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1 Introduction

We consider quasi-Newton methods for the unconstrained optimization problem
min f(z), (1)

where f is twice continuously differentiable. The methods use a local quadratic model of the
form

f(z+ ) % f(z) + gbs + 55'Bes @)

where z. is the current approximation to a minimizer z*, B, is the current approximation to the
true Hessian G at z., and g, is the gradient at z.. We will use the notation that B~! = H. Qur
particular interest is in the secant-type methods based upon approximating Newton’s method
by accumulating Hessian approximations using gradient differences. These methods have the
property that the next Hessian approximation B = B, satisfies the secant condition

Bs=y=gy~-g. or Hy=s=z, — z..

The best known class of such approximations is the Broyden family of updates. The best known
members of this family are the BFGS and the DFP methods. We will not restrict ourselves to
the Broyden family.

Using the standard £; measure of conditioning k, optimal updates in the Broyden family
of rank-two updates have been found by Davidon [1]. Specifically, Davidon chooses a member
B, (¢) of the Broyden class that minimizes k(H.B+(¢)). Although it is common to call these
methods optimally conditioned, we think it is more salient, as well as more in the mainstream of
the subject, to view k(H.B4(¢)) as a measure of the change made in the Hessian approximation
by the update. This is because we like to view x as a measure of deviation of a matrix from a
multiple of the identity.

In this paper we will use a different measure w of the deviation of a matrix from the identity.
To us, this measure seems more relevant to the updating context than x. Furthermore, it is very
similar to the measure used in the proofs in [2]. For some interesting results on that specific
measure, see [3]. We give some properties of w and relate it to k in Section 2. In Section 3, we
find least-change secant updates from the Broyden class using w(H.B;) and w(B.H,). These
results are interesting, but they mainly serve as lemmas for our main results in Section 5 where
we give very interesting connections between updates that minimize the measures w(H B, ) and
w(B.H,) and the so-called Oren-Luenberger [5] scaling.

In order to interpret the results of Section 3, and to prepare for the results of Section 5, we
give some results on Oren-Luenberger scaling in Section 4. Also, since Oren-Luenberger scaling,
which we prefer to call sizing, is generally regarded as useful only in the first step of an iteration
[6], we look for an alternative for subsequent iterations. This leads us to some interesting weighted
Frobenius norm problems for weak forms of the secant condition

sTBs = sTy or yTHy = yTs.
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These problems are solved with some surprises in Section 4 by rank-one updates, which we call
weak secant updates.

In Section 5, we bring together sizing, and weak and strong least-change secant updating in w
and in the traditional weighted Frobenius norms associated with the DFP and BFGS methods.
This leads to even stronger connections between sizing, w-least-change secant updates, and the
DFP and BFGS methods. Weak updating followed by weighted Frobenius updating leads to a
pair of Fletcher-dual members of the Broyden class which we have not seen identified before, but
which resemble the Hoshino update [7].

In Section 6, we consider the special two-dimensional example of Powell in [8] used there to
illustrate that the BFGS behaves better than the DFP. We show that the w-least-change secant
methods for this special case is a sized DFP, or equivalently an inverse-sized BFGS, and we
give the corresponding numerical results for the sized DFP. These results are better than for the
BFGS. We also include some numerical tests for other problems.
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2 Preliminaries

Let A be an n X n symmetric positive definite matrix (denoted s.p.d.), with eigenvalues

A2...2 >0, (3)
and corresponding eigenvectors uy,...,un. Then the usual £; condition number of A is given by
k(A) = A/ An. (4)

The condition number x(A) is used in perturbation analysis for matrix inversion, e.g. for the
systems of linear equations Az = b and AZ = b, we obtain bounds on the relative differences

1 b3l _ |le -3l |16 — Il

R P R T I (5)

see e.g. [9]. This condition number acts as an upper bound on the amplification factor of the

relative change in the right hand side in bounding the relative change in the solution
It has often been noted that x depends only on the largest and smallest eigenvalues We
propose using the following measure which depends more uniformly on all the eigenvalues.

_ trace(A)/n

w(4)= det(A)n (6)

Just as the usual condition number k(A) is a measure of how close A is to the pencil al, where I
is the identity matrix and a > 0, the function w(A) similarly measures the ‘distance’ of A from
al. This measure takes all the eigenvalues of A into account and so is a more uniform or average
indicator of the distance of A.

Moreover, w(A) can be calculated in terms of the actual data of A rather than its spectrum
and can be more easily differentiated and manipulated.

We now give some useful properties of w and address some related issues. Here we restrict
ourselves to the s.p.d. matrices and use the Lowner order, i.e. A > B means A — B is positive
semidefinite. See [10, pg. 475). Remember that a function is pseudoconvex means:

(y—2)'Vf(z) 2 0= f(y) > f(2). (M
See [11].

Proposition 2.1 The measure w(A) satisfies

() 1< w(4) < K(4) < CARE < 407(4),
with equality in the first and second inequality if and only if A is a multiple of the identity
and equality in the last inequality if and only if

A1+ A
Az = .= An—l = __1_3__7&; (8)
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(i) w(aA) = w(A), for all a > 0;
(#1) if n = 2, w(A) is isotonic with k(A).

(iv) The measure w is pseudoconvez on the set of s.p.d. matrices, and thus any stationary point
is a global minimizer of w.

(v) Let V' be a full rank m X n matriz, n < m. Then the optimal column scaling that minimizes
the measure w, i.e.

min w((VD)'Y(V D)), (9)
over D positive, diagonal, is given by
1
D,',' = ——,i = 1,...,n, 10
Vi (10)

where V;; is the i-th column of V.

Proof. That 1 < w(A) follows from the arithmetic-geometric mean inequality, while w(4) <
k(A) < iﬂ%lﬁ follows from the definitions. The equality conditions also follow directly from
the definitions. To prove the last inequality in (i), we fix A\; and A, and thus also x(4). We
now minimize w(A) by differentiating. (Note (iv) in the Proposition.) This yields the equality
conditions (8). Substitution shows that

K 2
min Wh(A) = (—(-;i()f—)i. (11)
Ifn=2
2w(A) = %;’Tl = k(A)? + K(A)™2, (12)

The derivative of w(A) with respect to kK(A) can now be seen to be positive since k(A) > 1.
The function det(A) is log concave and strictly increasing and the function det(A)% is concave
and increasing. See e.g. [10]. The trace function is linear and so convex. Thus w is the quotient
of a convex function by a concave function and so it is pseudoconvex. Pseudoconvex functions
have the property that every stationary point is a global minimizer. See [11].
To prove (v), let V be given. Then the arithmetic-geometric mean inequality yields
VDY (VD)) = trD'VIVD/n_
“((VD)(VD)) (detDtVtVD)®
trVtVD3/n
(detDt D)7 (detVtV)®
= ZWViPDL/e (TIvA) "
(M v;l2DZ)m \det

mvR\ =
(Hw)

with equality if and only if ||V;||2D% = constant,i = 1,...,n. O

(13)

v
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Property (i) above shows that w(A) is a valid condition number, e.g. we can replace x(A4) by
4w™(A) in (5). Property (v) shows that the measure w predicts the best column scaling. Note
that this is the best scaling used in practice, see e.g. [9], and it is not the one found by minimizing
the measure k. Moreover, the proof of (v) is particularly simple.

We use w as a measure of ‘best’ in determining some quasi-Newton updates. This leads to
minimizing this measure subject to constraints. The following lemma shows, under very mild
assumptions, that we do not have to worry about maintaining positive definiteness in our updates
since they will solve problems like the one posed here.

Lemma 2.1 Given the s.p.d. matriz C, consider the quantity

u* = infg w(BC)
subject to v'Bv =1
B s.pd., BeQ,

where v # 0 and v > 0 are given, and ) is a closed set of symmetric matrices. Assume that a
feasible B ezists. Then the finite value u* is attained at some B* s.p.d.

Proof. First note that
1<pu*<a, (14)

where w("ﬂ]—;C) = a < 00, since ";:-"FI satisfies the equality constraint. Choose {Bx} such that
each By is feasible and
klim w(BiC) = p*. (15)
—00

If either A;(By) is unbounded above, or A,(By) is not bounded away from zero, then sup x(By) =
supw(Bg) = oo, by Prop. 2.1(i). But this implies w(BC) — o0, a contradiction. Thus we can
assume that By — B for some B € Q which is s.p.d. O
In the sequel we consider the space of s.p.d. matrices as a subspace of the n X n matrices
with the inner product
(A, B) = trace(AB) .

The gradients of functionals restricted to this subspace are symmetric matrices.
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3 w-Optimal Rank-2 Updates

We now consider the Broyden family of updates

_ 1 t 1 t t
By = B. — chss B. + Eyy + (1 - ¢)s*'B.s ww®, (16)
where s = z, — z. is the step taken, y = g, — g., the current approximation B, to the Hessian

is s.p.d., and 1
1

w= -g}T.;y ~ s'B.s
If ¢ = 1 we get the BFGS update and ¢ = 0 yields the DF P update. The updates for ¢ € [0, 1]
are called the convex class. This is not the most common parameterization, but it is well known

B.s. (17)

and it allows us to use results directly from [12] without reproving them here and uselessly
lengthening the paper.

If we form the Fletcher dual updates, i.e. we exchange the roles of y and s and let H, = B!,
then we get the inverse updates

1
H$=Hc- ;

1 .
t t _ t t
” HcyHcyy H.+ 7 + (1 - @)y Heyvo, (18)

where

1 1
?‘;s - chy. (19)

We now have that ¢ = 1 and $=0 yield the DFP and BFGS updates, respectively.
Every member of the Broyden family of updates satisfies the secant condition

v =

Bys=y. (20)

Furthermore, let
a=1vy'Hy, b=1y's, c=s'B.s. (21)

Note that b2 < ac with equality if and only if B, i'y and Bc% 8 are collinear, which is true if and
only if y and B.s are collinear, which is true if and only if H.y and s are collinear. From [12],
By is s.p.d. if b2 < ac,b> 0 and ¢ < 25;.

A k-optimal rank-two update is found in [1] by minimizing the measure x(H.By) over the
Broyden family of rank-two updates. Note that the spectrum of a matrix product C;C; is equal
to the spectrum of C;C; and k(C) = k(C~!). Consequently, we can replace H.B, by any of
ByH,, B;ch, BcBgl, B;%BCB;% etc. (See also, [12, Chapter VII].) Related work is found in
[13].

We now consider the problem of finding those updates in the Broyden family that minimize
the measure w. In the following, we assume n > 2, B, is an nxn s.p.d. matrix, s,y € R™ such
that sty > 0, and y, B.s are linearly independent. If y and B.s are linearly dependent, then the
entire Broyden family of updates (as well as the sized updates) reduce to the symmetric rank-one

s
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or SR1, update. Otherwise, ¢sp1 = —5=; and $sm = —g2=. Moreover, the inverse of the DF P
update By is H;; the inverse of the BFGS update B, is Ho. In general,
. 1-¢
¢p=Ud)=——F
1+ ¢[2 1]
is a 1-1 and onto mapping (c.f. [14]) that relates ¢ and & for which B;l = Hj. (This formula

corrects a typographical error in [12] and [14].) The mapping satisfies :2(¢) = ¢ and the convex
class ¢ € [0,1] — ¢ € [0,1].

(22)

—1 -—
Lemma 3.1 [12, pg. 111] The matriz B, 5B¢Bc% has n — 2 unit eigenvalues and the two
remaining eigenvalues are
A+(#) = 1i(#) £ (A(9) - L), (23)
where ; 5 )
a(b+c)— ¢(ac —
i = St = tae=¥)

We now present the w-optimal update from the Broyden family. Notice that for large n, the

(24)

w-optimal update looks more and more like the BFGS update but that it is in the convex class

only when a > b.

Theorem 3.1 The minimum over ¢ of w(Bc—%B‘d,B:%) is attained at
(a—0d)b

(1 = n)(ac-5?)

b =1+ (25)

Furthermore, By, is s.p.d. and

_ e )
)= T B B D) (#0)

“bp pohy _ @A) +n=2)/n
“(Be " BeBe ) = T Gty

We can now substitute using (24), differentiate and solve for ¢., the critical point. This yields

(25). Since w is pseudoconvex and both f; and f; are linear in ¢, ¢. is the global minimizer.

The w-optimal update is s.p.d. because it is easy to show that for n > 2, ¢. < ;2%r. (This also

follows from Lemma 2.1 with the appropriate choice of the closed set (2.) o

Proof. From Lemma 3.1,

(27)

Corollary 3.1 The minimum over <i> of w(Bc% H $Bc% ) is attained at

(c—b)b
(1 = n)(ac-b?)

$t=1+

Furthermore, H; is s.p.d. and

48 = T e E T (28)
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Proof. The update formulas (16) and (18) are obtained by exchanging the roles of y and s, i.e.,
the secant condition can be expressed as Bys = y or H y=3:, where ¢ and ¢ are related by (22).
This is equivalent to exchanging the roles of a and ¢ in Theorem 3.1. o

Note that although x(A) = k(A™!), whenever A~! is defined, this is not the case for the
measure w. Therefore, the optimal update obtained in Theorem 3.1 is not, in general, the same
as the update obtained in Corollary 3.1. Nor are the values of the measure w equal. The following
table summarizes the results.

|

measure ¢ ¢

w(HZB4H?) (a=8)b . e Tere=)
« =14+ UPs) = ¢ = a—
(for optimal @) ¢ 1=n)(ac=b (¢.) 14+ (14 =522 (1)
w(Bc§H$.B§ ) L(¢A‘) - ¢ = Uﬁﬁ%’j ¢;. = 1 + c-b)b
(for optimal ) T4+ (14 o) (52-1) 1=n){ac=b

w-optimal rank-two updates

In general, to find an optimal ¢,, we minimize the measure w(Hc% Bd,Hc%) over By, and then
use Stoer’s formula to find the corresponding é= t(#.). Conversely, an optimal é refers to the
measure w(Bc% H $Bc% ). Notice that for large n, . is near 1, which corresponds to the DFP, and
@. is in the convex class only when ¢ > b.

N



4 Sizing and Weak Secant Updating

The Broyden family, By, of rank-two updates satisfies the secant condition and preserves positive
definiteness whenever y's > 0 for ¢ < —255. Now let B, be any symmetric matrix that satisfies
the secant condition B,s = y. This guarantees that the curvature information in B, along the
step s is approximately correct, i.e.,

Vf(z+s)=g+=g+Gs+ O(lsl*) (29)

and
s'Gs =~ y's = s' By s, (30)
y'G ly=y's = y'H,y. (31)

We refer to the above two equations as the direct and inverse weak secant conditions. We use B,
rather than By since we will no longer restrict ourselves to updates from the Broyden family. By
choosing updates that minimize a measure such as w(B ), k(B4) or || B4 — B:||F, we attempt to
guarantee that the new directional information does not destroy too much information already
built up in B.. Note that the measure w does this uniformly over all the eigenvalues while x only
deals with the two extreme eigenvalues. However, the low-rank updates bring one eigenvalue of
H,.B, (or H.B;) to 1 at each iteration. If the eigenvalues of H, B, are large, this results in
ill-conditioning (c.f. [15, pg. 275]). This can be corrected by sizing B.. More precisely, B is to
be replaced by ;Fé’c—,Bc before updating (c.f. [16]). Conversely, if H, is replaced by ﬁ:—yH ¢ before
updating, then we are sizing H.. We now find the w-optimal ¢ and ¢ to determine a member
of the Broyden family that is obtained after sizing. For each sizing, we obtain two ‘optimal’
matrices and their inverses.

Theorem 4.1 If B, ~ %Bc, then the optimal ¢, and corresponding ¢ = «(p.) are given by

1
b =1+ - (32)
and )
b= u(d.) = , 33
P YT oD E D (#)
respectively. Similarly, if H. — §H., then the optimal é and corresponding ¢ = L($,) are
‘gt =1, ) (34)
and
L(¢-) =¢=0. (35)

All values are in the convez class. The optimal ¢. gives the DF P update if n = 2 and approaches
the BFGS update as n grows. For every n, the optimal b gives the DFP update. If B, — $B.,

’,
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then the optimal ¢. = 1 and the BFGS update is optimal. Similarly, if H. — %Hc, then the
optimal $. and corresponding ¢ = L(&.) are given by

1

o (36)

$- =1 +
and
1
(n-1)+(n-2)(E-1)
respectively. This is always in the convez class. The optimal ¢, is the BFGS update. The
optimal $, is also the BFGS update, if n = 2, but it approaches the DFP update as n grows.

U) == (37)

Before giving the proof, we summarize the results in some tables. We prematurely include the
result of Theorem 4.4 that the ¢ values are the same after weak updating.

— — T

measure ¢ ¢

T py

“’(HEB:#ch) 1 2 1

. =1 — «) ==
(for optimal @) ? T |Ue) =9 (n=1)+(n-2)(£-1)

1 L
2 R 2 - -

WBEHBE | Gy =¢=0|d.=1

(for optimal @)

w-optimal rank-two updates after sizing B, «— %Bc (or direct shift)

measure ) - é ]
T I
2 2 -
W(Hc BéHC ) d.=1 L(¢_) =¢=0
(for optimal @)
1 1
w(BZ H;B¢ 2 1 - 1
- ) = = - = 1 —
(for optimal @) “o)=¢ (n=1)+(n-2)(&-1) ¢ T

w-optimal rank-two updates after inverse sizing H. — %Hc (or weak inverse update)

Proof. Since B — %B, we see that
be—b, é—-c=b, 6#%
Thus Theorem 3.1 yields
_ (£-bp 1
b=t o = L T (38)

Applying (26) then yields (33). If B~ — %ﬁ‘l or B~ $ B, we have be—b,a—b, & ¢, and
(25) yields
(b-0d)

T-m(ac—5) - b

(39)

=1+

,
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Using Corollary (3.1) instead of Theorem 3.1 completes the proof. O

Notice that n = 2 is a very special case.

Sizing B. (or H.) can cause a drastic change in all the eigenvalues of B, so that though G
and B. may have had a relatively good overlapping of their spectra, they no longer do. After the
first sizing step, a better strategy might be to shift the spectrum by a rank-one update. If we
want to size both B. and H. simultaneously, we can use a rank-two update. Consequently, we
will consider finding the ‘closest’ matrix to B, that satisfies the weak secant conditions.

The next few results hold some surprises for experts in the field.

Theorem 4.2 Let u,v be nonzero vectors in R™, and let A, M be symmetric matrices with M
s.p.d. Then, r r r

i (u'v - vl Av)Mvv!' M

A=A+ (vITMv)?

uniquely solves
min IWT(A - AW|r
subject to vT Av = uTv
independent of W such that M~! = (WWT). Moreover, if A is s.p.d. and M = A then A is
s.p.d. if and only if utv > 0.

Proof. First note that A is feasible, and let C be any other feasible matrix. Set z = W~1v.
Then WT(A - A)W = ZG-AN 227 Thys, |WT(A- A)W||F = |G A | < W T (C -

zTz" =Tz
A)W||2. Now if A = M is s.p.d. then A is s.p.d. if and only if the rank-1 update WT AW =

I+ "(—Tv‘ﬁ'}ﬁ:{‘!W‘lvaW'T is s.p.d. The latter is s.p.d. if and only if

(uTv — vT Av)

-1, Ty -T
(T Av)? W= vo W™

0 < 1+ trace
which is equivalent to %’f—j‘%ﬁvTAv < 1, which is true if and only if «Tv > 0. O
Now we apply this theorem to direct shifting and then to weak inverse updating, i.e. to
shifting B and then to shifting H. We use the terms Greenstadt and DFP to refer to the choice
of W. In fact, Greenstadt never considered least changes to B, only to H..

Corollary 4.1 The direct weak Greenstadt update

5 1 T, T T

B=B.+ m(y 8 — 8" B.s)B.ss" B, (40)
uniquely solves

min |WT(B - B.)W||r
subject to sTBs =yTs
for any square W such that H. = WWT. Moreover, B is s.p.d. if and only if yTs > 0. Also, the
direct weak DFP update .
B=B.+ (y—Ts);(yTs - sTB.s)yyT (41)

’
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uniquely solves
min  [|[WT(B - B.)W|F

- 42
subject to stBs=yTs (42)

for any square W such that ( WWT)~1s = y.

It is surprising that (40) is a hereditarily positive definite update, but (41) is not. This is
directly opposite the case for strong secant methods with the same weighted Frobenius norms
since (41) corresponds to the DFP secant update. Now we will see in the next corollary that the
same twist holds for weak inverse updating; the Greenstadt inverse update is hereditarily positive
definite, but the BFGS is not, as we found with the first two randomly generated examples in
MATLAB that we tried.

‘Corollary 4.2 The inverse weak Greenstadt update

o 1 T, ,T T
H=H+ (yTHcy),(y s—y Hey)Heyy H.

uniquely solves
subject to yTHy=yTs

for any square W such that B. = WWT. Moreover, H is s.p.d. if and only if yTs > 0. Also the
weak BFGS update

H=H+ (yr;s)z(yTs - yTH.y)ssT (44)
uniquely solves
min  ||WT(H - H)W||F
subject to yTHy =yTs

for any square W such that ( WWT)~1y = s,

(45)

If we try to find the the ‘best’ update with respect to our measure w that satisfies the spectral
conditions (30) and (31), then we just scale B, or H. since the value of w(BH,) or w(B~!B,)
will be one. It is interesting that if we let o > 0 and apply the following theorem to o B., we get
(0B:)+ = 0By4.

Theorem 4.3 The update B that solves

1. P 1
min  w(H;PBHSY) (or w(BZB'BE))

subject to  s'Bs=1y's (46)
is ts
7 Y
Ys 5 4
B « .s‘BcsBc 47

4
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Proof.

Since H:*BH:% = ;’[-'B';I, we have obtained the minimum of x and w, i.e.,w=1=k. O

Corollary 4.3 The update B that solves

w(BEB'BY) or w(BEB1BY) )

min
subject to  y'B ly=1y's (48)
is obtained from
5o YHY g
- vs e (49)
measure optimal optimal inverse _

|B2(B - BYRZ|F
(constraint s'Bs = yts )
) 1
|B2(B~! - H.)BE|Ir
(constraint y'Hy = y's )

B=B.+ % (b - c)Bcss'B,

E = Bc+ gsz_byyt

B'=H, + tsst

B'=H.+ %(b-a)H.yy'H.

w
(or w(Bc%E‘ch%) )
(constraint s*Bs = y's )
w(BEB1B}

(or w(HEBHE))

(constraint y'Hy = y's )

(H§ BHgI )

ton
i
oo

B.

o

=$B,

B-' = ¢B;!

B—l = _b_Bc—l

Optimal updates for weak secant equations.

In Theorem 4.1 we presented the optimal rank-2 updates in the Broyden family obtained

after sizing and using the measure w. We now show that we obtain the same optimal ¢, (and
<;Z>.) to strongly update the weakly updated matrix. This does not mean that the corresponding

B, matrices will be the same, it just means they are obtained from the sized or weakly updated

B, (or H.) using the same formula from the Broyden class.

Theorem 4.4 The optimal ¢. and be ezpressions in Theorem 4.1 are unchanged if we replace
sizing B, (B, ~ -Z-B and H. — §H_) with the direct weak Greenstadt update (4.1) of Corollary
4.1 and we replace inverse sizing H.(H, «~ %Hc and B. — % B.) with the inverse weak Greenstadt

update (4.2) of Corollary (4.2).
Proof.

Suppose that we apply the direct weak update. Then the Sherman-Morrison formula yields

fI:Hc-i-

c-b
be

sst,

’
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which implies
. b
i—a+ =(c-b).
c
We also have b «— b and & — b. Therefore, Theorem 3.1 yields
(@a—-0d)
(1 - n)(acé - b?)
(a+b-% —b)
(1= n)((a+ 22 - 8?)

1
1-n'

¢- = 14

= 1+

Similarly, the optimal #. = 1, since b = é&. By exchanging the roles of H. and B., we see that the
weak inverse update yields

-

1
$be=1477, $.=1.

a

We now apply the weighted Frobenius norm measures after weak updating. Although we do

not restrict the updates to the Broyden class, we get a new Fletcher-dual pair of updates in the

Broyden class. These symmetric updates are hereditarily positive definite but not always in the
convex class. The new updates are (iii) and (iv) in the following theorem.

Theorem 4.5 The following are equivalent updating sequences. The first four are hereditarily
positive definite.

(i) The result of a direct weak Greenstadt update or a weak BFGS update followed in either
case by a BFGS update is a BFGS update.

(i) The result of an inverse weak Greenstadt update or a weak DFP update followed in either
case by a DFP update is a DFP update.

(iii) The result of a direct weak Greenstadt update followed by a DFP update is the ¢ = 1— %, b=

2—(:_,—1) update from the Broyden class.

(iv) The result of an inverse weak Greenstadt update followed by a BFGS update is the d=1- %,

¢= ﬁ(i_is update from the Broyden class.

The following sequences may not be hereditarily positive definite

(v) The result of a weak DFP update followed by a BFGS update is the ¢ = g, é= ﬁy
member of the Broyden class.

(vi) The result of a weak BFGS update followed by a DFP update is the é= $, 0= Eﬁ%’p
member of the Broyden class.



Proof.

The proofs are much the same, so we will do only (i) and (iv) since they seem to be the most
interesting updates.

The direct weak Greenstadt update is

B =B+ 2 B.ssT B 2= )B.s.
The weak BFGS is
- b-c - -a
H=H+ 7 ssT and s— Hy=s—- Hey - ( )s—(l- )s—H_.y
In the first case,
_ BssTB g7
By = B-—"—+75"
- - T T
= b BssTB. - (14° C)QB“"Z B°+y’;
T T
=&_&w&+w.
c b

In the second,

i+ (s — Hy)sT + s(s — Hy)T _ yT(s — Hy)ssT

Hy = b 52
- H.+ b—a ssT ((1 - b“')s — H.t)sT +s((1 - "“')s - Hy)T —0
b b b
_ (s- Hcy)s +s(s—Hy)T ,b—a _b-a,

which is the BFGS update of H.. The proof of (iv) is as direct.
The inverse weak Greenstadt update of H, is

@-a)

H=H.+ Hyy"H.

and I.{y =(1+ é-;—“)H,;y, s — I?y =s—-—H.y- —Hcy So, following with a BFGS update,

H, = -+(s-—f1y)sT+s(s—fIy)T_yT(s-fIy)ssT

b b2
- - T - T
- H,.+ bazaH JTH, + (s— H.y)s 1—3(3 H_.y)
b-
cys + 3yTH ) i a sT

(s— cy)8T+s(s—Hcy)T_b—assT
b b2
Hyy"H. H.y fz s yTHc s ff_
Hl-) T - T T e Th )

= H.+




The first three terms are the BFGS and the last is

Y = (2= Daw,

a

where v is given by (19). Now use (18) with ¢ = 0 for the BFGS portion and we get
b
H,=H.- %HcnyHc + -Il;.ssT +avoT 4 (; - 1)aveT
which is (18) with 1 —d=14+2-1= % and (iv) is proven. O
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5 The w-Optimal Update

In Section 3 we found the ‘best’ rank-two updates in the Broyden class, i.e., the rank-two updates
parametrized by ¢ and & in (16) and (18) that minimize the measure w. However, if we do not
restrict ourselves to rank-two updates but only to maintaining positive definiteness and the secant
equation, then we obtain a different result. We see that the best update of B, in the case ac # b2
is obtained by inverse sizing B, and then applying the BFGS update. Similarly, the best possible
inverse update is obtained by sizing and operating on H. with DFP. The updates are different
although the optimal values of w are ultimately equal.
We continue to assume that y*s > 0 and that y and Bs are linearly independent.

Theorem 5.1 Assume B, is s.p.d. and ac # b®. Then for
a=lo__n
" a trace(H.B,)’

the BFGS update of 1B,

H+=ch+usT+suT, u=8———(;:ﬂ

is the unique solution of
min w(H.By)
subject to Bys=y, B4 s.pd.
In addition, the Lagrange multiplier for the secant equation is uriiquely
2(s - aH,.y)
ban(det(H B, ))*
and the optimal value of the measure is

w(HeBy) = (

ac
b2
Proof. First, we note that an optimal B, s.p.d. exists from Lemma 2.1. The Lagrangian for

).

our problem is
L(X, B4) = g(B4) + A(Bys - ),

h
where trace(H.By)

) = e (den( B )
and A € R™ is the Lagrange multiplier. For simplicity of notation, we multiply the Lagrangian
by the constant n(det(Hc))% and remove this constant from A at the end. Now
ABys = trace(A\'B,s)
= trace(B4s)\')
= trace(As'B,)
= trace(sA'B;)

t t
= trace( &12-—’-\2-34.)

,
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by adding the previous two equivalences and dividing by 2. Therefore the gradient of the linear
functional A*B,s = (-‘-A'QL’\", B, ) on the subspace of symmetric matrices is

SAt + Ast
7
Using the cofactor expansion of the determinant along a row of the matrix, i.e. det(A) =
¥; ak;(—1)**+idet( A(k, j)) where A(k, ) denotes the submatrix of A obtained by deleting row k
and column j, we see that the gradient of det(B, ) is adj B4, the (symmetric) matrix of signed
cofactors. We will also need Cramer’s rule, i.e. B! = mlgnadj B,.
We can now differentiate the Lagrangian with respect to By and equate the derivative to 0;

1 1 trace( H.B) 1.1, . SAt 4 Ast
0 = ————{(det By)"H, - ————*(det By)»~"(adj B+)} + ————
(det B+)%{( +) - (det By)~~"(adj By) 3
or
0= n H.— B4 n(det By)* sAt + Ast (50)
" trace( H.By) ¢ % ' trace( H.By) 2
Let N
_ n _ n(det By)»
@= trace( HCB.,.)’u ~ 2 trace( HCB.,.)'\' (51)
Then (50) becomes
B7! = aH, + su' + us'. (52)
Since B;ly = 8, we obtain
aH.y+suly+usly=s (53)
or H .
-3 _ gy LY
u= Sty Sty (Sty )' (54)
Let .
-4y
p=2 (55)
and substitute (54) in (53). We get
sty sy‘aH.y : ssty aHcy , ta
aHey + s p Pyt T gy SYT Py =
or ‘o]
— 5(25'By) + s(1 - y—s:yﬂ) =0. (56)
Therefore,
_ 1 yiaH.y
p= g1 - Lo ), (57)
iFrom (54), (55), and (57), we conclude
1 sty - y'ay
u= 5(3 - aH.y) —( (o) )s. (58)

’
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We can now substitute for u in (52) and obtain

B7' = aH.+us'+su'
sst aH.yst ss sst ytaH.y
sty sty 2sty  2sty sty
sst  sylaH., sst sst ytaH_.y
sty sty  2sty | 2sty sty
ss*  aH.ys'+ sylaH. sstytaH.y
sty sty (s'y)?

t

= aH.+

(59)

Note that (59) is the BFGS update of (aH.) and is equivalent to (18) with ¢ = 0 (c.f. [15, pg.
269]. Since the update B, is the best possible for our measure and since it is a rank-two update
of 1B., we conclude that L is the constant that makes the BFGS update the best among all
rank-two updates which includes the Broyden class. We can now apply Theorem 3.1, i.e. we
want ¢ in (25) to be one in order to get the BFGS update. Since b > 0, this is equivalent to
scaling B, so that the new a equals b, i.e., y'aH.y = b or

b
a = ;. (60)

The values for the Lagrange multiplier A and for a are given in (51). The optimal value
w(HcB;) = w((aH:)By),

by Proposition 2.1(i). Therefore, B, is the BFGS update of the sized B.,i.e. ¢ =1,a=05,b=1b,
¢ = ac/b, and Lemma 3.1 yields

(2H(1)+n-2)/n
(f2(1))=
(2+n-2)/n
(B?/ac)x

w(aH.B;) =

Corollary 1 Assume B, s.p.d. and ac # b%. Then
2 n
[+

@=c= trace(H 4 B,)

and the DFP update of aB.,

By =aB.+uy' +yu', u= y—_%,

is the unique solution of
min w(BH4)
subjectto H y=3s, H,s.p.d.

,
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In addition, the Lagrange multiplier for the secant equation is uniquely

2(y — aB.y)
ban(det(B.B;!))»

and the optimal value of the measure is equal to the optimal value in Theorem 5.1.

Proof.
We need only exchange the roles of B. and H. in the theorem and note that the optimal value
does not change. u
This theorem and corollary state that we obtain the same updated matrix B, whether we
apply the optimal ¢, formula to B, or the sized B., or indeed any 0B.,0 > 0. Therefore, the
w-optimal update of B, is also the sized BFGS update of B.. Similarly, the w-optimal inverse
update of o H, is the sized DFP update of H..



6 Concluding Remarks

In this paper we have studied the measure w as it relates to the derivation of updates of the
Hessian in least change secant methods. We have seen, in Section 5, that sizing of the Hessian
arises naturally from this measure. In particular, the inverse-sized BFGS and sized DFP are the
optimal w updates. This further illustrates the central role of the BFGS and DFP updates. We
have also considered weak secant updating in place of sizing.

Powell [8] shows that the DFP update performs far worse than the BFGS update when applied
with direct prediction steps to the simple quadratic function

f(z) = 3(at + ).

He shows that the DFP was far less effective than the BFGS at reducing large eigenvalues. Of
course, sizing can reduce large eigenvalues immediately. In this respect, sizing can be considered
a ‘fix’ for the DFP. This is corroborated in the following numerical data which compares Powell’s
data with sized DFP and sized BFGS. The initial Hessian approximation is the diagonal matrix
diag(1, );), while the initial point is 2; = (cos ¢y sin ;). The numbers represent the number of
iterations needed to obtain the condition ||zk+1|| < €||z1]|. The numbers in brackets are for the
sized updates.

Y1 20deg 40deg 60deg 70deg 80deg 85deg 87deg 88deg

A1

10 5(9) 6(10) 7(7) 8(6) 7(3) 6(9) 5(9) 4(9)
100 5(10) 7(14) 8(16) 9(10) 10(7) 10(6) 9(7) 9 (6)
104 5(14) 7(27) 8(30) 9(20) 11(12) 12(8) 13(11) 14 (13)
108 5(19) 7(15) 8(15) 9(34) 11(14) 12(10) 13(8) 14 (6)
10° 5(12) 7(14) 8(17) 9(10) 11(8) 12(21) 13(10) 14 (8)

Table 5.1. Number of iterations for the BFGS (sized BFGS) when ¢ = 104

%1 20deg 40deg 60deg 70deg 80deg 85deg 87 deg 88 deg

A1

10 6(8) 10(5) 14(5) 16(5) 14(5) 9 (4) 7 (6) 6 (7)
100 8(8) 15(5) 29(6) 47(6) 89(8) 106(8) 84(7) 59 (6)
1000 10(8) 19(5) 45(6) 83(7) 230(8) 549 (10) 855(10) 1000 (10)
10* 12(8) 24(5) 60(6) 119(7) 380 (9) 1141 (10) 2420 (11) 4102 (12)
108 15(8) 34(5) 92(6) 181(7) 752(9) 3482 (10) 5162 (11) 9194 (11)

Table 5.2. Number of iterations for the DFP (sized DFP) when ¢ = 104

From Theorems 4.1 and 5.1 and Corollary 5.1, the sized DFP, inverse-sized BFGS, optimal ¢
and inverse optimal ¢, are all equal in the case n=2. (In fact, Proposition 2.1 (iii) implies that
they are also equal to the optimally conditioned sized symmetric rank-one update.) This clearly

’
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appears to be the best update in the above tables. We now decrease €. The following results
show that we do not appear to lose asymptotically when we use the w optimal updates in the

case n = 2.

A1
10
100
104
108
10°

Table 5.3.

A1
10
100
104
108
10°

U2}

20deg 40deg 60deg 70deg

6 (9)
6 (9)
6 (9)
6 (9)
6 (9)

7(6)
8 (6)
8 (6)
8 (6)
8 (6)

9 (6)
9 (7)
10 (7)
10 (7)
10 (7)

9 (5)
10 (8)
11 (9)
11 (9)
11 (9)

80deg 85deg 87deg
8 (5) 7(7) 6 (7)

11(8) 11(7) 11(7)

12 (10) 14 (10) 15 (10)

12 (10) 14 (11) 15(11)
12 (10) 14 (11) 15(11)

Number of iterations for the BFGS (sized DFP) when € = 107

U1

20deg 40deg

7 (10)
7 (10)
7 (10)
7 (10)
7 (10)

9(7)
9(7)
9(7)
9(7)
9(7)

60 deg

10 (7)
11 (7)
11 (7)
11 (7)
11 (7)

70deg 80deg

10 (7)
12 (7)
12 (8)
12 (8)
12 (8)

85deg 87deg
10(6) 8(5) 7(8)
13(9) 13(9) 12(8)

14 (10) 15(11) 16 (12)
14 (10) 15(11) 16 (12)
14 (10) 15(11) 16 (12)

Table 5.4. Number of iterations for the BFGS (sized DFP) when ¢ = 10~°
We have also tested out 22 methods on the standard set of 19 test problems from [4]. We

include some of the results below. The methods are:

1. BFGS

2. optimal ¢

3. optimal ¢

4. size at first step only and use optimal ¢

5. size at first step only and use optimal é

6. inverse size at first step only and use optimal ¢

7. inverse size at first step only and use optimal é

8. size at first step only, direct shift subsequently and use optimal ¢

9. size at first step only, direct shift subsequently and use optimal é

88 deg

5 (8)
10 (7)
15 (11)
16 (12)
16 (12)

88 deg

6 (9)

11 (8)
17 (13)
17 (12)
17 (12)

10. inverse size at first step only, weak inverse update subsequently and use optimal ¢

’
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11. inverse size at first step only, weak inverse update subsequently and use optimal q3

(The numbers in the following two tables include iterations/function-evaluations. *** indi-

cates an error or lack of convergence.)

Problems

© 00 3 O O W N

Do e T e T o o S S Gy i Gy WG
0O ~3 O O W W N = O

19
average

Methods 1

9/11
29/38
37/48
3/5
149/191
29/37
20/30
37/47
138/184
871/1131
*kk
23/48
30/42
28/30
52/75
109/128
14/19
53/81
21/35

6/8
36/43
41/45

4/8

* %k %k
27/33
20/30
35/41

201/259
865/1077
22/26

*okok

%k k

28/30
55/73
125/142
17/22
50/67
22/32

91.8/121.1 97.1/121.0

Table 5.5. Methods 1 through 7

5/8
40/47
39/47

3/5

107/754
49/59
18/27
42/52

167/215

838/1064

*kk

* k%

71/88
27/28
72/95
119/139
16/46
51/70
21/33

99.1/163.4 57.7/70.9 75.1/85.6

6/8
29/33
45/48

4/9

209/273
30/37
18/27
53/60

148/191

253/292
22/26
31/40
54/72
29/31
38/52
40/45
17/22
41/50
27/32

46/48
40/44
53/59
5/9
*kk
73/80
18/27
66/71
145/186

233/263
*kk

*% Xk

105/120
31/33
46/58
72/76

167/174
72/84
31/38

6/8 46/48
29/34 50/55
45/49 56,66

4/9 5/9

208/275  *x*
34/40 77/83

18/27 18/27
54/59 70/75
144/187  148/189

276/323  237/273
22/26 i

*x 56/65
57/74  105/120
30/32 31/32
39/54 47/61
44/48 71/75
17/22  150/158
41/50 74/85
29/35 33/40

60.9/75.1 74.9/85.9



Problems
1

W 00 3 O v b W

T o T o S S S S S S = S —
0 3 O Ov b W NN~ O

19
average

Table 5.6. Methods 8 through 11

Methods

8

9/11
30/38
48/51
3/7
164/214
34/40
18/27
53/58
148/193
266,308
12/16
32/41
52/64
30/32
38/56
45/49
15/20
40/47
29/37

9 10
9/11 10/12
31/40 35/42

109/111 47/50
3/7 3/7
162/210 ok
44/51 44/50
18/27 18/27 -
129/133 58/63
ok 151/200
984/1030  270/310
12/16 13/17

* %k Xk %k %k
63/73 65/77
54/55 30/31
40/56 *xx

121/130 50/54
15/20 17/22
63/70 46/54
68,/64 30/34

11

9/11
27/35
44/48
3/7
150,200
33/40
18/27
52/57
147/198
271/325

*%k%k

ok

46/64
29/31
37/55
45/49
14/19
40/48
29/34

56.1/68.9 113.2/123.8 55.4/65.6 58.5/73.4
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