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Preface

The goal of these notes is to provide a consistent mathematical foun-
dation for wave imaging — the production of images from measurements
of reflected waves in heterogeneous media. This account is inspired mostly
by reflection seismology. Ultrasonic nondestructive evaluation, ultrasonic
biomedical imaging, ocean acoustics, and radar also provide wave imaging
problems, though generally not involving the very large data sets and ex-
tremely heterogeneous media characteristic of reflection seismology.

The “pure” problem of wave imaging is the recovery of mechanical param-
eter distributions from reflected wave measurements — a so-called “inverse
problem” of wave propagation. This solution is elusive, and perhaps even
unattractive, in that most of the details of target media are of no impor-
tance to the applied scientist. Instead, more qualitative information about
the locii of rapid change in material parameters (i.e. an image) is often
sufficient, and is in any case more accessible than the actual values of the
parameters. In fact, mechanical parameter estimates are open to question
both because of possible inaccuracy or incompleteness of physical models and
because of essentially mathematical obstacles to accurate determination of
parameters within a model. In these notes we adopt a simple physical model
of wave propagation (linear acoustics), and investigate the relation between
its parameters (density and sound velocity fields) and the acoustic wavefield.
We are led to a definition of image as a display of the locii of rapid change
in the parameters, and to straightforward derivations of several effective and
commonly used techniques for the production of images from reflection data.

Our aim is to provide a coherent mathematical derivation of wave imag-
ing techniques, not detailed descriptions of complete algorithms or extensive
analysis of performance. For the latter sort of information we refer the reader
to the vast literature of reflection seismology, to which we have provided some
introductory references. Note that materials testing, biomedical ultrasonics,
and ocean acoustics have their own vast literatures, in which some of the
same ideas are cloaked in quite different terminology.

Accounts such as the current one are often said to provide “deeper un-
derstanding” (when they succeed!). We take this to mean: nothing of any
immediate use is to be found here! Instead, we hope that two ends will be
served:

e The reader will be better able to appreciate the conceptual unity un-
derlying the chaotic development of wave imaging technology;
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e The remaining difficulties will be thrown into sharper relief.

The last point motivated the development of these notes: to understand the
remaining tasks, it seemed necessary to state clearly the present status of
the subject. The goal of much research on reflection seismic data processing
(and related subjects) is the resolution of the actual material parameters to
the extent possible. Both short length scales (quantitative images of rapid
change zones) and long length scales (macro models) are vital in producing
models to accurately predict measured wavefields. Our account of conven-
tional methods clarifies the different roles these regimes play.

It is also important to expose the approximations upon which conven-
tional technology relies: namely, linearization and high-frequency asymp-
totics. Acoustic and elastic wavefields depend essentially linearly on the
short-scale variations of parameters, and thus perturbation methods (most
current processing) are reasonably successful in accessing rapid parameter
variations. This fact accounts for the “imaging” nature of conventional pro-
cessing. Restrictions on the scope of current methodology arise from the
use of simplifying assumptions beyond linearization (the failure to account
correctly for caustics), and from inadequate treatment of dynamic (multiple-
reflection) and kinematic (macro-model) nonlinearities. The nature of these
restrictions will become clear from our discussion. We do not discuss any of
the many recent attempts to transcend these limitations except very briefly
in Section 7. A very satisfactory treatment of velocity analysis and seismic
tomography (macro-model estimation) could be built upon the foundation
laid here; perhaps this will be done in some future version of these notes.

Virtually nothing here is new, except the organization. The presentation
leans heavily on work by A. Tarantola, P. Lailly, G. Beylkin, R. Burridge, and
Rakesh, to which references are supplied at appropriate points. My associates
Ken Bube, Paul Sacks, and Fadil Santosa, and students Rakesh, R.M. Lewis,
Cheryl Percell, and Gang Bao contributed greatly to the views expressed in
these notes. Finally, I would like to express my gratitude to Professor Guy
Chavent and INRIA for the opportunity to deliver these lectures.

William W. Symes
Houston, 27 February 1990
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1 Introduction: The Physical and

Mathematical Basis of Linearization

These notes treat the mathematics behind the imaging of mechanical pa-
rameter distributions from observations of propagating transient waves. The
meaning of the term “imaging” is not intended to be obvious at the outset
— it will emerge as we study the more fundamental problem of parameter
identification.

We will discuss the reflection gonﬁguration, in which sources and receivers
are separated from the region of unknowr.l parameters by a hyperplane. We
will confine our attention to small-amplitude transient disturbances modeled
byvlineaf acoustics, i.e. sound waves in fluids. We will consider models in
one, two, and three space dimensions: while the real world is obviously three
dimensional, a gréat deal of data processing is based on two-dimensional mod-
els for various reasons, and much intuition and most rigorous mathematics
concern one-dimensional models.

The (small amplitude) excess pressure field p(z,t)(z € R",¢ € IR) result-

ing from a source of acoustic energy F(z,t) (the divergence of a body force



field) satisfies

1 & 1
p(z)c3(z) Bt (z,t) = V- ;Zx—)Vp(z,t) = F(z,t) (1)

where p(z) is the density at equilibrium and ¢(z) the sound velocity, both
functions of spatial location.

Assume that the fluid is in its equilibrium state (of zero excess pressure)
for large negative time, which is possible provided that the source F(z,t) is
causal:

F(z,t) = 0
t<<0.

p(z,t) = 0

Physical boundaries, e.g. the ocean surface, in principle-imply boundary
conditions as well, but we will ignore these. Thus the various fields will be
regarded as being defined in R" or R**', n = 1,2, 3. The complications aris-
ing from boundary conditions are important in the design of data processing
software, but do not alter the general principles presented below.

The (ideal “inverse”) problem to be solved is:

Given recordings p(z,,t,) of the excess pressure field at a number
of receiver locations z, and times ¢,, and for a number of sources

F(z,t), estimate the coefficients p(z) and ¢(z).



The techniques, which we gather under the banner “wave imaging,” amount
to partial solutions to this problem.

Besides the modeling a.ssumptioné stated above, we make a number of
further simplifying assumptions which are satisfied approximately by the
field configurations of reflection seismology and sometimes by the laboratory
configurations of ultrasonic NDE. ’

We assume that the coefficients are known on one side of a datum plane

{zp =12 =24}

p(z) po(z)

z< z4.
c¢(z) = co(z)

Whenever convenient we will also assume po, co constant for z < zq. In any
case the coefficients are unknown only for z > z4.

We also assume that the source has point support. This assumption
results in a reasonable approximation when the spatial extent of the source is
much smaller than a typical wavelength. We further make the somewhat less
realistic restrictions that the sources used be identical, and that the source
radiation pattern be isotropic. Real-world sources are often variable and
distinctly anisotropic, but again the additional complications arising from

source anisotropy do not seriously impair our conclusions. Thus a typical




source will have the form
F(z,t) = f(t)é(z — z,)

where z, is the (point) source location and f(t) is the source time function
— a transient temporal signal. Note that some of the time-invariant physics
of the measurement process may be “hidden” in the source time function
f(¢) by virtue of the convolution theorem and source-receiver reciprocity.
Since the wave motion measured by reflection seismology and ultrasonic NDE
experiments really is transient — the material returns to its initial state
after some time — it is easy to see that the mean of f, i.e. its dc component,
vanishes. For other reasons having to do with the physics of sound generation
and reception, effective sources have little energy in a band near zero Hertz
as well. Also, the resolution, within which material inhomogeneities can be
detected from reflected waves, is dependent on the frequency content of the
acoustic field, and therefore of the source. All of these factors conspire to
make prototypical effective sources f(t) oscillatory, with a peak frequency
corresponding to a wavelength of perhaps 1% of the duration of a typical

record.

The frequency content of acoustic signals is also limited above, princi-



pally because at sufficiently high frequencies acoustic body waves in real
materials are strongly attenuated. Thus, the acoustic model is a reasonable
approximation only in a limited frequency band.

The reflection configuration places all sources and receivers on the known-

medium side of the datum plane:
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As indicated by the notation, we assume for simplicity only that the nt
coordinate of source position vectors (i.e. z,) is the same for all placements of
the source, and similarly for receiver positions. We also assume that the time
interval of the pressure measurement is the same for all receivers. We denote
by X,- the set of source and receiver positions, which are in reality discrete
but which we will occasionally idealize as continuous. We will ignore the

issue of temporal sampling, and also the details of the pressure-measurement

-

process — i.e. we regard the pressure as being measured directly, at the

receiver points. Thus the data set for the problem studied here has the form
{p(zs,Zs,t) : (T5,2,) € Xop, 0Lt <T}.

Even with all the simplifying assumptions outlined above, the possibility
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of recovery of p(z) and ¢(z) from such data sets is poorly understood. In part,
this is because the relation between the coefficients p and ¢ and the solution
of p of the pressure equation is nonlinear (even though the equation itself
is linear!). The greatest progress in practical methods for wave imaging has
relied on linearization of the p,c — p relation. Accordingly, most of these
notes will concern the structure of this ltnearized problem. Before stating
the linearized problem explicitly, we point out that its use in the applied
literature has been quite uncritical. That is, very little attention has been
devoted to the sense in which the p,c — p relation is approximated by its
linearization. The author and his students have obtained some information
on this point: these results will be mentioned very briefly in Section 7.
Heuristic, physical reasoning, computational experience, and the few avail-
able mathematical results all point to the following conclusion: the p,c— p
relation is well-approximated by its formal linearization p+46p, c+8c — p+6p

2

(described explicitly below) so long as/

(1) the reference coeflicients p, ¢ are slowly-varying (smooth) relative

to a typical data wavelength;

(2) the perturbations ép, éc are oscillatory (“rough”).



Refinement of these rather vague criteria is an open research problem. As we
shall see, the import of (1)—(2) is that the reference velocity ¢ determines the
kinematics of the perturbational wavefield 6p, whereas §p and éc determine
the dynamics. Also, the smoothness of p and ¢ will justify extensive use of
high-frequency asymptotics. Together, these two techniques — linearization
and brutally consistent reliance on asymptotics — will enable us to obtain
decisive insight into the imaging problem, and to reproduce the essential
content of conventional data processing methodology in a mathematically
consistent way.

The formal linearization is obtained by applying regular perturbation to

the pressure equation (1). We obtain that the formal perturbation field ép

satisfies
1 9%p 1 26c 0%p 1_dp
aon VP e )
fp=0, t<<0

Evidently ép, so defined, is indeed linear in 6p, éc. It will emerge that ép
depends quite nonlinearly on the reference velocity ¢, so the problem has been
only partly linearized. This observation is at the heart of velocity analysis,
which means roughly the determination of the background medium (p,c) —

which is of course also unknown in {z > z4}, even if we accept the linearized



field representation p + 6p! Velocity analysis is mentioned briefly in Section
7.
Note that the assumption of the reflection configuration implies that

6p,6c =0 for z < z,.



2 The Progressing Wave Expansion

To understand the perturbational field ép, it is evident from (2) that we
must first understand the background field p. As might be guessed from
the point-source assumption, this field is singular — in fact, in view of the

time-independence of the coefficients,

p(zs,7,1) = / dt'f(t — t')G(zs, z, 1)

where the fundamental solution (or Green'’s function) G(z,, z,t) solves

1 8G(z,,z,t) 1
p(z)c*(z) ot? - V’EVrG(Iu z,t) = §(t)é(z — z,)

G(zs,z,t) =0, t<0.
Since we have assumed p = po,c = ¢ near the source (reflection configu-
ration) and po and co are constant (for convenience), we can write explicit
expressions for G, good for small ¢t and |z — z,|, in dimensions 1, 2, 3:-

n=1: G(z,,z,t) = poH(cot — |z — z,])
po H(cot — |z — z,)

21r ft’ |z — z,|?

Po5(Cot IZ' - z,|)
4r|z — z,) '

n=2: G(z,z,t)=

n=3: G(z,z,t)=

While it is not possible to write such explicit expressions for the fundamental
solution in the inhomogeneous region {z > z4}, it is possible to describe the
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leading singularity of G quite precisely and this will be sufficient for our
present purposes. This is accomplished via the progressing wave ezpansion
(Courant and Hilbert (1962), Ch. VI). Each of the formulas for G above is
of the form a(z,,z)S(t — 7(z,,z)) where a and the travel time function 7
are smooth except possibly at z = z,, and S(t) is singular at ¢ = 0. The
progressing wave expansion allows the exténsion of this expression away from
T = z,, up to a limit signaled by a fundamental change in the nature of the
wavefield, and with an error which is smoother than S.

In general, suppose that
u(z,, z,t) = a(z,z,)S(t — 7(z,, 1))
for |z — z,| small and ¢ small, and write
u(z,, z,t) = a(z,z,)S(t — 7(z,,2)) + R(z,,z,t)

where R is in some sense to be smoother than S, and a and r are assumed
to be smooth in some as-yet unspecified region. Applying the wave operator,

we obtain

2
<1 9 —V-I-V)u

pct 82 " p
a/l ”
= p (-c? - |V‘r|2> S"(t-1)
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+ ! (2V1‘-Va— (Vr.yf+v’r) a) S'(t-1)
p

2
+ (v-lva>5(t-r)+-1—?—§—v-lvn.
p pc p

Formally, the terms written in the above order have decreasing orders of
singularity, so that if u is to solve the wave equation for z # z,, each of the

coefficients above ought to vanish. Certainly, if

L _|jvrp=o 3)
C2
2Vr.-Va— (Vr-Viegp+ Vir)a=0 (4)

then the first two terms vanish. Using the special properties of the distri-
butions S appearing in the fundamental solutions of the wave equation, it is
possible to show that fhe last two terms can also be made to vanish for a
particular choice of R. We will describe briefly how this is to be done below,
after discussing the very important conditions (3) and (4).

Equation (3) is the eikonal equation of geometric optics (of which the
progressing wave expansion is a variant). Inspecting the local fundamental
solutions above, evidently it is required to satisfy (3) with a function 7(z, z,)
so that

|z — z,]

r(z,z,) = for |z — z,| small.
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Fortunately, ¢ = ¢ for |z — z,| small so 7(z,z,) given by the preceding
formula satisfies the eikonal equation near the source. We will extend this
solution by means of the method of characteristics.

Suppose first that 7 solves the eikonal equation, and let z(&) be a solution

of the system of ordinary differential equations

X:VT(X)( "=£) :

Then
%T(X(a)) = Vr(X(0))- X(o)
_ T 4 2=__1—. .
= |Vr(X(2))| (X (o))

Therefore if the segment {X(0’) : 0o < 0’ < o} lies entirely in a domain in

which 7 is defined, then

(X(o)) = r(Xton) + [ s ©)

Thus from knowledge of the characteristic curves (rays) X(o), we can con-
struct 7 by quadrature. Somewhat more surprisingly, it is possible to con-
struct the rays directly, which furnishes a construction of 7 as well.

Indeed, if we write

£(0) = X(0) = Vr(X(0))

12



then
{e) = VVr(X(9)) X(o)
= VV(7)(X(9))- V7(X())
= %VIVT(JI)I2 Izgx(,)

= V(@) fexto

If we write the Hamiltonian

H(z, &) = (€ - <*(2)
then the equations for X and ¢ read
X = VH(X,E)
£ = -V.H(XE)

which are Hamilton’s equations of classical mechanics, a system of 2n au-
tonomous ordinary differential equation.

Now note that for each unit vector § € S*~1, the trajectory

c 1
— (Zo+ ,,—9)= Xo(0), (o
o= (Z0+ 2. —0) = (X(o),&s(0)
satisfies Hamilton’s equations for small o, and moreover

Xs(0) = V7(Xe(9))

13



as is easily checked. Moreover, (,0)) — Xj(o) gives (essentially) polar
coordinates centered at z,. Now extend (Xj,&s) as solutions of Hamilton’s
equations over their maximal intervals of definition for each 8 € S™-!, say

{0 £ ¢ < Omax(0)}. Then every point in
Qz,):={z:z = X4(o) forsome 8€ S™!, o €[0,0max)}

is touched by at least one ray. If every point in Q(z,) is touched by ezactly
one ray, then the formula (5) produces a unique value 7(z,, z) at every point
in (z,). It is possible to show that, in that case, T is a solution of the eikonal
equation (3) (in fact, it’s not even difficult, but we won’t do it here. See the
references cited at the end of the section.).

In general, some points in Q(z,) are touched by more than one ray. Let

Q(z,,t) = {z€Qz,): if z = Xy(c), then for
0 < o' <o,Xy(0) lies only on the ray

Xy . Moreover 7(z,,z) < t}.
Also for € > 0 define
Qz,,t) = {z € Qz,): ly—z| < e=>y € Nz, 1)} .

Then generally Q°(z,,t) € Q(z,). The boundary points of Q°(z,,t) are

14



located on envelopes of ray families, called caustics. Points in Q2(z,,t) are
at distance at least ¢ > 0 from any caustic. The physics and mathematics
of wave propagation and reflection both change substantially at caustics, in
ways that are only poorly understood at present. We will discuss reflection
from caustic locii briefly in Section 7. For the most part, in these notes we
will assume that the region to be ezamined lies inside 0°(z,,t) for each source
location z,.

To recapitulate: The method of characteristics (“ray tracing” in seismol-
ogy) constructs a solution 7(z,,z) of the eikonal equation which is for small
|z — z,| identical to the travel-time |z — z,|/co. Because of the parameteri-
zation of the rays for small o, o evidently has units of (length)?/(time), so
from (5) T has units of time. For that reason, and because the zero-locus of
t — 7 is the locus of arrival of the singularity (in S) in the first term of the
progressing wave expansion, we also call 7 the travel time function.

Having computed 7, it is easy to compute a. Indeed, the transpoft equa-

tion (4) may be re-written

2 4(X(@)) = BX(e))a(X(e)) =0
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where

= %(VT .Viegp+ Vir).

Thus a may be computed by quadrature along the ray family associated with
7. Initial values (for small (¢) for a(X (o)) are read off from the small (z-z,)
formulae for the fundamental solutions.

The solution of the transport equation hasa nice geometric interpretation:
it is proportional to the reciprocal square root of the change in volume of an
infinitesimal transverse element, transported along a ray via the transport
equation (e.g. Friedlander, Ch. 1). The solution becomes infinite at a caustic,
or envelope of rays, where the transported transverse element collapses. Thus
arrival at a caustics signals the breakdown of the progressing wave expansion.

The method of characteristics is used extensively in seismology, as a nu-
merical method for the construction of travel-times. The first term in the
progressing wave expansion is also computed by integration along rays, to
produce ray'-theoretic seismograms. Ironically, several people have presented
evidence recently that both calculations may be performed far more effi-
cientl& by integrating the eikonal and transport equations directly as partial

differential equations, using appropriate finite difference schemes, and avoid-
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ing entirely the construction of rays (Vidale (1988), Van Trier and Symes
(1989)).
The entire construction is justified by the final step: the remainder R

must satisfy
= %?—V-%VR=(V-%Va)S(t-T)
R=0, t'< 0

if u is to solve the wave equation. It is possible to show that the unique
solution R of this initial value problem has singularities no worse than that
of the indefinite integral of S. Thus the remainder R is indeed smoother than
the first term, and the progressing wave expansion has captured the leading
singularity of u.

The meaning of this construction may be understood by recalling that
typical source time functions f(t) are highly oscillatory. The pressure field
is given by

" p:f*G

(convolution in time). We have just seen how to write G = aS(t — ) + R,
with R smoother than S — i.e. the Fourier coefficients of R decay more

quickly than those of S. If f has most of its frequency content in a band in
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which the Fourier coefficients of R are much smaller than those of S, then

f*R<< fxS(t-1), 50
p=f*G=f=*S§

so that the first term of the progressing wave expansion approzimates the
pressure field. A careful quantification of this approximation relates the
degree of smoothness of the reference coefficients p and c, the frequency
band of the source f, and the ray geometry associted with c.

Excellent references for the progressing wave expansion are Courant and
Hilbert (1962), Ch. 6, and Friedlander (1958), Ch. 1. Ludwig (1966) and
Kravtsov (1968) gave the first satisfactory generalization of the progress-
ing wave expansion accurate in the vicinity of caustics; see also Stickler,
Aluwahlia and Ting (1981). For a modern differential geometric treatment

of these topics,‘consult Guillemin and Sternberg (1979).
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3 The Linearized Reflection Operator as a

Generalized Radon Transform

The progressing wave expansion allows us to give a very explicit construction
of the “leading order” approximation to the pressure field perturbation ép
resulting from the acoustic parameter perturbations éc,ép. The sense in
which this approximation is “leading order” will become clearer in the sequel.
Roughly, the error is of lower frequency content than the “leading” term,
relative to the frequency content of §p, §c. Thus if §p, ¢ are highly oscillatory,
we would expect the “leading” term to constitute most of ép, and this proves
to be the case.

We enforce throughout the requirement of simple ray geometry: for some
€ > 0, for all source and receiver positions (z,,z,) € X,,, signal duration T,

and subsurface locations z,

ép(z) #0

or éc(z)#0

=z € 0(z,,T) N Q(=,,T) .

Let Q = {z : §p(z) # 0 or §c(z) # 0}. Then we have assumed that

Qc{z:z>2z}n () [nf(z,,T)nQE(z,,T)] .
(z4,2¢)EXs,r

19



Note that if ¢ = ¢o in all of IR™, the set on the right is simply {z > 24}, but
in general it is much smaller.

A robust approach to acoustic imagﬁ'ng must drop this assumption, which
underlies almost all contemporary work.

Since

bp=f=*6G

where 6G is the perturbation in the fundamental solution, it suffices to com-

pute 6G, which is the solution of

1 3%G 1 28c 9*°G 1 dp
p—cz' _3t2 -V ;V&G = a—ca -a? - ; (V;) vG
6G=0, t<0.

The key to an effective computation is the Green’s formula

1 %« _ 1 1 6%
/R”dz/dt(Fgt?—v-;Vu)v—Lndz/dtu(Fw—V Vv)

which holds so long as both sides make sense, e.g. if u,v are smooth and the

N |-

support of the product uv is bounded. We will apply this Green’s formula
willy-nilly to singular factors as well, but in every case the result can be
justified by limiting arguments, which we omit (trust me!).

Now
§G(z4, zr,t,) = /R _dz / dt 6G(z,, z,,8)8(z, — )6(t, — 1)

20



1 8%G
= /md:: / dt §G(zs, z,,t) [p(z)cz(z) = (T3t = 1)

-V. —I—VG(:c,, z,t, — t)]

p(z)
1 %G 1
= /R de / dt [,,(z)cz(z) (@0 ,)—V-;(-;iV6G(:c.,z,t)]

- G(zy,z,t, — t)
26c(z) 9*G 1 ép(z)\ | . ]
/" /dt[ z)3(z) 6t2( t) = p(z) (V p(z)) VG(zs2,1)

- G(zp,z,t, — t) .

We have made use of Green’s formula, and chosen for the other factor
the advanced fundamental solution G(z,,z,t, — t) to keep the product of
supports bounded.

We claim that the “leading term” in the expression for 6G results from
substitution of the leading term in the progressing wave expansion for G in
the above formula, and then systematically neglect.ing all expressions except
those involving the highest derivatives of dc,ép. This claim will be justified
later, to some extent. For now we proceed on this basis.

The dimension (i.e. n) now becomes important. Since the case n =3 is

slightly simpler than n = 2, we begin with it. Then

G(z,y,t) = a(z,y)é(t — 7(z,y))

21



where a is the transport coefficient constructed in the last section, smooth
except at £ = y. Since z,,z, lie in the region {z < z;} and the support
of 8p,éc lies inside {z > z,}, the integrand above vanishes near z = z, and
z = z,. Thus we may regard a(z,,z) and a(z,,z) as smooth.

Substituting the above expression for G, we get

6G(z,,z,,t,) = / \ —d:—)/dt a(z,,z)(t, — t —r(z,,2))

ECEIP———

( 6;2(::))) (a(z”z)a(t—r(z,,z))}

62

= %’/’ dz /dta(xr,z)cs(t —t—‘r(z,.,z)) a(z4,2)8(t = (24, ))25c(z)

(z)

ép(z)
+ /p(dz) /dt a(z,,z)é(t, — t — r(z,,2))V o(2)

* (=Vza(z,,2)é(t — 7(2,,2)) + a(z4, ) Vo7(24, 2)8(t — 7(z4,7)))

2
= Bitf e )/dt a(z,,z)é(t, — t — 7(z,, z))a(z,,z)6(t — 7'(1':,3))

p(z)
p(z)

26¢(z)
(z)

:L'
* 3 / ol [ dt a(zr,2)6(t — t = 7(21, 2))a(z0r 2)V
V.r(z,5,2)6(t — 7(z,,2))

/ dt a(z,,z)é(t, — t — 7(z,,z))a(z,,z)V.a(z,, z)
p(z)

22



bz, o
Vot D)

We would like to carry out the t-integrations. This is possible provided

that the hypersurfaces defined by

0=t —t—r1(z,,z) and 0=1t—7(z,,2)

intersect transversely: i.e., that the normals are not parallel at points of

intersection. The correctness of the formula
8(tr — (24, z) = 7(2,,7)) = / dt §(t, — t — 7(z,,2))8(t — 7(z,2))

under this transversality condition is an exercise in the definition of com-

pound distributions (see e.g. Gel'fand and Shilov, 1962). Transversality is

guaranteed so long as
(=1,V:7(z,,z)) is not parallel to (1,V.7(z,,z)).

Since |V.7(z,,z)| = |V:7(z,,z)| = c"(z) (eikonal equation!), transvérsa.lity
is violated only when V.7(z,,z) = -V .7(z,,z). We claim that this cannot
occur when z € 2, under the hypothesis enunciated at the beginning of
this section. Indeed, if Vr(z,,2) = —V7(z,,z), then the ray from z, to
z, traversed backwards, is a continuation of the ray from z, tc z, because
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both are the z-projections of the solutions of Hamilton’s equations with data
(z,V7(z,,2)). In particular, points z’ on this ray near z, are touched by
this “turned” ray, obviously, but also by the straight line to z,, which lies
entirely in {z < z4} as soon as |z' — z,| is small enough. In this “surface
layer,” ¢ = ¢ is constant — so these lines are rays, and z’ is touched by two
distinct rays — in contradiction to our assumption that z € Q°(z,, T).
Thus the “simple ray geometry” hypothesis allows us to perform the ¢-

integrations as indicated above. We obtain

2 |
56 @z ts) = o [ ;‘(5—)< )a(z.,z)”i(’;’a(tf — (20, 2) = 7(20,7))
+ 51 | S5e(en 2lalena)Var(an2): vt — 7(212) = 7(24,2)

5p(2) - 1(zsz
/ @ BIValen2) - VEZ(t, = 7(2,2) = 7(z0,2))

To interpret the t.-derivatives as z-derivatives acting on éc, §p, we will

introduce the vector field
N(z,,z,,z) = —(V.7(z,s,2) + V7(2,,2))

which does not vanish anywhere in 2, according to previous reasoning. We

compute

N-Véit,—1,—1)= |N|2 oty — 7y — 1)

at,
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where we have written 7,(z) = 7(z,,z),7(z) = 7(z,,) for convenience.
Accordingly, we can replace each occurrence of a% inside‘the integra.ls above
by |N|~2N - V acting on §, and then integrate by parts. We write explicitly
only those resulting terms in which two spatial derivatives act on ép or éc,
dropping all others into “ --”, including the third summand in the formula

above:

dz

6G(anzty) = [ o {lNI“(N vy e

-2 ép
—é’——INI (N-V)Vr,.-V }

p
S(tr—Ts—7Tr) + -

This expression gains significance when interpreted in terms of ray geometry.

The ray from z, to z (“incident”) has velocity vector Vr,(z), similarly that

from z, to z (“reflected”) has velocity vector V7.(z). Thus, using the eikonal

equation,

IN? = |Vr, + Vr[? = |Vn|+|Vr}+2Vr, - V7,

2
= 25(1 + cos 8)

where 0(z,,z,, ) is the opening angle, i.e. the angle made by the velocity

vectors of the incident and reflected rays. In view of the integrand above, it
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is convenient to introduce

1
b= 14+ cosb’

As we have seen, 0 stays away from +x for simple ray geometries, so b is

smooth over X,, x .
Thus

9\ 2
IV - vy 2 (52-) b’(N-V)*%+---

ot

|} Bl

2
1,2(N.v)2%+...

(Again, here and in the following, “- - -” represent terms involving only lower
derivatives of ¢, 6p.) while

2
(where Ny = V1, — V1,)

b op

= c—21>2(1\/-v2+Ei > — b (’V~V)2+52-b(N-V)(N-V))—
- T\2 ) 2 ’ 4 ! »

S

SO

2 bc & b 5
SG(szzr’tr) = /djta,a,.fz- [bz(N . V)2 (?C + ..;e.) + (_2_ —- b?) (N . V)sz]

St — 14— 1)

+ ii—}a,a,% BN - V)(N; - V)%P S(t—1, —7)

26



+ “oe
Now because of the eikonal equation, N - Ny = 0. Hence
N -Vé(t—1,—7)=0

and we can integrate by parts in the second term above to see that it is actu-
ally a sum of terms of the form we are throwing away — (smooth functions)
x (derivatives of §p, §c of order < 1) x(6(t, — 7, — 7).

The upshot of all this is the expansion

2
$Glenznt) = [T [b’(N vy (@ " %‘3) s (g - b?) (- V)’is;”]

§(ty — 15— 1)
+ [ da(Qbe+ Qubp)é(t - 7. — )

+ / dz(K18c + K16p)

where Q; and Q; are differential operators of order <1 and K; and K, are
piecewise smooth functions, all depending on (z4y Zr, T).

A closer examination of the first term is warranted. The expression

bc bp bo

—t—=—, Oo=pC

c p o
is important enough to have a name: o is the acoustic impedance. In the
special “zero-offset” case of coincident source and receiver (zs = z,), about
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which we will have more to say later, 7, =7,,50 0 =0, b = %, and we obtain

2,2
8§G(z,,z,,t) = /d:c 62;’ (Vr, - V)zé_a'_

o4

i.e. the “leading” order” reflected signal depends only on the perturbation

in the acoustic impedance. Moreover, in general

g-bz——(cosa9—1)— ?sin

27

so we can rewrite the leading term as

c*ba,a,

6G(:z,,z,.,t)~/d:c (N-V)? (—-51 2( )6”) §(ty =70 —1,) .

So

The different angular dependence of the perturbation in G on ° and fo

P
respectively has led to a number of suggested schemes to determine them
separately.

The integral above is simply a formal way of writing the family of integrals

over the hypersurfaces
{z : t, = 7(z,,2) + 7(25,2)}

which are indexed by t,,z,, and z,. Under our standing “simple geome-

try” hypothesis, these surfaces are all smooth, and the associated integral
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transform is a generalization of the Radon transform, hence the name. This

observation has been exploited most consistently by G. Beylkin (1985).

Finally, the 2-dimensional case follows immediately from the observation

that

G=

—1/2 * G

where t;l/ ? = t-1/2H(t) interpreted as a generalized function, and G =

ad(t — 7) just as in 3d. The Green’s formula becomes

8G(z,,z,,t)

- /w dz / dt §G(z4, Ty,t) 6(z, — z) 6(t, — t)

- /R, dz / dt 6G(zs, s, 1) [p(z)
= / dz/dt(ii:aa;—;-—p—'
= deds Lo fa(X

~ t+ t% /d:c 'a'(N-V)z(i'-—sin

1

2*G

26¢ i
pcd ot?

c?(z) o2

'(;

2

G

(z,,z,t, —t) = V-

) 5:) 5(t, —

LVG'(:::,,:;:, t, —

p(z)

V) G(zs,z,t) - G(z,,z,t, — )

(z,,z,t)é(z,,z,t,.— t)

-Tr)+"'

Now t} * is a multiple of the Heaviside function H(t), (Gel’fand and Shilov,

1958), p. 116, formula (3')) so we obtain

6G(z,, z,,1)
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2 252
~ T (l) /d:cc b a,a,(N V)3 (-53 — sin? (10) é—p) H(t, —7,—1)
2 o

2p 2/ p
™ cb’a,a, . ., bo ., (1 ) sp
=~ —E/d$_2p—llvl (NV) (—G‘-SID 20 P a(tr-rs—Tr)
_ T ba,a, bo . 2 (1 ) op
= 2/d:z: P (N V)(t7 —sin 20 p o(tr—1s—1).

Here we have integrated by parts and thrown away the same sort of terms

as before.
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4 The Kinematics of Reflection

In reflection seismic work, it was established long ago that reflected signals
are caused by localized, rapid changes in rock properties. Inspection of di-
rect measurements (well logs) often shows that these reflection zones exhibit
oscillatory or abrupt changes in mechanical properties. Similarly, ultrasonic
reflections occur at sharp edges (cracks, voids). In all cases, the material
parameters in reflecting zones have rather large high-spatial-frequency com-
ponents.

The approximation to the reflected field derived in the preceding section
is quite successful in explaining the relation between oscillatory mechanical
parameter perturbations and their corresponding reflected signals, at least

up to a point. This relation emerges most clearly from consideration of

perturbations of the form
é .
2 (z) = x(@)e*

where x is a smooth function of bounded support (for simplicity, we assume

temporarily that §p = 0). A couple of remarks are in order. Of course we do
not really mean to consider complex parameter perturbations — but since
the rest of the expression for §G is real, we can take the real part either
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before or after computing 6G! Second, any perturbation 6o/ in impedance
(with support contained in that of x) can be represented as a sum of such
simple oscillatory perturbations. Since 6G is linear in §o/c, it suffices to
study their effect on the acoustic field.

Because of the observations mentioned at the beginning of this section, we
expect highly oscillatory §o /o (i.e. large [£]) to give rise to highly oscillatory
reflected waves. We would like to know where these waves arrive at z = Z,,
say (so we will temporarily imagine that the receivers fill the entire plane
{z = z,}. Our idea is that a very efficient detector of high-frequency waves
arriving near z, = (z,,z,) (z, are the tangential coordinates of the receiver
point — either one or two) at a time ¢, is obtained by integrating §G against

an oscillatory function
x(zty) = el

If 8G has a significant component with almost the same phase surfaces and
frequency the integral should be substantial; otherwise destructive interfer-
ence should render the integral small. More precisely, consider first the ap-

proximation

//dz;/dt,x,(z:,t,) e Wtrt&em) §G (2, 21, 24, t)
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A

h

260(z)
o(z)

x x(@y, t,)e G (t, — 7(24, ) = (34, 2))

~ / dz’ / dt, / dz R(z4,2e,2)(N(20r 20, 7) - V)

from the “leading term” calculation of the previous section: we have written

c*(z) ¥¥(z,, 2, z) a(z,, Z) a(2,, T)
2p(z)

R(z,,z,,z) =
Inserting the oscillatory form for éf- and carryil’1g out the t-integral,

= /d:t’,/dz xr(Zh, 7(20,2) + 7(21,2)) X(2) R(z4, 21, 2)(N (24, 27, 7) - €)7 -

SHr(zat)r(ar ) ezt +en)

where we have written out explicitly only the terms of highest order (possibly)

in |]. Note the identities
Q, . el tr(ana) et el
= i(—wN(z,,2,,Z) + £)e't)
¥, lelrizazbbr(ana))+hsi 4]

= (WY (2, z) + €l

SO
—i(§-wN —i(&r+wV, 7r) i +7)+E0 2+ T
(Tt Ve + Fraw i Ve ) ) ’
= 2ei(w(‘r.+fr)+€:-'8:-+€'=) .
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We can substitute the above expression for the exponential and integrate by

parts any number of times, say K, so long as one of the quantities
| —wN| and £ + WV

is non-vanishing at each point m of integration, i.e. the support of the
product x - X, where x,(z,, z,,z) = x,(z},7(z,,z) + 7(z+,2)). Granted this

assumption, the integral is bounded by a multiple of

-K

€7 sup  max (J6 —wN]|, & +wVan]) T .
TE€ Supp x
z,€ SUpp xr

This expression is homogeneous in (£, £.,w) of order 2 — K. So, if £, ¢’ and
w are made large in fixed ratio, and if

5 ’
_—N’ —r'+v:;.‘rr
w w

don’t both vanish over the domain of integration, then the leading term
decays like an w?~X. What is more, one can show that all the terms neglected
above also decay with increasing w.

So we have established: for fixed envelope functions x, X,, and tolerance
e > 0, a necessary condition that a perturbation §o/oc = xe'** give rise
to a fundamental solution perturbation §G which when localized by multi-

plication with x, has significant high Fourier components with frequency w
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proportional to |£], is that

é'-Na £—'+Vz’,7'r

w w
both vanish at some point in the support of x,x.

The geometric significance of these conditions is profound. The first one
states that £ is parallel to the sum N = V.7, + V.7, of the velocity vectors
of incident and reflected rays. In view of. the equal length of these vectors
(eikonal equation!) the sum is also their bisector. Since £ is the normal to
the equal-phase surfaces of §o /o, these surfaces act like reflecting surfaces,
at which incident and reflected rays are related by Snell’s law. That this
condition hold for (z,,z,,z) € supp X,x means that a pair of incident and
reflected rays must exist touching z € supp x with ¢, = 7(z,,2z) + 7(z-,z)
for (z,,t,) € supp x-.

The second condition states that we will find a high-frequency component

in the reflected field at (z',¢,) with wavenumber (§;,w) if 0 = §, + WV, - 7.

Given z and z,, the moveout (or arrival time) surface is the graph of
7! = 7(zy,z) + 7(2r,2) (2, = (27,2,)) -

A typical tangent vector to the moveout surface has the form (7’,7'- V7).
The second condition means precisely that (;,w) is orthogonal to all such
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vectors. That is, a high-frequency component appears in §G only with wavevec-
tor normal to the moveout surface.

Looked at slightly differently, we have constructed a kinematic relation
between high-frequency components of the medium perturbation §o/c and

of the reflected field 6G. Given a location/direction pair (z, £),
(1) Connect the source z, with z by a (unique!) ray!

(2) Construct a reflected ray vector at z, i.e, a 5, with |n,| = ¢(z)™?

and 7, + V.7(z,,z)||€.

(3) Solve the Hamiltonian equations with initial conditions (z,—7,).
If the reflected ray (i.e. z-projection of the solution) so pro-
duced crosses z = z,, let z, be the intersection point. Then

nr = Vz7(z,,z), and set t, = 7(z,,z) + 7(z,, T).

(4) Set w= lvsr(z..:ﬂvf(z,.:)l 16 = —wV,“r(z,.,z).

Set C(z,£) := (z.,t,,€.,w). Then

(i) For 222 = x(z)e¥* with £ sufficiently large, and envelope function

o(z)

Xr, Xr8G |:=:, has a large Fourier component with wave vector

36
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(€. ,w) only if
(z,tr, &7 w) = C(z,§)

for z € supp x and (z,,t,) € supp Xx,-

(ii) The map C is not well-defined at all (z,£) — the reflected rays
may go “off to China,” and never pass over the receiver surface
{z = z.,}. This accounts for the intrinsic aperture-limitation of

reflection imaging, as we shall see.

(iii) C is a canonical transformation in the sense of classical mechanics.
We shall call it the canonical reflection transformation (or “CRT”,

for short). Moreover, C is homogeneous of degree 1 in &, €], w.
An even stronger statement than (i) is true:

(i) For sufficiently large |w|, x-6G has a large Fourier component with
wave vector (£/,w), and x-(z.t,) # 0 if and only if x has a large

Fourier component with wave vector { so that
(z;’tr’ :-"") = C(z,§) -

Here x is any envelope function non-zero at z.
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This statement follows from the inversion theory of Section 6; essentially, we
use the principle of stationary phase to show that our analysis of component
decay is sharp.

This stronger statement suggests a positive resolution to the maigration

problem:

Given locii of highly oscillatory components in the data, find the

locii of highly oscillatory components of the acoustic coefficients.

Highly oscillatory components in the acoustic coefficients are the result
of rapid changes in material type, which typically occur at structural bound-
aries. So the information to be got via solution of the migration problem is

the identification of structural units.
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5 The Normal Operator

In order to make the preceding section more precise, and to develop the
inversion theory of the subsequent sections, it is necessary to study the so-
called normal operator. This study requires a more precise definition of the
linearized seismogram. Many of our subsequent developments will assume
densely sampled surface data, so we will idealize the receiver set for each
source position as a continuum. We choose a window function m(z,, Z,, tr)
which for each z, is = 1 over most of the receiver (space-time) domain, going

to zero smoothly at the boundaries (i.e. a “tapered receiver window”). We

define the impulsive linearized forward map Ls as

Ls(p, €| [%Z, 67;»] (ZgyThyty) = M(Tgy Th, 0)0G(Ts1 Trr Br) -

Then the linearized map for an isotropic point source with time function f(¢)

is simply

o[22

whereas Ls has the approximation (in 3-d):
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so from elementary calculus there exists o, € [0,1] at which

0= 5;'#(%«’((0)) = [V7(z4, X(00)) + V7(2,, X(00))] - X(00) .

o=0g

There must exist f(o) so that
X(0) = f(0)V (2, X(a))
and since 7 is monotone along rays, f # 0. Thus at o = g9

0= VT(I,,X(O‘Q)) . VT(I,-,X(UQ)) + m .

From the eikonal equation,
Vr(zs, X(00)) = —=V7(2r, X())

which contradicts the “simple geometry” hypothesis of Section 2.
So we conclude that the meaning of the second stationary phase condition

is:

(y” l/"(zv .’E:., y’)) =T

In particular there is only one stationary point. In order to employ the
stationary phase formula, we must also compute the determinant of the phase
Hessian. Write

&(z,z0,y,0) = €y + éaYalz, 2, y) -

46
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Then the Hessian (with respect to z,y’) has a natural block structure:

Hess =

2%y, 93,
E" # E" azldy’

\ 6" 3:’ 19y’ E" ay

so we continue differentiating:

¢ %Y, +62¢ oY, \? . 9% YT 8% )
Oyn Oz?  Oyi \ Oz, Oyn0z. Oz, 0z} S
5z 770 )

08 Y, OOV 0N & O¥I s ) .
By, 9210y T 33 0z, By T By.0w By T dmoy) V)

= 0.

Now we employ the stationary phase conditions since (for the form of the sta-
tionary phase formula to be used below) the Hessian need only be evaluated
at the stationary points. Since 8Y,/0z. =0 and (y’,Ya) = = (both versions
of the second condition), the first equation in the above group implies that

8%Y,/8(z.)? = 0. Thus
2 2
det Hess ¢ = det [{,, 9 }; ] .
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From the first condition, é, = (8¢/8yn)(|V4|)~! so our determinant is

2

d¢ 0%Y,
Oyn 0z.0y’

d¢ 4YT + 9%*¢
Oyn0z. Oy Oy'dz.

|Vé|~2"=1) det '

2

= |Vé|~2"=1) det

2

= V|2 det

8¢ 0¢T (B \' 5%
O0yn

~ Byn.0z’ By’ dy'dz’

Now use the determinant identity

det(A — vwT) = det

with

v~ 0¢ - 0¢ 'w~—a-?- A ¢
0z, 0z'0yn ' dy'’ Oz 0y’

to write the above as
2

26 3¢ (37!
= |Vg| 2 det | 22| Oz:um (a”")
28T 1
3y ‘
2
-2 - v
- 9 (22) e |
n Vy¢

which is the form we want for the Hessian determinant.
Next, emp'loyment of stationary phase demands that we verify the nonva-

nishing of Hessian determinant. The condition that this determinant vanish
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is that 4/ € R, 4, € R (not all zero) exist so that

Z 7.16 7 ; g¢($,, z,, 3:) + 7nV¢(z,,z,,z) =0
=1
n-1

Z 7.13 r (2., 2) + Ya(Ver(2,5,2) + Vo7(2,,2)) = 0.

=1

Take the dot product of both sides with V. 7(z,,z) to get

Vor(z,,z)7 (X_; 7,36, 25— Vz7(2r, 2) + 1(VeT(2,, 2) + Vo7 (2,2 )))

= (’i 7 oz’ ) Vet (zr, 2)|? + 10 (Ve (24, 2) - VT (20, T)
+ lV,T(.:B,-,z:)Iz)

= vn(1 + cosb(z,,z,,2))

since |V.7(z,,z)|> = c?(z) is independent of z,. As we have seen, the
“simple geometry” hypothesis implies cos § > —1, so v, = 0 necessarily.
The remaining condition is the infinitesimal violation of the “simple geom-
etry” assumption, as explained in Section 2. Thus we conclude that ¥’ = 0,
i.e. that the determinant is indeed nonsingular.
It is finally required to determine the signature sgn Hess ®, that is, the

number of positive eigenvalues, less the number of negative. In fact, it follows
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from the block structure

0 | B
Hess & ~
BT | C
of the Hessian at the stationary point that there are exactly the same number
of positive as negative eigenvalues.
This fact follows easily from the nonsingularity of B. Let BTB = UDUT
with D positive diagonal, U orthogonal. Since B is nonsingular, D # 0.

Choose a C? family of 2(n — 1) x 2(n — 1) nonsingular matrices I'(t) for which

(o) =1,

U o
r(1) =

0 UD":

Now det (1) = (det U)? det D! > 0, and the nonsingular matrices of posi-
tive determinant form an arcwise connected family, so this is possible. Now
the determinant of I'(c)THess ®T'(0) is clearly positive for 0 < o < 1. There-
fore none of the eigenvalues of I'(c)THess ®T'(c) change sign, and so Hess ®

has the same signature as

0 I UTBUD-}

I'(1)THess ®I'(1)
D-YUTBTU \ D-}UTCUD-}
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0 | By

=: = (I)l .
BT | ¢y
Now C) is symmetric, so has real spectrum y,,...,un-1, with orthonormal
family of eigenvectors vy,...,vs-1. On the other hand w = (w;,w;)T is an

eigenvector of ® with eigenvalue A if and only if

Biw, = Awy
BIT Cwy, = lw,.
Assuming momentarily that A # 0, we get for w,
(%BITBI + c) wg = Aw; .
But BB, = D-:UTBTUUTBUD-} = I, so the above reads
!

ng = (A - /\)‘wg .

Now the solutions AF of

are

A\ =

o 5757)
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which are (a) never zero, and (b) of opposite signs: A} > 0, A7 < 0, regardless
of the sign of y;. Build corresponding eigenvectors according to
/\,-% By v;
Vg

Then {w{} are an orthogonal family of eigenvectors with eigenvalues {)\¥}.
Since there are 2(n — 1) of them, they represent the spectral decomposition
of ®;. Thus ®,, hence Hess &, has signature zero.

We now have all of the information required to employ the sta.tio'nary

phase principle, which we state here in sufficiently general form:

Suppose that { and g are smooth on R", with g having bounded

support. Suppose moreover that

z€suppg, Vi(z) = 0

= det Hess ¥(z) # 0
and suppose moreover that
A={z€suppg: Vy(z)=0} is finite.
Then

d iw(z)
/R"' z g(z)e
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Z (2_”) T e sgn Hess "’(")l det Hess g{z(z')l‘%g(z‘)e"“’“’(’.)

T*€A w

+ R(w)
where for some K depending on g and 9,

|IR(w)| € Klw|~%F1.

More is true: one can actually develop an asymptotic series

Bm

dz g(z)e 4 ~ || (Z gjw'j)

=0

where the g; are explicitly determined in terms of derivatives of g,% and
associated quantities. We shall make explicit use only of the first term go,
given above.

Collecting the facts proved above, we evaluate

/ dz, / dy'B(z, 7, )€ v Hintn(zaty)

2-V4(z,, z,, z)

/
oz

¢
Oz,

det

(z4yZr, T)

n-1
- (31) (V6(22, 202"

||

Vé(zs, 21, 2)

x B(z, 2.,z + O(|lw|™"?) .

In this and succeeding formulas, z, = z,(z,,z,é) as determined by the sta-
tionarity conditions. The formula for 8 simplfies considerably because, at
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the stationary point (y’,Y;) = z’, we obtain

-1
B(z,z.,z') = ay(z, 7., é(z,, z))a(z, z,, $(z\, T)) (g: (zi,z)) .

By more reasoning of the sort of which the reader has become tired, it is

possible to show that a_a:% remains positive. Thus the integral is

po(zs,2,€)e* + O(|€] %)

where
-1

a—iquS(J:,,:c,, z)

n-1
po(@ny2,€) = (2—’1) (V620,200 2)[" |det
|£| ' V¢(I,, 2',,1)

xay(z,z., 4(z,z))a(z, 2., #(z, z)))
(where as before z, is regarded as a function of z,,z, and I—%)

The full-blown stationary phase series yields

= (i Pj(%&)) e't*
j=0

where pg is given above, and p; is homogeneous in { of degree n — 1 — ;.
Note that pp indeed shows no traces of our special use of y,, as promised;
it turns out that all of the other terms are similarly “coordinate-free.”

Inserting this result in the expression for AJA, we obtain formally

AjAu(s) = o [ de (i p,-(x,s)) 7€)

(21?)" j=0
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It is possible to make good sense out of this expression: it defines a so-called
pseudodifferential operator. A development of the theory of pseudodifferential
operators can be found in Taylor [1980], for example. The essential points

are these:

(1) Given a series like the above, 3" pj(z,£) with p; smoothness in
{z,€ : €| > 0} and homogeneous in £ of degree s — j, one can find

a (nonunique) smooth function p(z, ) for which

N-1 _
p(z, €)= Y pi(z, &) =0(EI™N) N=1,2,....

=0

Po is called the principal part of p. p should satisfy some inequali-
ties involving derivatives — essentially, differentiating in § should
lower the order in £, and differentiating in z should not raise it.
(These properties follow easily for the A]A construction above.)
Such a function is called a symbol. The summand po(z,§) of high-

est order (s) is called the principal symbol, or principal .pa.rt of

D.

(2) Given such p, the oscillatory integral

1
(2m)"

,/ d¢ p(z, €)™ u(€) =: p(z, D)u(z)

U
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(3)

(4)

defines a map from smooth functions of bounded support to smooth
functions (and between many other function classes as well). Such
an operator is called pseudodifferential. (It is conventional to de-
note the operator associated with the symbol by replacing the
Fourier vector £ with the derivative vector D = —-V=1V. The

reason will become obvious in (5) below.)

Two symbols with the same asymptotic development define opera-
tors differing by a smoothing operator — i.e. an integral operator
with an infinitely smooth kernel. Smoothing operators yield small
results when applied to oscillatory functions, so the entire impor-
tance of pseudodifferential operators for the theory of wave imag-
ing lies in their ability to describe approzimately the behaviour of
high-frequency signals. To a limited extent it is possible to make
estimates concerning this approximation; some examples appear

below.

With minor further restriction on support, the class of pseudodif-

ferential operators is closed under composition. Moreover, if p and
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q are symbols with principal parts po and go, then
p(z, D)q(z, D) = r(z, D)

and the principal part of r(z,€) is po(z, £)qo(z,£) — so far as prin-
cipal parts go, one composes pseudodifferential operators simply
by multiplying their symbols! This and some related facts give a

calculus of pseudodifferential operators.

Differential operators with smoothly varying coefficients are natu-

rally pseudodifferential operators. Indeed

¥ aa(2) D ul (2,, /e(

lal<m

)(26)") e“%u(¢) .

|a|<m
Thus differential operators have finite asymptotic expansions, all

terms of which have positive integral degree.

We can combine the remarks to finish the job of this chapter, namely the

representation of the normal operator. Examining the representation of Lj

given at the beginning, we recognise that

[P’ C] [60 6:} (I,,I,-,t,-)

/da: m(z,,z.,t.) R(zs, Z,,Z) Z Ni(z,,z,,z) Nj(z,, z,,2)

$J=1
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3 (b0 g, 1 0?
{a:z:;az,- (7(3:)) —sxn2(§0(z,,x,, ))3 T,0z; p( )}

§(t, — r(zy,2) — 7(20,2)) + - - -

where the “...”

represents terms involving lower derivatives of %’ and 57"
These will not figure in the computation of the principal symbol, and in

any case have the same importance as contributions already neglected in the

approximation Ls ~ L§. Then:

Remarks (4) and (5) above combine to yield our principal result:
A= L;[p, C]LG[Pa C] =

is a two-by-two matriz of pseudodifferential operators of order 2.

The principal symbols of A,,, etc. are products of the geometrical factor

2 2 3zl V¢(£,, .t,-, .‘L‘)

9(23,3,6) = |V¢($_,,.’L',., l')l det
Vé(z,, z, T)

and terms from the integral kernel defining L§, above. In all cases these

are evaluated at ¢, = ¢(z,,z,,z) and z, = z’,(z,,z,f) chosen to satisfy the

stationary phase conditions.
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Recall (Section 3) that

c*(z) b*(z,, 2, 2) a(z,, 7) a(z,, )
2p(z)

R(z,,z,,7) =

and

1 2
1+ cosb(zs,2,,2)  c*(z)|N(z4, 2y, 2)|?

b(zs 2., )

N(z,,z,,2) = V.r(z,,2) + V.7(z,,2).
The first stationary condition implies that
|N(z,, 2, (2, T, é), -7:5 : él = |N(z,, z,(z,, zvé)’ z)| .

So the principal symbol of A,, is the product of the geometrical factor

g(:,,:c,f) and

m(zsyx:-a t.) R(z,, z,,z)(N(zs, 2/, T) - 6))2

c(z) a(z,,z) (a(zr,z)
2p(z) (1 + cos 0(z,, z,, z))
m(z,, 20, t,) a(z,, ) a(z,, )

| p(z)(1 + cos 8(z,, z,,z))

2m(z,, z’,t,) a(z,, z) a(z,, z)
p(z) cX(z)|V(zs, 2r, )2

= [¢’m(z,, z;, ) 3‘N(3n z5,2)|?

= [

l€1?

Accordingly (n = 3!).

Aaa(zaa 3’6) =
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’ a Ty ? -
Rk (Qm(zhxr’:&)c(;:)z) = ﬂ) V4(2s1 20, 2)|”

_a—vé(z.n Ty, J:)

J
9zl

-1

det
V¢(z,, Ty, 3)

A(.’L‘,, z,§) =
1 sin® 16(z,, z,, 7)

Aaa(xu .‘L',E)

sin® 26(z,, z,,z) sin* 16(z,,z,,z)
This expression simplifies still further through use of the (stationary point)

identity

a

Vé(zs,zr,2) = \/T?(l + cos )¢

and

0 0
ax’ V¢ = -(%—rV,r(a:,,z) .

r

These identities allow one to write the symbol as a sum of products of function
of (z,,€) and (z,,&), which is useful in actual calculations.
Similar calculations hold for the 2-d case. Then (see end of Section 3; we

have absorbed factors of =, etc., into the definition of a):

Rz, 5,7) = AEnint) Soa i

and only one factor of the vector field N - V occurs. Then we get for the
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principal part of A,, the expression

€l9(2s, 7, €)(m(zs, 27, 2)b(24, 27, T)a (25, T)a (2, x)l’(z)-'l)z

- (N(z4, 2, 7) - 6)2

_ 2m(z,, z.,t,)a(z,, z)a(z,, z) 2
= Kl ( (=) (z) )

-1

:T‘_V¢(zsazraz)

Vé(z,,z,,2)

x |Vé(z,, zr, )| det

Some further, instructive geometric interpretation is easy in the 2-d case.

Writing
V¢ = [V§|(siny,cos )
we have
5 9 o9
det | % = |Vé[? cos p*=— tan ¢ = |[Vo|* — .
Ve dz! Oz,

Thus the determinant measures the rate at which the direction of V¢ changes
with receiver position. Consequenlty, the principal symbol can be written

entirely in terms of angles and local quantities:

Aoo(2,,7,8) = [€]-
o(z)~(m(z,, zr, tr) a(z,, Z) a(z,, z))’\/%
(1 + cos 6(z,, z, ::))3'33-}'(::,, Z,,Z) '
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6 Migration

The solution of the migration problem, hinted at the end of Section 4, can now
be placed on firm footing. We shall give both a straightforward discussion of
the “ideal” migration (the so-called before-stack variety), and a derivation of
a number of standard “real-world” approximations.

Recall that the migration problem is: given a data set {ép(z,, z,,t,) : 0 <
t, < tmaz, (Ts5,2r) € X,s}, find the locii of high-frequency components in the

coefficient perturbations éo/a, §p/p. Of course it is presumed that

dp = Ly[p,c] (60 /0, 6p/p]

for suitable reference parameters p,c. If p, c are smooth, then the analysis of

the previous section shows that

LS[pv C]‘f_‘ * 6p ~ L&[P, C]. LG[ps C] [60’/0, 5P/P]

is pseudodifferential. That is, if the inverse convolution operator f~!* is first
applied to the data ép, followed by the adjoint of the perturbational forward
map, then the result is related by a matrix of pseudodifferential operators to
the causative coefficient perturbations.

This yields a solution of the migration problem because pseudodifferential
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operators are pseudolocal: they preserve the locii of high frequency compo-

nents. In fact:

Suppose P = p(z, D) is pseudodifferential, and u is a distribution,

smooth near o € IR*. Then Pu is smooth near zq.

This statement replaces the vague “locii of high frequency components”:
pseudodifferential operators do not create singularities in new locations. Thus
any singularities of the processed data set above are amongst the singular-
ities of [60/c,8p/p). In fact, the converse is also true, as follows from the
inversion theory of the next section. Thus the locationg of the singularities
of [6c/c,6p/p] are found by the above “before-stack migration” procedure.
This view of migration and the interpretations Advanced below for the var-
ious migration algorithms are due, for the most part, to Albert Tarantola,
Patrick Lailly, Gregory Beylkin, and Rakesh. Their original papers are cited
in the reference section, and should be consulted for additional insight and
different emphases.

The proof of the pseudolocal property is simple and revealing, and we shall
give it below. We will also describe algorithms for before-stack migration.

First, though, we record some deficiencies in the approach.
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The interpretation of “high-frequency locii” as “singularities” increases
precision at the cost of scope. Available direct evidence shows that real
earth parameter distributions are singular — i.e., not smooth — virtually
everywhere. Therefore, strictly speaking no information is to be gained by
identifying the singularities of model parameters, as these parameters ought
to be singular everywhere in any event! In practice, the mechanical properties
of sedimentary rocks have abnormally large fluctuations in a limited number
of locations — boundaries of geological units and gas or oil reservoirs, for
example. Therefore the goal of miération ought to be identification of a mea-
sure of local singularity strength, rather than identification of of singularities
per se. It is difficult to define precisely such a measure of strength. Geophysi-
cists have tended to rely on output signal strength from migration algorithms
as giving qualitative estimates of strong parameter fluctuations (or at least
their locii). (Often geophysicists claim to access only phase information in
this way — but of course phases can only be recognised by virtue of asso-
ciated signal amplitudes!) The quantitative differences in output between
different migration algorithms can sometimes masquerade as qualitative dif-
ferences, however. The inversion theory of the next section suggests one way
to make more precise and standardized estimates of parameter fluctuations,
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but a definitive resolution of the singularity strength issue remains to be
achieved.

A second difficulty is that the convolution inverse “f~1*” in the migration
formula above does not exist, because the source function f(t) is essentially
bandlimited, as discussed in §2. (It is also known only with some difficult-
to-assess error, though we shall treat it as known.) Thus the best practically

achievable “normal operator” is something like

Lilp, ] Lg{p, c]

where f is a “bandlimited delta.” Such operators are “not quite” pseudo-
differential, and the extent to which their properties approximate those of
pseudodifferential operators is not known with any precision to this author’s
knowledge.

A final, nearly fatal difficulty concerns the sensitivity of the results to
errors in the background parameters p and c (especially c!) If the data are
well-approximated by the perturbational map at p,c and if L* is computed

with pn,cm, then we obtain
L; [Pm, c"l] L5[P7 c]

which is in general no longer pseudodifferential. In fact the output of this
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operator will generally have singularities in different positions than does its

input. Even worse, if we write
Ls[p, ¢; z,) [60/a,8p/ p] = 6G(z,,, ")

then .

Ls[pmy cm]” Lslp, €] = D Ls[pms ems Za]" Llps €, 7] -

If c,» = ¢, then each individual operator
L&[P'm, ¢, 17,]. LS[P, c, I,]

is pseudodifferential, and therefore so is their sum. If ¢ # c, then gen-
erally the above operator moves an input singularity to an z,-dependent
output position. Then summation over z, “smears” the singularity out; de-
structive interference may actually convert a singularity to a smooth signal.
This smearing phenomenon is analysed in a simple special case, in App.endix
A of Santosa and Symes (1989). In any case, if ¢ # cm, singularities in
[(60/0,6p/p] are movéd, and possibly lost altogether in the final summation
over z, (“stack”).

This sensitivity of before-stack migration performance to reference ve-

locity has led seismologists to rely on a number of imaging techniques less
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directly motivated by the physics of wave propagation, but much more robust
against reference velocity error. These “after-stack” migration processes are
also dramatically cheaper, requiring far smaller computational resources than
before-stack migration. While at least occasional use of before-stack migra-
tion is nowadays feasible for many potential users, its effectiveness vis-a-vis
after-stack processing is so thoroughly compromised by its hypersensitivity
to velocity error that it remains for the most part a research topic.

We shall also describe a simple version of after-stack migration at the end

of the section. Before doing so, we shall
(i) discuss the pseudolocal property of pseudodifferential operators;
(ii) describe the major families of before-stack migration agorithms.

The crucial fact which underlies the effectiveness of migration is the pseu-
dolocal property of pseudodifferential operators. To state this property pre-
cisely, we give a simple criterion for detecting local smoothness: a function
u (locally integrable, say) is smooth at zo € IR" if we can find a smooth
envelope function x with x(zo) # 0 so that xu is smooth.

Now suppose that p(z,§) is the symbol of a pseudodifferential operator,
and that u is smooth at z,. We claim that p(z, D)u is also smooth at z,
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(this is the pseudolocal property). In fact, let x; be another smooth envelope

function, so built that x(zo) # 0 and for some § > 0

x1(z) #0, x(y)=0=2|z—-y|>6.

In fact, we can arrange that yu is smooth and that x(z) =1 if x1(z) # 0.

Write

xi(2)p(z, DYu(z) = [ d¢ [ dy plz, ) x(2)x(v)uly)
+ [ de [ dy pla, e ex(2)(1 - x(@)uly)

Since yu is smooth, we can integrate by parts repeatedly in the first integral

using the identity
(1- Ay)ei(t—v)'é =1+ {)2ei(=-y)'€

and loading the derivatives onto xu(y). This gives sufficiently many negative
powers of 1 + |£|? eventually that the first integral is convergent even after
any fixed number of differentiations in z. Thus the first term is smooth.
For the second, note that |z — y| > § when x1(z)(1 — x(y)) # 0, so we can

integrate by parts in ¢:
[ e [ dy oz, = xa(@)(1 - x(@))uly)
= o = [de [dy(1 - A)"P(z O + (= - 1)) Vxa(2)(1 = x(¥))u(y)
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As mentioned in the last section, it is characteristic of symbols that, when
differentiated in &, their order drops: the defining estimates for the symbol

classes in fact take the form (for symbols of order m):
| D2 DEp(2,6)] < Capx(1+ €)™

for any compact K C IR". (We have used multi-index notation here: a =

(a1,...an)s o] = T e

gl

Diu = (_—i)""m
etc.). Thus integration by parts in ¢ causes the integrand to decrease in [¢],
and so eventually to support differentiation in a under the integral sign.
Note that the size of the z-derivatives of xlp(z, D)u will be influenced
by the size of the support of x (hence by § > 0): The smaller this support
is, the larger typically are the two integrands after the integration-by;parts
manipulations above. Thus the resolution, with which smooth and non-
smooth points may be distinguished, is limited.
Next we address the computation of the before-stack migration result:

clearly, the key issue is the calculation of the adjoint operator L*. There are

two general approaches to this computation.
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The first approach begins with the “integral” representation

L{ba/o,6p/p) = /d:r R(N -V.)? (%’ - sinz(%ﬂ)%e) S(t—1s—1.).

Evidently

L* u(z,,z) = /dz', R (Z4,Z,, 2)(N - V) u(zl, 7,(z) + 7 (2))
1
—sin? }6(z,, z,, z)

Apart from the derivative, each component of the output is a weighted inte-
gral over the moveout curves t = Ts + 7.

Since one wants only an “image,” i.e. a function of location rich in high-
frequency energy, the presence of two components represents redundancy.
An obvious way to prune the output is to compute only the first component,

i.e. the “impedance” image:

Mu(z,,z) = / dz' R(24, 2r,2)(N - Vo) u(z!, ma(z) + 7(2))

, = o, ,
= /der(znzraz)W(z"TJ(z)+Tr(z))

where R is a modified amplitude function. In fact, it follows from the cal-
culations in the previous section that R could be greatly modified, and the

image of u under the resulting shot record migration operator M would still
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have the same locii of high-frequency components. The essential point is that
these are mapped by the inverse of the canonical reflection transformation
constructed in Section 4 — which property depends on the choice of phase
(i.e. 74(z) + 7+(z)) and hardly at all on the amplitude (R).

The family of integral migration formulas so obtained goes under the
name “Kirchhoff migration” in the literature. A great variety of such formu-
lae have been suggested, but all fit in the general scheme just explained.

Another family of migration algorithms comes from the recognition that
the adjoint operator L* is itself defined by the solution of a boundary value
problem. As noted above, it suffices to compute the impedance component,

i.e. to assume that 6p = 0. Thus M is adjoint to the map
dc/c 8G |z=z,

defined by solving

1 & 1 26c 3°G _ ‘
(E%_vzv)m_?-&—t; G=0, t<<0.

2
(-l_a__v.lv)v=p v=0, t>>0.



Then Green's formula (Section 3) gives

éc 2 9*G
/dzm {cz(z) /dt v(z,t)a?(z,,z,t)}

= /da:/dt&G(::.,:c,t)F(z,t)-

Therefore, if F(z,t) = ¥, u(z.,t)é(z — z,), we see that
2 9°G
Mu(z,,z) = Wz)./dt v(z,t)-a?(z,,z,t) .

That is, the adjoint (shot record migration) operator is obtained by “prop-
agating the data backwards in time, using the receivers as sources” (i.e.
solving the final-value problem given above) and “cross-correlating the back-
propagated field with the second t-derivative of the direct field.” In practice
G is often replaced by the leading term in its progressing wave expansion, and
often the leading singularity is changed so that 8°G/dt? has a §-singularity;

then M becomes something like
Mu(z,,z) = v(z,7(Z,,T)) -

None of these manipulations changes the basic singularity-mapping property

of M.

Algorithms following this pattern usually employ a finite-difference scheme
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to solve the final-value problem numerically, and so are known as “finite-
difference reverse-time before-stack shot record migration.”

Remark. The literature exhibits a great deal of confusion about the identity
of the adjoint field v. Many authors clearly regard v as a time-reversed version
of ép or 6G, i.e. “the scattered field, run backwards in fime.” Obviously v is
not identical to §p or 8G: it is a mathematical device used to compute the
adjoint operator and nothing more.

As mentioned before, the final image is produced from data {u(z,,z.,t)}
by stacking, i.e. forming the sum of shot migrations over source (“shot”)
locations

Z Mu(z,,z) .

T,
This sum is exceedingly sensitive to errors in background velocity. Accord-
ingly, other algorithms have been devised which are markedly less sensitive
to this velocity. These “after-stack” processes depend on two main observa-
tions. First, suppose that one is given the zero-offset dataset §G(z,,z,,t) =:
u(z,,t). Then (Section 3)

157
o

u(zs,t) = / dz R(Vr, - V)12Z5(t —2r,) .

Now 27, is the travel-time function (from z,) for the medium with velocity
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field ¢(z)/2 (as follows directly from the eikonal equation). Thus ezcept for
amplitudes, u is high-frequency asymptotic to the solution U |:=, of the

problem

( 4 .Qi_vz) U(z,t): 5:(1)5“), U=0, t<O0

as is easily verified by use of Green’s formula, the progressing wave expansion,
and high-frequency asymptotics. This approximation is called the “exploding
reflector model,” as the impedance perturbation functions as a ¢t = 0 impulse.
A reverse-time migration algorithm is easily generated, by identifying the
adjoint of the map

bo

7 — U 'zzz.

via Green’s formula; one obtains the prescription:

Solve:
4 0? 2 —
c_(z_).éﬁ—v v(z,t):Zu(I,,t)&(l‘—I,) v=0, t>>0
Image:

{v(z,0)}.

There is also a Kirchhoff-style version of this algorithm, obtained by ex-
pressing the solution v as an integral against the fundamental solution, and
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truncating its progressing wave expansion. Also, paraxial approximations to
the wave equation have been used in an attempt to speed up the numerical
calculations. We refer the reader to the SEG reprint collection on migration
(Gardner, 1985) for many original references, with the warning that these
papers are often mathematically self-contradictory. See also the excellent
recent comprehensive reference Yilmaz (1987).

So far, the reason for the appellation “after-stack” is not evident. The
reason is the second main observation: to some extent, zero-offset data can
be approximated by summing multi-offset data (i.e. {p(z,,z-,t)}) over cer-
tain trajectories in (z,,z,,t). In rough outline, the crudest version of this
construction depends on the assumption that “reflectors are all flat” i.e. that
60 /0o has high-frequency components only with vertical wave-vectors (ideally,
§c0/o = 60/c(z)).Indeed, sedimentary rocks originate in flat-lying sediment
layers. In many places, subsequent geological processes have not distorted
too much this flat structure, so the “flat reflector hypothesis” is not too in-
accurate. If it were not for this fact, reflection seismology would probably not
have attained its current importance in geophysical ezploration technology.

Given that the reflectors are flat, a unique family of moveout curves is
picked out for each source, by the kinematic construction of Section 4: in
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general, for each source/receiver location pair (z,,z,), and time ¢, at only
one place on the reflector locus {z : t, = 7(z,,z) + 7(z,,z)} is the virtual
reflector normal N = V7, + Vr, vertical — and by symmetry this point lies
under the midpoint of the source-receiver segment z' = 1(z/, + z,). Thus
the data is sorted into common midpoint bins (or gathers) {p(z,, z,,t,) :
1(z}, + z.) = Tm}. An approximate phase correction is applied, depending

on t, and the half-offset z4 = 1(z, —z,):
B(ZTms Zhyt) = P(ZTm = Thy TmsThyt + (Tm, Th, 1))

where ¢ is constructed to approximately remove the offset-dependence of the
signal. This is the so-called normal-moveout (NMO) correction. Then the

data is stacked:
Pst.(zma t) = z i’(xm, Th t) *
Th

This stacked section is regarded as an approximate zero-offset section and
" submitted to the zero-offset migration algorithms outlined above (hence “after-
stack migration”). Ignoring amplitudes, one can justify this point of view
using the same geometric-optics tools employed in the rest of these notes.
The effectiveness of this strategy obviously depends on the choice of phase

correction ¢(Zm,Zh,t). The secret of success of after-stack processing is that
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# is chosen so that the “energy” of the stacked section

Z |P:t(zm’ t)|2

Zem,t

is maximized relative to the energy of the input common midpoint gathers.
In principle, ¢ ought to be determined by the velocity model; in practice,
it is determined to obtain the best possible image, i.e., the least destructive
cancellation. In this way the result of after-stack migration becomes much
less sensitive to the velocity model, because the velocity model is adjusted to
produce the most robust result. In the subsequent zero-offset migration, the
velocity ¢(z) is either set equal to some convenient constant (“time migra-
tion”) or adjusted to approximate the true distribution of earth velocities
(“depth migration™). In gither case, this second-stage use of velocity has a
subsidiary effect to that of the NMO correction.

Note that the physical meaning of velocity in the NMO correction step
is essentially lost: the kinematics are merely adjusted to give the best stack.
Under some circumstances (notably, when the data really come from flat-
lying reflectors) there is arguably some connection between the physical ve-
locity and the stack-optimizing kinetics — in general, there is no such con-

nection.
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In the last fifteen years, so-called dip moveout correction has been ad-
vanced as a partial cure for this defect in the kinematic treatment of re-
flections, the idea being to treat non-flat-lying (“dipping”) reflectors consis-
tently, at least regarding kinematics. Dip moveout is beyond the scope of
these notes.

Finally, note that none of the after-stack processes take physically con-
sistent account of signal amplitudes: only phases are preserved — and, as
previously remarked, phases are only recognizable through amplitudes, so
even phases must be regarded with suspicion in after-stack output. A great
deal of time and energy has been wasted attempting to assign physical sig-

nificance to after-stack image amplitudes.
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7 Inversion, Caustics, and Nonlinearity

The formulas derived at the end of Section 5 lead to a number of so-called in-
version methods, i.e. techniques for direct estimation of parameters (¢, §p).
For example, if we restrict ourselves to the 2-D, ép = 0 case, then for each

shot formally

S(zs, z,,t,) = f * Ls[p, c] [60/0,0]

implies that

50/6 = A;UIM [Pa (o z,](f*)_lS(:t,, ) )

where M|[p, ¢, z,] is the before-stack migration operator introduced in Section
6, i.e. M is adjoint to o/ — Ls[p,c][6c/c,0](z,,,-). This is a prototypical
inversion formula, which we pause to examine critically.

As observed in Section 6, (f*)™! doesn’t exist; at best one can produce a

bandlimited partial inverse to (f*), i.e. a convolution operator fi* for which
fi*fru=u

for a linear space of bandlimited signals u.

The production of such deconvolution operators f; is well understood,

but the influence of the defect f, * f — § on the remainder of the inversion
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process is not.
Next we observe that A} also does not exist, strictly speaking. We can

write (Section 5) for the principal symbol

Aoa.o(za, z, f) = m(:z:,, Ir(xaa z, E), t,-(.’t,, zaf))p(zn z, E)

where p(z,,z,£) is a symbol of order 1 and m is the window or mute, in-
troduced in Section 5, the presence of which reflects the finite size of the
measurement domain (finite cable length). The reflected receiver location
z.(z,,,&) is determined by the reflection kinematics, and is homogeneous
of degree zero in . Thus m(z,,z,,t,) is an aperture filter, homogeneous of
degree zero and nonzero only over the range of reflector normals at z mapped
into the “cable,” i.e. support of m(z,,-,-), by the CRT. This inversion aper-
ture is typically far less than the full circle S!, so m vanishes over a large
part of S'.

The composition of pseudodifferential operators corresponds to the prod-
uct of principal symbols, as noted in Section 5. Thus (A,,)~! ought to be
a pseudodifferential operator with principal symbol 1/A,,0; unfortunately
A, vanishes outside the aperture just constructed. Therefore the best we

can do is to construct an aperture-limited high-frequency approzimate inverse.

80



Remark. In the modern p.d.e. literature, the term microlocal has roughly
the same meaning as “aperture Jimited” here. A high-frequency approximate
inverse is called a parametriz.

First we build a cutoff operator to project out the undetermined compo-

nents of the solution. In fact, we already have such an operator:

Q(Iu z,§) = m(xu I,(.‘L‘,, I,é), tr(zn z, é))

is its symbol. The “simple geometry” hypothesis implied that Ayq0(z,,z,¢)
is well-defined and non-vanishing when Q(z,,z,&) # 0.
Now first consider the (hypothetical) case f = §, so that (f*)~! really

does exist, and is in fact the identity map. Let I'(z,,z,£¢) be any symbol

satisfying
[(z4,2,6)Aso(zsy2,6) = 1
when Q(z,,z,£) #0
Then
QTAwe =Q+ ---
where “...” represents a smoothing operator. That is,

Q%:QI‘MS+ SH
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Thus the sequence of operations

S — MS —_— 'MS
amplitude

migration :
correction

“inverts” the model-seismogram relation to a limited extent, in that it recov-
ers the Fourier components of the model within the inversion aperture with
an error decreasing with spatial frequency.

If we drop the unrea_u.listic hypothesis f = §, then another limitation
emerges: (fx)~! doesn’t exist and we can at best replace it with a ban-
dlimited deconvolution operator fi*. Then f; * f is a “bandlimited delta,”

and the operator

Sofc = MfiL xS

is no longer a pseudodifferential operator with symbol A,,. There is presum-
ably a class of “spatially bandlimited” impedance perturbations for which the
above operator is well approximated by A,,. If this class includes perturba-
tions of sufficiently high frequency content, presumably these are recovered
accurately by the above formula. The characterization of such “recoverable
classes” has not been carried out, to the author’s knowledge.

Beylkin (1985) proposed a slightly different approach: it is possible to
write the product QI'M as a generalized Radon transform. In fact, this
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follows from the calculations very similar to those in Section 5. This sort of
inversion formula also suffers from the limitations just outlined. We refer the
reader to the references for more details.

The aperture-limitations are intrinsic to the inversion problem (and, im-
plicitly, to the migration problem as well). The bandlimited nature of f, on
the other hand, adversely affects the accuracy of the inversion formulas just
described. An alternate approach is the minimization of the error between

predicted and observed linearized seismograms, say in the least-squares sense:

minimize /dz,/da:,/dt, (Lslp,c] [60/a,ép/p]) = Sqatal® -
over éc/a,6p/p

Such (very large) linear least squares problems can be solved with some
efficiency by iterative techniques of the conjugate gradient family (Golub
and van Loan (1983), Ch. 10). The aperture- and band-limited nature of
the solution remains, but the solution obtained in this way solves a definite
problem, in contrast to the integral inversion formulas described above. See
for example Ikelle et al. (1988) for an application of this methodology.

We end with a discussion of matters beyond the limits of wave imaging,
as defined in these notes.

First, it was noted already in Section 2 that, in common with the litera-
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ture on wave imaging without exception, we have assumed that no caustics
occur in the incident ray family. This assumption amounts to a severe re-
striction on the degree of heterogeneity in the reference velocity field (White,
1984). A robust modification of the techniques presented here must drop this

assumption. Some progress in this direction:

Rakesh (1988): showed that the kinematic relation between high-
frequency parameter perturbations and field perturbations per-

sists, regardless of caustics;

Percell (1989): established that reflected field amplitude anomalies

may be caused by incident field caustics.

Second, in order to apply any of the methodology based on perturbation
of the wave field, it is necessary to determine the reference fields p(z), ¢(z).
Accurate estimation of ¢(z) is especially critical for before-stack migration, as
noted in Section 6, and a fortiori for the inversion methods of this section.
At present velocity estimation for before-stack migration is regarded as a
frontier research topic in reflection seismology.

Third, the mathematical basis of linearization is only poorly understood

at present. Rather complete results for dimension 1 were obtained in Symes
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(1986), Lewis (1989), and Suzuki (1988). These contrast with the much
murkier situation in dimension > 1, where only partial results are available —
see Symes (1983), Jiang (1989), Bao (1990). Estimates for the errlor between
the response to finite model perturbations and their linear approximations

are necessary for
(i) design of effective inversion algorithms

(ii) analysis of model/data of sensitivity by (linear) spectral tech-

niques.

These estimates are of more than academic interest. See Santosa and Symes
(1989) for an account of the consequences of the structural peculiarities of
these estimates for velocity estimation.

Finally, we mention that the significance of the parameter estimates ob-
tained by any of these techniques — integral or iterative linearized inver-
sion, nonlinear inversion — is far from clear, because of the aperture- and
band-limitations already mentioned. The discussion at the beginning of this
section suggests that accurate point parameter values are not to be expected.
At best, heavily filtered versions of the causative perturbations are accessi-
ble. For an interesting recent discussion of the obstacles to be overcome in
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interpreting inverted data, see Beydoun et al. (1990).
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