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1. Introduction and Preliminaries

1f F:R" - Rm, then Fi will denote tﬁe i-th component function.
F'(x) will denote the Jacobian matrix of F at x and VF(x) denotes
F'(x)T (transpose). In the case that m=1, we see that VF(x) will be
the gradient of F at x and sz(x) (which with this notation can also
be written V(VF(x)) ) will denote the Hessian of F at x . We will
have occasion to consider F as a function of two vector variables, say
F(x,)\). We use the subscript x or )\ to denote the partial derivative
with respect to x or \. No subscripts, e.g., VF(x,)\) denotes differ-
entiation with respect to the total variable (x,}). Finally we use the
notation F<ECk(Rn) to mean that F and the partial derivatives of F
up to and including order k are continuous. Our presentation of the
basic theory will follow Chapter 2 of Fiacco and McCormick (1968).

By the general nonlinear programming problem we mean the constrained

optimization problem

(1.1) minimize £(x)
subject to hi(x)=0, i=1l,...,pP

gi(x)ZO, i=1,...,m

where £, -3 hi are all defined from R® into R1 . We will also refer
to problem (1.1) as problem (NLP). When each f, hi’ 8> ECk(Rn) we will

say problem (NLP) GCk . In the case that f, hi and g; are each linear,

i.e., of the form aTx+ b, we say that problem (NLP) is a linear program .

When hi and g; are linear and £ is quadratic, i.e., f(x) =a+ bTx+ %xTQx,
where Q is a symmetric nxn matrix, we say that problem (NLP) is a

quadratic program.



Associated with problem (NLP) is the Lagrangian function

m
(1.2) 208, = £ - D uig ) + D Ak (0
i=1 i=1
Observe that 4:R P R . Suppose x satisfies the constraints of
problem (NLP) . Let
(1.3) B(x)={i:gi(x)=0} .

The equality constraints hi and the inequality constraints 8; with

i €B(x) are said to be binding or active at x .

The following section will be devoted to the well-known necessity
and sufficiency conditions for problem (NLP) . We leave this intro-
ductory section by establishing a basic result which will play an im-

portant role in the following section.

Lemma (Farkas)

Consider ay» al,...,aqERn. Then the following two statements are

equivalent:
. n T . . . T
i) For all zé€R zaiZO, i=1,...,q implies that za0=0 .
qﬂ
ii) There exist t.>0 such that a =2t.a. .
i= 0 ii
i=1

Proof. There are several proofs of this lemma in the literature. We will
present a proof which is a direct consequence of the duality theorem in
linear programming. For other proofs see Mangasarian (1969). Consider

the primal linear program

(1.4) minimize agz

subject to ATzz 0



and its dual formulation
(1.5) maximize OTy

subject to Ays= a,
y>0

where A 1is the nxq matrix which has P ERRE ,a.q as its columns. Now
(i) says that z=0 solves the primal problem. This means that the dual
problem must have a feasible point which in turn establishes (ii). The

lemma has been established since clearly (ii) implies (i) . =



2. Necessity and Sufficiency Conditions for Problem (NLP).

Suppose that problem (NLP) GCl and x satisfies the constraints

of problem (NLP). Let

G.1) Z () = (z €R™:2'vg, (x) 20, i€B(x), z vh (x) =0
i=l,...,p and vaf(x) >0}
and
(2.2) Z,(x) = (z €R™:2'Vg, (x) >0, 1€B(x), z vh, (x) =0,
i=1,...,p and z VE(x)<O0)} .
Proposition2.l. Suppose x* satisfies the constraints of problem (NLP).

Then the following two statements are equivalent:
i) z, (x*) =0

ii) There exists u*€R"™ and A*€RP such that

2.3a) VLU 0%) =0

(2.3b) g, (x*) >0, i=1,... m

(2.3¢) h,(x) =0, i=1,...,p

(2.3d) u*i‘gi<x*) =0, i=1,...,m

(2.3e) uzz o , i=1,...,m.

Proof. We first show (ii)= (i) . Suppose z Ezz(x*). Then, since

v A (x*,u* % ) =0 we have

m 2
2.4) 0>z V£ (x*) =zu’zzTVgi(x*) z z m (x™)
i=1 i=1~ 4

But this is a contradiction because each term on the right-hand side of (2.4)

is zero. Observe that by (2.3d) u"'{=0 if i€B®E*) .



Let us now establish that (i) = (ii). Suppose that Zz(x*) =0.
This means that whenever 2z is such that vagi(x*) >0, i € B(x™),
2Tvh, (x*) > 0, 2 (-vh (x*)) 20, i=1,...,p it follows that
zTVf(x*) > 0. By the Farkas lemma there exist monnegative scalars ti’
i€BE*), ¢!, t', i=1,...,p such that

i? i

P
(2.5) VE(x*) = Zti Vgi(x*) + Z(tiwi(x*) -t vni<x*))
1€B (x*) i=1

In (2.5) let u’;f_ =t i €B(x*) and u’i" =0 for i¢B(x*). Also let

*

A = -(ti- tg), i=1,...,p . It now follows that (2.5) can be re-

written as sz(x*,u*,x*) = 0 . This proves the proposition. ]

We will refer to conditions(2.3) as the first order conditions.

At this point it would be very satisfying if we could say that a necessary
condition for x* to solve problem (NLP) is that zz(x*) = @ . This
would in turn give the first order conditions (2.3 ) as necessary con-
ditions. Unfortunately, this statement requires a rather messy qualifier
called the constraint qualification. There are numerous constraint quali-
fications in the literature. The one we present below is one of the most
general; others can be found in Mangasarian (1969). We did spend consider-
able time and effort trying to come up with a constraint qualification
which would be less messy, but adequate for the purposes of these rules.
However, each attempt led to a theory which was less satisfying. 1In the
study of numerical methods it is appropriate to work with the notion of
regularity. Regularity implies our constraint qualification and will be

discussed in detail at the end of the present section.

Definition 2.L (Comstraint qualification). Suppose that x* is a feasible
point (satisfies the constraints) of problem (NLP). We say that x*

satisfies the weak constraint qualification for problem (NLP) if problem




(NLP) ECl and if for each nonzero z€R" satisfying
T, * . %

(2.6a) z Vgi(x ) >0, i € B(x™)

(2.6b) zTVhi(x*) =0, i=1,...,p

there exists a T>0 and a continuously differentiable arc A:[0,7]-R"

satisfying

(2.7a) A(0) = x*

(2.7b) A'(0)= z

(2.7¢) g, (A(t)) >0, t€l0,m), i=1,...,m
(2.7d) h;(A(t)) =0, t€[0,m), i=1,...,p.

Furthermore, we say that the strong constraint qualification for problem

(NLP) holds at x* if the weak constraint qualification holds at x*
and in addition problem (NLP) GCZ, the arc Aecz[o,vr) and for those
i's 1in (2,6a) where equality holds, equality also holds in (2.7¢)

Theorem 2.1. (First Order Necessary Conditions). If x* satisfies the

weak constraint qualification for problem (NLP), then a necessary condi-
tion for x* to be a local solution of problem (NLP) is that Zz(x*) =0,

or equivalently, that the first order conditians hold.

Proof. Suppose that x* is a local solution and zez2 (x*). Clearly
z#0 so by the weak constraint qualification we have a feasible arc A

defined on [0,7T). For t >0 and small £(A(t)) - £(A(0)) >0 so that

E(AR)) - £(AC0))
t

Z 0 .

This implies that £'(A(0))A'(0) = z'VE(x*) > 0 which is a contradiction.

Theorem 2.2. (First Order and Second Order Necessary Conditions). If

x* satisfies the strong constraint qualification for problem (NLP), then,



necessary conditions for x*

to be a local solution of problem (NLP)
are:

There exist u*¢cR™ and A*€RP satisfying

(2.8a) vxz(x*,u*,x*) =0

(2.8b) gi(x*) >0, i=1,...,m

(2.8¢) hy(x*) =0, i=1,...,p

(2.84d) ujgi(x*) =0, i=1,...,m
u? >0, i=1,...,m

and

2.9) zTViz(x*,u*, *)z >0

whenever

(2.10a) 2 g, (x*) =0, 1€B(x*)

(2.10b) zTVhi(x*) 0, i=1,...,p.

Proof. Conditions (2.8 ) are merely a restatement of Theorem 2.1. We now
restrict our attention to the second order necessary condition (2.9 ) .
Let A be the arc guaranteed by the strong constraint qualification and

let
(2.11) 3(t) = L(ALt),u*,2%)  telo,m
where ¢ 1is given in (1.2). From the fact that x* is a local solution of
problem (NLP) and the strong constraint qualification it follows that t=0
is a minimizer of & . Also
(2.12) 81 (t) = V_4(ACE),u,A)A (D)

+ x +

so §'(0) = 0. It follows that @:(0) > 0.
h
But
T 2
(2.13) §1(0) = z V£ (x*,u*,\")z+ 7 £(x*,u*, \)AY (0).
The theorem now follows since the second term on the right-hand side of

(2.19 is zero. n



Theorem 2.3. (Sufficiency Conditions). Suppose problem (NLP) €C2
Then sufficient conditions that x* be an isolated (unique locally)

local solution of problem (NLP) are:

There exist u""‘GRm and )\*GRP satisfying

(2.14a) sz(x*,u*,)\*) =0

(2.14b) g, (x) 20, i=1,...,m
(2.14c) h,(x) =0, 1=1,...,p
(2.144) u"i'gi(x*) =0, i=1,...,m
(2.14e) Wi =0, i=1,...,m

n . .
and for every nonzero z€R  satisfying

(2.15a) z'vg, (x*) =0, 1€D* = (i:u} >0)
(2.15b) z'vg, (x*) >0, ieB(x*) - D¥
(2.15¢) 2'Vh, (x*) =0, i=1,...,p

we have that

(2.16) 274 (x* 0%, 0%z > 0 .

Proof. Suppose x* satisfies the above conditions and it is not a local

solution of problem (NLP). Then there exists {yk} such that

(2.17a) yk #x*
(2.17b) g& o x*
k . .
(2.17¢) y is feasible
k %*
(2.17d) £(y") < £(x7)

3 <y k k k
Let 6k = HY - x’*il and sk= (y - X*)/“y _x*”’ so that y =X*+ éksk-

Notice that 0<38, —0 and Hskll=l . Let (0,8) be an accumulation point



of the sequence {(ék,sk)} . Without any loss of generality we may assume
that (ék,sk)—- (0,s) . We will now show that z=s satisfies conditions

. k_ -
(2.15a)-(2.15¢). Now recalling that y =x*+ éksk we have that

(2.18) g, (x* + 8,8 - g, (x") 20, 1€BEY
* - ¥ = i =

(2.19) hi(x + gksk) hi(x) 0, i=1l,...,p
% - *

(2.20) £(x* + 48 - £(x) <0 .

Dividing (2.18), (2.19) and (2.20) by 8, and letting k—o we obtain

(2.21) sTvg, (x*) 20, 1i€B(Y
(2.22) SToh, (x*) =0, 1i=1,...,p
(2.23) TUE(x*) < 0

Now, from (2.14a)and (2.21) we have
P

(2.24) 0> 5VEEY) = Z uiE v, (%) - Z)Cfc'TVhi@*)
iep* i=1

Equation ( 2.22) shows that the last sum in (2.24) is zero. From (2.1l4c)

and (2.21) it follows that (2.24) leads to a contradiction if we have

strict inequality in (2.215 for any i €D*. 1t therefore follows that

for i€D* we must have sTVgi(x*) = 0. We have established that s

satisfies (2.15a) - (2.15¢c). Since yk = x* + 6ka we can use Taylor's

theorem to expand about the point xk, i.e.,

2
8
k. _ * T * __1_(_ T 2 *
(2.25) 0 <gi(y) = g (x*) + 8,5V, (x") + 5 5, 8, (x* +0,8,8, )8,
62
) K _ * T o Tk 2.2 %
(2.26) 0=hy(y) =h,(x) + 88, Vh, (x) + 5~ s, v'h (x" + By 8151 S5
22
Ky epdy _a Tk . %k T2 %
(2.27) 0> f(y) f(x") = Gkskvf(x ) + 5 SV £f(x" + eoéksk)sk .

Multiplying (2.25) by -u:, (2.26) by )\: and then adding and summing on

i leads to
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2
(2.28) o>asTvz( *)+6—k Iy
: 2 Oy SpVeh(xT,um, 7 SKASy

where

m P
- * - * % N %2

(2.29) A sz(x + 6,8,D,) Zuivzgi(x +6,8,5) + inv hy (x+ p;8,8,)

i=1 i=1

Observe that the first term on the right-hand side of (2.28 is equal to

zero. Divide (2.28) by 612< and let k- to obtain

(2.30) 0> ETviz(x*,u*,x*)'S' .

@ |

But (2.30) contradicts (2.16) since we have already established that

satisfies (2.15a) - (2.15c). |

Definition 2.2. (Reghlarity). Suppose that problem (NLP) ecl . Then the

feasible point xERn is said to be a regular point of problem (NLP) if

(2.31) (%) (x), ..., VR (x),98;(x), 1€B(x))

is a linearly independent set.
~Many of our numerical algorithms require regularity. It is indeed

fortunate then that regularity implies our constraint qualification.

Theorem 2.3 (Regularity). Let x be a regular and feasible point of
problem (NLP). 1If problem. (NLP) GC]', then x satisfies the weak constraint
qualification. If, in addition, problem (NLP) GCZ, then x also satisfies

the strong constraint qualification.
Proof. Let nonzero zGRn be such that

(2.32a) z'vg,(x) > 0, 1€B(x)

]
o
-

(2.32b) zTVhi(x) i=1,...,p .

Now, if there are no equality constraints and zTVgi(x) >0V ieB(x),

then clearly



A(t) =x + tz
ig feasible for t small and positive. So, let us consider

(2.33) G(x) = [gil(X),--.,g]-L (X),hl(X),--.,hP(X)]
S

where ({i,,...,i.} = (1 EB(x):zTVgi(x) =0} .

We have

(2.34) VG(x) = [Vgi sere3By (x) ,Vhl(x) oo ,Vhp(x)]
1 s
and VG(x) is an n by (s+p) matrix where (s+p) <n . By regularity
VG(x) has linearly independent columns, so we may consider
+
B

[vG(x) = VG(x) [VG(x)TVG(x)]"1 .

Then

(2.35) {1 - [VG(x)T]+VG(x)T]z =z
since VG(x)Tz = 0. Consider the initial wvalue problem

(2.36a) A'(t) = [T~ VG(A(t))[VG(A(t))]-lvG(A(t))T]z

(2.36b) A(0)

X .

From ordinary differential equation theory, the IVP (2.36) has a solution
A(t) on [0,T) for some T >0 . Moreover, from (2.36a) A'(0) = z,

and AEC1 if problem (NL‘E’)GC1

and A€C2 if problem (NLP) €C2 . We
will have established the theorem as soon as we show that A(t) is
feasible on a small interval.

For i¢B(x) we see that gi(A(t)) > 0 for small positive ¢t .
Also, for i€ B(x) such that zTVgi(x) >0 we will have gi(A(t)) >0

for small positive t . We need only look at the constraints included in

G defined by (2.23. For the sake of simplicity denote G= [Gl""
From Taylor's theorem for t<T and k=1,...,s+p

T 1
(2.37) G (A(E)) = G (A(0)) + VG, (A(8,))A'(8), 0<g <t .

’GO-I-P].

11



From (2.36a) we see that
(2.38) VG(A(8,))TA'(6,) =0 for any 0 < <t.
It follows from (2.37) and (2.38) that

(2.39) Gk(A(t)) =0, k=1,...,s4p and 0 <t <T.

It is exactly (2.39 that says the strong constraint qualification holds.

12



3. Quasi-Newton Methods and the Fundamental Extended Problem. By a

I . . : " n
quasi-Newton method for approximating a stationary point x* of f:R =R

(i.e., VE(x*) = 0) we mean the iterative procedure

(3.1) F-x-oB vE(x), O0<a<l

(3.2) B = B(x,X,B)

The matrix @(x,;,B) is interpreted as an approximation to sz(x*)
There are several philosophies for choosing the scalar « in (3.1).
One popular approach is the so-called line search. Namely, if one is
attempting to approximate a minimizer of f, then « is chosen as an

approximation to the solution of the one-dimensional minimization problem.
(3.3) minimize f(x - Nf(x)), a>0.

If one is attempting to approximate a maximizer of £, then (3.3) is
replaced with

(3.4) maximize £(x - VE(x)), o >0

and if one is attempting to approximate only a stationary point of £,

then one could replace (3.3) with

minimize HVf(x-qu(x))Hz, a>0.

The choice of « is often referred to as step length control and plays

an important role in the global behavior of the algorithm.
Four popular quasi-Newton methods are

The Gradient Method:

3.5) R(x,X,B) =

|
[}

Newton's Method:

P £(%)

(3.6) B(x,%,B)

13



Finite Difference Newton's Method:

- -
/li af(x+hej) e
h’ Ox

(3.7) B(x,x,B) = 3%
i

where el,...,'en are the natural basis vectors for Rn, h 1is a small
positive scalar, and (aij) denotes the matrix whose 1i,j-th component
is a,,.
1]

Secant Methods:

(3.8) B(x,x,B) = ﬁg(s,y,B)

where s =x - x, y = Vf(;)- vE(x) and BS satisfies the secant equation
3.9 Bs(s,y,B)s =y .

At the present time the most popular secant update is the BFGS given by

B + ny/yTs - BssTB/sTBs

(3.10) B
and in inverse form by

T T
H - [sy'H+ (Hy - S)sT]/sTy + ss (yTHy/sTy)2

(3.11) H
-1 = 1

where H =B and H =B = . For more detail, see Dennis and Moré (1977).

Let us consider the special case of problem (NLP) (see 1.1), where we

only have equality constraints. Namely,

(3.12) minimize f£(x)

subject to hi(x) =0, i=1,...,p .

We will also refer to problem (3.12) as problem (EQ). Suppose problem
(EQ) GCF . Let x* be a local solution which is also a regular point.
The first order necessary conditions (see Theorem 2.1) and regularity (see
Theorem 2.3) imply that there exists a Lagrange multiplier A* such that

(x*, *) is a solution of the nonlinear system

(3.13) ve(x,)\) =0

-y
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Observe that

v_AGx,0) VE(x) + Vh(x)\
(3.14) Vo(x,)) = =
V)\z(x,h) h(x)
and Pa(x,))  Vh(x)
X
(3.15) P 4(x,1) =

vh(x) 0

By the extended problem corresponding to problem (EQ) we mean

problem (3.13). 1In other words, by the extended problem we mean the
problem of finding a stationary point of the Lagrangian functional.
Moreover, it is also classical that (x*,x*) corresponds to a saddle
point of the extended problem. Indeed, under the assumption of regu-
larity we have that Vh(x*) # 0 and it is not difficult to demonstrate
that this implies that sz(x*, *) is necessarily indefinite and the
saddle point behavior follows. The motivation for our use of the
terminology 'extended' should be clear from the fact that the dimension
of problem (3.12) (i.e., number of independent variables) is n+p .
The extended problem will play a fundamental role in our develop-
ment and actually has been in the background of the derivation of many
algorithms whether the researcher was aware of it or not. Our basic
assumptions for much of the analysis given in this paper will be the
standard Newton's method assumptions for the extended problem. Speci-

fically, we assume

(3.16) (i) f and h have three continuous derivatives
and

2 X Lk . . .
(3.17) (ii) Vv 2(x™,\") 1is invertible.

The latter assumption (ii) is often referred to as nonsingularity of the

solution x* and clearly implies the regularity of x* (see proposition

3.1).
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Before we move on we would like to make some observations concerning
the historical development of algorithms for constrained minimization
problems. 1Initially there was an excessive amount of effort spent on
attacking the constrained minimization problem by solving a sequence of
unconstrained minimization problems. These approaches were usually ration-
alized by arguing that in this way one is able to utilize the excellent new
quasi-Newton algorithms for unconstrained minimization. Specifically, we
first witnessed considerable activity in penalty function methods and then
substantial activity in multiplier methods. In our opinion this philosophy
retarded the progress of constrained optimization theory. Fortunately, we
have finally arrived at the point where workers in the area of constrained
optimization are no longer wearing the straightjacket of sequential uncon-
strained minimization formulations. The penalty function method and the
multiplier method played an important role in the molding and development
of contemporary thought and as such will be discussed in detail in the
following section.

A main point of the present section is that the entire course of events,
including the recent activity in the area of quasi-Newton methods for con-
strained minimization, can be explained best in terms of the extended problem.
To begin with, quasi-Newton methods are, in their purest form, algorithms
for solving systems of nonlinear equations. This means that with respect to
nonlinear functionals they are algorithms for approximating stationary points
and not necessarily just minimizers or maximizers. Indeed, this is the way
they were presented earlier in this section. However, many researchers seem
to be secure only when they are applying these algorithms to a minimization
(or maximization) problem, and the vast majority of research activity in
constrained optimization has historically ignored the extended problem. The

truly fascinating aspect of this research area is that (without being aware
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of it) researchers have very recently suggested quasi-Newton methods for
constrained optimization problems which can be shown to be equivalent to
a quasi-Newton method applied to the extended problem. Two of the more
popular approaches will be discussed in detail in Sections 7 and 8. 1In
summary, it is interesting that the circle has been completed and we are
now at a point in the development of the theory that we would have been ten
years ago, had it not been for the sequential unconstrained minimization

detour.

By a structured quasi-Newton method for the extended problem we mean the

iterative procedure

(3.17) (%) = (’{) - 37 oex,0)
B_ Vg (x)
(3.18) B =
Vh(z) T 0

where Bx is an approximation to viz(x*,x*)

We use the adjective structured to mean that we don't approximate the
complete matrix sz(x,k) (see (3.14)) but only the part which contains
second order information, namely, the upper left-hand corner Viz(x,k).

A general quasi-Newton method for the extended problem could approximate

all of sz(x,x) .

The structured secant methods result by choosing

(3.19) B, = Ry(s,¥,B)

where s = x-x, y=vx!,(§,i) -Vx!,(x,-):), Bx is the current approximation to
vix(x*, *) and ﬁs is one of the popular secant updates.
It should be clear that Newton's method for the extended problem

and the structured Newton method (i.e., in (3.19)§; = viz(i,i)) are the



same, consequently the adjective structured in this case is redundant. It
follows that the convergence analysis for the structured Newton method is
the standard theory. 1In particular, assuming the standard conditions
(3.16) and (3.17), we will have local Q-quadratic convergence in the
variable (x,k) .

The matrix VzZ(x,K) given by (3.15) is never positive definite. Con-
sequently the BFGS secant method cannot be applied directly to the extended
problem. However, the matrix ViZ(x,x) is often positive definite, hence,
in this case the structured BFGS secant method for the extended problem
makes sense. In fact, the following convergence analysis has been estab-

lished by Tapia (1977).

Theorem 3.1. Let x* be a local solution of problem (EQ). Assume that
the standard conditions (3.16) and (3.17) hold and that Viz(x*, *y  is
positive definite. Then the structured BFGS secant method is locally
Q-superlinearly convergent in the variable (x,))-.
We leave this section by analyzing the close interaction between
nonsingularity, and regularity. For the remaining results we shall assume

that problem (EQ) €C> .

Proposition 3.1, Consider the following statements{

(i) x* is a nonsingular point of problem (EQ)
(ii) x* 1is a regular point of problem (EQ)
(iii) If x* 1is a local solution of problem (EQ), then there exists
a unique multiplier \* satisfying sz(x*,x*) =0 .

Then (i)= (ii)= (iii) .

Proof. The proof is direct and strai:htforward.



Proposition 3.2. Let X" be a local solution of problem (EQ) which is

also a regular point. Then x* is a nonsingular point if and only if

Viz(x*,)\*) is positive definite on the linear subspace

(3.20) {V:vhi(x*)TV =0, i=1,...,p)

Proof. The proof will follow directly from the following lemma.

Lemma 3.1. Suppose that A is an nxn symmetric matrix and H 1is an

nxp matrix of rank p such that
vIAV > 0
for all VERn satisfying
T

HV =0.

Then VTAV>0 VYV#0 if and only if the matrix
(3.21)

is nonsingular.

Proof. Our proof follows Buys (1972). Suppose that A is not positive
definite on the subspace (3.20). Then there exists VO#O such that

T

VOAVO =0
and

T

H VO =0

The constrained optimization problem

T

minimize {3V AV:HV = 0}

is solved by VO' So there exists uOGRp satisfying

(3.22) AV0+Hu0 =0 ;

19



20

equivalently

This gives a contradiction.
Now suppose that the matrix (3.21) is singular. There exist vectors

v.eRrR™ and uOGRP, not both zero, such that (3.22) holds. If V.=0,

0 0

then Hu0=0, but H has full rank, so u0=0. Hence we must have

A #0 and
T _ T _
VOAV0 = -VOHuo-O
This proves the lemma. L]

Corollary 3.1. Any nonsingular point x* which satisfies the first and

second order necessary conditions (Theorem 1.2) also satisfies the suffi-

ciency conditions (Theorem 1.3).

Corollary 3.2. Any regular point which satisfies the second order suffi-

ciency conditions (Theorem 1.3) is a nonsingular point.

4. Penalty Function Methods. We begin by considering problem (EQ) given

in (3.12). If we let h(x)=:(h1(x),...,hp(x)) then the classical Lagrangian

for this problem as given by (1.2) is L(x,x)==f(x)4-xTh(x) .

In the penalty function method and the multiplier method we will be

concerned with the sequential minimization of the following two functionals.

Penalty Function for Problem (EQ).

%.1) P(x3C) = £(x)+ 3Ch (x) h(x) (€ > 0)

and
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Augmented Lagrangian Function for Problem (EQ)

%.2) L(x,1;C) = £(x) + xT&Q‘%Ch(xFMx) >0

The semicolon in front of the penalty constant C in (4.1) and (4.2) is
used to denote the fact that C will be treated as a parameter and not
an independent variable. In particular, we will never differentiate with
respect to C .

A fundamental question is whether the functionals p(x;C) and
L(x,);C) have minimizers in x for a fixed C and a fixed \ .

Straightforward calculations give

(4.3) v24(x,0) =V E () + A Th () + ...+ A T (%),
2 2 T

(4.4) vV P(x;C) =sz(x,Ch(x))+CVh(x)Vh(x) ,

and

(4.5) V}Z{L(x,)\;C) =V}2§£(x,)\+ Ch(x))+th(x)Vh(x)T .

Let x* be a local solution of problem (EQ) and \* its associated
multiplier. It is known that viz(x*, *) may be indefinite; hence the
Lagrangian functional z(x,)\*) need not have a minimizer in x . However,
the following theorem shows that for C sufficiently large, the Hessian
of the augmented Lagrangian functional at (x*,x*) is positive definite.
This means that the penalty functional will have a local minimizer in x
provided Ch(x) is near )*, while the augmented Lagrangian will have a

minimizer in x provided A+ Ch(x) is near v

Theorem 4.1. Let x* be a local solution of problem (EQ) and let A*
be its associated multiplier. Suppose that the standard conditions (3.16)
and (3.17) hold. Then there exists C >0 such that for all C> C the

matrix
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2 L % 2+ T
(4.6) sz(x , A )+ CVh(x™)vh (x™)
is positive definite.

Proof. We give a short proof due to Buys (1972). Let A denote viz(x*, *)

and G denote Vh(x*). Consider the compact set

(4.7) s={ner™:nll=1} .

If the—theorem is not true, then there exists a sequence [’ﬂk} in S

such that
T T 1
(4.8) ’nk(A+kGG )nk<—E s k=1,2,..
But {nk} has a convergent subsequence converging to T€S . Since

T]TGGTHZO ¥V n it follows that

4.9) 6™ M=0 and T AT<O .

The first part of (4.9) implies that GTﬁ=O . The second order necessary
conditions, Theorem 1.2, imply that ﬁTAﬁ > 0, which together with the

second part of (4.9) implies that

(4.10) AT,

=
b

=
]
o

It follows that the problem
.. T T
(4.11) minimize (3N AN:G 7=0]}
has a solution at 7 . Hence there exists a multiplier p,ERm such that
- T—
An+Gp=0, GM=0.

This implies that the columns of V-4(x*,3*) (see (3.14)) are linearly

Xdependent and contradicts assumption (3.17) . =

<.

\\ The main problems with this theorem are that it does not tell us what

C* is and it only gives us convexity near the solution.
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For the sake of motivation, consider the constrained optimization

problem
(4.12) minimize f(x); subject to x €S
where S is some subset of R® . Let
-
(of ' 0 if =xE€S
(4.13) ¢(x) = {

|+ if x§€S
A

Then it is clear that formally the constrained optimization problem (4.12)

is equivalent to the unconstrained optimization problem
(4.14) minimize f(x) + C(x).

Clearly problem (4.14) is not acceptable so we must approximate it by
problems which are numerically tractable. One way to do this would be to

make the approximation

(4.15) Ch(x) Th(x) ~ C(x)
o ivalentl

r equivalently c‘u,jfw)
(4.16) P(x;C) ~ f(x) + @&)

where C 1is some positive constant. 1In fact, the larger C is the better
the approximation will be. These ideas lead us to what many refer to as the
philosophy of gsequential unconstrained minimization techniques or SUMT.
Namely, we approximate a solution of problem (EQ) by solving a sequence of
unconstrained minimization problems. In the penalty function method the
sequence of problems will consist of successive minimizations of the penalty

functional P(x;C) with increasing penalty constants.

Exterior Penalty Function Method for Problem (EQ).

Construct {xk} by solving the sequence of unconstrained minimization

problems
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(4.17) min P(x;Ck)
X

for some sequence of positive penalty constants Ck, k =0,1,2,...

increasing monotonically to +w .

Proposition 4.1. Suppose that the exterior penalty function method for

problem (EQ) is well defined (i.e., problem (4.10) has a global solution)

Then

(i) P(x kt+1 k+1) > P(x k)

(i1) Il > b G,

(1i1) £ > £(x5)

v

Proof of (i). From (4.17) and the monotonicity of (Ck] we have

(4.18) P(x kt1 k+1) > P(x k+1 Ck) > P(x k. k) ]

Proof of (ii). From (4.18) we have

4.19) Px%;cX) < PNy

By the definition of (4.17) we have

(4.20) Pty <o ekt

Adding (4.19) and (4.20) gives

4.21) - mEThES -n& T hE"h 1 <0 .

However, Ckis Ck'l-1 so (4.21) implies (ii)

Proof of (iii). From (4718)

(4.22) £ - £ > A REHTRED - i@ ThE) 1 >0 .

This proves (iii) and the proposition. =

Proposition 4.2. Suppose that the exterior penalty function method is well

defined and converges to a solution of problem (EQ). Then each iterate is

necessarily infeasible or is a solution of problem (EQ).
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Proof. Suppose xk-‘x* and x* solves problem (EQ). By proposition (4.1)

we know that f£(xK) 1 f(x*) . Therefore, if xk is feasible, it is a
solution. ®

From (4.19) we must have
%.23) vp (£5;¢5) = VES) + Th(x)Ch(ES) = 0 .
Considering the first order necessary conditions (Theorem 1.1) we are led to
the conclusion that Ckh(xk) is an approximation to the Lagrange multiplier
\* associated with x*. Moreover, if xk-ox*, then Ckh(xk)-*x*; but
h(xk)—»o, so necessarily Ck-v+» .

The following main convergence result for the exterior penalty function

method is due to Polyak (1971).
r Locat i/
Theorem 4.2. Suppose that x* is a local solution of problem (EQ) and

that the standard conditions (3.16) and (3.17) hold. Then there exists
a constant C>0 such that for every c>C the penalty function P(x;C)
has a locally unique minimizer, say x(C) .

-——-——-V
Furthermore, there exists a constant M>0 such that

(4.24) lIx(c) - x*Il, <m/c ¥ c>C
and
(4.25) llch(x(c)) - *ll, <M/c ¥V £>C .

Proof. For a proof see Polak (1971) or Bertsekas (1976). Bertsekas'

proof is slightly more general and his conditions are implied by our

assumptions.

Corollary 4.1. Suppose that the initial penalty constant in the exterior

penalty function method is larger than C in Theorem 4.2. Then the exterior

penalty function method is convergent if and only if C-+e .
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Observe that the penalty function method is not really an iterative

procedure. Namely, xk+1 does not depend on xk unless the choice of

Ck+1 depends on xk . The penalty constant C actually plays a role
analogous to the role the mesh spacing plays in the solution of differen-
tial equations by finite differences. Specifically, we can get arbitrarily
good accuracy by choosing the initial penalty constant sufficiently large.
The question that should be asked is: Why minimize P(x;C) for various
values of C ? Obviously, we need only minimize P(x;C) for the largest
value of C that we are interested in. Of course, the numerical condition-
ing of the problem enters in (as it does in finite differences) and it is
not clear what the optimal value of C should be. Our point here is that
the nature of the penalty function method is significantly different than
that of a standard iterative procedure and is similar, from a philosophical
point of view, to the discretization methods in differential equations.
— TN A BT DI850006LL 32T oV -

The exterior penalty function method can be extended from problem (EQ)

to problem (NLP). One merely replaces each inequality constraint gi(x) >0

with the equivalent equality constraint
(4.26) min (O,gi(x))=0

Not all of our analysis goes through when one works with (4.26) due to
the loss of differentiability. However, since [min (O,gi(x))]2 is
reasonably smooth, much of the analysis presented does carry over to the
exterior penalty function for the full problem. In particular, the following

simple example will demonstrate Proposition 4.2.

Example 4.1. Consider min f(x); subject to x>1.
We let

P(x:C) = %% + C min (0,x-1)% .
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It follows that x5 = Ck/(1+Ck) converges to the solution as
Ck—>+°° . However, xk is always less than one and never feasible.
Consider the special case of problem (NLP) when we only have in-

equality constraints,
4.27) minimize £(x); subject to gi(x)z 0, i=1l,...,m .

We refer to problem (4.27) as problem (ENEQ). Consider the function

q:Rn—»R given by any one of the following choices

AN
m »
(4.28) a0 = - ) log(g, (x) ’ES”aﬁU;(\

i=1
m

(4.29) a® = ) /g @)
i=
m

(4.30) aw = ) g
i=
m

(4.31) q(x) = z 1/max(0,gi(x))
i=1

Let

(4.32) Qx;C) = £(x) + Zq(x)

Interior Penalty or Barrier Function Method for Problem (INEQ).

Construct {xk] by solving the sequence of unconstrained minimization

problems

(4.33) min Q(x;C5)
X

for some sequence of positive penalty Ck, k=0,1,2,... , increasing monotonic-
allyto +w . Let S = [x:gi(x) >0, i=1,...,m} . Observe that any q

given by (4.28) - (4.31) will have the property that q(x) =4+~ when x is
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contained on the boundary of S (i.e., for some i such that gi(x)==0).
Moreover, q(x) is well defined in the interior of S . It follows

that implicit in the optimization problem (4.33) is the assumption that

any algorithm used to solve the problem begins in the interior of S and
never crosses over the boundary of S into the exterior of S . This is

a mild and reasonable requirement since Q(x;Ck)=4-m on the boundary of S.
It follows then that the interior penalty function method always maintains
feasibility. This is an important attribute of the approach and one that
makes it useful in situations where other approaches cannot be used. Let

us demonstrate this aspect of the method with a simple example.

Example 4.2. Consider min $x; subject to x>1.

We let
1 1
. = ledt = —
P(x;C) 2x4-c =71 °
k k . % k
It follows that x = 14 2/C  converges to the solution x* =1 and x

is always feasible.

In addition to exterior penalty function methods for the full problem,
éne can also consider mixed penalty function methods where the equality
constraints and some of the inequality constraints are handled using the
exterior philosophy and the remaining inequality constraints are handled
by the certainty interior philosophy.

We leave this section on classical penalty function methods with the
following three criticizms of the method.

(i) A sequence of unconstrained minimization problems

must be solved leading to questionable efficiency;

(ii) the penalty constants must necessarily become arbitrarily
large leading to questionable numerical conditioning;

(iii) it is not clear how the penalty constants should be chosen.
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5. Exact Penalty Function Methods. In the penalty function methods pre-

sented in Section 4, the solution was obtained by solving a sequence of
unconstrained minimization problems. The importance of efficiency leads
us to consider the obvious extension of this approach; namely, construct
a function with the property that a local minimizer solves the constrained

minimization problem.

Definition 5.1. Suppose that P:R"=R has the property that at least one

of its local minimizers is a local solution of problem (NLP). Then P is

called an exact penalty function for problem (NLP), (see (1.1)).

Zangwill (1967) was one of the first authors to consider exact penalty

functions. For problem (INEQ) (see (4.27)) he considered the penalty

function
m

(5.1 P(x;C) = f(x) -C Zmin(O,gi(x))
i=1

and was able to establish that in special cases P(x;C) was an exact penalty

function.

Theorem 5.1. Suppose problem (INEQ) GC]', f 1is convex, 8; is concave,
i=1,...,m, S={x:gi(x)>0, i=1,...,m}#@, and x* is a solution of
problem (INEQ). Then there exists ¢ >0 such that for all Czé P(x;C)

has x* as its minimizer.
Proof. A proof can be found in Section 12.4 of Avriel (1976).

Pietrzykowski (1969) extended Zangwill's result to nonconvex programs.

Let us consider a simple example.
Example 5.1. Consider min xz; subject to x>1. We let
\5 (5.2) P(x;C) = x2 -C min(0,x-1) .

The solution to our constrained optimization problem is x* =1 and a
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straightforward calculation will show that x*=1 minimizes P(x;C) as

given by (5.2) as long as C>2. This calculation will also show that

P(x;C) 1is not differentiable at x=1 . Clearly the Zangwill-

Pietrzykowski exact penalty function method has the following two draw-

backs

, (i) the penalty function is not differentiable at the solution;

\J hence, the more efficient algorithms for unconstrained optimi-

zation cannot be used;

U (ii) it is not clear how the penalty constant should be chosen. %QD

Fletcher (1970) offered the following approach for constructing an @N&‘h‘ 6¥§
\ov

exact penalty function for problem (EQ) (see (3.12)). Let

(5.3) A(x)8% = (vh (%) VR (x)) " ( EQ e Tveao) el

and consider »( \‘

W
(5.4) P (x;C) =f(x)+h<x>Tx<x)Jé'}e. = L%, Q)

* is a local solution of problem (EQ) and

Theorem 5.2. Suppose that x
the standard conditions (3.16) and (3.17) hold. Then there exists é>o0

such that for all C;:ﬁ x* 1is a local minimizer of P(x;C) given by (5.4).
Proof. For a proof see Fletcher (1970).

The Fletcher exact penalty function method has the following two
drawbacks
(i) the penalty function involves first order terms; hence its
gradient will involve second order terms and its Hessian will

involve third order terms;

(ii) it is not clear how the penalty constant should be chosen .
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Recently there has been renewed interest in exact penalty function
methods. However, these newer functionals have a slightly different

flavor.

Definition 5.2. Consider P:Rn+P-oR . If P has the property that one

of its local minimizers, say (x*,\*) is such that x* is a local solu-
tion to problem (EQ) with associated multiplier x*, then we say that P
is an exact extended penalty function for problem (EQ) .

The obvious attempt at constructing an extended penalty function is
to try the Lagrangian £ or the augmented Lagrangian L . While both
these functions have the property that they have stationary points which
correspond to local solutions and their associated multipliers of problem (EQ);
they cannot have local minimizers. To see that neither £ nor L can
have a local minimizer as functions of (x,)) merely observe that they are
both linear in the variable ) .

Boggs and Tolle (1977) and Boggs, Tolle and Wang (1979), and indepen-

dently, DiPillo and Grippo (1979) consider the functional

(5.5  B(x,A5C5D) = £(x,0) + 3 h(®h@x) + Dy 46,07 _40x,0)

where D and C are scalars and Q(x) is some weighting matrix function.
It should be clear that (5.5) consists of taking the augmented Lagrangian
and adding a term which is quadratic in the multiplier ) . In this way
there is a good chance that P will have minimizers in (x,)) . In fact,
DiPillo and Grippo (1979) give general conditions which guarantee that P
in (5.5) is an exact extended penalty function.

The exact extended penalty function method based on (5.5) suffers from
several drawbacks including

(i) the penalty function involves first order terms; hence, its
gradient will involve second order terms and its Hessian will

involve third order terms.
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(ii) it is not clear how the penalty constants C and D should
be chosen;
(iii) the dimension of the optimization problem is extended to

n+p instead of just n.,

6. The Multiplier Method and Nonlinear Duality.

The multiplier method was originally proposed by Hestenes (1969) and
independently in different but equivalent forms by Powell (1969) and
Haarhoff and Buys (1970). The rationale for the multiplier method is to
give a method which is as effective as the penalty function method but
does not suffer from the numerical ill-conditioning of the penalty function

method, i.e., the penalty constant need not become infinite.

Definition 6.1. A function U:Rm-p-d{p (which may depend on a parameter C)
with the property that

2 o= U*,\*;0)

whenever (x*,)*) 1is a critical point of problem (EQ), is said to be a

Lagrange multiplier update formula. Moreover, if U does not depend

explicitly on A, 1i.e.,
V)\U(x,)\,C) =0,

then U is said to be a Lagrange multiplier approximation formula.

The multiplier method consists of the iterative procedure: Given )

and C>0

(6.1) calculate x = arg min L(x,2;C)
X

(6.2) Let A = U(x,A;C)

(6.3) Choose C>0



where the augmented Lagrangian L(x,)\;C) is given by (4.2) and U 1is a

multiplier update formula.

Consider the following choices for the multiplier update formula:

(6.4) Uyp (%,23C) = A+ Ch(x) ,
T -1 T
(6.5) UP(x,x;C)=-[Vh(x) vh(x)] "vh(x) VE(x) ,
(6.6) U, (x,030) = A+ [vh () THvh () ] Th(x)
= Ty -1 Ta
(6.7) U, (x,1;C) = [vh(x) Hvh(x)]1 ~[h(x) - vh(x) H(VE(x) + Cvh(x)h(x))] ,
where

H=vL(x,\C) T ,

and more generally

(6.8)  Ugyp(%,150) = A+ [0 () TDVh () + A1 1 [0 (x) - h () D, Lx, 150 ]

33

where in (6.8) A and D are pxp and nxn matrices respectively, which

may depend on x, A, and C .

Proposition 6.1. The update formulas given by (6.4) - (6.8) are Lagrange

multiplier update formulas. Moreover, (6.5) is a Lagrange multiplier

approximation formula.
Proof. The proof is straightforward.

The multiplier method using the multiplier update formula (6.4) was
proposed independently by Hestenes (1969) and Powell (1969). In 1970,
independently of the previous two references, Haarhoff and Buys (1970) pro-
posed the multiplier method using the multiplier update formula (6.5).
Observe that the formula (6.5) arises from the least-squares solution for
A of the overdetermined linear system sz(x,x)==0 . The multiplier

update formulas (6.5) and (6.6) have been used by many authors in the
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literature. The formula (6.6) was first used by Buys (1972).

Proposition 6.2. The multiplier update formulas (6.4) - (6.7) are special

cases of the multiplier update formula (6.8). Specifically,

(i) U,, =0

e = Uour? with A= (1l/C)I and D=0;

(ii) UP = UGU'F’

with A=0 and
D = (1/C)Va(x) (Vg (x) Tve (x)) 2vg(x) ;

_ . _ T P | - Q.
(iii) UB-UGUF’ with A=vg(x) V}er(x,)\,C) Vg(x) and D=0;

(iv) U,=0 with A=0 and D=vfc L(x,)\;C)-1

*  TGUF’

Proof. Merely substitute the above choices for A and D in (6.8).

This proposition implies that the update formulas (6.4) - (6.7) are
significantly different. We will now show that, in the multiplier method,
due to exact minimization, many differences in multiplier update formulas

are purely formal.

Proposition 6.3. If the multiplier method is used in conjunction with the

update formula U then no generality is lost by using only formulas

GUF’
with A=0 or only formulas with D=0 .
Proof. Let D and A be arbitrary nxn and pyxp matrices, respec-
tively. By substituting

v, L(x,\;€5 =0, A=0,
and

D = D+ vh (x) (vh (x) Tvh (x)) "LA (vh (x) Toh (x)) "Lvh(x) T

into (6.8), we see that no generality has been lost by letting A=0. The

corresponding statement for D is obvious. u
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Proposition 6.4. In the multiplier method the multiplier update formulas

UHP and UP give identical iterates as do the multiplier update formulas

UB and U,

Proof. The proof follows directly from the fact that exact minimization

implies VxL(x,k;C) =0 . "

It is of historical interest to observe that, as a consequence of
Proposition 6.4, we have that, even though Haarhoff and Buys used a
different multiplier update formula, their multiplier method is equivalent
(gives the same iterates) to the Hestenes-Powell multiplier method.

We first analyze the role of the multiplier update formula (6.4) and
the specific role of the penalty constant in this formula. This will be
accomplished by looking at the nonlinear duality theory. Let x* be the
nonsingular solution of problem (EQ) with associated Lagrange multiplier
A* . Assume that C>C* where c* is given in Theorem 4.1 . By the
implicit function theorem (p. 128 of Ortega and Rheinboldt (1970)), there

exists a neighborhood W of )* and a function x:Wc:Rm-»Rn with the 0

Y4
following properties: 4\\‘ *\\*&‘ '
AR §
(6.9) x(*) =% NG
45“‘}' 4

(6.10) v, LGN ,M5C) = 0
(6.11) x(n) = -vh (x(1)) L) ,5€) T
and
(6.12) 3 ()) =min L(x,\;C)

X

is well defined on W . Problem (EQ) (see(3.12)) is called the primal

problem . The dual problem is defined below: Q
#}
(6.13) max 3()) . * bR N
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In (6.13) we have tacitly assumed that A 1is restricted to the open

set W . Since

(6.14) &(A) = L(x(M),A;C)
using (6.10) and (6.11) we see that
(6.15) v&(A\) =h(x())) ,

(6.16) P8 = -Th(x(W)) VAL (M), 1:0) T TR (x (1)

From Theorem 4.1, viL(x*,x*;C) is positive definite; so Vzé(k*) is
negative definite. Combining these remarks leads us to the following
duality principle:

Theorem 6.1. (Local Duality). If x* solves the primal problem, then
*

its associated Lagrange multiplier 2* solves the dual problem and x

can be obtained from \A* as the solution of min L(x,)\*;C) .
X

As a consequence of local duality we have the following characteriza-

tion of the multipl’gmethod.

Theorem 6.2. The class of algorithms for the primal prcblem given by the
multiplier method with a multiplier update formula of the form (6.8) is
exactly the class of quasi-Newton methods for the dual problem. In par-
ticular, the multiplier method with multiplier update formula (6.4) or
(6.5) is the gradient method (with fixed steplength) applied to the dual
problem; and the multiplier method with multiplier update formula (6.6)
or (6.7) is Newton's method applied to the dual problem.

From Proposition 6.3, we see that the above proposition would still
be true if we only considered multiplier update formulas of the form

(6.8), with A=0 or, equivalently, D=0 .
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Consider the multiplier method as given by (6.1) - (6.3). One function
that the penalty constant has is to make step (6.1) well defined as dictated
by Theorem 4.1. Another role that it plays, according to (6.2) and Theorem
6.1, is that of acting as the step length in the gradient method applied to
the dual problem. This latter role tells us from gradient method theory we
will be able to obtain local linear convergence for a range of penalty
constants. This range will depend on the eigenvalue structure of the
Hessian matrix ViL(x*,A#;C), Moreover, we are led to believe that, in con-
trast to the penalty function method, we cannot let the penalty constant
grow arbitrarily fast. In fact, at this point we do not even know if it
is possible to let the penalty constant become infinite and if anything
would be gained by such a choice.

We now consider local convergence and convergence rates for the multi-
plier method. Bertsekas (1976) generalized Polyak's theorem (Theorem 4.2)
to include the multiplier method in the following manner. As before, we
are assuming the standard conditions (3.16) and (3.17) and x* is a local

solution of problem (EQ) with associated multiplier \* .

Theorem 6.3. Let S be a bounded subset of RP which contains A\*  as
an interior point. Then there exists a constant ( such that for C>&

and )\ €S the augmented Lagrangian L(x,);C) has a locally unique mini-

mizer, say x()\;C) . Furthermore, there exists a constant M>0 such that
(6.17) =% - =)l <l - A*11
and

* T M * A
(6.18) I = As00, <Gl =21, ¥ C>C and ¥ A€S
where

(6.19) A(A3C) = A+ Cg(x(A;C)) .
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Several questions immediately come to mind concerning local conver-
gence and convergence rates of the multiplier method and we shall attempt
to answer these questions in the remainder of this section. To begin
with, from (6.18) of Theorem 6.3, we expect to be able to analyze con-
vergence of ) in terms of Q-convergence. However, (6.17) does not lead
to the same conjecture in terms of the convergence of x . In fact, on
the surface it looks as if one might have to settle for an analysis in
terms of R-convergence. For definitions of these convergence notions see
Section 8 of Tapia (1977) and for more detail see Chapter 9 of Ortega and
Rheinboldt (1970). The following result proved in Section 9 of Tapia (1977)
gives us the satisfaction that the convergence in x and )\ 1is essen-

tially the same.

Proposition 6.4. Suppose that the multiplier method with an arbitrary

Lagrange multiplier update formula and an arbitrary bounded sequence of
penalty constants {Ck} such that Ckgze generates the sequences {xk}
and [xk} . Then xk-.x* with Q-order q if and only if o x* with

Q-order q .
\\\\\l Proof. The proof of this result is given in Section 9 of Tapia (1977).

As a direct consequence of Theorem 6.3 and Proposition 6.4 we have the

following convergence result for the multiplier method.

Proposition 6.5. For any given initial estimate of the Lagrange multiplier

) there exists a penalty constant €>0 such that the multiplier method
with fixed penalty constant c>8 1is Q-linearly convergent in x and in ).
Observe that in the multiplier method the penalty constant cannot be
increased arbitrarily fast as it can in the penalty function method. If it

grows too fast, them 73(3;C) given by (6.19) will become excessively

large (i.e., it will not remain in the set S in Theorem 6.3) and the
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convergence will suffer. It is clear that the increase in C must be
balanced with the decrease in h(x) . However, from (6.18) we see that
Q-superlinear convergence would result if it were possible to let the
sequence of penalty constants become unbounded. This latter consideration

is the subject of the following proposition.

Proposition 6.6. It is possible to choose {Ck} so that Ck—~co and the

multiplier method with penalty constant {Ck} is convergent in x and ) .

Proof. The proof follows directly from Theorem 6.3. Specifically, let
S={x]ln-2"1<1}, and choose c®>C so that M/C0<%— and choose )\0

so that |\*- )\OH<% . Then

(6.20) |lx* - xk\\sz—lg and " - xklls;%

as long as CkZC0 and

(6.21) e lI<3 -

From (6.21) it is clear that we can choose (Ck} so that C aw . u

We are concerned with the role of the penalty constant in the multi-
plier method. So far we have seen that it allows one to obtain Q-linear
convergence and Q-superlinear convergence if it becomes infinite. Recall
that in the penalty function method we obtained convergence if and only if
the penalty constant became infinite. The situation would be mathematically
satisfying if the analogous situation for the multiplier method was such
that we were able to obtain superlinear convergence if and only if the
penalty constant became infinite. The following proposition establishes

this fact. For the purposes of this result we will assume that ¢=0.

Proposition 6.7. Suppose that the multiplier method with penalty constants
ck is convergent. Then the convergence is Q-superlinear in A if and only

if Caw .



Proof. The 'if' part follows directly from Theorem 6.3. Assume that

Xk converges Q-superlinearly to »* . We are concerned with the iteration
k+1

(6.22) A =S(xk;ck)

where

(6.23) S(A;C) =a+Cg(xe (1))

and x()) is as in (6.9) - (6.16) . Now for a fixed C we see from (6.11)

that

(6.26) 51(3"30) =1 - Cvg(x®) TAL (%, 2%30) e ()
Let A=v24(x*,3%) and G=vh(x*) so that
2 OOy T
(6.25) vxL(x ,>\/=A+ CGG
and from (6.24)
(6.26) S}'\()\*;C) =1-cela+ceet) Lc .

From the Sherman-Morrison-Woodbury formula (page 50 of Ortega and

Rheinboldt (1970)) we obtain

(6.27) a+cee)y L aatecalor+caaley " 1eTal |
so that
(6.28) 51 (030 = [T+ Cre ™ "2a(x*, %) g 17

Observe that for C>0 the matrix Si(x*;C) is positive definite and
hence invertible.

From McLeods's mean-value theorem (see Tapia (1971)) we have

m
1 k k k k, ..k
(6.29) AT~ a*=50¢") - ax = Ztisi(l*”' RS WHDICRER
i=1

where

m
0<g; <1, t,>0, Zti=1.

40
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k
Suppose that a subsequence of {Ck} (also denoted by {c"}) converges to

K<+o. Let

(6.30) 81 = (xk - ka - x*\l'l .

By compactness, {sk} has a subsequence (which we also denote by [sk})
which converges to s*#0 . Dividing both sides of (6.22) by ka- *,

we obtain

(6.31) S;\()\*;K) (s¥)=0 .

However, this is a contradiction, since Si(k*;K) is invertible. It
follows that Ck-om and this proves the proposition. u

Our analysis of the role of the penalty constant in the multiplier

method is now complete.

7. The piagonalized Multiplier Method. Let us summarize our presenta-

tion up to this point from a historical and chronological point of view.
We have observed that in the penalty function method the price one pays
for convergence is a deterioration in numerical conditioning, since the
penalty constant must go to infinity. In the multiplier method, the price
one pays for superlinear convergence is also a deterioration in numerical

conditioning, since again the penalty function must go to infinity.

Clearly, the stage was set to a multiplier-like algorithm which would
give superlinear convergence without a corresponding deterioration in

numerical conditioning. Such an algorithm will now be presented.

Historically, there have been essentially three philosophies for
extending quasi-Newton methods from uncons trained optimization to con-
strained optimization. These philosophies consist of the extended problem

approach described in Section 3, the diagonalized multiplier method which
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we are about to describe and the successive quadratic programming approach
described in the following section . S/
By using a multiplier method on problem (EQ), we are in effect trying / il
to solve for both the minimizer x* and its associated Lagrange multi- \\/ j§/
plier )*. Hence, it makes sense to update the estimate of the multiplier Qf?
after each update of the estimate of the minimizer and so make the two

update formulas compatible, i.e., they both use first-order information

only, or they both use second-order information, etc.

///// The Diagonalized Multipler Method consists of the iterative procedure:
/7 Gi

ven XxX,)\,B and C

(7.1) A=U(x,1;C)
(7.2) F=x- B'lvxL(x,K;C)
(7.3) B = f(x,%,1,%,B)

where U is a multiplier update formula and B(x,%X,\,,B) 1is an approxi-

mation to viL(E,X;C) . The diagonalized multiplier secant methods result

by choosing
(7.4) B(x,X,, X,B) = g (s,y,B)

where s=%-x, y=vxL(§,7(;C) - VxL(x,x;C) and BS is a secant update
formula, e.g., the BFGS (see Section 3).

In the diagonalized multiplier method with UB (see 6.6)), or U,
(see 6.7)) we choose H to be B-1 and not viL(E,X;C)-l. We also want
to work with the extended problem using the augmented Lagrangian L(x,\;C)

instead of the classical Lagrangian 4(x,)). To denote this we will say

the extended problem with L for problem (EQ).
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Consider the following class of quasi-Newton methods for the extended

problem with L for problem (EQ).

(7.5) B vhx) || ax v, L(x,15C)
‘\;s‘bb _ P = =
v 2 A h(x)
where ]3-1 and [SB-lvh } 1 exist .
T7h'OVK A3

Theorem 7.1. The class of algorithms for probleh (EQ) given by the
diagonalized multiplier method with UGUF (see (6.8)) is exactly the class
of quasi-Newton methods of the form (7.5) for the extended problem with L .
In particular, using U, (see 6.7)) the diagonalized Newton multiplier
method is equivalent to Newton's method on the extended problem with L .
Finally, using U, a diagonalized secant multiplier method is equivalent

to a structured secant method for the extended problem with L .

Proof. If we write out the two equations in (7.5), and solve the first

for Ax and then substitute Ax into the second, we obtain

(7.6) AL = [SB‘lvh(x) - T]-l[h(x) - SB-lvxL(x,)\;C)] .

From (7.6) we see that the association between B, S, and T in (7.5) and

A and D in (6.8) is

(7.7) T=-A and §=vh(x) DB .

Now, from Proposition 6.2 we see that U results when A=0 and D==B-1,

which in turn give T=0 and S =Vh(x)T . =
It is of interest to also characterize the diagonalized multiplier

method using U P’ Up and Uy in terms of a quasi-Newton method on the

extended problem with L . From (7.7) and Proposition 6.2 we are led to

the following characterizations of the diagonalized multiplier method in

terms of the extended problem with L :
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UHP’ B vg Ax vxL(x,x;C)
1
0 -1 A h(x)
C
U, :
_P B Vhy /Ax VxL(x,x;C)
%(thVh)-lvhB o/\a h(x)
E§ : B vh AX VXL(x,x;C)
0 -vhB loh/ \ Ay h(x)
U—* B vh y\ /A% VXL(X,MC)
T
vh 0 /\aA h(x)

Theorem 7.1 allows us to give the convergence analysis for the diagonalized

secant multiplier method merely as a restatement of Theorem 3.1.

Corollary 7.1. Let x* be a local solution of problem (EQ). Assume that

the standard conditions (3.15) and (3.16) hold and that C>C where & is
given by Theorem 4.1. Then the diagonalized BFGS secant multiplier method

using U, 1is locally Q-superlinearly convergent in the variable (x,)) .

In an impressive work, Glad (1979) has established local linear conver-
gence of the diagonalized BFGS secant multiplier method using UHP and UP .
It is interesting that the logical conclusion of improving the penalty

function method led to quasi-Newton.algorithms which are essentially the

structured quasi-Newton methods for the extended problem.

8. Successive Quadratic Programming. By a successive quadratic programming

quasi-Newton method (SQP) for problem (EQ) we mean the iterative procedure:
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Given x, )\, B and C

(8.1) % =x+ A%

(8.2) B = R(x,X,B)

where B(x,;,B) is an approximation to ViL(x,A;C) and Ax is the solu-
tion of the quadratic program

(8.3) ' min qax) = VF(x)bx + Box Béx

subject to Vh(x)TAx + h(xs =0
with
(8.4) F(x) = £(x) + % h(x) Th(x) .

The successive quadratic programming secant methods result by choosing
f(x,x,B)=R; (x,y,B) where s = X-X, y = V,L(x, 0qp3C) - Ve L(Xs0qpiC)s B
is a secant update and )‘QP is the multiplier obtained in the solution
of the quadratic progi:am (8.3). Since B in (6.3) is an approximation to

ViL(x,x;C) it is natural to ask if anything could be gained by replacing

the quadratic program (8.3) with the quadratic program

8.5 ©  min q(®) = VL(x, 00 Tbx + 3w Ba
Ax

subject to Vh(x) Ax + h(x) =0 .
The following proposition shows that nothing would be gained.

Proposition 8.1. The quadratic programs (8.3) and (8.5) have the same

solutions. .
Proof. Notice that 2!9(1);9 = Pw4 };r(,l{}(,) ol 000
(8.6) vxL(x,)\;C)TAx - vF(x)Tax + ATVh(x)Ax .

However, since we require Vh(x)TAx = -h(x) we see that the second term

on the right-hand side of (8.6) does not vary with / ]

LX
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Given x, 2, Band C

(8.1) x

X + AX

(8.2) B = R(x,%,B)

where ﬁ(x,;,B) is an approximation to ViL(x,k;C) and Ax is the solu-
tion of the quadratic program

. T 12T
(8.3) min q(AxX) = VF(x) Ax + 34X BAx

subject to Vh(x) Ax + h(x) = 0
with

(8.4) F(x) = £(x) + g h(x) "h(x) .

The successive quadratic programming secant methods result by choosing

na(x,x,B)=ﬁS(x,y,B) where s =XxX-%X, y = VxL(x,AQP;C) -VxL(x,AQP;C), Rg

is a secant update and KQP is the multiplier obtained in the solution
of the quadratic program (8.3). Since B 1in (6.3) is an approximation to
ViL(x,x;C) it is natural to ask if anything could be gained by replacing

the quadratic program (8.3) with the quadratic program

(8.5) min q(ax) = ¥ _L(x,1;0) Ax + 1A% BAx
Ax

subject to Vh(x)TAx + h(x) =0 .
The following proposition shows that nothing would be gained.

Proposition 8.1. The quadratic programs (8.3) and (8.5) have the same

solutions. NOwRvV22 The »(0¢,2¥ed w T C/\‘Nﬁ'k XFZ ,\fA)\L

Proof. Notice that
(8.6) vxL(x,k;C)TAx = UF(x)TAx + AVh(x) Ax .

However, since we require Vh(x)TAx = -h(x) we see that the second term

on the right-hand side of (8.6) does not vary with)/)(< ]
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Theorem 8.1. For problem (EQ) as given by (3.12) using the matrix update
formula R the following three philosophies generate identical (x,))
iterates:
(i) the structured quasi-Newton method for the extended problem
with L ,
(ii) the diagonalized quasi-Newton method using U, ,

(iii) the successive quadratic programming quasi-Newton method.
Proof. Problem (8.3) is equivalent to

(8.7) vE(x) + BAxi-Vh(x)[xQP + Ch(x)] =0

(8.8) Vh(x)TAx + h(x) = O .
From (8.7) we see that

1

(8.9) Ax = -B~ VXL(x,xQP;C) .

Substituting (8.9) into (8.8) and solving for XQP gives AQP==U*(x,x;C)

where U, 1is given by (6.7). The proof now follows from Proposition 7.1. =

Corollary 8.1. Let x* be a local solution of problem (EQ). Assume

that the standard conditions (3.16) and (3.17) hold and that c>C where
C is given by Theorem 4.1. Then the successive quadratic programming
BFGS secant method is locally Q-superlinearly convergent in the variable
(x,\)

Of the three equivalent formulations the SQP philosophy is by far the
most visible and most popular. This is fair since it allows one to use
existing quadratic programming modules. The main reason for the popularity
of the SQP method is that it allows one to include inequality constraints
in a straightforward manner; one merely carries them along as linearized

inequalities in the quadratic program. This is a very important consideration.
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Mathematically the situation is not well-defined since the theory for
handling the inequalities will now be a function of the quadratic pro-
gramming code employed in the implementation and vary significantly.
It is not clear if the quadratic programming formulation offers satis-
factory ways of handling the inequalities which could not be employed
with one of the equivalent formulations. Further research on this sub-
ject is needed.

It is important to emphasize modulo the treatment of inequality
constraints the SQP method is no different than our other two approaches.

This point is not fully appreciated by all workers in the area.

9. Superstructure and the Penalty Constant. The role of the penalty

constant C should now be clear. In the penalty function method it gave
us convergence, in the multiplier method it gave us superlinear conver-
gence and in our three equivalent approaches it allowed us to obtain a
positive definite Hessian ViL(X*,K*;C)- Moreover, the standard BFGS
secant theory requires that the Hessian at the solution be positive
definite. So everything fits together nicely in the sense that we are
approximating a positive definite matrix by a sequence of positive
definite matrices. However, the story is not over yet. We now look a
little closer at the role of the penalty comnstant.

Observe that a straightforward quasi-Newton method for the extended
problem with L would consist of approximating the entire Hessian matrix

PLx,A0)  vh()

(9.1) sz(x,x;C) =
vh (x) © 0

Our quasi-Newton approach has not been that nHive. Specifically, we have

taken advantage of a certain amount of structure that the problem has to
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offer by only approximating the component of VZL(x,x,C) in (9.1) which
contains second order information. Basically, it seems inefficient to
approximate first order information that has already been calculated
exactly, or even worse yet, to approximate the zero component in
sz(x,x;C). Carrying this line of reasoning one step further we observe

that
(9.2) LG, 0550) = P (2, 0") + Gy T ) T

Consequently, although we have taken advantage of some structure,we have
more, i.e., we need not approximate the first order information in (9.2)
This additional structure we call superstructure. We take advantage of
superstructure by replacing Ex in the structured secant method for the
extended problem (see (3.19)), B in the diagonalized multiplier secant
method (see (7.3)) and B in the successive quadratic programming secant

method (see (8.2)).

(9.3) Ms(s,y,M)+cvh(§)vh(§)T
where

(9.4) s =x-%x ,

(9.5) y = 0 L&) 74,0,

M 1is the current approximation to viz(x,x) and MS is a s«cant update.

Theorem 9.1. The superstructured versions of the structured secant method
for the extended problem with L, the diagonalized secant multiplier method
using U, and the successive quadratic programming secant methods, generate

identical (x,)) iterates which are independent of the penalty constant C .

Proof. The equivalence is the same as before. For the independence of C
observe that in the case B = M-l-CV’h(x)Vh(x)T the system (8.7) and (8.8)

reduces to the system
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|
o

(9.6) MAx%-vf(x)4-vh(x)xQP =

(9.7) vh(x) *Az + h(x)

[}
o

We are assuming that the initial M matrix is independent of C; hence,

Ax  and obtained from (9.6) - (9.7) will be independent of C, and

KQP
from (9.5) we see that M will be independent of C. B

We can say with some confidence that taking advantage of available
structure is worthwhile since it obviously leads to better approximate
Hessians. However, acceptance of this statement implies that there is no
need for the penalty constant and we have followed the role of the penalty
constant to its logical conclusion.

In the literature we have seen several authors argue that the penalty
constant should not be used because it is difficult to choose and its use
merely makes the algorithm messy. Of course, we have had to accept this
denial of the penalty constant in the context that it was made; namely,
with little confidence.

Unless we are willing to assume that viz(x*,x*) is positive definite
we have no local convergence theory for these secant methods for constrained
optimization. Currently there is considerable work being performed in this

area.

10. Global Behavior and Step-length Control. The implementation and con-

vergence theory we have presented for the structured quasi-Newton methods for
the extended problem and equivalent algorithms has been local. Namely, we
will have convergence at the proper rate if both the initial iterate and

the initial approximation to the Hessian are close to the solution and the
Hessian at the solution respectively. We now consider one approach that

can be employed when it is not known whether we are near the solution or not.
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We will introduce step-length control in the structured quasi-Newton
methods for the extended problem. It will then follow that our comments
and ideas can be carried over, in the obvious way, to the equivalent
diagonalized quasi-Newton methods and to the equivalent successive quad-
ratic programming quasi-Newton methods.

By step-length control in the structured quasi-Newton method for the

extended problem with L we mean the inclusion of « in (3.14) in the
following form
x X

(10.1) = - ozB'le(x,x;C)
A

>

We know from the Dennis-Moré theory that  must approach 1 1if we are
to retain superlinear convergence. So, locally the choice «o=1 is
optimal. However, choosing =1 when the iterates are far from the
solution could be disastrous; one approach is called back tracking.
Namely, given a merit function, say, §(x,);C), try «o=1 in (10.1).
If satisfactory reduction or behavior is obtained in terms of the merit
function, then accept «o=1; otherwise, cut « down and re-evaluate
the behavior in terms of the merit function (for details see Chapter 5
of Dennis and Schnabel (1981)).

Obvious choices for merit functions when dealing with problem (EQ)

as given in (3.12) are the classical Lz-penalty function

(10.1) 8 (x,150) = £(x) +5 h(x) h(x) ,
the zl-penalty function
P
(10.2) 8 (x,13C) = £(x) +C Z[hi(x)[,
i=1

the classical Lagrangian

(10.3) 8(x,1;C) = £(x) + ATh(x) ,
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the augmented Lagrangian
T c T
(10.4) 3(x,23C) = £(x)+ )\ h(x)i-f h(x) "h(x) ,

the Zz-norm squared of the gradient of the augmented Lagrangian
T T
(10.5) ®(x,7;C) = vxL(x,x;C) VXL(X,X;C)4-h(x) h(x) ,

the exact penalty function used by Boggs-Tolle-Wang (1979) and DePillo-

Grippo (1979)

(10.6)  2(x,10) = £+ 'h®) +5h ) e + 2y x0T L0

These merit functions can all be extended to problems with inequality
constraints by adding a term of the form min(O,gi(x)) for each inequality
constraint of the form gi(x) >0 . In (10.5) and (10.6) one should
probably work with min(O,gi(x))2 .

There are numerous studies in the literature concerned with deter-
mining the effectiveness of one of the merit functions given above. A
nice global convergence analysis was given by Dixon (1979) for the merit
functions (10.5) and (10.6). Biggs uses (10.1) to globalize his version of
the SQP algorithm. Han (1977) and Powell (1977) use (10.2). Tapia (1977)
suggests the use of (10.5) and Bertocchi, Cavalli and Spedicato (1979)

give several numerical examples using (10.5).
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