proc_no, data_spec)

where source_procmno is the number of the initiating process within the

proc_list_spec, and data_spec is a data specification of the following type:

typedef struct fanout_data_spec
{

B.5. SUGGESTED ADDITIONS TO THE REACTIVE KERNEL 169

void **data; /* where the data will be stored x/
int =*length; /* how long the data is or can be */
void *(*malloc_fn)(); /* mechanism for allocating **data */

} FANOUT_DATA_SPEC;

Only the initiating process needs to pre-allocate the data. If *data is NULL in other
processes, the data space will be allocated dynamically in (*malloc_fn) () space and
length will be set to reflect the size of the data received. If *data is not NULL, then
*length must contain the length of *data, and an error occurs if insufficient space
is available, based on the length of the received data. malloc_fn is a malloc-like
function pointer (e.g., malloc(), xmalloc()). Again, this operation’s messages must
be independent of xrecv[b] () and xcombine() to ensure determinism, and to allow
the high-level layers to be built on top of RK seamlessly.

Finally, it would be convenient to replace ad hoc process name conventions with

the proc_1ist mechanism consistently. For instance,

Creation/Destruction of Processes:

xspawn("program_name", proc_list, "");
xmkill (proc_list);

and

Generalized Multiple Sends:

exmsend (proc_list_spec, msg);
exmsendb(proc_list_spec, msg); /* blocked send */
char *msg;

172 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

distribution formulas, though our notation differs slightly from the reference.

C.1.1 Conventional Functions

Definition C.1 (Linear) The conventional linear, load-balanced distribution, in-

verse and coefficient cardinality functions are as follows:

-

MI,P,M) — (p,3),

e () e

i = I—pl—min(p,+), (C.2)

while
AYp,i,P,M) = i+ pl+min(p,7) — I, (C.3)
M(p, P, M) = [M+PP"1"’J, (C.4)

where
i = [%J f = MmodP, (C.5)

and where we require M > P.

Description We defer the description to the block-linear case, which subsumes the

linear, load-balanced distribution for the special case B = 1. See below. |

Definition C.2 (Scatter) The conventional scatter distribution, inverse and cardi-

nality functions are as follows:

51,P,M) = (Imod P, [1)~ @, (C.6)

P

&Y (p,i,PLM) = iP+p — I (C.7)

C.1. DEFINITIONS AND DESCRIPTIONS 173

and where

&(p, P, M) = M(p, P, M), (C.8)
and where we require M > P.

Description We defer the description to the block-scatter case, which subsumes

this distribution as the special case B = 1. See below. |

C.1.2 Block Versions

For situations where M = BP, the following simple block data distributions are

applicable:

Definition C.3 (Block-Linear) The block-linear, load-balanced distribution, in-

verse and coefficient cardinality functions (with blocksize B > 1) are as follows:

a

Ss(I,P,M) ~ (p,i),
wx (| [2)) e

i = I- B(pl+min(p,r)), (C.10)

p

while

\51(p,i, P, M)

i+ B (pl + min(p,r)) — I, (C.11)

B lu-'l—“”J , (C.12)

N (p, P, M) ;

where b, |, v, Ig are as defined in chapter 4 (in connection with the generalized
distributions), but here M mod B = 0 and b > P are both required for correctness.

For B =1, the linear load-balanced distribution is recovered.

Description Global to Local: The quantity b is the total number of block elements

of size B, | is the ideal number of block elements per process, while r’is the number

174 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

of extra elements to be divided one each among the first r processes. Ig is the global
block number within which the coefficient I resides. In the “head” regime, 0 < p < r,
we place [+ 1 blocks per process, while in the “tail” regime, r < p < P, we place [
blocks per process; hence, to determine the process p within which block I resides,

we must take the maximum of two terms:

(R R

Initially, the first term dominates, with the two terms becoming equal at Ig = r(I+1);

for Ig > r(1 + 1), the second term dominates. Given p, pl constitutes the number of
block elements in the first p processes assuming no imbalance, while min(p, r) accounts
for extra block elements (but saturating at r). The sum of these terms multiplied
by B comprises the total of coefficients used up by processes 0,...,p — 1. Hence,
subtracting this quantity from the global coordinate I gives the local coordinate ¢ in
process p.

Local to Global: The inverse is obtained by a simple rearrangement of the expression
for 7 in terms of p and I.

Cardinality: There are b blocks to be divided among P processes. In the first r
processes we choose to have I +1 block coefficients. The term |[(b+ P —p—1)/P] is
initially equal t» 14+ 1 (1) if » > 0 (resp., r = 0) and becomes equal to ! exactly when

p = r. By definition, b = |[M/B], so this is easy to see by recalling that

I=[%J, r=bmod P, | (C.14)

and, consequently,

l”T”J=1+1 for Por <P<2P —r—1. (C.15)

C.1. DEFINITIONS AND DESCRIPTIONS 175

Once we have the proper number of block coefficients for process p, we scale up by

the blocksize B to get the total number of coefficients. |

Definition C.4 (Block-Scatter) The block-scatter distribution, inverse and cardi-

nality functions (with blocksize B > 1) are as follows:

51,PM) = (Imod P, (B [%*J +Imod B)) = (p,9), (C.16)
67 (pi, M) = B(p+|5|P)+imodB 1 (C.17)

and where
&5(p, P, M) = Xj(p, P, M). (C.18)

As for the block-linear distribution, M mod B = 0 and b > P are required for cor-

rectness. For B = 1, the scatter distribution is recovered.

Description Global to Local: Again, I is the global block number containing
coefficient I. Since we want to scatter blocks now, we use the expression p = Ig mod
P to move each successive block to the next highest process, modulo P. To find the
local coefficient number i in process p, we notice that |/g/P| counts the number
of completely filled-in scattered block layers in all processes by blocks 0, ...,Ig — 1.
Hence, in process p, there are |Ig/P] block coefficients already in place. There are
consequently B times that many coefficients in place. Finally, the global coefficient I
has an offset within the global block Ig equal to I mod B. This quantity must also
be the offset within the scattered block, since we don’t change the order of elements
inside blocks. Therefore, the sum of B|Ig/P] and I mod B forms the local coefficient
1, completing the construction.

Local to Global: We are given p and . Now, |¢/B] is the number of block coefficients
in process p filled-in before Ig. This quantity times P is the total number of complete

block layers filled in before block Ig, and the extra offset p accounts for the incomplete

176 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

layer being filled in at the time Ig was scattered (that is, the block layer in which
Ig resides). The sum of these quantities times B is the global coefficient of the
zeroth element of block Ig. Again, relative positions in the global and local blocks
are unchanged, so the additional offset ¢ mod B completes the back transformation
to the global coefficient I.

Cardinality: The cardinality turns out equal to that for the linear distribution. As
we scatter blocks, we build layers from low-numbered processes to high-numbered
processes. We complete a total of IP whole layers of block coefficients. The last r
blocks are scattered one each from process 0 through process r — 1, creating the same

cardinalities as for the block-linear distribution. [|

C.1.3 Generalized Families

Definition C.5 (Generalized Block-Linear) The generalized block-linear distri-
bution function family () is defined in chapter 4. Here we present a description and

derivation of important features.

Description Global to Local: Global coefficient I resides in global block Ip.

Counting from the end, the “reverse block” for Ig is defined as

Ig¥mod P=b-1-Ig.

We count blocks backwards, because we wish to place the coefficient imbalance in the
r highest-numbered processes. By doing so, we place the last, possibly foreshortened
block as the last block of coefficients in process P — 1. That is, the “tail regime,”
P—r < p < P -1, contains ! 4+ 1 blocks, while the head regime, 0 < p < P —
r — 1, contains [blocks. This weighs down higher-numbered processes with the load

imbalance (cf., block-linear and block-scatter). To determine within which process p

C.1. DEFINITIONS AND DESCRIPTIONS 177

block Ip resides, we must consequently consider the maximum of two terms:

max (lzlfvlj : ngz_ TJ) ' (C.19)

Initially, the first term is dominant, with equality for Ig" = (I + 1)r (equivalently,

Ig = b—1— (14 1)r). For larger values of I", the second term dominates. Since we
count blocks backwards, this quantity is subtracted from P — 1 to give p. To get the
local coefficient i in process p, we recognize that pl blocks are used up in processes
0,...,p—1, assuming no load imbalance. Furthermore, starting with process P—r, an
additional block is used in each process to cover load imbalance. This is reflected in
the “Heaviside” term ©!(p— (P —r)), which is defined to be zero if its argument is non-
positive and equal to its argument otherwise; equivalently, max(0,p— (P —r)). Hence
the sum of these two block terms scaled by the blocksize B, B(pl + ©'(p — (P —r))),
is subtracted from I to give the local coefficient i. The possible shortness of the last
block in process P — 1 does not impact the calculation.

Local to Global: Since we know i as an explicit function of I and p, it’s easy to
rearrange the formula to express I = i + B(pl 4+ ©*(p — (P —))), as asserted.
Cardinality: By inspection, the cardinality function, AL (p, P, M) is equivalent to the

following formula:

(

Blb—f,?-J forp<P-1
/\"B(p,P,M)=W Blﬁ";—'lj forp=P—-1and M mod B=0 - (C.20)
| Bl+ M mod B forp=P—1and M mod B#0

Initially (for p = 0), the fraction |(b+ p)/P] is equal to I. When p reaches P —r,
however, the fraction increases in value to [+ 1, as required. If the last block in
P — 1 is foreshortened, we account for this explicitly. Fortunately, because of its

convenient location at the end, the foreshortened block, if present, does not impact

178 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

the calculation of the distribution function and its inverse in any explicit way. |

Definition C.6 (Generalized Block-Scatter) The generalized block-scatter dis-
tribution function family (o) is defined in chapter 4. Here we present a description

and derivation of important features.

Description Global to Local: In order to place load imbalance in high-numbered
processes, we utilize “back scattering” of coefficients, as compared to the common
“forward scattering” used by the & family. So, for block coefficient Ig, its mirror
block is I§Y = b— 1 — Ig. We scatter based on this reverse block in order to find its
process p, subtracting the scatter quantity I/g* mod P from P — 1 to avoid reversing
the order of blocks:

p=P—1-(Ig" mod P).

Importantly, this formula leaves the last global block of coefficients as the highest
block in process P — 1. Hence, if M mod B # 0, then the foreshortened block ends
up in process P—1. Since block layers are filled in top-down in this scheme, computing
the local coefficient : also requires more effort. Given the process p, we have |I§¥/P|
complete blocks already in place above it. However, we need the block offset in process
p from the beginning in order to figure the local coefficient :. From the cardinality
function (the same as for the generalized block-linear function; see also below), we

know that the number of block coefficients in p is

b+p
lTJ , (C.21)

and, therefore, the following is the number of unfilled-in blocks:

lb“’j - l’fr:J . (C.22)

P

C.1. DEFINITIONS AND DESCRIPTIONS 179

This quantity minus one is the local block index for Ip. Scaling up by the blocksize B
gives the local coefficient of the zeroth element of block /5, and adding the coefficient
offset of I within the global block Ig completes the local coefficient i:

B ([”*TPJ 1] ﬁj) + (I mod B). (C.23)

Notice that the possibility that M mod B # 0 does not impact this derivation. Only
the number of blocks in each process plays a role.

Local to Global: The inverse is derived as follows:

51 - (215

i b+p I,';"J
=|p = |—L£|p- .
I.BJ +P [P}P lp B (C.25)
= (b+p)—(b+p) mod P— Ig" + Ig" mod P, (C.26)
= p+1+Ig—(b+p)mod P+ Ig" mod P. (C.27)
Rearranging,

Iy = l%JP+(b+p)modP+(P—1—I,';"modP—p) (C.28)
- l%JP + (b+p) mod P, (C.29)

since p = P — 1 — I§¥ mod P. Scaling up by the blocksize B, and adding the offset

within the block : mod B, we obtain

I = B (l-%JP + (b+ p) mod P) + (i mod B), (C.30)

as asserted.

180 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

Cardinality: The cardinality function o! is identical to A}, by construction. From
back scattering, the global blocks are layed out in reverse order, beginning with the
last block and process P — 1. Each subsequent block is placed in the next lowest-
numbered process plus P, modulo P. Consequently, the foreshortened block, if any,
is placed as the highest-numbered block in process P — 1, and each process has at
least ! block coefficients. By virtue of the scattering order, the last r processes get
1 + 1 block coefficients. Except for process P — 1, these “tail regime” processes
receive B(l + 1) total coefficients. Process P — 1 gets Bl + M mod B coefficients for
M mod B # 0; otherwise it receives as many coefficients as the other processes of the

tail regime. Processes in the “head regime” (the first P —r processes) receive exactly

Bl coefficients. |

Definition C.7 (Parametric Families) The parametric distribution function fam-
ilies (¢ and) are defined in chapter 4. Here we present a description and derivation
of important features. The one-parameter family (is recovered from £ for the special

case B =1, and consequently requires no separate discussion.

Description Global to Local: The two-parameter distribution ¢ incorporates a
scattering parameter S as well as the blocking parameter B apparent in the block
distribution functions described above and in chapter 4. In analogy to the generalized
block-linear “istribution, the two-parameter distribution divides the processes into a
head and tail regime, again loading the tail regime with imbalance. The compatibility
with the generalized block-linear distribution is inherent in the definition of the two-
parameter distribution, as we shall see. This distribution also divides the coefficients
of each process into two regimes: scattering and non-scattering. BS-size blocks are
scattered by the two-parameter distribution.

First, we differ¢. -iate each process into scattering and non-scattering regimes.
The parameter Isg = |I/S] is the number of complete BS-size blocks in each process.

Only coefficients will local indices less than ls are candidates for scattering. We

C.1. DEFINITIONS AND DESCRIPTIONS 181

must ask how we can know the local coefficient of a global coefficient I before the
transformation is itself complete. Well, first we compute the generalized block-linear
data distribution of I to obtain (po, %), I’s image in a pﬁrely linear distribution. For
io > lg, this is the final mapping for the coefficient; no scattering of it can occur. We
quantify this breakpoint by Ag = |io/BS]. In the regime A > Is, the two-parameter
distribution (and its inverse) are identical to the generalized block-linear distribution,
by definition.

So, the interesting case is evidently A < ls. The total number of BS-blocks in
each processes’ scattering regime number Is. In processes 0,...,po — 1, exactly pols
BS-blocks are used up. In process po, exactly Ag blocks have been used up to reach
coefficient I. The global BS-block number of coefficient I is consequently Ips =
pols + Ao. (Note that this counting completely ignores non-scattering coefficients in
each process.) Now that we have the global BS-block number of coefficient I, we can
forward scatter this block. We want successively higher blocks to go to successively

higher processes, modulo P:

P = IBS mod P. (C.31)

Furthermore, by the time we have scattered Igs BS-blocks, there are |Ips/P| com-
plete BS-block layers already in place (below for forward scattering) in each process.
This quantity scaled up by the blocksize BS gives the local coefficient number of
the zeroth coefficient of the block. We don’t change the relative order of coefficients
within BS-blocks, so the additional offset is exactly ig mod BS. Therefore, we arrive

at the local coefficient for I inside process p;:

as asserted. The two-parameter distribution is just a composition of generalized

block-linear and simple block-scatter distributions applied in a particular way, with

182 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

special rules added. For this reason, sufficiently large S causes a degeneration to the
generalized block-linear distribution (we quantify when this happens in a bit). For
S = 1, we are scattering the first /| B-block coefficients in each process. This is not
exactly how the generalized block-scatter distribution would partition the coefficients,
but represents an equivalently useful scattering mechanism.

At what point does scattering cease? Trivially, for S > [, ls = 0, and the scattering
regime becomes vacuous in each process. A tighter bound is

S= EJ +1, (C.33)

for which there are a total of P BS-blocks, divided one each between the processes.
The simple forward-scattering function doesn’t scatter any of these blocks. So, we
define Scris = [I/2] +1, the point at which all scattering ceases in the two-parameter
distribution.
Local to Global: Our first goal is to see if the coefficient i is in the scattering or non-
scattering regime. Simply, A = |¢/BS] can be compared with ls, as we compared
Ao = |io/BS] to ls above. If A > ls, we are in the non-scattering regime, and
the global coefficient is given by the inverse generalized block-linear distribution I =
A5 (p, i, P, M).

Consequently, the interesting case again occurs in the scattering regime; namely,
A < ls. From p, ¢, we must reconstruct the global BS-block number of coefficient I,
Igs. From that, we can work back to the coefficients (po,7o) formed by the original

block-linear distribution and

(Po,io) +3 1. (C.34)

By definition of ¢ in the scattering regime,

b= L=l

C.2. SELECTED PROOFS 183

AP = IBS_IBS mod P = IBS——p, (036)
and, rearranging,
Igs = AP + p, (C.37)

which we denoted by I} in chapter 4, for clarity. Having recovered Ips, the original
process po is simply |Ips/ls]. The original local index 7g is the sum of BS(Igs mod Is)
and the BS-block offset i mod BS. The pair (po,io) can be back-transformed (as
for coefficients in the non-scattering regime) via the generalized block-linear inverse
function A5 to give I. (We called this coefficient pair (p,i2) when stating the inverse
in chapter 4, for clarity.) This completes the construction of the inverse.

Cardinality: The cardinality function is the same as for the generalized block-linear
distribution \g. This is true because we implicitly rely on Ap to generate the first step
of the distribution. Then, the scattering effect merely rearranges BS-blocks between

processes without changing the static load balance. : |

C.2 Selected Proofs

We constructively prove the correctness of the scatter and block-scatter data distribu-
tions. To prove correctness, we construct the inverse, we demonstrate the consistency
of the cardinality function (i.e., that it sums to exactly M coefficients), and that the

distribution functions are one-to-one and onto.

Identity C.1 (Division with Remainder) The following trivial identity holds for
integers =, y, and is applied (often implicitly) throughout the derivations, descriptions
and proofs:

z= [5Jy+zmody Vy#0. (C.38)

184 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

Lemma C.1 (Coefficient Cardinality) The linear, scatter, block-linear distribu-
tion and block-scatter distributions’ cardinality functions defined above are correct,

provided that M mod B = 0.

Proof The total number of coefficients is

M= Pz:j: M (p, P,M) = BS;‘: lﬁ#J (C.39)
= B(r(l+1)+(P-r)) (C.40)

B(Pl+r) = B(P {%J + bmod P) (C41)

B lﬂJ —M-MmodB, . (C42)

Bb B

applying the definitions of [, r and b. Since M mod B = 0 by assertion, the total of
coefficients is M = M, as required. The case B = 1 proves the correctness for the

linear and scatter cardinality functions (which are the same). |

Lemma C.2 (Scatter, Block-Scatter Correctness) The block-scatter and scat-
ter distribution functions are correct assuming M mod B = 0. The scatter-case proof

is recovered in the following by setting B = 1.

Proof First we construct the inverse function. By definition of 7 in Equation C.16,

51 - 2

Therefore by Equation C.38,
l%JP = Iy - (Ig mod P), (C.44)
|5]P+p = 1, (C.45)

B (lé—JP+p) = BIg = I— (I mod B), (C.46)

C.2. SELECTED PROOFS 185

= I — (¢ mod B), (C.4T)
and using the definition p = Ig mod P from Equation C.16. Therefore,

I=B (I.%JP +p) + (mod B) (C.48)

as asserted. Inserting B = 1 in the above arguments, we derive the scatter distribution
inverse.

Next, given any (p,i) such that 0 < p< Pand 0<i < :\"B(p,P,M), we demon-
strate that its pre-image [satisfies 0 < I < M —1. By definition, I > 0 trivially and,

furthermore:

I < fEB([égB(p’P’BM)_lJP+p)+((&”B(p,P,M)-—1)modB)(C.49)

Letting s = &%(p, P, M),

~
]

(s—1—(s—1)mod P)P+ Bp+(s—1)mod B

= (s—1-(B-1)P+Bp+(B-1) = sP+B(p+1-P) -1

BQ%JP%B@H-P)A

B(b+P—-p—1)+B(p+1-P)—1—-B((b+P —p—1) mod P)

= (Bb—1)-B((b+ P—p—1) mod P)

= (M-1)-B(()+P—-p—1)mod P) < M -1 (C.50)

since

(6%(p,P,M)—1)mod B = B-1 (C.51)

186 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

and since Bb= M and (b+ P—p—1)mod P >0, I < I<M-1. By construction
of the distripution function, the image of the pre-image I is (p,:), which satisfies the
requirements on p and : above.

Next, for any two coefficients I', I? such that 0 < I',]> < M — 1 with I' # J?,
their respective images (p',1'), (p?, 1) are not identical (shows one-to-oneness). We
assume p' = p? and ! = 12, and demonstrate a contradiction. The contradiction arises
trivially by applying the definition of the inverse distribution function (a nonsingular
transformation of the distribution function) to the pairs (p',:!) and (p?,4?), implying
that I* = I?. Therefore, we have a contradiction, and hence the images of I' and I?
cannot be identical.

Finally, we have to show that the process of scattering actually produces the
cardinalities we defined. This is easy to see. Starting with p = 0, blocks are scattered
to successively higher processes, modulo P. This places at least ! blocks in each
process, and exactly [+ 1 blocks in the first 7 processes. Scaling up by the blocksize
B, we immediately see that each process has the appropriate number of coefficients

alloted to it. |

C.3 Weak Data Distributions

As stated at the outset of this appendix, and elsewhere in this thesis, it is impor-
tant to consider the implications of data distributions that are not of a closed form,
but which still require (substantially) less than O(M) space and time complexity
for M coefficients. To accomplish this general goal, we weaken the information con-
tent of data distribution functions in each process, per the following definition, and
consider the implications on correctness of such weakened distributions. Weak data
distributions offer the potential for much more c-ntrol over the locality of data in
the multicomputer ensemble, and are consequently necessary in general simulation

programs. See chapter 6 for the connection of weak data distributions to concurrent

C.3. WEAK DATA DISTRIBUTIONS 187

dynamic simulation problems in chemical engineering.

Definition C.8 (Weak Data Distribution) A weak data distribution function,
inverse function, and coefficient cardinality are defined local to each process p,

0<p< P, as follows:

~

QI,P,M) = (p,i) ifp=5p

w(I,P,M) — , (C.52)
(-1,-1) otherwise
QYp,i,PLM)=1 ifp=p
i PMy o | PO L= (C.53)
-1 otherwise :

Q(p,P,M) ifp=5p
M pay=i L REM) fp=p (C.54)

-1 otherwise

where Q, Q=1 and Q! are respectively the corresponding hypothetical strong distribu-
tion, tnverse and cardinality functions that provide our desired mapping, and which

we could implement with O(M) memory complezity or O([log, P]) time complezity.

We can readily construct a weak distribution w that require O([log2[M/P]]) time
complexity and O([M/P]) space complexity. The local coefficients of process p are
sorted alongside their global counterparts, using the global coefficients as the ascend-
ing sort key. Computing w(I, P, M) consequently requires a binary-search lookup.
(Perfect hashing functions, if feasible, reduce access time to O(1).) We can also
construct a weak inverse w™! requiring O(1) time complexity, and O([M/P]) space
complexity. We store the global coefficients corresponding to local coefficients in
local-coefficient order. Then, the local index becomes a perfect hash for the weak
inverse. Finally, the weak cardinality function w! can be stored with O(1) memory in

each process, and evidently requires O(1) time to evaluate.

188 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

Corollary C.1 (Relationship to Strong Data Distributions) Strong data dis-

tributions are weak data distributions.

Proof For example, the strong data distributions cited in this thesis require O(1)
time and O(1) storage. Since they have the entire mapping and inverse mappings
available, they have the locally required mappings available as a subset. The claim is
consequently true for these distributions. It’s also true more generally (this is not a

deep result). |

Lemma C.3 (“Strengthening” Distributions) Any weak data distribution can
be made into a strong data distribution (with O([log, P]) time complezity) by intro-
ducing a combine operation among the P participating processes in the data distribu-

tion, inverse and coefficient cardinality functions.

Proof Appropriate associative-commutative combination operations can be defined
for use with combine for each of the three weak functions to be “strengthened.” Each
of these combination operations selects the appropriate result from its candidate pairs,
always rejecting a “—1 datum,” which represents a lack of information. In this way,
it’s easy to see that combine globalizes the local information of each of the three weak

functions. [|

In principle, this lemma offers a useful connection of weak distributions to strong
distributions. However, the cost of combines makes the overhead for mappings de-
fined in this way unacceptably high in practice. Evidently, we must use memory
proportional to O(M) in each process, or accept the cost of “globalizing” information
at each instance, and of synchronizing all participants as well. However, there are
perhaps circumstances where intermediate amounts of memory (that we can bound)
can be used, with concommitant bounds on the amount of communication required.

We consider this idea next.

C.3. WEAK DATA DISTRIBUTIONS 189

The construction of hashing functions for weak data distributions is another area
of possible research. Perfect hash functions for w(I, P, M) would remove the need for
a binary search to discover the local component of the mapping I — (p,?) in process

p, or its absence. This is a topic for future consideration.

Definition C.9 (Sequentially Accessed Weak Distributions) Assume a weak
data distribution family w partitions M coefficients among P processes. Further,
assume that the order of accesses in transforming global coefficients K to local coeffi-
cients (p, k) by w(K, P, M) follows the natural order K =0,...,M —1 from start to
end (and/or K = M —1,...,0). Then, we can define a strong distribution () based

on w that requires O([2M/B)) storage in each process, and that has average time

o) ([Dﬁg—;ﬂ]) . (C.55)

B is denoted the coefficient window (or blocking) parameter.

complezity

Proof We construct the mechanism supposed above by means of the generalized
block-linear data distribution function Ag and the broadcast primitive. Each process
p (0 < p < P) reserves “window storage” W of length (in appropriate integer-length
units) 2 max; /\”E(ﬁ,P,M), and a current window number Wy (set initially to —1).
Furthermore, each process p, 0 < p < P, reserves an additional “local storage” area
W, of length ZA"E(p, P, M) (in appropriate integer-length units). Then, in the kth

location of the local storage W, in process p, we store

W,k = Q3'(p,k, P,M),P, M), (C.56)
k=0,...,\(p, P, M) -1,

p=0,...,P-1.

190 APPENDIX C. DERIVATIONS OF DATA DISTRIBUTIONS

Q) is the hypothetical strong data distribution function accomplishing the desired
global-local mapping. As constructed by Equation C.56, the first B coefficient pairs
are stored once and for all to block Wy, the next B coefficient pairs go to block W,
and so forth, with the last (possibly foreshortened) block of coefficient pairs stored
to Wp_;. By construction, the data for global coefficient K is stored in W,[k], where
(p, k) = Ag(K, P, M).

Now, when a global coefficient K is to be transformed, we form (p,k) =
Ag(K,P,M). If Wy # p, a broadcast of the local storage W, is effected among
the P processes. This communication step replaces the local storage window W in
each process with W,; subsequently, we set Wy = p. Since Wy = p by construc-
tion, the local window storage W in each process already contains the desired local
process number and offset of coefficient K at location W[k]. This construction com-
pletes the strong distribution Q. (The inverse distribution and cardinality functions
remain weak.) €, which is the hypothetical, “expensive” distribution function, does
not figure again after the one-time construction of the local storage areas (presumably
effected when a program is initialized).

Clearly, if K is accessed in ascending or descending order, then the broadcasts
will only occur once in every B calls to the transformation Q(K, P, M), yielding the
average time complexity claimed. However, the distribution is correct regardless of
the access-order for K, but more random access generates higher communication

overheads, just as observed in previous discussion further above. |

Windowing mechanisms such as this prove useful for pivoting strategies in LU factor-

ization. See appendix D.

Appendix D

Details on Concurrent Sparse Linear
Algebra

Abstract

We present abstract and practical LU factorization and triangular-solve algorithms
in abridged UNITY notation (cf., appendix G). At first, we do not address the
implications of sparsity explicitly. Hence, the first few algorithms pertain to both
dense and sparse concurrent linear algebra. Implicitly, this discussion shows how the
reduced-communication pivoting techniques apply to dense and sparse linear algebra
algorithms alike, a fact we have not stressed heavily in the main text; all dense solvers
utilizing partial row and/or column pivoting, or preset pivoting strategies should be
modified to use this approach and thereby reduce communication requirements, with
immediate non-trivial performance improvement. In any event, sparse matrices are
our key interest at present, and we know that the efficiency of sparse linear algebra
algorithms cannot be divorced from the details of sparsity. Hence, we eventually
specialize our discussion here to sparsity issues. For brevity, at this latter stage of the
appendix we describe the algorithm more anecdotally, referring to small sections of
UNITY code, and explaining their transformation and/or specialization to practical

sparse-matrix code.

191

192 | ...Sparse Linear Algebra

D.1 Basic Algorithms

The basic LU factorization and triangular solve algorithms shown in Figures D.1., D.2,
and D.3. are well known (see, for example, [22,21]). Furthermore, dense concurrent
algorithms have been presented by Van de Velde at various times (e.g., [57,56]). Here,
we skip the formal transformation steps between abstract and practical and pass
immediately to our improved specification for LU factorization (Figures D.4, D.5), an
algorithm that implicitly includes the reduced communication pivoting feature, per
chapter 5. Our presentation of the triangular solves in Figures D.6, D.7 appear quite
similar to that of Van de Velde, though the special:-ation to sparse matrix structures
will eventually reveal differences in our approach. Sparsity issues are described in the
next section.

We choose a data distribution

¢ = ({7, PN}, {(nv ™, 1) Q, N},

and partition the matrix A accordingly; index sets I?, J¢ p = 0,...,P -1, ¢ =
0,...,Q — 1 form the partition of I, J, respectively. For brevity, in the UNITY

notation we use

m? = y!(p, P,N), n?=0v%q,Q,N).
In the practical algorithms, process superscripts on variables (e.g., a}}, I?7) are
suppressed whenever variables are guaranteed to hold the same value in all unnoted
processes (respectively, apiy,, ZP) as a result of loose synchronizing procedures (i.e.,
global communication inherent in a pivoting strategy, row/columr oroadcasts) or im-

plicit replication (e.g., row/column vectors). Variables p, g, which determine process

context, are never superscripted. These ellisions help implicitly to reinforce the notion

1}

D.1. BASIC ALGORITHMS 193

of data evolution as the calculation progresses in the ensemble.

Interprocess communication steps are, of course, introduced to share quantities
that were “globally available” in the abstract procedures. For the LU factorization,
this results in pivot-row and multiplier-column broadcasts, and, in general, implies
at least some global communication within the pivot strategy. The grid formula-
tion uses vector replication: column vectors are process-row distributed and process-
column replicated while row vectors are process-column distributed and process-row
replicated (see chapter 2). In Algorithms LU-2 (see Figures D.4, D.5), FWD-2 (Fig-
ure D.6), and BCK-2 (Figure D.7), we have also specified global communication
operations distinctly from [57]. Specifically, we recognize that row/column broad-
casts can be accomplished by logarithmic fanouts rather than by a linear transmission
procedure envisaged in the foregoing reference and related publications, and as imple-
mented in that author’s experimental linear algebra codes. We illustrate the structure
and performance of our Zipcode-based broadcast operation in chapters 2, 3, respec-
tively. Algorithm LU-2, the “practical” LU Factorization, uses implicit pivoting and
an arbitrary, user-defined pivoting strategy symbolized by pivot_fn(). Delaying the
test for numerical singularity is part of the strategy that permits reduced communi-
cation pivoting, while slightly slowing down termination of the worst case scenario, a

numerically rank-deficient matrix.

194 ...Sparse Linear Algebra

Figure D.1. Algorithm LU-1

procedure LU-1 {LU Factorization of A = [a[i,j]] € RVN*N}

declare

i,7,k,rank : integer

Tk, Ck : integer

1,79 : set of integer

Qpiy : real

a : array [0..N — 1,0..N — 1] of real
initially

rank = 0 {numerical rank initially zero}

A = {i:0<i< N} {All rows and}

J = {j:0<j< N} {columns active initially}
assign

(;k:0<k<N =
{Acquire pivot for kth step: acquire pivot value and row, column: rx,cx}
{(Pivot storage mechanism is a side-effect of pivot_{n()):}
@pivs Tk, Ck — pivotin(k,a,M,N,I,7);

{Deactivate pivot row (holds rxth row of U) and
column (will hold cxth column of L):}
T :=I\{rn}; T := T \{ek}s

{Calculation of the Multiplier Column (cxth column of L): }
if ayiy # 0.0 then begin (|| i : i €T = afi,c] = ali,ck]/apiv) ; end

{Belated test for numerical singularity:}
if api, = 0.0 then terminate else rank := k+1;

{Effect the elimination:}
(Il 7 :i€ZTandjeJ =
if a[rx,7] # 0.0 and a[i, cx] # 0.0 then
afi,j] = ali,j] - a[rx, jlali, ck};

)
end LU-1

Abstract representation of LU Factorization with implicit pivoting and arbitrary pivoting
strategy symbolized by pivot_fn(). Delaying the test for numerical singularity is significant
to the concurrent implementation.

D.1. BASIC ALGORITHMS

Figure D.2. Algorithm TRI-1

procedure TRI-1 {Given L,U factors, right-hand-side b, solve Az = b}
declare
z : array [0..N — 1] of real
b : array [0..N — 1] of real
See also Figure D.1...
initially
T ={i:0<i< N}
assign
{Column-Oriented, In-place Forward-Substitution overwrites b (Ly = b):}
(6 k:0<k<N =
{Recover Pivot Indices from storage mechanism:}
Tk, Ck — pivotidxJload(k,Z,J);
T := I\{r:}; {Deactivate rxth row of L}
{By now, b[r] contains kth Forward-Substitution solution element.}
(Il 2 :1€T =
if b[rx] # 0.0 and a[i,cx] # 0.0 then
b[z] := b[3] — a3, ck)b[rx] ;

)

{Column-Oriented, Back-Substitution: (Pg PR) Uz=y=b}
T := {i:0<i< N}; {Re-initialize index set}
Gk:«N-12k2>0 =

{Recover Pivot Indices from storage mechanism:}

Tk, Cx — pivot_idxload(k,Z,J);

T := I\ {rx}; {Deactivate rxth row of U}

{Divide by Pivot Element: a[rk,c] to finalize z[ck]:}

z[ck] := b[rx]/a[rk,ck);
{Now, z[ck] contains kth Backward-Substitution solution element.}
(I ¢ : 1€ =

if b[rk] # 0.0 and afi, cx] # 0.0 then
) b[i) := b[1] — ali, cx)z[ck] ;
)
end TRI-1

195

Abstract representation of triangular solves compatible with Algorithm LU-1, Figure D.1.
The (application-defined) pivot-storage mechanism implicit in pivot_fn() provides pivot in-

dices to the triangular solves through the auxiliary function pivot.idxload().

196 ...Sparse Linear Algebra

Figure D.3. Algorithm LU-1la

procedure LU-1a {LU Factorization of A = [a[i,j]] € RV*N; forward elim. of b}
declare

i,5,k,rank : integer
Tk, Ck : integer
,J : set of integer
Qpiv : real
a : array [0..N — 1,0..N — 1] of real
b : array [0..N — 1] of real
initially
rank = 0 {numerical rank initially zero}
I = {i:0<i<N}
J = {j:0<j< N}
assign

(;k:0<k<N =
Gpiv, Tk, Ck — pivotfn(k,a,M,N,I,7); {Acquire pivot}
T :=I\{r}; J := J\{ck}; {Deactive Pivot Row, Column}
if apiy # 0.0 then begin (|| i : i€ = afi,ck] := afi,ck]/apiv) ; end
if apiy = 0.0 then terminate else rank := k+1;
(| 4 : i€Zandj€ J :: {Effect the elimination}
if a[rx,j] # 0.0 and a[i,cx] # 0.0 then
) afi,j] := a[i’j] - a[rkaj]a[i’ck];
(I] ¢#:i€Z :: {Forward Substitution}
if b[ri] # 0.0 and a[i,cx] # 0.0 then
7] := b[i] — a[i, cx)b[rk] ;
)
)
end LU -la

Algorithm LU-1 augmented with forward substitution on the right-hand-side b.

D.1. BASIC ALGORITHMS

Figure D.4. Algorithm LU-2, “Practical” LU Factorization, Part I.

197

procedure LU-2 {LU Factorization of A = [a[i,j]] € RVN*N}
constant
FIRST_ROW_FANOUT =1

declare

p,q,rank : integer

pP9,¢7%,k : integer

Pa] 5P : integer

Ir,J9 : set of integer

abs : real

a?? : array [0..m? — 1,0..n9 — 1] of real

g : array [0..mP — 1] of real

u? : array [0..n% — 1] of real

g : data_distribution = ({(p,u'l,p”); P,N} , {(u, v-1,t); Q,N})
initially

rank= 0 {numerical rank initially zero}
7P = {i:0<i<mP}, J? = {j:0<j<nI}
assign
(l p: 0<p<Pandg:0<¢<@Q =
(;: 0<k<N =
{Acquire / Store kth pivot info.: get local names for 7k, cx }
a?3, 579,19, g9, P4, mode — pivotfn(k,aP?, m?,n?, 17, I G, p,q);
if mode = FIRST_ROW_FANOUT then begin
{Case p globally known; Process Row p has correct i, g}
if p = p then begin
I? := I?\{i}; {Deactivate Pivot Row (rxth row of U)}
if g=gthen J9 := J9\ {j}; {Deactivate before Broadcast}
end
{Broadcast Pivot Row (plus, in-principle Pivot Value, §,77):}
fanout a?7[3, 59 : j9 € J),a0%,3,4, 7°
on G : (e,9) — w[s],a}%,3,4,57;
{All have correct p, i, §; Process Column g has correct i}
if ¢ = ¢ then begin
if p#pthen J9 := J9\ {j}; {Deactivate Pivot Column}
{Form Multiplier Column (cxth column of L):}
if aﬁ;f, # 0.0 then begin
(;# : ? eI = a®i[i?,]] := aPili?,f]/abd);
end
end

198 ...Sparse Linear Algebra

Figure D.5. Algorithm LU-2, “Practical” LU Factorization, Part IL.

{Broadcast Multiplier Column, Pivot Value, Promote i}

fanout aPd[iP : PP € I”,j],af,;z,j on G: (p,e) — IP[e],apiv, J;
if singularity _test(api,) = TRUE then
terminate else rank := k+1;
else begin
{Case § globally known; Process Column § knows p, j, Pivot Value:}
if ¢ = ¢ then begin
Ji := Ji\{j}; {Deactivate Pivot Column}
{Form Multiplier Column (cxth column of L):}
if a®1 # 0.0 then begin

piv ..
(; : # €IP = aPi[iP,]] := aPi[P,f]/abd) ;
end
if p=pthen IP := I?\{i}; {Deactivate before Broadcast}

end
{Broadcast Multiplier Column, Correct Pivot Value, Promote Indices:}

fanout a?i[i? : ¥ € I7,j],a5,5,%,5 on G : (p, ®) — IP[e], apiv, $, P Js
{Now, all have correct p, §, j; Gpiv. Process Row p has correct i.}
if singularity_test(ap,) = TRUE then
terminate else rank := k+1;
if p=p and ¢ # G then
I? := I?\{i}; {Deactivate Pivot Row (rxth row of U)}
{Broadcast the Pivot Row , Promote Index i:}
fanout a?[i, ;7 : j7 € J,ion G : (e,q) — ul[e],;
end
pivot_index_store(k,p,,d,7;G,p,q); {Store Pivot Indices}
(; #9 : #P9€IP :: {Effect local eliminations}
if IP[i"9] # 0.0 then begin
(; 79 : P9 € J9 =
aPI[iP9, 9] := gPAa[iPA, jPA] — IP[P]ul[jP49)
)

end

) {End of ::-quantification}
)¢ {End of p, quantification}
end LU-2

D.1. BASIC ALGORITHMS 199

Figure D.6. Algorithm FWD-2, “Practical” Forward-Solve

procedure FWD-2 {Column-Oriented, Forward-Solve overwrites b (Ly = b):}
declare

4 : array [0..mP — 1] of real
P : real
See also Figure DA4. ...
initially
P = {i:0<i<mP}
assign

(l p: 0<p<Pandgq:0<¢<@Q =
{Recover Oth Pivot Indices from storage mechanism:}
$,1,4,j « pivot_idxload(0;G,p, q);
(;k:0<k<N =
{Recover k + 1st Pivot Indices from storage mechanism:}
if k< N—-1then
ﬁ+’i+7é+ aj+ Al pivoti_idx_loa,d(k +1; g’p’ q);
ifp=pthen I? := I?\{i}; {Deactivate rxth row of L}
if ¢ = ¢ then begin
{t?4[4] contains kth Forward-Substitution solution element.}
if p = p then vP9 := bpPI[i];
fanout v79 on G : (e,§) — v9;
if v7 # 0.0 then begin
(; % : PeIP =
bPAi] := P4 — aPi[i, j]od ;
)

end

{Retransmission step for ¢4 # §:}

if k< N-1and §; # ¢ then send 54[e] to G : (p,d+);
end
ifk<N-1land ¢g=g; and § # ¢4 then

receive b”i[e] from G : (p,§) — b7+][e];
end

Pi=P4; =045 §:= G435 Ji= 4
)
)
end FWD-2

Practical representation of triangular solves compatible with Algorithm LU-2, Figures D 4,
D.5. The (application-defined) pivot-storage mechanism implicit in pivot_idxload() re-
trieves pivot indices.

200 ...Sparse Linear Algebra

Figure D.7. Algorithm BCK-2, “Practical” Back-Solve Algorithm

procedure BCK-2 {Column-Oriented Back-Solve: (PEPR) Uz =y=b}
declare

z9 : array [0..n? — 1] of real
b? : array [0..mP — 1] of real
See also Figures D4, D.6. ...

initially
IP = {i:0<i<mP}

assign

(l p: 0<p<Pandqg:0<¢<@Q =
{Recover N — 1st Pivot Indices from storage mechanism:}
$,3,§,j « pivotidxload(N - 1;G,p,q);
Gk:= N-1>2k2>0 ::
{Recover k — 1st Pivot Indices from storage mechanism:}
if k> 0then p_,i_,§_,j- « pivotidxload(k - 1;G,p,q);
if p=pthen I? := I?\{i}; {Deactivate rith row of U}
if ¢ = ¢ then begin
if p = § then 2#4[j] := bP4(3]/aP4[3,
fanout z74[f] on G : (e, §) — z9[j];
if z9[j] # 0.0 then begin
(; # : ?PeIP =
bP[d] := bP4 — aPA[i, jJe(]] ;
)

end

{Retransmission step for §_ # §:}

if k>0and §- # g then send b”9[e] to G : (p,§-);
end
ifk>0and ¢g=¢- and §# §- then

receive b*[¢] from G : (p,§) — b*i-[e];
end

n

pi=p-; =15 ¢i=4-; ji=]-g
)
)
end BCK-2

Practical representation of the back-solve compatible with Algorithm LU-2, Fig-
ures D.4, D.5. The (application-defined) pivot-storage mechanism implicit in
pivot_idx_load() retrieves pivot indices.

D.2. SPARSITY ISSUES 201

D.2 Sparsity Issues

The basic structure of these algorithm specifications carries over to the sparse case,
though with some significant, practical changes. In this section, we mention issues
in the progression from algorithms LU-2, FWD-2, and BCK-2, to their fully sparse
forms. LU-2 will split into the A- and B-modes introduced in chapter 5. We comment
upon the means for implementing indexation that avoid quadratic work. We also
clarify some of the comments made in chapter 5. Though we enlargen here on the
discussion in chapter 5, a much more complete discussion of (sequential) unsymmetric

sparse matrix linear algebra is offered by Duff, et al. [16].

D.2.1 Indexation

Index sets must be handled carefully in order to avoid “O(N?) traps.” For example, an
index set uses memory proportional to the local problem size, say I, where I ~ [N/L],
with N the global problem size, and L the number of processes (either P or Q).
Therefore, work of O(l) cannot be done within the outer k-loop of the factorization
or triangular solves without implying a trap. Innocuous O(l) work occurs if, for
example, clearing an index set dutifully zeroes the entire memory area of length O(l).
In short, we require that testing, activating or deactivating an index require 0(1)
work, and that clearing, or any a systematic access to an index set, be done in time
proportional to the number of active entries. So, in loops that consider the active
entries of an index set, this should not be a loop over [with tests for active/inactive
status of elements. Creating an appropriate, efficient indexation mechanism turns
out to be a straightforward excercise, once the need is realized. We comment on
this fact because another multicompuer sparse solver of which we are aware, the
prototype sparse solver considered in [53], incorporates index set manipulations that
violate these requirements, and consequently, its LU factorization has a sequential

complexity of at least O(N?).

202 ...Sparse Linear Algebra

D.2.2 LU Factorization

We consider means to convert Algorithm LU-2 into appropriate sparse forms. There
is a significant amount of machinery in the actual concurrent code that we do not
consider here; our present purpose is to convey the key notions. We know that the
naive access to the matrix elements a?9[i, j] will have to be refined in order to exploit
sparsity, in addition to circumspect index manipulation. This means that linked lists
will have to be maintained; we must consider the style of linked lists to be used. Since
we will not store the entire O(N?) elements, fill-in will require manipulation of the
linked-list structure. There are many such issues, and it boots little to quote them
out of context. In short, we elect a two-mode factorization, as detailed in the main
text. In A-mode, we construct the linked-lists dynamically based on (hopefully stable)
pivots selected by the user-defined pivot function. In B-mode, we resolve to re-use the
same pivotal sequence and linked-list structure, and monitor stability. Then, we can
flag instability when necessary. A-mode is repeated as often as necessary, in practice.

This strategy reflects the successful style of Harwell’'s MA28 code [16].

UNITY Sparse Notation

Up to now, we have considered matrix manipulations within the dense arrays [a”[%, j]]
in the “practical” algorithms. In the sparse algorithm, we will not have this data

structure. Instead, we will manipulate linked lists so the sparse notational prototype

(; £:2€Q0:{L, v N\ --0} =.0)

shall be a quantification with sequential traversal by variable £. Instances of £ are the
objects referred to by L, and links to L in turn, with linkages specified by operation O,
up to but not including the termination of the list §. For matrix elements, the oper-

ations O will be NEXT_ROW for row-oriented linked-list accesses, and NEXT_COL

D.2. SPARSITY ISSUES 203

for column-oriented accesses. The objects referred to by £ are, for the present dis-
cussion, matrix elements of the type specified in Figure 5.2. ¢\/T shall refer to the
component of the object £ named T, so that £\ is the local row index 7 of the sparse

matrix entry referenced by £.

Stability Test

We choose a very simple stability test, as suggested by our experience and that of col-
leagues [4] with Harwell’s MA28 , this is sufficient for many practical circumstances.
Naturally, the implementations can easily be changed to incorporate more involved
tests, should this prove necessary in unforseen applications.

The stability test is as follows (cf., [58]). We compute the growth factor v

. (N-1)
maXo<i<N, 0<j<N alt, j]

max05;<1v, 0<j<N a[ia J]

v = (D.1)

where by a[i, j]V

we mean the values in the L and U factors upon completion of
the factorization. If 4 is large, then instability is evidently possible. However, it is not
our goal to judge the quality of the pivoting algorithm chosen by the user, but rather
to reveal the degradation of stability caused by repeated use of a pivotal sequence on

similar but numerically unequal matrices. If 44 is defined as the growth factor for a

matrix factored with a user-specified pivoting function, we can consider the ratio

YAB = 18 (D-2)
YA

where vp is the growth factor computed for a structurally similar matrix, but factored
with the same pivotal sequence used for the initial matrix. The quotient y4p indicates
the relative loss of stability resulting from the fixed pivotal sequence. A user tolerance
(e.g., 10) can be set to reflect the allowable size of 45 before instability is declared.

Even before an initial factorization, the entire sparse matrix is to be stored in

204 ...Sparse Linear Algebra

linked-lists of row pointers U,,u[i], ¢ = 0,...,m? — 1, and L,oy[é] ,2 =0,...,mP =1,
some of which may be trivial (#). (By A-mode convention (below), nothing is to be
stored initially in L,.., pointers, but the following is still valid.) Then, both before and
after a factorization, a valid computation for the growth factor v is achieved through
the use of the procedure in Figure D.8. once before and once after a factorization.

The ratio of the initial and final values of ¢ thus attained equals 4.

Figure D.8. Computation of Growth Factor v

declare
cP : real,
Lra [4) : array [0..mP — 1] of linked list of matrix_entry pointers
Urifs] - array [0..mP — 1] of linked list of matrix_entry pointers
initially
Pl = 0;
assign
(l p: 0<p<Pandgq : 0<¢g<@ =
(6% : 0P <mP
if LP4,[i*] # 0 then begin
(;€:€€ NEXT_ROW: {LP8 [*], \\, \\\--.} =
cP? := max(cP?,£ \, Value);
)

end
if UP,[?] # 0 then begin
(;€:2£€ NEXT_ROW: {UPZ[%"], \uy N\ ---}
c”9 := max(c™?,£ \ Value);
);

end
)
);

combine[max] ¢?? on G : (e,0) — ¢;
end

D.2.3 A-mode

A-mode begins with a computation of the c-value described above, and likewise, ends
with a matching computation, yielding 7v4. We demand that the entire A matrix be

pre-stored in row-oriented linked-lists, U%3 [#*], i = 0,...,m? —1,p=0,...,P — 1,

D.2. SPARSITY ISSUES 205

g=0,...,Q—1. At completion, the U%Z [:?], L?4, [:"] contain pointers to the rows of
U and L, respectively, within which additional entries have been added to incorporate
fill-in. Furthermore, U%{[;9] and L%3[j7], 7 =0,...,n? — 1 are column-wise pointers
(constructed at the conclusion of A-mode) that reference the same matrix structure.

We do not presort the entries of the sparse matrix prior to factorization. Nor do
we sort the linked-lists for L and U during or after the factorization, for example, into
elimination sort order. However, when a pivot element is located in a process, say in
(5, 4) at location (i,), it’s placed at the beginning of its U2 [i] and UZ{[j] pointer

Tow

lists, for convenient access in the triangular solves.

D.24 B-mode

B-mode is a simplification of A-mode. First of all, the pivotal strategy is always preset
pivoting; the preset sequence is exactly the sequence created dynamically by A-mode.
As a consequence of the construction of linked-lists in A-mode, a new sparse matrix
provided to B-mode must have all the “fill-in” set to zero, and be stored within the
L/U linked-list pointers created by A-mode for the initially factored matrix. The
L/U pointers hold entries that will eventually become part of L and U, respectively.
However, it is convenient to segregate the operations over these linked-list pointers
from the beginning of B-mode. In the actual implementation, the elimination phase
contains a loop over U pointers and L pointers. Counter intuitively, the elements
touched by any elimination phase works on exactly those elements not yet part of the
triangular factors.

The style of linked-list traversal during the local elimination phase has an im-
portant effect on performance. When eliminating, we can first utilize the activity
information given by either Z?’s or J?’s to restrict effort, depending on whether we
eliminate across rows or down columns. Inside any active row or column linked-list,

however, we are obliged to touch each element at every iteration k, even if this is

206 ...Sparse Linear Algebra

just to test for activity of a column (resp., row) element. Were we to sort the linked-
lists in elimination order, we could avoid touching elements known to be inactive and
hence reduce work further. Presently, we eliminate anachronistically as follows: the U
linked-list (representing entries eventually part of U) are traversed row-wise, and the
L linked-list (representing entries eventually part of L) are traversed column-wise.
Optionally, the user could have control over these choices, but A-mode linked-list

sorting is a better solution.
Finally, we compute vp analogously to the computation of 74 in A-mode. At the
maz)

end of the computation, y4p is formed, and checked against a user tolerance (v75

for this ratio of growth factors. A warning flag is raised if the ratio proves too large.

D.2.5 Triangular Solves

The triangular solves are quite similar to the FWD-2 and BCK-2 with the exception
that column-oriented linked-lists are utilized. Each element in L and U are touched
exactly once. The calculation complexity of these operations is consequently propor-
tional to the number of entries (plus fill-in) contained in the respective factors. As
noted in chapter 5, the retransmission step can constitute higher-order work than the
calculation itself (since we have to transmit whole local & vectors horizontally), if Q
is too large, and/or too much scattering of matrix column data is inherent in the v
distribution. For Q = 2, this higher-order work can be avoided easily, but, in general,
the use of an appropriate column data distribution is essential.!

For example, the inner quantification

if z9[j] # 0.0 then begin
(;° : P€I? =

1We note en passant that this component of the linear algebra calculation illustrates how the
scaled performance paradigm mentioned in appendix F can lead one astray. Since communication
cost grows faster than computation cost for typical grid configurations and data distributions, scaling
the problem to larger matrix sizes for such configurations makes performance worse.

D.2. SPARSITY ISSUES | 207

(] = b4 — a2, ot

)

end

from Algorithm BCK-2 is replaced by:

if z9[j] # 0.0 then begin
(; & : € NEXTROW: {UZ[7), \ N\ -..} =
bPi[i] := BP9 — £P N\ Value - z9[j];
)

end

208 ...Sparse Linear Algebra

Appendix E

Details on Waveform Relaxation

Abstract

This appendix has one purpose: to reveal the underlying differential-algebraic prob-
lem formulation inherent in CONCISE and comment upon it. Here we build on
recent discussions with and suggestions of Mattisson and Séderlind [34]. This ap-
pendix is included mainly to spur future investigation rather than for conclusiveness.
Such investigations must include a study of convergence results for DAE systems and

applicability to chemical process flowsheeting, our key interest.

E.1 CONCISE’s Problem Formulation

In circuit simulation, the form of the differential-algebraic equation to be solved is

dQ(v)

I(v) + 7

=0, (E.1)

with I the static current, @ the charge, and dQ/dt the dynamic current. Let’s divorce
the discussion from electronics, and consider that we want to solve the following
implicit ODE system:

dg(v) _
=S (E.2)

209

210 APPENDIX E. DETAILS ON WAVEFORM RELAXATION

By introducing a dummy variable w, we can reformulate the Equation E.2 as follows:

du _ _f(y),
2 =—f(©) (E3)

0= w—q(v),

which is a semi-explicit DAE system. Equations E.3 are solved for v with error control
on v; w is included for notational convenience and is never evaluated.

Referring back to electronics, we make the connections

I(v) = f(v),
Q(v) = q(v),

(E.4)

with v bearing the same connotation as before. By comparison, for a typical flow-
sheeting applications (distillation simulation), we do not exploit the general nonlinear

mapping ¢(v), and so choose ¢(v) = v; thus, Equations E.3 become for this case:

= f(v), |
i =1 (E.5)

O=w-—o.

In CONCISE’s electrical model library, we note that @(v) = Cw for a linear capacitor,
with C the capacitance, and that Q(v) = go * /v — v, for a diode with a particular
doping profile. Analogous mappings are defined for other circuit devices. Typically,
there are explicit ways to compute @ as a function of v, but the inverse is not neces-
sarily easy to derive. Thus, in the electrical simulation scenario, f(v) is seen to be the
static current flowing through conductors and controlled sources (transconductors —
used to model transistors and other devices with gain), ¢(v) is the static charge stored
in capacitcrs and pn-junctions, and dg(v)/dt is the dynamic curren' flowing through
the charge-storing devices.

To solve the equation system, CONCISE device model routines return f(v) and

E.1. CONCISE’S PROBLEM FORMULATION 211

q(v) (electrically, I(v) and Q(v)). The differentiation of g(v) (to get dw/dt) is done

by the BDF-routines (one differentiation) and
dw
) + f(v) =0 (E.6)

is solved for v by means of Newton-Raphson iterations (for each time point in a wave-
form). The system is evidently index 1 provided that dg/0v is non-singular. There is
no error control on w. For the BDF-solution, the history of w is needed (electrically,
the companion source). Error estimation in w should be a straightforward extension
of the BDF routines as defined in [32] and implemented in CONCISE, but is thought
to be unnecessary for this DAE structure.

As noted above, there are two formulations: Equation E.2., and Equations E.3.
The difference between the above two formulations is that Equation E.3. is an implicit
ODE (and thus not really an DAE as long as we have a non-singular capacitance
matrix dg/dv), while Equation E.3. is a differential-algebraic system of index 1 under
the same assumption. If the capacitance matrix is structurally singular or drops in
rank, then Equation E.2. is of course also a DAE, and it is important to observe
that the index for Equation E.3 always is 1 + the index for Equation E.2. The
extra help variable w thus gives an artificial index raise that is not desirable from
a numerical point-of-view. Thus, the two formulations are mathematically but not
numerically equivalent. By introducing error control on w, Equation E.3. essentially
becomes numerically equivalent to Equation E.2. as well, specifically for the case
where Equation E.2 is of index 0 (and when solved with a BDF method). While
for the electrical simulation the current formulation is acceptable, the index-raising
feature is a problem for the typical index 1, 2 systems we wish to simulate in chemical
engineering flowsheeting. A reformulation of the CONCISE integration mechanism

is therefore required to broaden its applicability and avoid bad results because of an

212 APPENDIX E. DETAILS ON WAVEFORM RELAXATION

artificial index problem.

Appendix F

On Concurrent Performance

Abstract

In this appendix, we review and comment upon alternative measures of concurrent
performance, specifically the “scaled performance” measures advanced by Gustafson,
Benner and Montry [25,23] with recent extensions [24].! In recent review texts, (e.g.,
[11]), these measures have been quoted without sufficient critical analysis as to their
practical implications and limitations. Our purpose is to add perspective on the va-
lidity of such measures, to indicate some of the limitations of their usefulness, and
also to suggest what aspects of their definitions are semantic in nature. By presenting
this alternative reaction to “scaled measures,” our intention is to spur further critical
discussion, not to discount the contributions made by the abovementioned authors
to the advancement of concurrent supercomputing, even insofar as one strictly con-
siders the “fixed-size” (traditional) speedups attained in Gustafson et al. in [25] for
interesting large-scale problems.

This appendix, like the others, is limited in scope for the sake of brevity; a more
detailed presentation of our views on performance is reserved for a future article
devoted specifically to this topic. In passing, we recommend an interesting article,
“Speedup Versus Efficiency in Parallel Systems” published recently by Eager et al.

[18]. It introduces the idea of “average parallelism,” and centers on the notion of the

1John Gustafson kindly provided machine-readable copies of his performance diagrams for this
appendix.

213

214 APPENDIX F. ON CONCURRENT PERFORMANCE

trade-off between performance and utilization of nodes (efficiency). Lower bounds for
speedups are offered as a function of average parallelism, and the article makes for

interesting reading.

F.1 Scaled Performance Definitions

In this section we offer basic definitions.
Figure F.1. The Scaled Performance Diagram
Log of

Problem
Size

Fixed Sized Speedup.

Log of Number of Processors

Definition F.1 (Scaled Speedup) Given a fized algorithm A and problem P(p),
where the problem size is “scaled” up with increasing p (i.e., as large as local memories
permit), then a single processor of equivalent power (and sufficiently large storage,
with uniformly efficient memory access time as compared to ensemble nodes) would
tdeally require time

Taeﬂ’al + T|| Xp (Fl)

F.1. SCALED PERFORMANCE DEFINITIONS 215

to execute the same task. Therefore, we define the scaled speedup as

Tyerial + 71” Xp

scaled
Sp Tserial + Th (Fz)
— Taerial fr||
Tseria
= p+(1-p) x Tz (F.4)
= p+t(l-p) x4, (F.5)

where & = Tyeriat/ T is identified as the sequential fraction of the computation, assumed

independent of p (that is, independent of both problem size and ensemble size).

The standard scaled performance diagram illustrating the idea of scaled speedup is
presented in Figure F.1. The fixed-time line presented in the figure represents a
measure of performance improvement when the runtime 7'(p) is to be held constant
as the problem size and ensemble size are both increased.

More recently, Gustafson [24] has advanced the idea that speedup is a ratio of

speeds rather than times:

Definition F.2 (Velocity Ratio)

Sequential Work
Sequential Time

V — Speedup = (

(F.6)

arailie. ime

Parallel Work)

He presents extensions in the “insufficient memory” regime that describe the increas-
ing cost of problem solution on a single processor resulting from the need to use tiers
of memory (successively “farther-away,” slower memory, then virtual memory, and
so forth). Based on this and other arguments, he contends that superlinear speedup
is readily possible within a framework in which one assumes a fixed-time model, in-

creasing both ensemble size and problem size under that constraint. See Figure F.2.

216 APPENDIX F. ON CONCURRENT PERFORMANCE

Figure F.2. The Scaled Performance Diagram Revis. ed

Log of
Problem
Size

Log of Number of Processors

F2 Why “Scaled Speedup” is not our Favorite Perfor-
mance Measure

The arguments forwarded for scaled performance are indeed extremely inviting be-
cause they define the performance of many parallel problems to be excellent. Without
quibbling about semantics further, the key problem we foresee with scaled perfor-
mance measures is primarily that many problems of interest do not scale much if
at all. All the argumentation offered for these new performance models fail when a
problem cannot be scaled homogeneously over some range of problem and ensemble
sizes. For instance, VLSI circuit simulations and chemical process flowsheet simula-
tions are modelled by systems of ordinary differential-algebraic equations. There is
no way to change the number of equations very much. There is no regular grid to
make finer. What of accuracy? We can increase the complexity of modeling equations
to some degree, and this is interesting, though limited. It’s true that we can demand
greater accuracy for a fixed physical model, and hence increase (“scale”) effort in this

way. Increasing accuracy by one decimal digit does not however increase work by a

Why “Scaled Speedup” is not. .. 217

factor of ten. Since accuracy is governed by iterations that are usually superlinearly
convergent (Newton iterations), work increases only slowly as we demand more accu-
racy. Furthermore, both the model and model data limit the amount of accuracy we
can sensibly demand. Typically, the accuracy required is posed as part of the prob-
lem solution and we attain negligible “credit” for this problem domain by providing
“excess” accuracy.

We question the validity of the scaled paradigm in that it suggests increasing the
time required to solve a problem in order to attain higher scaled speedup. We prefer
to decrease the time required to solve an interesting fixed-sized problem as our key
motivation for parallel computing. Furthermore, even the fixed-time case is mainly
disinteresting, because, again we want faster solutions. We can resolve to solve larger
problems - this is certainly a valid goal of concurrent computing. However, once we
pick very large (fixed) problems, we will be satisfied to solve them at all, and have
little opportunity for (traditional) speedup measurements because of per-processor
memory limitations. The success of our concurrent research is then to be judged by
our ability to tackle previously out-of-reach problems.

For three-dimensional partial-differential equation problems (not considered in this
thesis), it is clear that the fixed-time paradigm is of interest, because we almost always
want to solve more accurate (that is, bigger) problems and a concurrent computer
ensemble is clearly a route to such higher performance solution. Furthermore, it is
easy to achieve “superlinear performance” in the fixed-time paradigm, even if the
problem is of fixed size [24]. This is not a panacea, however. It is probable that
new concurrent algorithms based on new numerical analysis could still outperform
the parallelized sequential algorithms kept/made attractive by scaled and fixed-time
performance measures.

In general, speedup is an obsolescent if not a worn-out concept, not only because

of the recent redefinitions discussed here. (We don’t like the idea of coupling our

218 APPENDIX F. ON CONCURRENT PERFORMANCE

view of performance to an arbitrary sequential execution time.) And, for instance,
judging performance of a parallel computer based on a detailed model of virtual-
memory requirements of an underlying sequential processor is somewhat beside the
point [24]. Concurrency research should center on the concurrency issues, not on
the sequential issues. The aim of parallel research is that we wish effectively to
depart the sequential arena of computation. It is true that a single processor of
equivalent power to an ensemble node would require an expensive memory hierarchy
to run a “very large” problem. But does this make concurrent algorithm research
or our parallel algorithms implicitly better? We are convinced that it does not.
These optimistic measures certainly obscure the need to develop intrinsically parallel
algorithms in that they yield superlinear performance results almost trivially. And,
insofar as performance measures cloud the need for such new algorithms, they are
counterproductive independent of their potential merits.

We are convinced that it is more meaningful to compare the execution time on a
faster, bigger computer with ensemble performance in order to judge the effectiveness
of a parallel algorithm and/or ensemble. This, of course, is a more conservativé ap-
proach. Practically, one is more likely to choose a Cray for a large problem, and note
performance (time required), rather than choosing an arbitrarily bad memory hierar-
chy and a low-power single processor. It is fair to say, for instance, that an efficient
parallel algorithm on a 1000-node machine runs ten times faster than the best algo-
rithm for the same problem run on a brand-X supercomputer. It is also fair to look at
the fixed-time model with a supercomputer solution time as the temporal reference.
For example, we could ask how much more accurate (bigger) three-dimensional PDE
problems can be solved on a 1000-node concurrent system while still requiring the
same time as a Cray would require. Since we view these comparisons as fruitful, it
is our confirmed intention to compare dynamic simulation performance of chemical

process flowsheets in concurrent ensembles against sequential supercomputer perfor-

Why “Scaled Speedup” is not. .. 219

mance on these problems in the future. In that way, we will be certain to strive
for algorithms capable of achieving absolutely useful performance. Price-performance
aspects can also be discussed, and are important, but these are topics for future
consideration as well.

Are there fair relative measures (ensemble-ensemble comparisons)? Relative mea-
sures of benefit (decreased time, or increased problem accuracy, when meaningful)
vs. resources applied (processors, memory) are fair. Based on ordinary differential-
algebraic systems, and other unscalable problem domains, it proves interesting to
reflect on the comparative performances (pure times) of various parallel algorithms
run on ensembles of different sizes, as suggested by an unnormalized variation of the
Concurrency Diagram, Figure 2.1. On the y-axis, we would plot pure times rather
than times normalized by an arbitrary, arguably inaccurate, sequential time. We can
compare between algorithms and among ensemble sizes. If we insist on a speedup-like
measure, then such a measure could be the ratio of the time required on the small-
est feasible ensemble size (because of memory limitations) to that larger ensemble

affording the shortest time, as follows:

Definition F.3 (Ensemble-Relative Speedup) Recognizing that storage limita-
tions prohibit single-processor ezecution for many interesting problems, we still wish
to pose a fair, if conservative, measure of concurrent performance rooted only in the
concurrent ensemble. Let po be the minimum number of ensemble nodes required to
ezecute a fized problem P with algorithm A, and let T,,, be the time required for com-
pletion of problem P with algorithm A. Let p > po be some larger ensemble size,
which requires time T, for completion. Then, the ensemble-relative speedup is

T,
Sro= 2
P Tp

. (F.7)

S is a measure of performance that we can actually measure on a given ensem-

220 APPENDIX F. ON CONCURRENT PERFORMANCE

ble without resorting to arbitrary or external performance references. Clearly, for
small problems, this is identical to the relative speedup (Amdahl-brand) defined in
chapter 2.

Undoubtedly, arguments about performance will persist into the indefinite future.
However, it is and will remain important to recognize what constitutes high perfor-
mance for a given problem domain, and to measure that as fairly as possible. Achiev-
ing high parallel performance need not be “easy,” and we shouldn’t intentionally or

inadvertently attempt to obscur such possible difficulties.

Appendix G
Abridged UNITY Notation

Following the work of Chandy and Misra [12], and the lead of Van de Velde [53], we
embrace an abridged, simplified form of Chandy’s UNITY language for the description
of concurrent codes.! We describe this briefly, without attention to its full power, or
formal properties, both of which are beyond our scope here. We extend slightly what’s
been presented in [53] to reflect the possibility of multiple process grids. Full program
notation is defined implicitly with the UNITY programs in Section 2.

Definition G.1 (Quantification) The notational prototype (called a quantifica-
tion) is

(Si:1:€0T = E(v)), (G.1)

where S is denoted a separator; for ezample “||” for concurrent evaluation of, and *;’
to denote sequential evaluation of expressions E(i). Each ezpression may itself be a
further quantification, or sequences of assignments separated by ;’ and / or ||’.

We think of the Quantification G.1 as a shorthand for an enumeration of all the
ezpressions E(i), delimited by separator S. A set ordering operator O replaces the

natural (implicitly defined) ordering of index set I, if present.

For example, we define O = « when we wish to indicate reversal of the natural

1This is becoming the descriptive concurrency notation of choice at Caltech, and we wish to
promulgate this standard, rather than inventing new, colloquial “pidgin” notations from time to
time.

221

222 APPENDIX G. ABRIDGED UNITY NOTATION

ordering of evaluation:

(Si:1€«T : E@G)).

Sequential evaluation of expressions E(7) often looks like:

(;i: 0 <i<ip = E(9)).

For sequential evaluation, the set ordering is important because “old” values of vari-
ables are updated in turn by assignments as the evaluation of expressions proceeds.
Consequently, if the expressions are dependent, correctness depends on the ordering.

The concurrent evaluation of the same expressions:

(|3 : i1 <i<iy = E(3))

has the same meaning if the expressions are independent, although set ordering has
no effect in any event for the concurrent quantification. With the concurrent separa-
tor, we militate that all expressions use the “old” values of variables at evaluation.
Consequently, if the expressions are dependent, the two separators are not trivially
interchangeable.

A key feature of UNITY is the ability to transform successively from very abstract
program designs to very practical, realizable designs (while preserving program cor-
rectness). When we pass to the degree of specificity where process grids are defined,
the placement of data and evaluations becomes, of course, important. Unambiguous
representation is complicated slightly when there are multiple process grids. We re-
move such ambiguity by subscripting quantifiers with appropriate data distributions,

as defined in chapter 4, such as:

223

(l p:0<p<P = (l p:0<p<Py=
(|3 :4€Tf = bz] :=0) (e : i€Tf = cfi] = 0)

)g >¢

224 APPENDIX G. ABRIDGED UNITY NOTATION

Bibliography

[1] Gita Alaghband. Multiprocessor Sparse LU Decomposition with Controlled Fill-
in. PhD thesis, University of Colorado, Boulder, 1986. Department of Computer
and Electrical Engineering.

[2] Gita Alaghband. Parallel pivoting combined with parallel reduction and fill-in
control. Parallel Computing, 11:201-221, 1989.

[3] Eugene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Spring Joint Computer Conference, pages 483—
485. AFIPS Press, 1967. AFIPS Conf. Proceedings vol. 30.

[4] Henrik Weisberg Andersen and Lionel Frederic Laroche, 1988-1990. — Private
Communications on Chemsim.

[5] Steven Ashby, 1990. — Private Communication on Iterative DASSL.

[6] William C. Athas and Charles L. Seitz. Multicomputers: Message-passing con-
current computers. IEEE Computer, pages 9-24, August 1988. A

[7] David Bailey, Eric Barszcz, Rod Fatooki, Horst Simon, Sisira Weeratunga, Vic-
tor Jackson, and Gary Withers. Performance of the DARPA Touchstone Gamma
System Prototype Parallel Supercomputer. In Proceedings of the Fifth Dis-
tributed Memory Computing Conference (DMCCS5), page in press. IEEE Press,
April 1990. Charleston.

[8] R. K. Brayton et al. A new efficient algorithm for solving differential-algebraic
systems using implicit backward differentiation formulas. Proceedings of IEEE,
60(1):98-108, January 1972.

[9] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. North Holland Elsevier,
1989.

[10] P. N. Brown and A. C. Hindmarsh. Reduced storage matrix methods in stiff
ODE systems. J. Appl. Math. & Comp., (to appear).

[11] Graham F. Carey, editor. Parallel Supercomputing: Methods, Algorithms and
Applications. Wiley, 1989.

225

226 BIBLIOGRAPHY

[12] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison Wesley, 1988.

[13] T.S. Chua and P. M. Dew. The design of a variable-step integrator for simulation
of gas transmission networks. Int. J. for Num. Meth. Eng., 20:1797-1813, 1984.

[14] W. Jeffrey Cook. A modular dynamic simulator for distillation systems. Master’s
thesis, Case Western Reserve University, 1980. Chemical Engineering.

[15] Tan S. Duff. MA28 - a set of fortran subroutines for sparse unsymmetric linear
equations. Technical Report R8730, AERE, HMSO, London, 1977.

[16] Ian S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, 1986.

[17] D. Dumlugdl. Segmented Waveform Relazation Algorithms for Large Scale Cir-
cuit Simulation. PhD thesis, Katholieke Universiteit Leuven, 1986. Dept. of
Elektrotechniek.

[18] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup Versus
Efficiency in Parallel Systems. IEEE Trans. on Comp., 38(3):408-423, March
1989.

[19] H. P. Flatt. A simple model for parallel processing. IEEE Computer, page 95,
November 1984.

[20] Geoffrey C. Fox, Mark A. Johnson Gregory A. Lyzenga, Steve W. Otto John K.
Salmon, and David W. Walker. Solving Problems on Concurrent Processors,
volume 1. Prentice Hall, 1988.

[21] Joel N. Franklin. Matriz Theory. Prentice Hall, 1968.

[22] G. H. Golub and C. F. Van Loan. Matriz Computations. John Hopkins Univer-
sity Press, second edition, 1989.

[23] John L. Gustafson. Re-Evaluating Amdahl’s Law. CACM, 11(5):532-533, May
1988.

[24] John L. Gustafson. Fixed Time, Tiered Memory, and Superlinear Speedup. In
Proceedings of the Fifth Distributed Memory Computing Conference (DMCC5),
page in press. IEEE Press, April 1990.

[25] John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development of
Parallel Methods for a 1024-Processor Hypercube. Siam J. Scientific and Stat.
Comp., 9(4):609-638, July 1988.

[26] J. J. Guy. Computation of unsteady gas flow in pipe networks. I. Chem. E.
Symposium Series No. 23, 1967.

ty

BIBLIOGRAPHY 227

[27] C. A. R. Hoare. Communicating sequential processes. CACM, 21(8):666-677,
August 1978.

[28] C. D. Holland and A. I. Liapis. Computer Methods for Solving Dynamic Sepa-
ration Problems. McGraw Hill, 1983.

[29] Selahattin Kuru. Dynamic Simulation with an Equation Based Flowsheeting
System. PhD thesis, Carnegie Mellon University, 1981. Chemical Engineering
Department.

[30] Ekachai Lelarasmee et al. The waveform relaxation method for time-domain
analysis of large scale integrated circuits. IEEE Trans. on CAD of Int. Circ.
and Sys., CAD-1(3):131-145, July 1982.

[31] Dardo Marqués. On-line Optimization of Large Dynamic Systems. PhD thesis,
University of Wisconsin, Madison, 1985. Chemical Engineering Department.

[32] Sven Mattisson. CONCISE: A Concurrent Circuit Simulation Program. PhD
thesis, Lund Institute of Technology, Sweden, 1986. Department of Applied
Electronics.

[33] Sven Mattisson, 1990. — Private Communications on Sequent Symmetry Reac-
tive Kernel implementation.

[34] Sven Mattisson and Lena Peterson, 1990. — Private Communications on multi-
cast message transmission and applications.

[35] Ulla Miekkala. Dynamic Iteration Methods Applied to Linear DAE Systems.
Technical Report A252 (revised), Helsinki University of Technology, 1988. Insti-
tute for Mathematics.

[36] Ulla Miekkala and Olavi Nevanlinna. Convergence of Dynamic Iteration Methods
for Initial Value Problems. Siam J. Scientific and Stat. Comp., 8(4):459-482,
July 1987.

[37] Lena Peterson. A Study of Convergence-Enhancing Techniques for Concurrent
Waveform Relaxation, May 1989. Teknologie Licenciat Degree Thesis, Lund
University, Dept. of Applied Electronics.

[38] L. R. Petzold. DASSL: Differential Algebraic System Solver. Technical Report
Category #D2A2, Sandia National Laboratories — Livermore, 1983.

[39] R. A. Saleh. Parallel Waveform-Newton Algorithms for Circuit Simulation. In
IEEE Proceedings of ISCAS ’87, pages 660-663, July 1983.

[40] Charles L. Seitz. The Cosmic Cube. CACM, 28(1):22-33, January 1985.

[41] Charles L. Seitz et al. The C Programmer’s Abbreviated Guide to Multicomputer
Programming. Technical Report Caltech-CS-TR-88-1, California Institute of
Technology, January 1988.

228 BIBLIOGRAPHY

[42] Charles L. Seitz, Sven Mattisson, William C. Athas, Charles M. Flaig, Alain J.
Martin, Jakov Seizovic, Craig M. Steele, and Wen-King Su. The architecture
and programming of the ametek series 2010 multicomputer. In Proceedings
of the Third Conference on Hypercube Concurrent Computers and Applications
(HCCAS3), pages 33-36. ACM Press, January 1988. (Symult s2010 Machine).

[43] Jakov Seizovic. The Reactive Kernel. Technical Report Caltech-CS-TR-88-10,
California Institute of Technology, 1988.

[44] M. G. Singh and A. Titli. Systems Decomposition, Optimization and Control.
Pergamon, 1978.

[45] Stig Skelboe. Stability Properties of Linear Multirate Formulas. Technical re-
port, University of Copenhagen, April 1986. Institute of Datalogy.

[46] Stig Skelboe. Stability Properties of Implicit Multirate Formulas. In Proc. Eu-
ropean Conf. on Circuit Theory and Design (ECCTD '87), volume 2, pages
795-806, September 1987.

[47) Anthony Skjeilum, Manfred Morari, and Sven Mattisson. Waveform Relaxation
for Concurrent Dynamic Simulation of Distillation Columns. In Proceedings
of the Third Conference on Hypercube Concurrent Computers and Applications
(HCCAS3), pages 1062-1071. ACM Press, January 1988.

[48] Anthony Skjellum, Manfred Morari, Sven Mattisson, and Lena Peterson. Con-
current DASSL: Structure, Application, and Performance. In Proceedings of
the Fourth Conference on Hypercubes, Concurrent Computers and Applications
(HCCA4), pages 1321-1328. Golden Gate Enterprises, March 1989. Simulation

Minisymposium.

[49] Anthony Skjellum, Lena Peterson, Sven Mattisson, and Manfred Morari. Appli-
cation of Multicomputers to Large-Scale Dynamic Simulation in Chemical and
Electrical Engineering: Unifying Themes, Software Tools, Progress. IFIP 11th
World Conference — San Francisco; Paper #253, August 1989.

[50] Sigurd Skogestad. Studies of Robust Control of Distillation Columns. PhD the-
sis, California Institute of Technology, 1987. Chemical Engineering.

[51) Harold S. Stone. High-Performance Computer Architecture. Addison-Wesley,
1987.

[52] Wen-King Su. Reactive-Process Programming and Distributed Discrete-Event
Simulation. PhD thesis, California Institute of Technology, 1989. Computer
Science; Caltech-CS-TR-89-11.

[53] Eric F. Van de Velde. A Concurrent Direct Solver for Sparse Unstructured
Systems. Technical Report C*P Report #604, California Institute of Technology,
March 1988. Caltech Concurrent Computation Project.

BIBLIOGRAPHY 229

[54] Eric F. Van de Velde. Data Redistribution and Concurrency. Caltech Applied
Mathematics, May 1988.

[65]) Eric F. Van de Velde. Implementation of Linear Algebra Operations on Multi-
computers. Caltech Applied Mathematics, October 1988.

[56] Eric F. Van de Velde. The Formal Correctness of an LU-Decomposition Algo-
rithm. Technical Report C*P Report #625, California Institute of Technology,
June 1988. Caltech Concurrent Computation Project.

[57] Eric F. Van de Velde. Experiments with Multicomputer LU-decomposition. Con-
currency: Practice and Ezperience, 2(1):1-26, March 1990.

[58] Eric F. Van de Velde and Jens Lorenz. Adaptive Data Distribution for Concur-
rent Continuation. Technical Report CRPC-89-4, California Institute of Tech-
nology, 1989. Caltech/Rice Center for Research in Parallel Computation.

[59] Stefan Vandewalle. Parallel Waveform Relaxation Methods for Solving Parabolic
Partial Differential Equations. In Proceedings of the Fifth Distributed Memory
Computing Conference (DMCCS5). IEEE in press, April 1990.

[60] Stefan Vandewalle and Dirk Roose. The Parallel Waveform Relaxation Multigrid
Method. In Proceedings of the Third SIAM Conf. on Parallel Process. for Sci.
Comp., December 1987.

[61] A. W. Westerberg, H. P. Hutchison, R. L. Motard, and P. Winter. Process
flowsheeting. Cambridge University Press, 1979.

[62] Jacob White and A. L. Sangionvanni-Vincentelli. Partitioning Algorithms and
Parallel Implementations of Waveform Relaxation Algorithms for Circuit Simu-
lation. In IEEFE Proceedings of ISCAS ’85, pages 221-224, July 1985.

