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Abstract

We study in some detail a simple nonlinear estimation problem,
which shares several important features with some inverse problems
in wave propagation. We consider the estimation of waveforms and
incidence angles of transient plane waves from measurements along a
line segment. We formulate this estimation problem as a nonlinear
least-squares problem in several ways. We show that the “natural”
formulation, output least squares, is severely ill-posed because of the
extreme nonlinearity of the model/data relation. We suggest an alter-
nate formulation, the penalized coherency method, and show that this
alternative optimization problem is well-posed. We use throughout as
our main analytical tool G. Chavent’s theory of quasi conver sets.
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0 Introduction

This paper presents a detailed study of a simple but nontrivial nonlinear
least-squares problem in infinite dimensions. Its main purpose is to illustrate

the following propositions:

(i) that nonlinear least-squares problems may be ill-posed for strictly
nonlinear reasons, i.e. they may have uniformly coercive quadratic
(“linearized”) models but still exhibit arbitrarily unstable depen-

dence of the solution on the data;

(ii) that it is sometimes possible to replace such problems by well-posed
least-squares problems having the “same” solutions for consistent

data.

We call the problem studied here the “(plane-wave) detection problem.”
It is a simple model for some inverse problems in wave propagation previously
studied by the author (Symes [1988], Symes and Carazzone [1989]). Suppose
that a scalar field in three-dimensional space-time is sampled at every point

in the interval [~1,1] on the z-axis:
z(z,t) = U(z,0,t) -1<z<1.

Suppose moreover that U is a priori known to be a plane wave moving at

speed 1, except possibly for some noise:

U(z,y,t) 2 u(t — zsinf — ycosb) .
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The goal of the plane wave detection problem (or detection problem, for
short) is to estimate the waveform u(t) and the incidence angle § made with
the y-axis, or equivalently its sine s = sin 4.

Our primary focus in this Paper is on aspects of the detection problem
affecting the feasibility and efficiency of computational methods. For exam-
ple, because one believes that the noise in the measurement 2 is small in the
mean-square sense, or for statistical reasons (e-g. Taraatola ( 1987)), one may
naturally attempt to fit a prediction of z in the mean-square sense. If the

waveform is u(t) and the direction sine is s, one predicts the measurement
$ss,u] = u(t — sz) .

The optimal choice of model [s,u] is then the solution of the output least-
squares problem

n_}'jun ll¢5(s, u] - 2”2

where || || denotes the L? norm on a suitable domain. This formulation may
be attacked numerically after suitable discretization. Note that ®s is linear
in u but quite nonlinear in s.

Consider for a moment a more general class of problems, in which physical
theory conects a set of model parameters {m} to a set of data {z} through a
mapping: z = ¢(m) (in the plane wave detection problem, e.g. m ~ [s, u]).
Whether through solution of a least-squares problem or by some other means,
one obtains an estimatem = § (2] of the model from the data z. In this paper,
we take the point of view that such an estimator S is satisfactory if it has

the following properties:
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(i) if z is consistent, i.e. z = ¢[m] for m in an a priori prescribed

admissable set of models, then m = S[z];

(ii) S islocally Lipschitz continuous, and is well-defined on a neighbor-

hood of the set of consistent data, in the sense of suitable metrics;

(iii) S is computable by means of local (Newton-type) mathematical

programming techniques.

Our main results are that the output-least-squares problem stated above
cannot produce an éstimator with these properties, and that a variant on
output-least-squares does produce an estimator satisfying these conditions.
We call the variant the penalized coherency method — the reasons for this
terminology will be evident.

We will shortly describe the results in more detail, but first we offer a few
comments concerning conditions (i)-(iii).

Condition (i) serves to connect the estimator and the estimation problem
(i.e. with the “physics”). It is certanly very stringent — for example, we
could replace (i) by the requirement that a family of estimators be given
which arbitrarily well approximate a model from its (consistent) data set.
Such families are produced by numerical methods, of course, and also by
regularization of ill-posed estimation problems, for example (see Tihonov and
Arsenin [1974]). It might even be satisfactory that a (linear or nonlinear)
projection of the model be reproduced. We will stay mostly with the strong
version of condition (i) for the sake of simplicity. '

Condition (ii) could be paraphrased: “stability for low-noise data sets.”

It guarantees that one is rewarded for efforts in the direction of
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¢ more accurate data collection
¢ more accurate basic physical modeling.

It is motivated by the presumption that the theory is accurate, i.e. that
models exist which predict experimental data up to small errors — small
in the sense of the “suitable norms” mentioned in the statement. Repeated
experiments then yield necessarily data sets with small differences. Obviously
this necessary “small scatter” condition is experimentally verifiable (for a
given choice of norm), at least in principle. Condition (ii) asserts that the
model estimates should have differences of sizes proportional to the sizes of
the data differences. Thus the smaller the measurement errors, the more
unambiguous the model estimate.

Weaker notions of continuity could be used, but it is not clear that these
would be as useful in practice as Lipschitz continuity, which is a qualitatively
maximal notion of stability.

Note that nothing is said in conditions (i) and (ii) about the statistical
nature of data or estimation noise — only its size is addressed. Sta.tistic.al as-
sumptions about the data would doubtless entail consequences for the model
statistics. Rather ambitious attempts have appeared recently to characterize
the solution of inverse problems via statistical notions (see especially Taran-
tola (1987)). These characterizations are usually difficult or impossible to
apply in practical situations, whereas the much less demanding conditions
(i) and (ii) can sometimes be verified. .

We shall have little to say about the “high-noise” case, i.e. when either

the data tends to be very inaccurate, or the model grossly incomplete, or
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both. We shall assume that the data signal is close to that which would be
produced by a plane-wave, and ask that the direction sine and waveform be
estimated with comparable accuracy.

Condition (iii) is motivated by the role of this problem as a simple relative
of a number of inverse problems in wave propagation, with which it shares
central analytical properties. For these latter problems, the scalar p;tra.m-
eter s is replaced by a vector in a high-dimensional space, and evaluation
of the analogue of the model-to-data map ¢ (and of its derivatives) is very
computation-intensive, even with present-day supercomputers. The vastly
greater efficiency of smooth local optimization (quasi-Newton) methods, as
compared to exhaustive or Monte-Carlo search, or to non-smooth (subgra-
dient) techniques motivated (iii): these latter options are simply out of the
question for the more complex problems for which plane wave detection is a
model.

Of course, estimators with properties (i)—(iii) may or may not exist. Our
principal result is the construction of a family of such estimators for the plane
wave detection problem. .

We begin in Section 1 with an analysis of the qutput least-squares prob-
lem, formulated in a suitably precise way. Our main tool throughout is the
quasi-conve;'city theory of G. Chavent [1988] which gives sufficient conditions
for a nonlinear least-squares problem to have a unique stable, global so-
lution (minimum) which is also the unique local minimum in a prescribed
neighborhood, and also estimates the size of the set of admissible data (a
neighborhood of the set of consistent data) for which this uniqueness and

stability property holds (nonuniqueness of the minimum is regarded as in-
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stability). We show that the output least-squares problem never satisfies
the conditions of Chavent’s theory, and that moreover arbitrarily many local
minima exist in arbitrarily small neighborhoods of a dense set of models even
for error-free data. Therefore application of a local optimization algorithm
to the output least squares formulation of our problem can never produce
an estimator satisfying (1)—(ii) above. The essence of the difficulty is that,
depending on choices of topology, either ¢5 is not differentiable, or Dgs is
not coercive. |

We also study the “bandlimited” version of the output least-squares prob-

lem, in which @5 is replaced by

Ps(z,t) = /drf(t - 7)u(T — sz)
= f*¢5(:1:,t)

the convolution being done in ¢t. Ifw is a peak-frequency for the transfer
function or wavelet f we show that the amount of noise permitted in the
data (before uniqueness fails) is O(1/w), and that the direction sine must
also be known a priorito a precision of O(1/w) in order for local optimization
methods to yield unique, stable solutions.

Note that the range of ¢; is characterized by the first-order hyperbolic

equation: a function (z,t) satisfies @ = Ps(s, u] for some s, u iff

0 du
W[s,u]—g—sa—o.

W is the coherency operator. In Section 2 we introduce an augmented model

space consisting of direction sines s and two-dimensional signals &. We form
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the map
f*
oW(s, 1]

which gives a cover of the output least-squares problem, in the following

q;f,,[s,il] =Z= ( ¢ )
0

and z is in the range of ¢.$ ¢, then

&f.v [37 ﬁ] =

sense: if

. "
u(t) = -/;1 dzg—?(z,t+ sz)

solves
¢f[37 u] =z.

Thus the constrained problem

. U
el Ui

subj. W(s,u] =0

has the “same” solutions as the output least-squares problem for consistent
data, (i.e. z € Rangedy, but involves only differentiable maps. Since you
can’t get something for nothing something must be wrong. In Section 2 we
study the level sets W=1(g), and show that for a dense set of g, these are
not submanifolds of the model space. In particular, the feasible set W-10]
for the constrained problem is not a submanifold, having “cusps’; at a dense
set of points. Thus analysis of the dependence of solutions on data via the
implicit function theorem is impossible, as is the use of La;grange multiplier

methods to compute the solution.
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We conjecture that all level sets of W fail to be submanifolds. This would
provide an interesting infinite-dimensional counterpoint to Sard’s theorem.

In Section 3 we examine the penalized coherency least-squares problem
min | Gsols, 7] — 2|

which also has the “same” solutions as output least-squares for consistent
data (i.e. 7 = (2,0)T with z ¢ Rangegs). We are able to show that a
finite range of the penalty parameter o exists for which this problem has a
unique solution, stably dependent on the data, in a ball of positive radius
in the parameter space. We give constructive estimates for the radius of
this ball and for the amount of data noise permitted. In other words, the
penalized coherency problem is locally well-posed, whereas the output least-
squares problem is not. We are also able to show that a suitably constructed
quasi-Newton method is assured of convergence to the global minimum.

An interesting aspect is that the range of values for the penalty parameter
o for which the penalized coherency problem is well-posed on a fixed domain
is finite. One cannot drive this parameter to oo, as could be done to solve
a smooth constrained problem, or in Tihonov regularization, without losing

well-posedness.

Notation:
Norms in the L? based Sobolev spaces H* will be denoted by || I« (thus

Il llo is the L2 norm). Domains are either evident from context or specified
explicity. The ball of radius r in a Banach space E, centered at f, is B,(f, E);
or B.(f) if E is supposed to be clear from context.
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1 Output Least-Squares Detection

We begin this section by formulating the plane-wave detection problem pre-
cisely as a nonlinear least-squares problem. We find immediately that in the
impulsive case, the mapping from direction (sine) and waveform to observed
signal must be restricted to a domain of relatively smooth functions in order
that it be of class C2. Having made this rather unpleasant restriction, we
then find that the quasiconvexity theory of Chavent [1988] does not apply
at all, in the impulsive case, and requires that we know the direction sine
to “within a wavelength,” in the bandlimited case, if we are to be assured
of well-posedness. Moreover, we show, in the impulsive case, that multi-
ple minima of the least-squares functional inevitably appear. Essentially, the
output-least-squares formulation is useless for computational purposes, in the
sense made precise in the introduction.

As mentioned before, we shall assume that
(i) the waveform and signal are square-integrable;
(ii) the support of the waveform is known a priori to be contained
in the unit interval I = [0,1], i.e. u € L*(I) c L¥(R).

Note that the direction sine is necessarily contained in the interval (-1,1].
The signal resulting from the waveform at direction sine s is (for the im-
pulsive case f = §):

s(s, u)(z,t) = u(t — sz) .

We may regard ¢ as mapping
¢s: [~1,1] x L?[0,1] — L*([-1, 1] xR).
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The output-least-squares formulation of the plane-wave detection problem
is:

given data

z € L*([-1,1] x R)
find
(s,u) € [-1,1] x L*[0,1]
to minimize
J(s,u;2) = [|ds(s, u) - 2[5 -

The following observations are trivial:

(i) és, hence J, is continuous, but not locally uniformly continuous,

hence a fortiori not differentiable, even once.

(ii) In order that ¢s be differentiable of class C?, it is necessary to

restrict its domain as follows:
¢s: [—1,1] x H3[0,1] = L*([-1,1] x R).

The least squares problem now appea.fs to require regularization, even if s is
known ezacﬂy and the data is noise-free. Thus resolution must be restricted,
even though ¢s is not a smoothing operator! In fact, the situation is much
worse. To see how this is so, we recall Chavent’s theory of quasiconvez sets
[1988], which gives a systematic approach to the study of well-posedness for
nonlinear least-squares problems.

To decide whether a set D in an (abstract) Hilbert space F is quasicénvex,

one equips it with a collection IP of C? paths P : [0,1] — D satisfying
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(i) if X,Y € D, there exists P € IP so that

PO =X, Pl)=Y

(ii) IP is stable under restriction

(iii) a nondegeneracy condition on critical points.

The length §(p) of P € IP is defined as usual:

1.
6(P) =
(P)= ["12]
and the “kinematic radius of curvature” p by

I
By P #o0

p(v) = oo 1ff’(u)=0,}5#0

through the nondegeneracy condition otherise.

If (P(v), P(v)) =0, as occurs for example if v is arc-length, p(v) reduces to
the usual radius of curvature, P(v); otherwise it is an underestimate.

A pair (D, IP) consisting of a set D and a collection of paths IP having
the above properties (“pseudosegments”) is called quasiconvez if there exist a
neighborhood V' O D and a continuous function € : V — (IR"'\{O}) U {+o0}
satisfying:

(i) € is uniformly positive on D
(i) if z €V, P € IP such that
1P(5) = z|| < dist (z, D) + e(z), j=0,1,
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and

' angle between P(v) — z and
: (P(v), P(v)) P(v)
P(v) - : .
a)=1 T TTIBGN TBGN
if P(v) #0,
\ i—2- else

then
o IPO) =2l

velon]  A(v) a(v) <1. (1.1)

Compare Chavent [1988] pp. 4-7, where the geometrical meaning of (1.1)
is explained. In essen;:e, (1.1) demands that paths in IP connecting points in
D as near as possible to z never go too far away from z relative to their radii
of curvature.

The importance of quasiconvexity stems from the following result (Chavent
[1988] Theorem 2.9): if one can equip D with a collection IP of pseudo seg-
ments and a neighborhood V so that the above conditions hold, then the
projection from V onto D is unique, and other local minima of the distance
function occur at distances larger than dist(z, D) + ¢(z). The application
to least-squares problems consists in taking D = #(C), where ¢ : C — F
is defined on a set C in another Banach space E, and is of class C2. The
minimization of ||¢(z) — z||% over z € C yields ¢(z) = projection of z on
$(C).

In this connection we prove
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Theorem 1.1 Let Ps be the impulsive signal map defined above, and set
C =[-1,1] x (H[0,1] n B, (0; H'0,1)).
Let IT be any collection of C? paths in C satisfying
()P={¢-7r:r¢ I} is a collection of pseudosegments of #(C)

(i) For any tangent vector [6s,6u] € R x H2[0, 1], there ezists
7 € Il so that #(0) = [6s, §u]

Then (7r(C), IP) is not quasiconvez.

Proof. 1In view of ( 1.1) it is required to produce
(1) z € L¥([-1,1] x R)\¢(C) at arbitrarily small distance to #(C);

(ii) a path P € IP for which the angle between P(0) — z and P(0) is
bounded away from 7/2, and 5(0) is arbitrarily small relative to

1P(0) = z]lo.

Since any target vector is supposed to be fit by a path from IP, we select
[s;u] € C with s = 0 and u to be chosen momentarily, and the tangent

vector (1,0). Thus = € I is given by
m(v) = (v + v2s(v),u + v?r(v))

where s : [0,1] — [R] and r : [0, 1] — H§[0,1] are C2. In the sequel it will

be important to allow u to range over an H'-bounded set. Since 7(v) lies in
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the H'-bounded set C, it follows that r(v) will range over an H'-bounded
set. Thus

P(v)(z,t) = ¢s-m(v)(z,t)
u(t — (v + 1v2s(v))z) + v¥r(v;t — (v + v2s(v))z)

P)(z,t) = —(1+ 2vs((v) + u’é(u))zg—;‘(t - (v + v¥s(v))z)
+ 2ur (vt — (v + v2s(v))z) + V¥ (st — v + vis(v))z)
— 31+ 2us(v) + uzé(u)z%(u;t — (v +v2s5(v))z)

- Ou ,0%
P0)(z,t) = - (23(0))::E(t) +z W(t) + 2r(0;t) .

The arc length 7 is given by

7= ["I2lo

so that
- _ du 2
v(v) = v 5 0+O(u )
© = 5|2 + o
vp) = vl (7

Thus we can assume that v is arc-length, and = is parameterized as before,
but with r ranging over an L2-bounded set as u ranges over an H!-bounded
set.

Now set, for arbitrary g > 0
2(z,t) = $5(0, u)(z, 1) + wP(0)(z, 1)/ | B(Q)], -
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Evidently z € ¢(C) (unless u = 0, which we exclude), and

1P(©) = 2lly = .

We will eventually want the entire curve P(v) to sit inside the ball By,.(2).
We simply take a sufficiently short initial segment. It is important that the
Path length be uniform as v varies over a bounded set in H!. Ag noted above,

r then varies over a bounded set in L2, On the other hand,
1P(v) - P(0)]|, < const(v/v [lull, + 12 ||r|,)

S0 it is possible to choose a subinterval [0, v] uniformly in u (over a bounded
set in H!), so that the corresponding segment of P is contained in By, (z).
Since II is stable under restriction, the inequality in (1.1) stands or falls
independently of the restriction as well.

A lower bound on HP(O)”O follows from a trivial consequence of the equiv-

alence of norms in IR™:

Lemma 1.1 For some \ > 0, alla,b,ce R
1
/ dz|az’® + bz + c|? > A(a® + 02 + ).
-1 .
Thus

PO = /_ 11 dz / dt’—(23(0)z%(t)+zzg—:(t) +2r(0,t)’

ou, [ 6% |
2 2= —_—
> dt{(zsw)) 5| + |32 }
> A2 8_2u ’
= 7|,
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Since we supposed that the parameter v is arc-length,

|JP(0)

5(0)! = 1o
’ |20

0
2 -

0

Finally the angle a(0) = 0, since we choose z = P(0) + xP(0). Thus
N
P

cosa(0) = pl—ﬁ-
0

2y
a2

> A\ 2 .
3u

at 0

1£(0) — =]
p(0)

Many choices of u will cause this ratio to — oo, destroying quasiconvexity.

For example, choose u
u(t) = uo(t) + bu(?)
with ug € HZ[0, 1] arbitrary and
Su(t) = i—z(t) sinwt , z € Cs°(0,1) .
du 2%y
at at2 ||g
w — co. Moreover ¢5(0,u) — ¢5(0,u0) in L?}([-1,1] x R) as w — oo.

Then ||ullo and

— OQ as

, e uniformly bounded in w, but l

Suppose that ¢5(C) were quasiconvex. Since € := €(¢5(0,u0)) > 0
(recall € must be uniformly positive on D), there exists 7 > 0 so that
B, (#5(0,u0)) C V and €(z) 2> ro for z € B,y(#5(0,u0)). Thus for all
z € B,,(¢5(0,u0))\8(C), 165(0, uo) — 2|, < dist(z, #(c)) + €(z). Now choose
w so large that ||¢s(0,u0) — #5(0,u)|l; < 2. Then z € B,(¢5(0,u0)) whence
IP(0) — z||, < €(2) < dist(z,4(C)) + €(z). '

As noted above, we can assume that the entire curve P lies inside the ball

B,,(z) = B,,(z). Since €(z) > ro, it is certainly the case that P(0); P(1) lie
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inside the ball of radius dist(z, ¢(C))+€(z), so P is of the class of curve tested
in the definition (1.1). All of this is uniform in w, so we can let w — o0;
according to the preceding inqualities, at some point the inequality in (1.1)
fails, contradicting quasiconvexity. q.e.d.

This result might appear slightly disappointing; since I1D%¢s|| is not
bounded over the set C defined in the statement, one would ezpect the cur-
vature to tend to infinity along some sequence of paths. To clear up the
misapprehension that this expected behavior explains the failure of quasi-
convexity, we give the ’

Theorem 1.1’ Let the hypotheses be the same as in Theorem 1.1, ezcept
take

C =[-1,1] x By(0; H2[0,1]) .

Then the same conclusion holds.
Proof. Follows the same outline. In constructing the path u(v), make

the alternate choices
ug =0, Su(t) = w2y (t) sinwt

with x € C§°(0,1). The uniform estimates on r follow as before. q.e.d.
Since quasiconvexity is merely a sufficient condition for the uniqueness
and stability of the pro jection, it remains to determine whether the impulsive

least-squares problem has multiple local minima. In fact, it does:

Theorem 1.2 Let N be any natural number, r > 0. There ezists Ry >0,
8 > 0 so that

C =[~1,1] x (B.(0; L*[0,1]) N B, (0; HZ[0, 1)) c B,
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satisfies: for any neighborhood V' of §(C), there ezists z € V for which
[s,u] € B2 — [|8[s,u] — z]|¢

has N distinct local minima interior to C. Moreover, some pair [s;,u;], i =

1,2 of these minimizers satisfies ||[s1,u1] — [s2, us]||g > 6.

The proof is rather tedious direct construction which is relegated to an

Appendix. This construction is unilluminating except that

e the directions in which quasiconvexity fails, as in the proof of Theorem

1.1, are also good directions in which to look for multiple minima;

¢ Ry — o0 as N — oo, ie. to get more local minima we must demand

less regularity;

e distinct local minima exist even for consistent (noise-free) data.

Unfortunately, at the moment we cannot simply appeal to a converse to

Chavent’s theorem.

We turn now to the bandlimited problem, that is

bs(s,u] = f * ds(s, u]

the convolution being in ¢ only. In fact we shall consider a family of such

problems:
1 t
LB =-i(2), 0<ast.
We assume that f; € C§°(IR), supp f C IR*, and select 0 < Q, < Q4 and
p > 0 so that
AWl =p, Q< |wl <.
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Thus [, Q4] is the “passband” for f;. According to the work of Landau,
Slepian, and Pollak [ , if Qp = Q, is sufficiently large, there exists
W € L?[0,1] with |
1712 > 2
Jor o WP 2 081 W2

Since fo(w) = fl(aw), the passband for f, is [~Q¢/a,Q,/a] with the same
constant p, so we can assume that the passband for f; is sufficiently large

that such W exists. A fortiori, for 0 < @ < 1 there exists W € L?[0, 1] with

/&SMS& Wa|* > 0.8w2 .

Since f, is smooth, we can regard
¢a[3,u] = fa * ¢6[3, u]
as a C? map:
%ot [=1,1] x L?[0,1] - L*([-1,1] x R)

i.e. without introducing additional smoothness on .
A neighborhood V of D is cylindrical if V = D 4+ U, where U is a neigh-
borhood of 0 € F. Cylindrical neighborhoods are natural in the applica;tion

to least-squares problems: they represent uniform estimates of error.

Theorem 1.3 Let C = [-1,1] x Bi(0) C [-1,1] x L?[0,1]. Assume that
(8a(C),P) is quasiconvez, P = ¢ o II, and II has the “arbitrary tangents”
property stated in Theorem 1.1. Then a cylindrical neighborhood V of #a(C)
with the property stated in the definition of quasiconvezity must satisfy-

VcC ¢a(C) + BKa(O)
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where K depends only on f;. Moreover, the function e(z) in the definition
must satisfy

€(z) £ Ka, zeV.

Remark. Since the conclusion of Chavent’s theorem is that local minima
other than the projection occur at points ¢ with ||¢ — z||, > dist(z, $(C)) +
€(z), in order to exclude “spurious” local minima it is necessary to restrict
[s,u] to a set for which ||[s, u] — z||, < dist(z, #a(C)) + €(2) < 2K a.

Prbof . We construct the same path #(v) as in the proof of Theorem 1.1

(up to the choice of initial point 7(0) = u). We obtain

. afa
P(0) 5t
P(0) = 2s(0)z%§wu+z 5;;0 *u+ 2f, xr(0,-) .

We do not assume that v is arc-length this time, as we have no control over
higher derivatives of r. Instead, we compute the acceleration vector
P(0)  P(0) < P(0) _P(0) >
o, [P@l PO, o,

Using
|20, - | %

0 fa 0% fa -
< W*u $ 6t2 u>=0

we obtain for the acceleration vector

I <77 I VP ()
0 = [P0 [20)] |
afa *U +2(f°, * (0, ), af *'Uv)L?(R))} .

(23(0) l
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Exactly as before we obtain

“P(O)" ,\’"a fa
whence
1
FORE lla(0)]]
> A %‘é““”;
Fro,
_ ( 17 (0, )no)
*u“
Note that
Hi -l
'at LY(R) LY(R) F>0
e, 2 aF

Also note that since r(0,-) is restricted to a bounded set in L2, for some
G=>0
| fo * (0, Mo <

Finally,

5| 2 55 [l 2 Zhish

Choose u = aW, as before the statement of the theorem. We may clearly

I & fa

, 2Q2

also require ||W,||, = .5, say. Then

1o gaPfe _

5(0) = “"Fa (1+2g) )
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Thus 5(0) — 0 as a — 0: in fact
5(0) < Ko .

Once again setting
a(0)

lla(O)I
we see that the inequality in (1.1) can only hold if 4 = O(a). The rest of the

Za = P(0) + 4

proof goes as in the proof of Theorem 1.1. q.e.d.

One use of the quasiconvexity estimates is to specify the size of the domain
to which the model must be limited in order that only one local minimum
of the mean-square residual be present — i.e. the size of well-posedness

domains. Such an estimate follows from Theorem 1.3 via

Lemma 1.2 There ezists A > 0 so that for f € CP(R), s € [-1,1], u €
L?[0,1],

2

O v + Ilf*5uII§) -
0

ot

*u

| Dys[s, u](8s, Su]||z > A2 (532

Proof. Note that ¢s[s,u] = f * ¢s[s,u] and
Déy(s, u][6s, bu] = 3:63‘6'6?¢f(3, u) + ¢4(s,6u) .
Now apply Lemma 1.1. q.e.d.

Theorem 1.4 Suppose ¢,(C) is quasiconvez when equzpped with the set IP

of images of linear segments, i.e.

II={vm(s1(l = v)+sv,u1(l —v) +ugw):s €[-1,1], u € B(0)} .

1.14



Let V,, e, be as in the definition of quasiconvezity, and suppose that Vy is

cylindrical. Then if (si,u:),i=1,2, satisfy

|#a(8i,ui)e — zl| < dist(z, $a(C)) + (2) 1=1,2,

then . .
Ka afa - |lef, -
(32—31)ST<max 3—{;*“1 , ?f*uz )
In particular, if u; = U2 = Uq as in the proof of Theorem 1.3, then
Ko

|32—31, <2F .

Proof. Follows directly from Lemma 1.2, Theorem 1.3 and the defining
estimate for u,. g.e.d.
Remark 1.2. Since a is a wavelength scale, a crude paraphrase of this
result is: In order to ensure well-posedness with quasi-convexity, the range of
s must be restricted to an interval about the optimum s of length proportional
to a wavelength.
Remark 1.3. The estimate in Lemma 1.2 reveals that the linearization of
Pa is actually well-conditioned, uniformly of @, in the correct norms. This is

most clearly seen by examining the “passband” parts of u, du:

1 D@als, ua] (8, Su]ll3
2 c.2 AR 2 ARy MR
2 g g bRy a0
2 2 1 =12
> A%p(0.4)8s? + & /%‘Slwls%u [utw)|” .
On the other hand, a simple estimate gives

| Dals, ua)(6s, Su)]?
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< A (65 + || fux 6ull)
A? (65 + |l il sy 16ul3) -

IA

Consequently, if u,6u are restricted to a subspace of L2[0,1] consisting of

functions obeying

|6u]l, < const /91<[ dw Ig;t(w)l

wg G
with “const.” independent of «, then the condition number of the restriction
of D@, is bounded independently of . Such restriction is obviously necessary
in any case, to insure that the “stability” part of the well-posedness definition
is satisfied. Also, u, in the proof may be chosen to be a member of such
a subspace. Thus the ill-posedness evident in this nonlinear least squares
problem is strictly nonlinear in nature.

In fact, replacing f with &, one sees that Dds[s,u] is well-conditioned
as an operator £ — F as u ranges over any bounded set in H!. As is

evident from the proof of Theorem 1.2, the ill-posedness then comes from

the H'-unboundedness of D?¢;(u).
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2 The Constrained Coherency Problem

We introduce a Banach space
EC[-1,1] x H'([~1,1] x R)
of “expanded” models for the detection

ér: E = (L*([-1,1] x R))?

iven b
& d ou
fZ
s ot
¢f[5’u] @ @
oz ° 5

We first show the “equivalence” of the “coherency” problem

‘sf[s’{‘] = ( i )
0

¢f[.s,u] =z

and the problem

by exhibiting a 1-1 correspondence between their solutions. In fact, the
coherency problem is a “cover” of the problem discussed in the last séction,
in a sense which we shall make precise elsewhere.

The coherency operator is the second member of ¢ IZ

., Ou o0u
Wls, 4] := 3z TS5

Given suitable domains, ¢s and W are both C? (in fact, C*) maps. This
smoothness is independent of the regularity of f — in fact, the regularity es-
timates are uniform as f ranges over bounded sets of measures — in contrast

to the situation of ¢;.
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Thus the constrained least-squares problem
i 2
f*——2z

Ou

sub W(s, @] =0
0

min
[""-‘]

involves only smooth maps and has the “same” solutions as the output-least-
squares problem. Since the two problems are thus equivalent, this constrained
coherency problem must inherit the pathology of output least-squares, in
some form. In fact we show that for smooth g, the level sets W=1(g) are not
submanifolds of E. W=1(g) fails to be a submanifold for many non-smooth
g € L*([-1,1]xIR) as well; we conjecture that W=1(g) is never a submanifold
of E. If true, this conjecture would be an interesting counterpart to Sard’s
theorem.

In any case, the feasible set W=1(0) is not a submanifold of £. Immediate

consequences are:

(i) The implicit function theorem does not imply stability of the so-
lutions of the constrained coherency problem with respect to data

perturbations;

(ii) The method of Lagrange multipliers, upon which are based most
modern, efficient constrained optimization algorithms, is unavail-

able.

The first task is to define E precisely. A simple choice is

E=Rx{ue H([-1,1] x [-1,3]) s u(z,~1) =0,
-1<z<1 and u(0,2)=0,-1<t<0}.
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We equip £ with the norm s, u|lz := llull;, so that £ is a Banach space. It
is easy to verify that é 1, defined as above, yields a (? map

-~ -~ -~

6r:C = F=L%[-1,1] x [-1,3] )?

where € = {s,ule E:-1<s< 1}.

Remark 2.1. F = L*([-1,1] x [-1,3]) could as well have been taken for
the data space of the output-least-squares problem, without changing any of
the conclusions of §1. |

For technical convenience, assume that supp f C [0,1] as well. Then

Supp ¢ls,u] C {(z,t): —sz <t <2-— sz} C [0,1] x [-1,3].
Theorem 2.1

(1) Suppose thatu € E, s ¢ (-1,1] and z = ¢¢[s,u). Then there
ezists at least one [s, 4] € C for which bsls,ii] = (2,0)T. Moreover,

if f* is injective on E, then @ is unique.

(ii) Conversely, suppose that [s,a] € C, cz;f[s,ﬁ] = (2,0), z €
Range ¢4(s,-]. Then z = B1(s,u), where u is given by

1 Jda, -
u(t) = 5/_1 dz(t + s2).
Proof.
(i) Take for @ the function defined by
¢ /
a(z,t) = /o. dt'¢s(s, u](z, t') .
It is easily verified that (s,4) € € and §;[s, d] = (z,0)7.
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(ii) In particular, W[s, %] = 0, which implies that
u(z,t) =u4(0,t —sz) p.p.
and that the trace 4(0,t) € H'[-1,3]. Note that
' 1 1 da du
u(t) = 5/_1 dzﬁ-(t +8z) = g(o,t)

and that (¢y[s, u],0) = /s, @].

Thus ¢/(s,u) = z. Since z € Range ¢4[s, -], it follows that z(z,t) = 0
for t < —sr and t > 2 — sz. Now extend u by zero outside of [-1,3]. By
assumption z(0,t) = f * w(t) for some w € L?[0,1]. Now u,w, and f have
compact support, which implies that u = w, p.p.,i.e. u =0 p.p. for t < 0,
t> 1. q.e.d.

Theorem 2.2 Suppose that g € H3([—1,1] x [0,3]). Then W~1(g) is not a
submanifold of E.

Proof. We claim that W~1(g) is parameterized by s € [—1,1] and by
vo € H'(—00,3], vo(t) =0 if t < 0. Then [s,V[s,vo]] € W-(g), where

Vs, vo](z,t) = v(z,t) = vo(t — sz) + /:: dz'g(t — s(z - 2'),2) .
Indeed since g € H?, the preceding formula evidently defines a member v
of H'( [-1,1] x [-1,3] ), solving W[s,v] = g, v = 0 on {t = —1} and
v(0,t) =0, —1 <t < 0. Thus for each s € [—1,1], vg € H'(—00, 3], supp
vo C [0,3],V[s,vo] € W~1(g). Conversely, if v € W~1(g), the hyperbolicity

0 d\a 7]
&%

of the equation
3z " “5t) 5t ot
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implies (via the simplest energy estimate) that
Ov Ov
5(07 ‘) e Lfoc ) supp a C [0’ 3] ?

so that the trace v(0,-) is actually in H'. It follows easily that v = Vs, vo)
with v = v(0, ).
Next we attempt to construct a curve in W=1(g) with prescribed tangent

vector (6s,6v) at (s,v). Necessarily (6s,6v) € ker DW (s,v), i.e.

v 7] 7]
5354-(5;-!-55)50:0.

As before we conclude that
dv(z,t) = 6bo(t — sz) —§s /z dx'~a—v(t -s(z-2"),z7').
’ 0 ot ’
We claim that
(s(v),v(v)) = (s + vés, V(s + vés, vo + véuy))

will do the trick, provided that in addition to other requirements, v, €

Hfo o dvo € Hfoc‘ We also claim that these requirements are necessary if

6s # 0. Indeed $(0) = §s, while formally

6(0)(::, t) = 6vo(t — sz) — zésvy(t — sx)
- /: dz'és(z — z')%(t —-s(z-12'),z).

Using v = Vs, vo] and the expression for §v, we find indeed that 9(0) = év.
To show that in fact ‘
lv + vév — v(v)||, = 0(v)
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turns out to require one extra degree of smoothness for both vy and §vy. We
leave the details to the reader.

Next we claim that if vy € Hlloc\Hl?oc’ supported as before, and v =
Vs, vo], then there are no curves through (s,v) in W=1(g) tangent to any
vector of the form (s, *) with s # 0. In fact, this is already clear from the
above expression for ¥(0): while correctly defining a solution of the p.d.e. for
elements of ker DW (s, v], it gives a member of Hj _onlyifu € H, ¢ unless
és = 0. _

Thus if v = Vs, vo],v0 € H| \H{ _, then any C' curves in W~(g)
through (s,v) can have tangent only of the form (0,6v). Fix such v, and
construct a sequence vg € Hj
H'[-1,3]. Evidently V(s,v§] = v* = v in H'([~1,1] x [-1,3]) (note: fixed

s!). Pick és # 0, and construct C* curves (s(v), v{(v)) tangent to (§s,0) at

(=00, 3], supp v§ C [0,3], v§ — vo as € — 0 in

(s,v¢), as before.

Now suppose W=!(g) were a submanifold. Then T(,,)W~*(g) consists
only of vectors of the form (0, u). Thus dist[((0), 9{(0)), T(s,) W (g)] = 6s
independently of ¢, which would be impossible if W~!(g) were a submanifold,

according to the following lemma:

Lemma 2.1 Suppose that X is a C! manifold modeled on a Banach space E,
U C X a coordinate neighborhood, TX|, = U X E a coordinate trivialization,
aﬁd M C U a C'-submanifold. Let z. — z in M, £, — £ € E so that
(ze,é) € T: .M C T. X. Then there ezist n. € E so that

(i) (:::, 1) € T-M
(ii) |lée = nellg — 0, i.e. dist[(ze, &), T=M] — 0.
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Proof. M C U is a C' submanifold if and only if there exist closed
subspaces E\,E, CE, E = E, @ £z and C? diffeomorphism & : U — E so
that ®(U) is a neighborhood of the origin, and

M =%"'({0}® E;)n U

Thus T M = D®(z)'{{0} ® E,}, and there exist e € E; so that ¢, =
Do(z.)-1(0,¢.).
Set ne = D®(z)~1(0, ¢, ). Since @ is C!, D®(z.)"! — D®(z)"? uniformly,

and D®(z) is an isomorphism, so

e = D& Mz)Dd(z,)e,
= D®(z)"'D®(z.)(¢ - €)
+ (D®(2)"'D&(z.) - )¢ + ¢
o ¢ qed.

Since v{(0) = 0, 5(0) = 8s for all ¢, we can replace {, = ( — (6s,0),
Ze = (s,v%), = — (s,v). No lower bound like the one stated before the
lemma would be possible if W=1(g) were a submanifold of £ — so it isn’t.
q.e.d.

Remark 2.2. The feasible sets of smooth constrained bptimization become
submanifods because of the so-called constraint qualification. See e.g. Luen-
berger [1973). This condition, involving the Lagrange multipliers, has as its
sole function in the theory to ensure that the feasible set and jts perturba-
tions are a submanifold — though this point is generally unmentioned in the

literature on such things. We have shown elsewhere that the constraint qual-
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ification fails even for fixed s, in the detection problem (Symes [1988]). It is
amusing, and a little deeper, that W=1(g) actually fails to be a submanifold.

Remark 2.3. Since W~1(g) fails to be a submanifold on such a fat, dense
subspace of L?, it is natural to ask whether W~=1(g) is ever a submanifold. It
is rather easy to construct g € Range W for which only vectors of the form
(0, *) are tangent, but our examples so far always have accumulation points
along the s-direction, so are not submanifolds. Conceivably for suitable g,

there exists an isolated s for which

has H' solutions. Then W~!(g) would simply be the affine space of such
solutions, parameterized by boundary values, hence a local submanifold.
Whether this can occur seems to be rather delicate, and we have been un-
able to resolve the point. It concerns the stability of the range for first order
hyperbolic p.d.e.s acting on Sobolev spaces. A definite “no” would provide
a nice counterpart to Sard’s theorem, i.e. a nontrivial example of a smooth
map with no regular points.

Remark 2.4. It is easy to produce examples in the spirit of Section 1,
of a dense set of points in W~1(0) and sequences of directions in which the
curvature of W=1(0) increase without bound. Thus W-1(0) has a “quasi-
cusp” at a dense set of points — showing once again that the pathological

- features of W=1(0) are truly “infinite dimensional™!
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3 The Penalized Form of the Coherency
Problem

Note: In this section we will work with the impulsive case (f = 4) only.

Since the coherency reformulation of the detection problem cannot be
treated as a constrained problem, one might try a least-squares approach
instead; that is, introduce a norm in the augmented data space F', and min
imize |

J[s, ;3] = "435[3,12] - E”; .
At the very least, for conéistent data 2 = (2,0)7, and z ¢ Range(¢s), then
J=0isa global minimum value, which is achieved at the model indicated
in Theorem 2.1. That is, for consistent data, the coherency least-squares
problem has the “same” solution as the original problem.

It remains to verify that, for some choice of norm in F, neighborhood of
a model corresponding to consistent data, and data noise level, the reformu-
lated problem is well-posed. Our principal tool will be the following simple

consequence of Chavent’s theory.

Theorem 3.1 Suppose that E is a Banach Space, F a Hilbert space, and
C C E a closed convez set. Let $:C — F be a C? map, and set

inf (”¢ (z)Jx”F')
sz€E\{0} léz|| 5

sup "45'(3)”5',;'
z€C

L(z) =

M

S

sup |¢"(z)l| g & £
z€C
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2V2M
L(z)

L(z)
S

k(z) =

a(z) =
Suppose that zo € C, z € F and

lI¢(z0) = zllg < (o) := L(zo)a(zo)p™(1 - p°) ~

where p* = p*(k(xo)) is the solution of

K2
(1-p)?- gp’(l -p)"?=p(1-p)

with 0 < p < 1/2. Then

(i) for R = p~a(zo), the least squares problem

ll#(z) - =|7

::GBR(:o)nC

has a unique global minimizer z°(z), which lies interior to Bg(zo).

All other local minimizers have residuals > €(zo).
(it) for z,,z2 € BR(zo)(%0),

“Il 32“5 -_— L( ) “¢($1) ¢($2)"

{111) fOT‘ Z,22 € ¢(BR(:°)(30))+Bc(zo)(0): setd = 6(30)-52?'§di5t(zia ¢(BR(:.'°)))’
If |21 — 25| < d, then »

2 To
I*(20) = =" (el < Tpeklls =l
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Remark 3.1. That is, coercivity at a point of the derivative of aC?
map implies local well-posedness of the corresponding nonlinear least-squares
problem for near-consistent data. We will derive this conclusion from Chavent’s
quasiconvexity estimates. While the basic qualitative conclusion follows im-
mediately from the implicit function theorem, Chavent’s estimates seem to
yield quantitatively correct results as well, which will be useful-in the sequel.

| The various constants depend on the lower bound for the derivative, the
ratio of this lower bound to an upper bound for the second derivative (mea-
suring nonlinearity) and the condition number of the derivative (essentially
measuring linear well-posedness). As S — 0 and @ becomes linear, the sta-
bility estimates (ii) and (iii) reduce to well-known absolute stability results
for linear least-squares (Golub and Van Loan, 1983).

Proof. For R > 0, set IIr = {linear segments in Br(zo) N C},IPg =
#(IIg). For z € Br(zo)NC,éz € E,

l¢'(z)6z|| = #'(z0)éz + /01 dve”((1 = v)zo + vz)(6z,z — z4)
2 Llléz|lg - S||ézllg llz — zo]| 5
2 (L-SR)|éz|| ,

F

i.e. for R < é, ¢'(z) is uniformly coercive over Br(zo) (here L = L(z,)).

Accordingly, for 7 € Ilg,
T(v) =z + véz, l6z]lz < 2R
we get (P =gor)

|20, = 18+ vs2) - 2l
(L= SB) |ésll

v
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while

§(P)

[ av|ew)], < Mg,
< 2FR.

For the acceleration vector a(v),

p P(v - P(v)
(V),—.——
Tl < |IP<v>||p>p

< |Bw)|, < sl -

lallr =

For the radius of curvature g(v) we obtain

L _ el oS
o) e, T (- SRy

whence a lower estimate for the size-curvature ratio v(P) is

6(P)?
7(P) 2 inf p(v) = =7
ve(0,1] 8 u[})fll p(v)
(L- SR> _SMR?
>
2 T35 “xz-srp -

On the other hand,

#(z) — d(z0) = /: dvd'((1 — v)zo + vz)(z — 20)
= $o)e—20)+ [ du [ dvd'((1 - )z

+u((1 = v)zo + vz))(z — Z0, T — Zo)

SO

16(z) = $(zo)llp 2 Lz = zollg = S llz = zoll%; -
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If |z — 2oz = R, then

16(=) = é(z0)llz > (L - SR)R.

The function of R on the r.h.s. attains its maximum at R = L/2S
If0<p<1/2and

Iz = zoll = pa then |l¢(c) - #(zo)ll 2 p(1 - p)La .

Accordingly, if R < pa and

16(20) ~ 2Il < p(1 - p) Lax
then necessarily

2'(s)= srgmin [lg(2) = 2|
z€BR(zo)

if it exists, lies in the interior of Bg(zy).

Insert the expression for R into the estimate for v to get

2,2

7(P) > [(1 -p)? - pr(l - p)"’] La

for any P € IP. It is elementary to see that the equation
x2p? _
(1=p") = (=) = p(1 - p)
has a unique root p*(x) in |

& — oo; in fact p* = 0(1/x).

=1/2a.

0,1/2] for H > 1, with P" — 0 monotonically as

The conclusions now follow immediately from Chavent, Corollary 4.19.

We will apply this result to the family of least-squares problems
- 2
min ”¢8,a[‘91 ﬁ] - z"ﬁ
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where

P50 8,&] = ¢
sel ( oW/s, 1] )

and F = F@ F. So the objective function is
ou

— -z

ot

2
+o* |W(s, al||%
F

and our problem has the appearance of a penalized least-squares problem.
We shall show how a proper choice of the penalty parameter o emerges from
Chavent’s theory.

The maps @5, are defined on the closed, convex subset C of the closed
subspace

EcReH-1,1] x [-1,3))

as in the preceding section. We shall define a o-dependent family of norms
on E. Before doing so, we present the crux of the proof that the .derivative

5, is coercive, at least sometimes.

Theorem 3.2 Suppose (so, 1) € C and W (so, o] = 0. For a constant K,
independent of (so, o), any (8s,6%) € E

2

0éu

ot

2
|6s]* < Ko (
0

+ ||[DW [so, ﬁo][as,aa]ug) :

0
Proof. Set D = DW/|sq, @o][6s, 64]. Thus

oéu o6 Odtug
5z toogr =D—-bs75-.

For (z,,t) € [-1,1] x [-1, 3], and z; satisfying
—1 =1t + 5071 < 5022 < 3 —t1 + 5071
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integrate both sides along the line segment

T € [a:l,a:z] — (z,t; + so(z — 1))

to get
5‘&(.‘52, t1 + So(zg it 31)) - 6‘&(31, tl) =
z a"
/ ’ dzD(z,t, + so(z — z,)) + 8s(zy — a:l)—aut—o(zl, t)
£

where we have made use of W(so, o] = 0. Thus

2

IN

4[/=, dz (D(z1t, + so(z — 7,))? +/ dt [85J (21, 1)

t1+3s0(z2—z,)
+/ dt | 24 (xz, z)J
1

where we have used the boundary condition du(z,—1) = 0

Now integrate both sides in Ty, Zg,

86

—-L,<z < 1.
and ¢, and do a little algebra to get
0éu

<K
()

Theorem 3.3 Define the norm I g, on E by

1652 auo

+ ”D”o)

for a suitable K, > 0. q.e.d.

S 4 | o ., |oa|?
s, 2lllg,, = T +ﬁ s|* + 3 :
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Appendix. Proof of Theorem 1.2

We will establish:

There ezist consistent data z = P[0, uo] with l{s0,uo]llz, < 1 and

6 > 0 for which the problem

[,%g};’ lé(z) — Z”F

has (local) solutions satisfying [s] < 1, lullgrpn) < 1, |s — so| +

lu —uol| > 6

Thus restricting the H2-size of the solution does not restore well-posedness
to the best-fit version of the detection problem, even for noise-free data!
Set z(€,t) = uo(t) = ax(t)sinwt with w and a to be determined, and
x € C§°(0,1) fixed. Then
z = ¢[0,u) .

For v € L?[0,1], s € [-1,1],

(z,8[s,u]) = a_/:_l1 d{/dt u(t — s€)x(t) sin we

= a/_l1 d{/dt u(t)x(t + s€)(sinwt coswsé + cos wit sinws¢)

sinws

/dt u(t)x(t) sinwt | -

= 2a
ws

+ ‘/-11 d¢ / dt u(t)(x(t + s€) — x(t))[sinwt cos wsx + w cos wt sin ws¢] .
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There is a uniform estimate for derivatives of X of order < 2:
x®t +56) = xB(1)] < )l

for s € [-1,1, £ € [-1,1],t € R and k < 2. Accordingly an integration-

by-parts argument shows that the second term is bounded in absolute value

by
au'2C[3] ”u"m[o,ll .
Thus
, sinws -
(z,0[s,ul)r =2 ws (U,UO>L7[0,1] + O(w 2‘1'5[ ”u”m[o.u) .
So

llgls, ulllz + llzI% — 2(g(s, u, z)F

I6ls, ] = =|I7

sinws
2 [l + alagey — 2225

(U, uo)L?[o,n]

v

— Cw™als ”"”m[o.u

s [(1 - ) (”Ulliz[o,u + ""0"22[0,1])]

— Cw™als| ||uflgragoy

sinws

v

ws

Integration-by-parts shows that there exist Cy,Cz > 0 so that

C. Cs
a? (Cl + :2.) > ”1‘0"12[0,1] > a? (C; - U) .
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The hypotheses of the statement to be proved allow us to require that

[/l grago,1) < 1. Thus for 5 = Z we get

#6540 = =l 2 20* (G~ 22) — Caru
2 0201(2 - 6)
provided that _
A 5 i}
Cre> £2" + —
w aw

Now |[uo|l grao,y) < 1/2, provided |w| > 1 and aw? < K for suitable X > 0.

Thus we take a = Kw~? so that the above condition becomes
Cie > (2C; + Cr K Hw™!

and is satisfied for any choice of ¢ > 0 as soon as w is large enough.

Now consider the special choice u; = aug. Then

sin ws

I9ls, 0] = 2l €2 [1 + 02 ~ 2222 g2y + el ol ey -

ws

Choose s; = Z; then the above is

da -
lgls1,u1] — 2] < 2 [1 +a® - g;] "1‘0”2:[0,1] + 3Caarw™? HUO,lm[o,;]

< 2a? [1 +a? - :—:—] (6’1 + %) +3aCarw™3 .
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Choose a = £; we get

_ 2 4 C, 6C
= 2a [ - (57‘_)2] (Cx + U) + = 3
4 4 C 6 C
= a’Cy|2(1— - LI
a’Cy [ <l (57:')2) +2 (1 511'2) Ciw + 501Kw}

for w large enough.
Now choose € = (57)2. Then we have shown that, for w sufficiently

large
(i) for any u with lull oy <1, §=Z:

(3, u] = 2|l z = a®C1(2 = ¢)

lI8s1, 1] = zl| p < a®C1(2 - 2¢) .

Since any continuous path from [s, u1] to [0, uo] must pass over the set {[s, u) :

s = I, we have shown that the set

{ls,u] : ll6ls, u] - 2]l ¢ < aC1(2 — 3/2€), |lull 4, < 1}
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is not connected; in particular the component containing [sy,u,] is disjoint
from the component containing [0, uo]. The connected component of [0, uo)

is contained in

T
= . < —--
Co {[s,u] ls] < " 6, ”“”H’[o.u < 1}

for a suitable choice of § > 0, and the connected component of [s1,u] is

contained in
C, = {[s,u] : ;—;—+ §<s<1, “u“m[o.ll < 1}

which follows from the uniform continuity of ¢ on [-1,1] x H[0, 1] and
the compactness of the injection H? — H!. The sets Co and C; are closed.
bounded, and convex in E,, hence weakly closed, whence follows the existence
of a local minimizer in each. Clearly [0, uo] is 2 minimizer over all of E,. Since
@ < 1, it is also the case that [sy,u,] is interior to C;. Thus [s, u4] is also a
local minimizer in E,. In particular, we have established the existence of a
local minimum distinct from [0, uq], as required. q.e.d.

It is easy to extend this reasoning to generate examples with any number
of local minima whatsoever. Thus even the restriction of ¢ to a ball in E,
does not suffice to render the output least-squares problem well-posed i;n. the

nonlinear sense.
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