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Abstract

We present a concurrent LU-decomposition algorithm based on im-
plicit pivoting of both rows and columns. Most pivoting strategies are
thus easily incorporated. This algorithm is implemented such that it
is, to a large extent, independent of the data distribution.

With this program, we study the performance of concurrent LU-
decomposition as a function of data distribution and pivoting strategy.
We show that LU-decomposition with some pivoting strategies is both
faster and numerically more stable than LU-decomposition without
pivoting. Experimental evidence on the Ametek 2010 shows that, for
performance considerations, pivoting is equivalent to randomizing the
data distribution.

1 Introduction

Multicomputer implementations of the LU-decomposition algorithm, can be
categorized by the distribution of the coefficient matrix over the concurrent
processes and by the pivoting strategy. Chamberlain [1], Chu and George [3],
Geist and Heath [5], and Moler [9] have examined varying combinations
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of row- and column-oriented distributions with row and column pivoting.
Fox et al. [4], Hipes and Kupperman [7] distribute the matrix over a two
dimensional grid of processes, based on the observation that this minimizes
the communication cost.

The particular distribution has far reaching consequences for the user.
E.g., the initialization of the matrix may be an expensive and compli-
cated computation incompatible with the distribution imposed by the LU-
decomposition, typically a library routine. The matrix could be initialized
in one distribution and decomposed in another, but a possibly expensive
data redistribution is then necessary between the initialization and LU-
decomposition step.

For this reason, we prefer to regard the matrix distribution as a given.
We develop our library algorithms such that they are correct for a large
class of distributions rather than for just one distribution. When the library
subroutine is called, the distribution is as much part of the data as is the
matrix itself. The redistribution step is thus avoided. Of course, some
distributions are more efficient than others. We quantify this effect through
experimentation.

Data distribution is only one factor influencing performance. Our ex-
perience shows that — for scientific computing — it is the most important
factor because the work is generally some increasing function of the amount
of data. Optimizing a concurrent program is often equivalent to optimizing
the data distribution. Changing the latter often requires a major adaptation
of the whole program. Hence, concurrent program optimization is necessar-
ily a global operation and cannot be achieved through the optimization of
individual components. Our approach to this problem is to write programs
that are valid for many data distributions. In current programming envi-
ronments, this is rather difficult and cumbersome for arbitrary programs.
It is a tractable proposition, however, for many important components of
scientific computing. In [16], we derive many such algorithms. Our concur-
rent LU-decomposition is one example of how this is achieved with currently
available tools.

Pivoting is traditionally used to accomplish two goals: numerical stabil-
ity and, for sparse matrix computations, limiting the fill. Our experimental
results in Sections 9 and 10 show that pivoting is also an effective randomizer
of the computation and acts as a load balancer. In some cases concurrent
LU-decomposition is faster with than without pivoting. With pivoting, the
performance of LU-decomposition is less sensitive to the particular matrix
distribution. In some cases, pivoting may correct load imbalance problems
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to the extent that efficiency of the LU-decomposition would not be a con-
sideration in the choice of distribution. If pivoting is to be a viable load
balancing technique, the choice of pivot must have a maximum flexibility.
We use an implicit pivoting technique that can incorporate a wide range of
exisiting pivoting strategies. We shall also introduce two new strategies.

All of our experiments were performed on both the Ametek 2010 and the
Intel iPSC-2. The obtained results were essentially equivalent as far as the
performance of our LU-decomposition program is concerned. There were, of
course, performance differences between the two machines. For readability
and brevity, we report here on our Ametek 2010 results only.

The main parts of this paper are contained in Sections 2, 3, 8, 9, and 10.
Sections 2 and 3 describe the LU-decomposition and pivoting algorithms. In
Section 8, we give a performance analysis. In Sections 9 and 10, we report
on our experiments. Sections 4 and 5 discuss implementation details that
influence some execution times. In Sections 6 and 7 we briefly describe the
operating system and the architecture of the Ametek 2010.

2 The LU-Decomposition Algorithm

The LU-decomposition algorithm with implicit row and column pivoting is
based on a reformulation of the classical result:

Theorem 1 For any real M x N matriz A, there ezists an M X M permu-
tation matriz R and an N X N permutation matriz C such that:

RACT = iU,

where L is M x M unit lower triangular and U is M x N upper triangular.

For a proof, we refer to basic numerical analysis texts. In [15], we prove the
following related theorem:

Theorem 2 For any real M X N matriz A, there exists an M x M permu-
tation matriz R and an N X N permutation matriz C such that:

A= LCTINMRU (1)

where RLCT is unit lower triangular and RUCT is upper triangular. Both
L and R are M x N matrices. The matriz Inr is the N x M identity
matriz.



M:={m:0<m< M};

N:i={n:0<n< N}; -

for k=0,1,...,min(M,N) — 1 do begin
{Pivot Strategy and Bookkeeping.}
do pivot search and find a,., k], c[¥] ;
M= M\ {r[k]} ;
N =N\ {c[k]};

if a,. = 0.0 then terminate ;

{Calculation of the Multiplier Column.}
for all m € M do
a[m, c[k]] := a[m, c[k]}/a, ;

{Elimination.}
for all (m,n) € M x N do
4 a[m,n] := a[m, n] — a[m, c[k]]a[r[k], n]

Figure 1: LU-Decomposition with Implicit Pivoting.

The matrix formed by the first M columns of RLCT and the matrix RUCT
satisfy Theorem 1 in the role of L and U respectively. Even though L and U
have complicated structure, linear systems of the form Lz = bor Uz = b are
solved easily by a modified backsolve algorithm (see [14]). For all practical
purposes, the matrices L and U are as acceptable as the matrices L and U.

The matrices L and U of Theorem 2 are obtained from A by an LU-
decomposition with implicit complete pivoting. A full search of all feasible
matrix entries is rarely performed and a partial search is preferred. Provided
the LU-decomposition runs to completion, the matrix A is still factored in
the form of Equation 1. For any partial pivoting strategy there exist ma-
trices for which the LU-decomposition does not complete because a zero
pivot is found prematurely. For nearby matrices, this partial pivoting strat-
egy is numerically unstable. Though not proven, it is accepted that the
extent of the pivot search determines the class of matrices for which the
LU-decomposition is numerically stable.

In Figure 1, we use an informal notation to display the LU-decomposition



algorithm with implicit pivoting. In this program, the array a represents the
matrix. The integer arrays r and c are the pivot indices, i.e., the pivot of
the k-th decomposition step is given by a[r[k],c[k]]. The variable a,. is the
current pivot value. The index sets M and N are the sets of feasible rows
and columns. Initially, all rows and all columns are feasible. After a pivot
" is chosen from the feasible entries, the assignments M := M \ {r[k]} and
N := N\ {c[K]} make its row and column infeasible. If the pivot value is
zero, the LU-decomposition is terminated. The multipliers are computed in
the feasible rows of the pivot column. The elimination takes place over all
feasible matrix entries.

On multicomputers, concurrency is implemented by communicating se-
quential processes. For the purposes of this algorithm, the number of pro-
cesses is fixed. Each process has a unique identifier, which is used as an
address in the exchange of messages. It is often convenient to map the sys-
tem supplied identifier into a user defined identification. E.g., for vector
calculations the processes are organized as a one dimensional process grid.
The user identification for each process is then a number p between 0 and
P — 1, where P is the number of processes. A multicomputer program op-
erating on a vector, say of dimension M, must distribute the vector entries
over the P processes. A distribution allocates each vector entry to a par-
ticular process, e.g., it maps the m-th entry to process p. The collection
of entries allocated to one process form a local vector. Each entry of this
local vector corresponds to exactly one entry of the global vector, e.g., the
i-th local entry is the m-th global entry. A distribution is thus a map from
the global index m, where 0 < m < M, to an index pair (p,t) consisting
of a process number and a local index. Two often used maps are the linear
distribution given by:

Am) = (= max(| 72 | .| 2E7 ) m-pL-minte,B) @)

and the scatter distribution given by:

o(m) = m mod P, [%J (3)
where L = l%J and R = M mod P. An example is displayed in Table 1:
the index range 0 < m < 10 is distributed over 4 processes.

For matrix calculations, we organize the processes in a rectangular grid
such that each process is identified by a two dimensional coordinate (p,q),




Linear Scatter
Global || Process | Local || Process | Local

0 0 0
1 0 1
2 0 2
3 1 3
4 1 0
5 1 1
6 2 2
7 2 3
8 3 0
9 3 1

Table 1: Four Fold Linear and Scatter Distribution.

where 0 < p < P and 0 £ ¢ < Q. The total number of processes is thus
P x Q. We define the p-th process row and the g-th process column as the
collection of processes given by {(p,q) : 0 < ¢ < @} and {(p,q) : 0 <
P < P} respectively. The concurrent LU-decomposition is derived from the
sequential one by imposing a distribution of the matrix over the P x Q
processes. We define a matrix distribution as the Cartesian product of two
vector distributions s and v. The rows of the matrix are distributed by u
over the P process rows. Similarly, the columns are distributed by v over
the Q process columns. Thus, if u(m) = (p, ) and v(n) = (g, 5), the global
matrix entry with row and column indices m and n is found in process (p, q)
as local matrix entry a; ;.

The distributions x4 and v are generally user supplied. However, even us-
ing the linear and the scatter distributions only, a matrix can be distributed
in a variety of ways. Consider, e.g., the distribution of a matrix over four
processes. We may organize the processes in a 4 x 1, a 2x 2,0or a1l x 4
process grid. We may also apply either linear or scatter distribution to rows
and columns. This results in the 8 distributions:

4 x 1 linear-, 2 x 2 linear-linear,

4 x 1 scatter-, 2 X 2 scatter-linear,
1 x 4 -linear, 2 x 2 linear-scatter,
1 x 4 -scatter, 2 X 2 scatter-scatter,



where we list the process grid, the row, and the column distribution. (Note
that the linear and the scatter distribution are the same when P = 1 or
Q =1.) A 5x 7 matrix A = [am,n] distributed over a 2 x 2 process grid with
a linear row and a scatter column distribution is stored as given by:

@0 @02 Go4a Go6 @p,1 @03 @Gos5

a0 aG12 414 W16 a1 @13 G415

[ io,o ::o'l ]-.: a0 G222 G24 G26 a1 a23 @25
10 A aso G32 a34 €36 as,) 433 ass
G40 G4,2 Q44 G40 Q4,1 Q43 Q45

where A,, is the submatrix of A stored in process (p,g). The local in-
dices (%, 7) corresponding to the global indices (m,n) are determined by the
position of the entry am » in its submatrix.

The program of Figure 1 is parallelized such that it is valid for any distri-
bution of the matrix represented with functions like 4 and v. In Figure 2, we
display the program for process (p,q) of the concurrent LU-decomposition.
This program is formally derived from the sequential one in [15]. The tran-
sition from the sequential to the concurrent program can also be understood
intuitively. The concurrent program no longer has global feasible sets M
and V. Instead, the index sets Z and J keep track of the local feasible rows
and columns. Initially, all rows local to the process row and all columns
local to the process column are feasible. Both the sequential and concurrent
version have min(M, N) sequential steps. In both, the pivot search returns
the pivot value and its global indices. The concurrent program immediately
converts the latter into local indices with the distributions x and v. This
determines that the pivot is located in process (p,4) and that its local in-
dices there are [%,j]. The pivot row is made infeasible in process row p by
deleting local row 7 from the feasible row set Z. Similarly, the pivot column
is made infeasible in process column § by deleting local column j from the
feasible column set J. The decomposition is terminated if the pivot value,
known in all processes, is equal to zero. The multipliers are calculated in the
multiplier column and the elimination takes place over all feasible entries.
The only major additions to the algorithm are the broadcasts of the pivot
row and the multiplier column. The pivot row is broadcast from process
row p to all other process rows. The multiplier column is broadcast from
process column § to all other process columns.



I:={i:0<i<I};

T={j:0<j<J};

for k=0,1,...,min(M,N) — 1 do begin
{Pivot Strategy and Bookkeeping.}
do pivot search and find a,., r{k], c[k] ;
By := p(rlk]) ;
g, := v(c[k]) ;
ifp=pthenZ:=7T)\{i};
ifg=gthen J =7\ {j};
if a,. = 0.0 then terminate ;

{Broadcast the Pivot Row.}

if p = p then begin
for all j € J do a.[j] := ali, ] ;
send a,[j:j € J] to (e,9q) ;

end

else receive a.[j : j € J] from (p,q) ;

- {Broadcast the Multiplier Column.}
if ¢ = § then begin
for all i € Z do a.[i] := aft, j]/arc ;
send a.[i: i € Z] to (p,e) ;
end
else receive a.[i : ¢ € Z] from (p, §) ;

{Elimination.}
for all (4,5) € I x J do a[i, j] := a[t, j] — ac[iar[s]
end

Figure 2: Concurrent LU-Decomposition with Implicit Pivoting.



3 Pivoting Strategies

In this section, we describe the pivoting strategies of our experiments.

The simplest strategy is to have no strategy at all. In the k-th elimination
step, entry a[k, k] of the matrix A is chosen as pivot. With the no pivot-
ing strategy the sequence of pivot indices (r[0], [0]), (r{1),c(1]),-..,(r[M -
1},e[M — 1]) is thus given by (0,0), (1,1),...,(M -1, M - 1). We generalize
this by allowing an arbitrary predetermined sequence of pivot positions. The
only a priori requirement on such a sequence is that each row and column
index occurs at most once. We call this generalization preset pivoting. It is
clear that no pivoting is just a special case. Any static strategy suffers from
numerical instability. In some circumstances this may be an acceptable risk,,
in others enough might be known about the matrix to guarantee that the
errors remain small.

Most pivoting strategies are dynamic, i.e., the decision which entry
should be the pivot in the k-th step of the decomposition is postponed
until the pivot is actually needed. Complete pivoting searches all feasible
entries for the one that is largest in absolute value. This requires a search
over (M — k)(N — k) entries. Only LU-decomposition with complete piv-
oting is proven to be numerically stable, i.e., for any matrix the computed
LU-decomposition is the LU-decomposition of a nearby matrix. By restrict-
ing the search of the k-th pivot to the feasible entries of the k-th column,
the extent of the search is reduced to (M — k) entries. This is called row
pivoting. The k-th column does not offer a numerical advantage over other
feasible subsets of size (M —k). There are two other obvious partial pivoting
choices that limit the search to (M — k) entries: column pivoting and diag-
onal pivoting. Row pivoting is more popular only because it is somewhat
easier to implement.

We have also used two intrinsically concurrent partial pivoting strategies.
Let the matrix be distributed over a P x Q process grid. When searching a
column (in row pivoting), only one process column is active. Without any
overhead, the other process columns could each search another arbitrary
feasible column. This increases the extent of the search and, hence, the
extent of the class of matrices for which the LU-decomposition is numerically
stable. Similarly, column pivoting can be enhanced. We refer to these
concurrent alternatives as multirow and multicolumn pivoting.

Numerical stability is not the only criterion. In sparse matrix computa-
tions, the amount of fill generated by a particular choice of pivot is also a
consideration. Many static and dynamic strategies have been developed to



Qe :=0; r[k] :=—-1; c[k] :=-1;
if 7 #0 and Z # 0 then begin
{Select a Feasible Column and Find Maximum in it.}
j := any element of J ;
h:=0.0;
fori€Z do
if |a[i,j]| > h then begin i:= i ; h := |a[i, j]| end ;
are = af§, ] ; r{k] == p~(p,3) ; k] :=v~Y(q,])
end ;
{Find Global Maximum.}
t:=pQ+4q;
ford=0,1,...,log,(PQ) — 1 do begin
send ay, r[k], c[k] to tV2¢ ;
receive al_,r!,c! from tV2¢ ;
if (|are| < laz|) or
(lare| = |a]| and r[k] < r*) or
(lare| = |al.| and r[k] = r! and c[k] < ')
then begin
apc:=al, ; k] :=11; k] := ¢!
end
end

Figure 3: Concurrent Multirow Pivoting.

minimize fill, see, e.g., [6]. Some use generated fill as sole criterion, others
combine fill and numerical stability considerations. To date, we have used
only simple strategies similar to those of the full matrix case. Even with
these, a significant performance gain over solving the full matrix system is
obtained. .

The concurrent implementation of any of the above pivoting strategies
is fairly straightforward. As an example, we display multirow pivoting in
Figure 3. The matrix distribution, the pivot history (as recorded by Z x .J)
and the pivoting strategy determines the local search set. For multirow piv-
oting, this happens to be all feasible entries of an arbitrary feasible column.
A local search determines a local pivot candidate and its local indices. These
are converted into global indices with the inverse functions of u and v. If
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the search set is empty, the local pivot candidate has the value zero and its
indices have an invalid value like —1.

After the local search, the actual pivot is computed with a concurrent
maximization over all processes. We use a recursive doubling procedure.
This computes and simultaneously distributes the result, which consists of
the pivot value and its global row and column indices. All processes partici-
pate in this recursive doubling procedure. For this part of the computation,
the process grid structure is not relevant and it is notationally convenient
to identify each process with a single process number instead of a process
coordinate pair. We use the mapping:

t:=pQ+4q .

but any bijection from {(p,q):0<p<Pand0<¢g<Q}to{t:0<t<
PQ} would do. The expression tV2¢ denotes the integer obtained from ¢ by
flipping bit number d of its binary expansion.

 Recursive doubling compares successive pairs of pivot candidates and
keeps the best one encountered thus far. For recursive doubling to work
properly, the comparison function must be associative, see, e.g., [13]. The
complicated comparison is to ensure associativity in case two or more matrix
entries are equal in absolute value.

4 The Sparse Matrix Representation

The sparse LU-decomposition algorithm does not differ from the full ver-
sion, except that the access to matrix entries is considerably more difficult.
The address of an entry a[m,n] is no longer computable with an easy in-
teger expression, instead the entry is located by a search through a sparse
matrix representation. In this section, we discuss our representation and the
rationale behind its choice.

Let A be the M X N sparse matrix, which we want to distribute over a
P x Q process grid. As for the full case, we use the distribution functions u
and v to allocate entry a[m,n] to a particular process (p,q). If A is sparse
and the distribution functions g and v are arbitrary, we generally expect
that each local matrix is sparse. One can certainly construct combinations of
sparse matrices and distributions for which this is not true. The generic case,
however, is that the local matrices are sparse. As we are interested to keep
the correctness of our algorithms independent of the distributions, our main
interest lies with the generic case. Each local matrix is thus represented in a
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Figure 4: Compact Row Oriented Sparse Matrix Representation.

separate sparse structure. Any considerations regarding the implementation
of this structure are of a purely sequential nature.

In sparse matrix representations, we must distinguish between struc-
tured and unstructured sparse matrices. Often, exploitation of a particular
fill structure leads to simpler and more efficient representations. However,
even if the matrix A has a particular structure, the local matrices generally
have not. Again, it is possible for some matrices to construct particular
distributions such that the local matrices are structured. The generic case,
however, is that the local matrices are unstructured.

In our sparse matrix representation, we have tried to minimize the
amount of bookkeeping information stored along with each entry. For each
row of the matrix, we keep a set of nonzero entries in that row. The column
index is stored along with each entry. A disadvantage of such a representa-
tion is that rows and columns are treated asymmetrically. Hence, a different
cost is associated with accessing a row or a column. Because row accesses
occur more frequently in our algorithms, we have optimized the structure
accordingly.

The row set is represented as a list of blocks, see Figure 4. Each block
contains a specified small number of entries together with their column in-
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dex. E.g., a block might contain eight double precision locations for the
matrix entries and eight integers for the column indices. In addition to this,
a block contains a pointer to the next block in the list. Hence, one extra
pointer is needed for every eight entries. The minimum memory allocation
for each row is one block. Hence, some memory is wasted in the tail of the
last block in the list. The entries of the row set are not kept in any sorted
order as the cost of sorting far exceeds its benefits.

To access this structure conveniently, we use four routines: expand-row,
compact-row, expand-column, compactcolumn. Like a gather operation,
the expand routines translate a sparse row or column into a dense array
and use an index set to indicate the locations of the nonzero entries. The
compact routines perform-the opposite operation and are thus similar to a
scatter operation. With these routines, the elimination step takes the form:

Ja=JT ;
for i € Z; do begin
for j € J4 do a.[j] :=0.0;
expand row i into @, Jq ;
Ja:=INTa;
for j € Ji do a.[j] := a.[j] — acli] * a-[5] ;
compactify a.[j],j € Ju into row i
end

The index set Z; is the intersection of Z, the feasible row indices, and the set
of row indices of nonzero multipliers (determined previously). Similarly, J4
is the intersection of J, the feasible column indices, and the set of column
indices of nonzero pivot row entries.

5 Index Sets

The programs of Figures 1 and 2 almost immediately translate into imple-
mentations. The only complication is the management of arbitrary index
sets. We use a bit map representation such that indices are easily activated
and deactivated by setting or unsetting a bit. The intersections and unions
of index sets are easily computed with logical bit operations.

A bit map representation is not effective to loop through all active in-
dices. An obvious implementation runs through all indices and tests the bit
map whether it is active or not, i.e.:

form=0,1,...,M —1do
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if m € M then begin

end

The conditional test prevents the vectorization of such a loop. For this
reason, we convert the bit map into a more effective representation before
looping through all active indices. An array of indices r[l], where 0 < I < L,
is constructed such that all m satisfying r[l] < m < r[l + 1] for some even !
are active. Conversely, all m satisfying the same inequalities for some odd {
are inactive. A loop over all active indices is then implemented as follows:

forl=0,2,...,L—-2do
for m = r[l],r[l] + 1,...,7[l + 1] — 1 do begin

end

The cost of the conversion and the overhead associated with the imple-
mentation of the loops is small, see Section 9. For large active ranges the
interior loop vectorizes well. Only when the ranges are highly fragmented,
does overhead become noticeable. True vectorization requires scatter-gather
hardware.

6 The Reactive Kernel and Cosmic Environment

Our algorithms are implemented in C to run under the Reactive Kernel/-
Cosmic Environment operating system, developed by Seitz et al. [10]. Here
we briefly describe those parts relevant to our application. For details on
the design of this system and its rationale we refer to [10].

The Reactive Kernel is the system running on each node of a multi-
computer and allows a user to spawn and kill processes, send and receive
messages. The Cosmic Environment runs under standard Berkeley 4.2BSD
UNIX and provides the same capabilities for processes running on a network
of work stations. The Cosmic Environment is also the interface between a
user’s work station and the multicomputer. The Reactive Kernel is cur-
rently available on the Cosmic Cube, the Intel iPSC-1, and Intel iPSC-2
hypercubes and on the Ametek 2010 multicomputer.

In our applications, we use six fundamental operations of the RK/CE
system: spawn, zmalloc, zfree, zsend, zmsend and zrecvb. The spawn func-
tion creates a process on a multicomputer node. A process so created is
identified through its unique ID = (node,pid), which consists of the node
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number and a process identification number. Spawn may initiate several
processes per node, a feature that is not used in our current experiments.
Message memory is allocated with the routine zmalloc. The statement:

msg = (double *)xmalloc(10*sizeof(double)) ;

allocates space from the message heap for ten double precision values. The
statement:

xfree(msg) ;

returns this space to the heap for future use. A buffer, once allocated, is
sent to process (node,pid) with:

xsend(msg,node,pid) ;

This statement simultaneously frees the buffer msg, i.e., for the sending
process xsend has the same effect as xfree. This avoids all synchronization
problems that might arise from refilling a buffer before the send operation
is actually completed. The function xmsend sends identical data to a list
of processes. Such broadcasts are efficiently implemented at the level of the
Reactive Kernel. The statement:

msg = xrecvb() ;

is equivalent to an xmalloc, except that the length of the buffer is determined
by the arriving message. Note that xrecvb does not provide any selectivity:
the next message must be accepted and the routine does not return until a
message has arrived.

If message selectivity is important for a particular application, as it is
for ours, such capability must be layered on top of the reactive primitives.
We have a number of communication routines that implement process grids.
These also buffer incoming messages that cannot be processed immediately.
We omit a discussion of this straightforward sequential code.

7 Multicomputer Hardware

The experiments on which we report in this paper were performed on the
Ametek 2010. In this section, we give a brief description of its hardware and
list performance information relevant for the interpretation of our compu-
tational experiments. For details we refer to [12].
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Operation Operations per Second

=y 4.64468e+05
X*—y .~ 3.29924e+05
x/=y 2.50501e+05

=x+y*z 3.88350e+05
x[i)=x[[+y[i]*z[i] 6.95846e+04
i+=j 9.34579e+06
o 5.24659e+05
i=i+)°k 9.43396e+06

Table 2: Number of Operations per Second for the Ametek 2010 Processor.
The variables x, y, z, x[i], y[i], and z[i] represent double precision values, i,j,
and k are integers.

The Ametek 2010 is a multicomputer and thus consist of a collection
of independent computers connected by a communication network. The
CPU of the Ametek 2010 nodes is the Motorolla 68020. Each node has a 4
Mbyte memory. At the time of writing this paper, Caltech’s Ametek 2010
configuration has 16 nodes. Table 2 displays node performance in operations
per second for typical operations expressed in C. Overhead due to looping
was made negligible in these performance measurements. A suggestion of
Kennedy [8] helped us to improve significantly the accuracy of these timings.
From Table 2, we may conclude that the Ametek 2010 nodes should execute
at a sustained performance level between 50 and 100 kFLOPS. We used the
optimizing GNU C-compiler for all the experiments in this paper.

The topology of the communication network is a rectangular mesh. It
features wormhole routing: a message header reserves all necessary channels
between source and destination and, subsequently, the message is transmit-
ted. The principal advantage is that the communication time is effectively
independent of the network distance between source and destination node.
(Network distance is important for the header only.) Every Ametek 2010
node features a microprogrammed second processor to manage send and re-
ceive queues. Figure 5 displays the communication time as a function of
the length of the message. These times were obtained by sending a message
1,000 times around a ring of 16 processes, one process to each multicom-
puter node. This time was measured and divided by 16,000. This gives
an average time for the combined cost of sending and receiving a message.
These timings were performed with the reactive primitives (solid curve) and
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Figure 5: Communication Time as a Function of Message Length on the
Ametek 2010.

with our communication routines layered on top of the reactive primitives
(dashed curve). This shows that the overhead is negligible for all but the
shortest messages.
We shall model the communication time as a linear function of message
length, i.e.:
tc(L) = s + T L. (4)

The value 7c(L) is the commaunication time of a message of length L. The
value 7g is the start up time and Tp is the marginal time. Figure 5 essen-
tially confirms this assumption, although there are some deviations. This
simple timing does not capture the possibility of a congested network. Then,
messages interfere with one another and the simple linear relationship breaks
down. Efficient programs avoid such congestion.

17



8 Performance Analysis

The performance analysis of our programs requires a substantial number of
simplifying assumptions. The real performance is greatly influenced by a
subtle interplay between the distribution functions x4 and v and the pivot
positions as determined by the pivoting strategy and the matrix. This is
difficult to capture in a simple formula. We restrict ourselves to a best case
analysis, showing that the ideal concurrent performance is reachable, at least
in some limiting sense. The experimental results of Sections 9 and 10 es-
tablish the limits of the validity of this analysis. We only deal with square
full matrices. Most conclusions carry over to the sparse matrix case, but
the simplifying assumptions only hold in a far more restricted set of circum-
stances.

We assume that the feasible rows and columns are uniformly distributed
over the process grid throughout the computation. This is the case if the
matrix distribution and the pivoting strategy are such that the locations
of pivot rows and columns in the process grid are essentially random. For
any matrix distribution and for any pivoting strategy, all rows and columns
eventually become infeasible. Some processes will become idle sooner than
others. This effect is negligible for coarse grained computations, i.e., when
the problem is large compared with the number of nodes (M N » PQ).

We assume that a broadcast over P processes takes a factor log, P times
longer than a simple send and receive operation. This is actually an overes-
timate as broadcasts are handled efficiently by the system, see Section 6.

These assumptions lead to the following estimate for the execution time
of the k-th LU-decomposition step on a P X @ process grid, each process
executing on a dedicated processor:

M-1-k

Thq = 7'0(—"7,_) log, P
M-1-k M-1-k
+ —p— T+t rc(-—Q—)log2 Q
(M —1-Fk)?
+ PQ TA.

The first term corresponds to the broadcast of the pivot row, the second and
third term to the calculation and broadcast of the multiplier column and
the last term to the elimination. The value 74 is the arithmetic time, i.e.,
the average time for a floating point operation. For simplicity, we have not
included the computation and communication cost of the pivoting strategy.
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Summing the above for k = 0,...,M -1 and using Equation 4, we obtain
the following execution time for LU-decomposition:

Tpq = ‘M log,(PQ)7s

log, P | log, Q. M?

+ ( 7t Q )2 ™ (5)
M2 M3

+ (§'+§'P—Q)"'A-

The start up time leads to an overhead term that increases logarithmi-
cally with the total number of processes. However, this term is a lower order
term with respect to the matrix dimension M. The marginal term of the
communication cost is minimized by choosing P = Q. Because of this term,
the best performance is generally obtained with two dimensional process
grids. The arithmetic time has two terms. The smallest order term results
from the multiplier computation which is distributed over P processes only.
This load imbalance can be avoided by choosing @ = 1. However, for large
problems this term is negligible compared to the main computational cost,
which is proportional to M3 and speeds up linearly with the number of pro-
cesses. The leading term of this equation is nothing but the execution time
of the best sequential algorithm:

3
T\ = _11_43_1_‘4
divided by the total number of processes PQ.

The effectiveness of a concurrent formulation is usually examined with
the aid of speed up and efficiency calculations. As a practical measure,
speed up is often plagued by ambiguities. The best sequential algorithm
may be well defined, its best implementation is not. As an extreme exam-
ple, it is unreasonable to use a sequential assembly language program as a
standard for a concurrent program written in some high level language. A
good sequential standard has the same level of code optimizations as the
concurrent program. This is not as clear cut a criterion as one would wish.
Measured speed up often depends on irrelevant implementation details of
the sequential program.

Considering this pitfall, we do not display our results as speed up graphs.
Instead, we give the observed execution times as a function of the number
of nodes. Speed up graphs do have the advantage that ideal concurrency
corresponds to a linear speed up, i.e., Tpq = %5. Following a suggestion of
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Seitz [11], we display the execution times in a log-log plot, concurrent exe-
cution time versus number of processes. Ideal concurrency then translates
into: A

log Tpq = logT1 — log(PQ),

i.e., a straight line with slope —1. Without losing this linear relationship,
we may use log,;, for the execution times and log, for the number of nodes.
In graphs, we display the ideal speed up curve with a solid line. We list
separately the measured speed up and efficiency of some computations. For
this reason, it is important to verify that the quoted sequential times are
reasonable, i.e., are compatible with the elementary timings of Section 7.

9 Experiments with Full Matrices

The cost of pivoting obviously depends on the strategy. It also depends on
the matrix itself because it determines the order in which rows and columns
become infeasible. This and the distribution determine the load balance.
Hence, every matrix has a different performance characteristic. For most
matrices and most pivoting strategies the pivot locations in the process grid
are more or less random. There are notable exceptions, however. E.g., the
pivots of diagonally dominant matrices with complete or partial pivoting are
on the main diagonal. The matrix used in all our full matrix experiments is
given by:
A = [amn] = [cos((m + 1) * (n + 1))],

where 0 < m,n < 300. The symmetry of this matrix is never used in
any of the algorithms. This matrix is easily generated and behaves well
numerically, which is necessary for timing many pivoting strategies, some of
which are numerically unstable. We are not aware of any special properties
this matrix might have regarding its pivot locations. A limited number of
tests with other matrices confirmed that the obtained performance results
are typical.

The main subject of this study is the influence of pivoting strategy and
data distribution on performance. Other variables like the size of the prob-
lem are kept constant. The main application of concurrent computers is
to solve large problems. Our principle goal is to make the computations
efficient in this regime. However, measuring the efficiency of a concurrent
computation requires timings over a range of machine sizes. Large prob-
lems cannot be solved on a small number of nodes due to memory and time
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|| Program | Execution Time (ms) | FLOPS |

Classical 1.63001e+05 | 5.52144e4-04
[| Index Sets 1.68948e+-05 | 5.32708e+04

Table 3: Execution Times and Floating Point Operations per Second for
Two Sequential LU-Decomposition Programs.

restrictions. Because we did not want to introduce any artificial times (ob-
tained through extrapolation of timings of small problems), our standard
problem is relatively small. For our full matrix timings, we used a 300 by
300 double precision matrix. The efficiencies for problems of this size are
easily surpassed by larger problems.

Before turning our attention to the main experiments, we address two
questions regarding the sequential program, the standard with which the
concurrent program is compared. First, based on the elementary timings of
Section 7, do we attain the expected performance? Second, is the overhead
associated with index set manipulations reasonable? Table 3 displays the
execution times and floating point performance for two implementations of
LU-decomposition without pivoting. The first program is a classical imple-
mentation not involving index set manipulations. The second is an imple-
mentation of the program displayed in Figure 1. LU-decomposition without
pivoting requires approximately M3/3 floating point operations. The third
column of Table 3 gives the estimated number of floating point operations
per second based on this estimate. Floating point performance of both pro-
grams is somewhat lower than that of the indexed variables in Table 2. This
is due to the higher complexity of realistic programs over that of simple
benchmarks. Comparing the two implementations of LU-decomposition, it
is clear that the overhead of index set manipulations is negligible.

9.1 No Pivoting

In Figure 6, we graph the concurrent execution times of LU-decomposition
without pivoting. For each machine size, we display times for every possible
matrix distribution that can be obtained by a combination of the linear
and scatter distributions of rows and columns. As discussed in Section 8,
the solid straight line corresponds to ideal speed up. The other curves
correspond to one dimensional distributions, i.e., P x 1 or 1 X @ process grids
with either linear or scatter distribution. The table in Figure 6 summarizes
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Figure 6: LU-Decomposition Without Pivoting.
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the characteristics of the least and most effective 16 node timings.

LU-decomposition without pivoting does not satisfy the assumptions of
Section 8. However, because the pivot positions of subsequent decomposition
steps are so regular, its behavior can be predicted without introducing any
simplifications. A scatter distribution of both rows and columns ensures
that successive decomposition steps make infeasible matrix rows (columns)
in different process rows (columns). As a result, all processes are kept active
for a maximum time. This property is specific to this combination of the
scatter distribution and the no pivoting strategy. The 4 x 4 process grid
configuration minimizes the marginal term of the performance estimate,
see Equation 5. The combination of a 4 X 4 process grid, and row and
column scatter distribution thus ensures optimal performance. The speed
up obtained for this execution is thus determined solely by the intrinsic load
imbalance of the computation (eventually all rows and all columns become
inactive) and by the communication cost of the multicomputer.

9.2 Row Pivoting

The performance of LU-decomposition with row pivoting is displayed in Fig-
ure 7. Characteristics of best and worst performers on the 16 node machine
are summarized in the accompanying table.

While row pivoting has a negligible impact on the execution time of
the sequential program, it influences considerably the concurrent execution.
The worst performance has improved by about 5.0% in efficiency. The exe-
cution times for different distributions are more clustered. The underlying
matrix distribution still determines performance to a large extent but ex-
ecution times are less sensitive to it: the efficiency range dropped from
44.7% to 31.4%. Comparing the best case of each, row pivoting is somewhat
less efficient than no pivoting. As indicated earlier, the latter minimizes
load imbalance because matrix distribution and pivoting strategy interfere
constructively. With a dynamic pivoting strategy this could only happen
through a remarkable coincidence.

9.3 Column Pivoting

Figure 8 summarizes the performance of LU-decomposition with column
pivoting. For the calculation of speed up and efficiency, it is important to
point out that the sequential execution time for column pivoting is somewhat
larger than that for row pivoting. This is because the LU-decomposition
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Figure 8: LU-Decomposition With Column Pivoting.
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program is more sensitive to fragmentation of the column index set than
to fragmentation of the row index set. This minor technical detail is easily
corrected by reversing the order of the two nested loops in the elimination
step. One then obtains a sequential execution time nearly identical to row
pivoting. The displayed times in Figure 8 are obtained without carrying out
this loop reversal because we wanted to vary as few parameters as possible
during the experiment. To keep the speed ups and efficiencies of the tables
in Figures 8 and 7 comparable, we used the sequential row pivoting time as
a standard. The minor differences in performance between column and row
pivoting in favor of the latter are due to the index set effect. Note that our
test matrix is symmetric: for general matrices the results of row and column
pivoting are not as strongly correlated.

9.4 Diagonal Pivoting

As in Section 9.3, the sequential time is higher than with row pivoting due to
fragmentation of the index sets. In this case, a simple loop reversal cannot
remedy the problem as fragmentation occurs in both the row and the column
index sets. Again, we have used row pivoting as the sequential standard to
compute speed ups and efficiencies.

9.5 Complete Pivoting

Complete pivoting guarantees numerical stability at a considerable expense.
From Figure 10, it is clear that the pivot search cost plays a major role.
The sequential execution time is slowed down by a factor of about 1.62
with respect to row pivoting. The efficiency range is much narrower than
the previous two cases, 22.8%. The best efficiency approaches that of the
best no pivoting case, which, as pointed out before, is optimal. Both these
observations show that load imbalance problems are reduced by complete
pivoting. The cost of complete pivoting, however, overshadows load imbal-
ance considerations.

9.6 Multirow Pivoting

A logical question to pursue is whether the narrow efficiency range of com-
plete pivoting can be obtained without the cost of a full search. The reason
for a narrow range is that the pivot locations of successive decomposition
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steps are more random with respect to the process grid. Like complete pivot-
ing, multirow pivoting introduces extra unpredictability into the algorithm:
which process column contains the next infeasible column. However, it does
this without increasing the pivot search cost. Figure 11 displays the results.
The efficiency range of 27.2% is intermediate between row and complete
pivoting. We note that, strictly speaking, the sequential and concurrent
programs are not equivalent: the concurrent program has a more extended
pivot search and, hence, performs a different calculation for different values
of Q. Multirow and row pivoting are equivalent when Q = 1.

9.7 Multicolumn Pivoting

As in Section 9.3, we use partial row pivoting as sequential standard. We
obtain Figure 12. For both multirow and multicolumn pivoting, the one
dimensional process grids are the worst performers. A two dimensional
process grid is thus preferred.

9.8 Randomized Distributions.

To test the claim that, for performance considerations, pivoting is equivalent
to randomizing the data distribution, we timed LU-decomposition without
pivoting on a pseudo-randomly distributed matrix. By this we mean that
the matrix rows are allocated to random process rows. Similarly, the ma-
trix columns are allocated to random process columns. To generate the row
distribution, we construct a permutation of the sequence of global row in-
dices 0,1,...,M — 1 by applying 100 X M random pairwise permutations to
it. The latter are obtained with a pseudo-random number generator. This
permutation is split up linearly among the process rows. E.g., for M = 10
and P = 4, assume the permutation of the row indices is given by the first
column of Table 4. The second and third column give the corresponding
process row and local index. Another permutation is used to find a similar
pseudo-random distribution for the columns.

In Figure 13, we show the times obtained for several process grid con-
figurations. The execution times coincide with the best times obtained thus
far. In particular, it shows that the scatter distribution for all practical
purposes is as good as a truly random distribution.

9.9 Preset Random Pivoting
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tributed Matrices.
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Table 4: Generation of a Pseudo-Random Distribution.

We also used a randomized pivoting strategy. This is easier to use because
no difficult data distributions are involved. However, with preset random
pivoting one loses all control over the numerical stability of the algorithm.
(With a randomized distribution, pivoting strategies for numerical stability
can still be incorporated.) Figure 14 summarizes the results.

9.10 A Performance Comparison

In Table 5, we compare the performance on the 16 node machine for the
different matrix distributions and pivoting strategies. The underlined times
are the minimal ones for the given distribution. No pivoting is the most
efficient alternative in only five out of sixteen instances. For five other
distributions, random pivoting wins. Multirow pivoting is fastest the other
six times. Even when nonoptimal, multirow pivoting is a good choice as
its extra cost is usually negligible. It is not fair, however, to compare the
dynamic strategies with the static ones, which may be numerically unstable.
Among the dynamic strategies, multirow pivoting is the fastest, except for a
1 X 16 scattered column distribution, where multicolumn pivoting wins out.

10 Experiments with Sparse Matrices

To test our sparse matrix programs, we used a matrix obtained from the dis-
cretization of the three dimensional Laplace operator on a regular grid. We
chose this operator because it is representative of many sparse matrices in

34



Multi- | Multi-
Distribution No | Diagonal row | column | Random

16 x 1 L- 18.384 21.152 | 20.590 | 21.251 21.336
16 x 1 S- 23.309 20.709 | 19.933 | 21.410 20.815
8 x2L-L 26.457 17.615 | 15.898 | 17.957 | 15.811
8 x 2 L-S 18.858 16.826 | 15.667 | 17334 15.717
8x28S-L 17.551 16.741 | 15,742 | 16.664 15.934
-8 x 28S-S 13.708 16.070 | 14.428 | 15.551 15.837
4x4LL 28.784 16.787 | 17.096 | 17.668 | 14.753
4x4L-S 18.179 15.816 | 14.893 | 16.013 | 14.799
4x48S-L 17.878 15.777 | 15.221 | 15.362 15.301
4x48S-S 12.990 15.079 | 13.914 | 14.407 15.360
2x 8 L-L 27.076 18.519 | 17.182 | 17.297 | 16,442
2 x 8 L-S 18.302 17.402 | 16.206 | 16.995 16.251
2x 8 S-L 19.047 17.469 | 16.566 | 16.648 16.448
2x88S-S 14,037 16.479 | 14.966 | 15.452 16.267
1x 16 -L 24.258 23.808 | 21.275 | 21.993 21.733
1x 16 -S 19.369 22.652 | 21.603 | 21.319 21.378

Table 5: Execution Times in Seconds for 16 Node LU-Decomposition. In
the first column, L stands for linear and S for scatter distribution.
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terms of amount of fill. The Laplace operator is reasonably well conditioned
on coarse grids and it is the basis for a repeatable experiment. With lexico-
graphic ordering of the grid points, its fill is highly structured. This is not
not typical, but we do not exploit it in any of our computations. On the con-
trary, any fill structure is destroyed by the matrix distribution. The program
initializing the Laplace matrix is general and allows Dirichlet, Neumann and
Newton boundary conditions. For this reason, boundary points are treated
as unknowns, even in the Dirichlet case. The equations corresponding to
Dirichlet boundary points are of course trivial. They do influence timings,
however, because of the resulting larger matrix dimensions.

The arguments given in Section 9 regarding the size of the problem, also
apply here. Analogous tradeoffs led us to choose a sparse matrix resulting
from discretizing Laplaces equation on a 10 by 10 by 10 grid. This problem
has a total of 1331 unknowns of which 602 are trivial Dirichlet boundary
unknowns (the ratio of boundary versus interior points goes down quickly
as the problem size is increased).

The execution time of the sequential sparse matrix program is domi-
nated by the cost of accessing matrix entries. Because this is a complicated
operation, it is difficult to verify objectively whether the sequential program
executes at an expected performance level. We only note here that the LU-
decomposition without pivoting of our sparse 1331 x 1331 matrix is done in
about the same time as the full 300 x 300 case.

As is apparent from Figure 15, the matrix distribution is of overriding
importance in sparse LU-decomposition without pivoting. We also tested
our sparse solver with a pivoting strategy. Due to the near diagonal dom-
inance of our test problem, row and column pivoting strategies choose the
same sequence of pivots as no pivoting and complete pivoting is equivalent to
diagonal pivoting. Hence, we only time the latter one. This pivoting strat-
egy does not take into account any consideration of fill. Resulting memory
limitations prohibited us from measuring one node times. The ideal speed
up curve is drawn with the best 2 node timing as a standard. Any speed
up for this algorithm is with respect to this time as well. Errors introduced
by this are likely to be small. From Figure 16 it follows that pivoting has a
major positive impact on the load imbalance. The range of efficiencies has
narrowed considerably. It is also apparent, however, that the cost of simple
pivoting strategies in sparse matrix calculations is substantial (note that the
scale of Figure 16 has jumped an order of magnitude with respect to the
other figures).
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Figure 15: Sparse LU-Decomposition Without Pivoting.
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11 Conclusion

The efficiency of LU-decomposition is determined mainly by load imbalance
effects, which are determined by the matrix distribution and pivoting strat-
egy. Efficiency generally increases if the pivoting strategy returns pivots in
uniformly distributed locations and/or if the matrix entries are scattered
uniformly over the processes. The scatter distribution in both rows and
columns is an effective randomizer of the computation and generally results
in a near optimal or optimal computation.

In a practical context, our LU-decomposition program can be used in
two ways. Either, the matrix distribution is considered a given and the LU-
decomposition is applied to it irrespective of performance considerations.
It can also be used to find the best possible distribution for a particular
problem.

Further research into pivoting strategies, especially for sparse matrices,
is necessary. Our work shows that the ideal pivoting strategy not only
maximizes numerical stability and minimizes fill, it also must randomize the
computation. Whether all these criteria can be met in practice, remains an
area of active research.
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