Al

On the Performance of
Algorithms for Large-Scale
Bound Constrained Problems

Jorge J. More’

CRPC-TR90038
February, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

PREPRINT MCS-P140-0290

On the Performance of Algorithms for Large-Scale

Bound Constrained Problems
by

Jorge J. More

February 1990

Mathematics and Computer Science Division
Argonne National.,Laboratory {*"’g \!

%‘*nov o

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Ilinois 60439

ON THE PERFORMANCE OF ALGORITHMS FOR LARGE-SCALE
BOUND CONSTRAINED PROBLEMS

Jorge J. Moré

Mathematics and Computer Science Division

Preprint MCS-P140-0290

February 1990

Work supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

ABSTRACT

We discuss issues that affect the performance of algorithms for the solution of large-scale
bound constrained problems on parallel computers. The discussion centers on the solution
of the elastic-plastic torsion problem and the journal bearing problem. These two prob-
lems are model large-scale quadratic programming problems that arise as finite element
approximations to elliptic variational inequalities. Performance issues are illustrated with
the GPCG algorithm of Moré and Toraldo. This algorithm uses the gradient projection
method to select an active set and the conjugate gradient method to explore the active set
defined by the current iterate. We show that significant improvements in the performance
of the GPCG algorithm can be obtained by using partitioning techniques in a parallel envi-
ronment. We also show that these partitioning techniques lead to almost linear speedups on
function-gradient evaluations and Hessian-vector products for partially separable functions.

1 Introduction

The solution of large-scale bound constrained problem has attracted considerable attention.
Much of the work has centered on the combinatorial problem of deciding which constraints
are active at the solution. Standard active set strategies drop or add one constraint at each
iteration, and thus these strategies are inappropriate for the solution of large-scale problems
unless the active set for the solution is estimated accurately. This combinatorial problem is a
central issue in the performance of algorithms for large-scale linearly constrained problems.
In this paper we do not dwell on this combinatorial problem. Our aim is to discuss some
of the other issues that affect the performance of algorithms for large-scale problems of the
form

min{g(z):1 <z < u}, (1.1)

where ¢ : R™ — R is a strictly convex quadratic, and the vectors [and u specify the bounds
on the variables. As we shall see, the issues that are raised by this problem are relevant to
the general nonlinear bound constrained problem.

We are interested in algorithmic performance on parallel computers. Our interest is
mainly due to recent results of Moré and Toraldo [9] that suggest that the above combina-
torial problem has been solved for an important class of large-scale problems of the form
(1.1). Moré and Toraldo considered problems that arise as finite element approximations to
elliptic variational inequalities and showed that the gradient projection method can be com-
bined with the conjugate gradient method to solve large-scale (number of variables between
5000 and 15000) bound constrained problems with a few (less than 15) iterations. The per-
formance of this algorithm (GPCG) on an Alliant FX/8, however, was not adequate. We
explore the reasons behind this inadequate performance and show that significant improve-
ments in performance are possible by making use of partitioning techniques and the parallel
processing capabilities of the Alliant. We also show that these partitioning techniques are
applicable to a large class of problems.

We use the GPCG algorithm of Moré and Toraldo to illustrate performance issues. We
also use the elastic-plastic torsion problem and the journal bearing problem as model large-
scale problems of the form (1.1). The torsion and journal bearing problems are briefly
described in Section 2, where we also show that finite element approximations to these
problems lead to a strictly convex quadratic programming problem with bounds on the
variables. The quadratic that arises from these approximations is a partially separable
function. This class of functions, introduced and analyzed by Griewank and Toint [6], is
of importance because most large-scale optimization problems are naturally represented by
partially separable functions.

The GPCG algorithm is described in Section 3. This algorithm uses the gradient pro-
jection algorithm to choose an active set and the conjugate gradient method to explore

*

the active set. Several authors have proposed algorithms that combine the gradient pro-
jection and the conjugate gradient method for the solution of bound constrajned quadratic
programming problems. Recent papers on this topic include those of Yang and Tolle [12],
Wright [11], and Bierlaire, Toint, and Tuyttens [2]. A difference between these algorithms
is that the GPCG algorithm uses the gradient projection method until a sufficient decrease
condition holds or the active set settles down. We feel that this use of the gradient projection
method is an important feature of the search for the active set defined by the solution.

The description of the GPCG algorithm notes, in particular, where calls to the user-
supplied software for function-gradient evaluations and Hessian-vector products are re-
quired. This is of importance because in many problems the computing time is dominated
by these calls. This claim is supported by the performance profiles of Section 4 which
show that about 90% of the computing time in the torsion problem and the journal bearing
problem is consumed by calls to the user-supplied software.

Sections 5 and 6 explore the use of concurrency for function-gradient evaluations and
Hessian-vector products of partially separable functions. We show that the use of parallelism
in these computations usually leads to a synchronization problem but that it is possible to
avoid this synchronization problem by a suitable partitioning of the element functions.
Moreover, we present numerical results that demonstrate that the use of this partitioning
leads to nearly linear speedups on the Alliant FX/8.

In Section 7 we find that the use of the partitioning techniques of Sections 5 and 6 lead
to significant improvements in the efficiency of the GPCG algorithm on the torsion and
journal bearing problems. Moreover, we show that these improvements hold for problems
where the number of variables range between 2,500 and 40, 000.

Other researchers have considered the connection between partially separable functions
and supercomputers, but the emphasis has been on vector machines. See, for example,
Lescrenier (7] and Lescrenier and Toint [8]. We also note that there has been no discussion
of the synchronization problems discussed in Sections 5 and 6.

We draw attention to the work on conjugate gradient methods for the solution of linear
systems on supercomputers. See, for example, Saad’s [10] survey. Although this work is
related to the material presented in this paper, there are important differences. One differ-
ence is that the solution of problem (1.1) requires the approximate solution of a sequence
of linear systems. In most cases the accuracy required of the approximate solution is quite
low, so techniques used to obtain accurate solutions may be unnecessarily costly. Another
difference is that the structure imposed by partially separable functions has not been con-
sidered. Finally, much of the work on conjugate gradient methods for linear systems has
concentrated on methods for sparse matrix-vector products with full vectors, but in Section
6 we need sparse matrix-vector products with sparse vectors.

2 Test Problems

We use the elastic-plastic torsion problem and the journal bearing problem as models of
large-scale problems of the form (1.1). The description below brings out the main features
of these problems; a complete description can be found in Moré and Toraldo [9].

The elastic-plastic torsion problem and the journal bearing problem arise as finite ele-
ment approximations to elliptic variational inequalities. These two problems can be formu-
lated as minimization problems of the form

min{g(v) :v € K}

where ¢ : K — R is a quadratic over a closed convex set K in the Hilbert space H§(D) of
all functions with compact support in D such that v and ||Vv||? belong to L%(D). In the
elastic-plastic torsion problem D = (0,1) x (0,1) and

a(v) = } [IVoldesdes = e [vdtrdes

for some constant ¢. The convex set K is defined by
K = {v e H)D) : |v(z)| £ dist(z,8D), z € D}

with dist(-,0D) the distance function to the boundary of D. In the journal bearing problem
D = (0,27) x (0,2b) for some constant b > 0 and

q(v) = %./'D(l + ecos {1)3||Vv||2d§1d§2 — e/D sin(&;)v d&dé;
for some constant € in (0,1). The convex set K is defined by
K ={ve Hy(D):v>0on D}.
Thus, both problems are of the form

o) =} [wllVolfdeades - [wwdeides,

where wy : D — R and w; : D — R are functions defined on the rectangle D. In the torsion
problem w, = 1 and w; = ¢, while in the journal bearing problem w,(&;, &) = (1+€cosé;)?
and wi(&;,&2) = esinéy. '

Finite element approximations to these problems are obtained by triangulating D and
replacing the minimization of ¢ over H3(D) by the minimization of g over the set of piecewise
linear functions that satisfy the constraints specified by K. The finite element approxima-
tions thus give rise to a finite-dimensional minimization problem whose variables are the
values of the piecewise linear function at the vertices of the triangulation.

¥

Figure 1: Triangulation of a rectangular domain

Let D = (&1, &1,u) X (€2, €2,4) be arectangle in R2. Vertices z;; € R for a triangulation
of D are obtained by choosing grid spacings h; and hy and defining grid points

zij = (&u+the, &1+ jhy), 0<i<nz+1, 0<j<n,+1

such that zn,4+1,n,41 = (&1,4, §2,u)- The triangulation consists of triangular elements T}, with
vertices at 2;j, 2it1,5, %i,j+1, and triangular elements Ty with vertices at 2i 5y Zin1,js Zi,j-1-
These triangular elements are shown in Figure 1.

A finite element approximation to the torsion and journal bearing problems is obtained
by minimizing ¢ over the space of piecewise linear functions v with values v; ; at z; ;. The
values v; ; are obtained by solving a quadratic programming problem of the form

min{g(v): v € Q} (2.1)
where ¢ is the quadratic

g(v) = % Y 4ii(v) = hohy o wilzi)vij, (2.2)

the quadratic ¢; ; is defined by

o — s\ 2 . A\2
qf,j(v)=#i,j{(’—’1i‘-ﬁ’;;ﬁi) +(’_’%y_&g) }+

and the constants u;; and A;; are defined by

hzh

pig = = {wq(2i) + we(2it1,5) + wo(7i541)} (2.3)
and bk
Aij = —%—’i {wq(2i5) + wq(2i-1,;) + wo(2ij-1)} - (2.4)

For the torsion problem the feasible set {2 is
Q={veR"™:|v;| <d;} (2.5)
where d; ; is the value of dist(-,dD) at z; ;, while
Q={veR"™™ :v;; >0} (2.6)

for the journal bearing problem. For both problems ¢ : R® — R is a strictly convex
quadratic, and the feasible set (2 is of the form

Q={zeR":l<z< u} (2.7)

for some vectors I and u in R", where n = nzn,. As we shall see in our discussion
of performance issues, the representation (2.2) of the quadratic ¢ is of importance. The
essential feature of this representation is that ¢ is the sum of functions of a few variables,
and thus ¢ is a partially separable function.

3 Algorithms

We now provide a concise description of the GPCG algorithm of Moré and Toraldo [9].
Since we are interested in performance issues, the description below notes the need for
function-gradient evaluations and Hessian-vector products.

The GPCG algorithm uses the conjugate gradient method to explore the active set

A(z) = {i: z; € {l;,ui}} (3.1)

defined by the current iterate. Once this exploration is completed, the gradient projection
method is used to choose a new active set.

Given the current iterate zj, algorithm GPCG explores the active set defined by the
current iterate by computing an approximate minimizer of the subproblem

min{g(zx + d) : d; = 0, i € A(zx)} (3.2)

Given an approximate minimizer dy of subproblem (3.2), algorithm GPCG uses a projected
search to choose a search parameter aj such that ¢(zx41) < g(zx) where

Tpy1 = P(Zk + akdk) (3.3)

and P is the projection into the feasible region Q. The projected search requires a function-
gradient evaluation for each trial value of a;. Also note that for the bound constrained
2 defined by (2.7), the computation of the projection P only requires order n operations
because

P(z) = mid(l,u,z)

where mid(l,u,) is the vector whose i-th component is the median of the set {li, ui, 24}

The approximate minimizer d; of subproblem (3.2) is obtained by first noting that if
U1, -.,im, are the indices of the free variables, that is, those variables with indices outside
of A(z), then subproblem (3.2) is equivalent to the unconstrained subproblem

min{gr(w) : w € R™}, (3.4)

where g : R™ — R is defined by gx(w) = ¢(zk + Zxw), and Zj is the matrix in R™X™*
whose j-th column is the i;-th column of the identity matrix in R™*". Given the starting
point wo = 0 in R™*, algorithm GPCG uses the conjugate gradient algorithm until it
generates w; such that

g (wj-1) = gr(w;) < mmax{ge(wi-1) — g(wr) : 1 <1 < 5} (3.5)

for some fixed constant 7, > 0. The approximate solution of subproblem (3.2) is then
dy = Zpwj,, where jyi is the first index j that satisfies (3.5).

Each iteration of the conjugate gradient method requires a Hessian-vector product. It is
important to note that the vector involved in this calculation has zero components whenever
the index of that component is in the active set. Moreover, only the free components of the
Hessian-vector product are needed.

If the iterate zx4; generated by the conjugate gradient method appears to have identified
the active set defined by the solution, then algorithm GPCG explores this active set further.
The decision to continue the conjugate gradient method is based on the observation that if
A(z) = A(z*), then the binding set

B(z) = {i:z; = l; and 9;¢(z) > 0, or z; = u; and 9;q(z) < 0}

agrees with the active set A(z). Thus, if the conjugate gradient method produces an iterate
Ti41 such that B(zg41) = A(Tr41), then algorithm GPCG continues to use the conjugate
gradient method to explore this active set.

Once the conjugate gradient algorithm has explored an active set, algorithm GPCG uses
the gradient projection method

Ye+1 = P(yk — @k V f(yx)) (3.6)

with yo =) to select a new active set. If for some fixed constant 7, > 0 either of the two
tests

A(y;) = A(yj-1), (3.7)
9(yj-1) — 9(y;) < memax{g(yi-1) — ¢(x) : 1 <1 < 5} (3.8)

is satisfied, then algorithm GPCG sets zx41 = y;,, where ji is the first index j that satisfies
(3.7) or (3.8).

We note that other algorithms that combine the gradient projection and the conjugate
gradient algorithm do not use tests (3.7) and (3.8). For example, Bierlaire, Toint, and
Tuyttens [2] use only one iteration of the gradient projection algorithm, while Wright [11]
uses the gradient projection algorithm until (3.7) holds. In our numerical results the gradient
projection only requires a few iterations to satisfy (3.7) or (3.8), and in most cases (3.7) is
satisfied first.

The same algorithm is used to choose the search parameter aj in (3.3) and in (3.6). Thus,
each iteration of the gradient projection method requires a function-gradient evaluation for
each trial value of a;. In addition, the initial trial value of ey in (3.6) requires a Hessian-
vector product; this is not required for (3.3) because in this case the initial trial value is
ar = 1. Also note that the vector in the Hessian-vector product needed to obtain the initial
trial value of aj in (3.6) is V f(yx), which has zero components whenever the index of that
component belongs to B(y).

The convergence properties of algorithm GPCG are summarized in the following result
of Moré and Toraldo [9].

Theorem 3.1 Let ¢ : R — R be a strictly convez quadratic. If {z\} is the sequence
generated by algorithm GPCG for problem (1.1), then {z\} converges to the solution z* of
problem (1.1). If the solution z* of problem (1.1) satisfies

diq(z*) # 0, i€ A(z"),
then algorithm GPCG terminates at the solution z* in a finite number of steps.

This result is of interest because finite termination does not depend on finding the
global minimum of subproblem (3.2). In most other algorithms for problem (1.1), finite
termination is guaranteed by adding one constraint at a time until the global minimum of
subproblem (3.2) is found for some active set. In the GPCG algorithm, finite termination is
obtained by using the gradient projection method to identify the active set of the solution
and using the conjugate gradient method to obtain the solution of subproblem (3.2) for this
active set.

Table 1: Elastic-plastic torsion problem

n nfree | iterations | nf/iter | nh/iter | time
10000 | 7016 14 4.5 23.3 197

Table 2: Journal bearing problem

n nfree | iterations | nf/iter | nh/iter | time
10000 | 6768 10 4.6 33.3 339

4 Performance Profiles

The aim of this section is to analyze the performance of the GPCG algorithm on the
torsion and journal bearing problems. The numerical results presented in this section were
obtained by using double precision (16 decimal places) on the Alliant FX/8 at the Advanced
Computing Research Facility of Argonne National Laboratory.

We have already noted that the elastic-plastic torsion problem and the journal bearing
problem are of the form (2.1) where ¢ is the quadratic (2.2). The quadratics g; ; which define
g are expressed in terms of functions w, and w;. In the torsion problem w, = 1 and w; = c.
For the test problem we set ¢ = 5. In the journal bearing problem wy(&1,&2) = (1+€cos £)3
and wi(&1,&2) = esiné;. For the test problem we set € = 0.1.

The starting point for the GPCG algorithm in the torsion problem is the vector z¢ = u,
where u is the vector of upper bounds; in the journal bearing problem zo = I, where [= 0
is the vector of lower bounds.

In the triangulation of the rectangle D we set n; = n,. Recall that for the torsion
problem D = (0,1) x (0,1), while for the journal bearing problem D = (0, 2x) x (0,25). In
our numerical results b = 10.

In Tables 1 and 2 we present the numerical results obtained with the GPCG algorithm
for a problem with n = 10,000 variables. We have used the same parameter settings (for
example, 71 = 0.1 and 72 = 0.25) as in the results of Moré and Toraldo [9]. In these tables
nfree is the number of free variables at the solution. This is a measure of the effort required
to solve the problem, because the GPCG algorithm will need to solve (approximately) a
linear system of equations with nfree variables. The number of iterations is of importance
because it represents the number of active sets that were explored by the conjugate gradient
method. We also provide the number nf of function-gradient evaluations, and the number
nh of Hessian-vector products. Finally, we list the time needed to satisfy the convergence

[

test
IVag(2)ll < 7l|Vg(o)]
with 7 = 1075, In this test the projected gradient Vqq is defined by

0iq(z) if z; € (L, ui)
[Vag(z))i = { min{diq(z),0} ifz;=1;
max{0;q(z),0} ifz;=u;

For more information on the numerical results presented in Tables 1 and 2, see Moré and
Toraldo [9].

The timing information that we present in this paper depends on the compiler options.
In all cases we have used full optimization, automatic vectorization, and automatic concur-
rency. Moreover, we have allowed automatic associativity. The Alliant manual [1] contains
more information on these options. In general, the use of automatic vectorization and
automatic associativity leads to smaller speedups, but faster computing times.

A performance profile was obtained by executing the GPCG algorithm on one of the
processors of the Alliant. These results show that most of the time is spent in function-
gradient evaluations and Hessian-vector products. For the torsion problem 18.5% of the time
is spent in function-gradient evaluations, and 70.7% of the time is spent in Hessian-vector
products. Similar results are obtained in the journal bearing problem. For this problem
17.1% of the time is spent in function-gradient evaluations and 72.6% of the time in Hessian-
vector products. Thus, on either problem, at least 89% of the time is spent in calls to the
user-supplied software. This implies that any significant performance improvements for the
GPCG algorithm must come about by reducing the computing time required to evaluate
the user-supplied subroutines.

5 Concurrent Evaluation of Function and Gradient

We have noted that on our test problems the execution time of algorithm GPCG is domi-
nated by the time required for the user-supplied function-gradient evaluations and Hessian-
vector products. In this section we examine the impact of parallel processing on the ex-
ecution times of the user-supplied subroutines. The discussion below is restricted to the
quadratic defined by (2.2), but many of our remarks extend to the class of partially separable
functions, that is, to any function that is the sum of functions of a few variables.

We first consider the parallel evaluation of the quadratic ¢ defined by (2.2). The ex-
pressions ¢; j(v) and wj(z; ;) in the definition of ¢ can be evaluated in parallel. In general,
these values would need to be stored in an array, and the results added at a later time. The
accumulation of these values to obtain the final function value ¢(v) can be done in parallel
by dividing the values g; j(v) and w;(z; ;) into groups and assigning the accumulation of a

.

group to a processor. Since we use automatic associativity in our numerical results, the
Alliant compiler parallelizes the computation of ¢ without the need for additional storage.

We now show that the parallel evaluation of the gradient usually leads to a synchroniza-
tion problem. Note that the gradient Vg is related to the gradients Vg; ; by the expression

Vq(v) = % > V4ii(0) — hahy (3 wilzi3)) €

where e € R" is a vector with all components set to unity. Since each ¢;; depends on 5
components of v, the gradient Vg; ; has at most 5 nonzero components. A synchronization
problem arises if we try to use the storage for the gradient Vg(v) to store these values,
because different gradients Vg;; have nonzero components in the same position. This
synchronization problem can be avoided by allocating additional storage for the nonzero
elements of each gradient Vg; ;.

We can avoid the synchronization problem and the need for additional storage by eval-
uating the gradients Vg; ; in a carefully chosen order. First note that it is natural to write
the function g; ; in the form

gij(v) = qil,'j(”) + qf,’,-(v)

2 2
qt,]('U) = Hij { (h:z:) + (—hy) }
%,; AT U — —-———-—-—-hy .

This is a natural decomposition because the function q,-I,‘J- is associated with the triangular

where

and

element Ty, with vertices at 2;;, zit1,j, 2i,j+1, and qgj is the function associated with the
triangular element Ty with vertices at z; j, zi-1,5, 2i,j—1-

The gradients of the functions q,{'j can be evaluated in parallel by splitting the functions
q,-l,'j into groups so that functions in a group do not have variables in common. Splitting
the functions in this manner guarantees that the gradients of the functions in a group do
not have nonzero components in the same position, and thus avoids the synchronization
problem and the need for additional storage.

The partition problem of splitting the functions qf’j into groups so that functions in a
group do not have variables in common can be attacked by partitioning the triangles 17,
into groups so that triangles in a group do not intersect. We claim that if we identify each
triangular element T, with vertices at 2; j, Zi1,j, 2i,j+1 With the element (4, j) of the set

S={(37):0<i<n;, 0<j<ny},

10

S1 51 51

Sl Sl

S] Sl

51 S1 S1

Figure 2: Triangular elements Ty, in Sy

then the three sets

S1={(¢,7) € §: k=1 —mod(j,3) > 0, mod(k,3) = 0}
Sy ={(¢,7)€ S :k=1i—mod(j+1,3) >0, mod(k,3) = 0}
Ss={(i,7) € S : k = i — mod(j +2,3) > 0, mod(k,3) = 0}

define a suitable partition. The proof that this partition has the desired properties is obvious
once it is viewed in terms of the triangular elements 7. For example, the triangular elements
Tr, associated with S are marked in Figure 2.

At the programming level the partitioning can be done by splitting the code that eval-
uates the gradients of the functions qu into three loops. For example, the loop

do j = 0, ny
do i = mod(j,3), nx, 3

can be used to evaluate the gradients of the functions in the set S; under the assumption
that the body of this loop evaluates the gradient of the function qu.

We have shown how to partition the functions qil,‘j so that functions in a group do not
have variables in common. Similar techniques apply to the functions q,U’J

Tables 3 and 4 present the time (in seconds) needed to evaluate the function and gradient
for n = 10,000. The sequential code uses the unmodified function-gradient evaluation, while
the parallel code partitions the function into three groups as described above. Since the
time for one evaluation is small, the timings are the averages over 100 evaluations.

The main conclusion that can be drawn from the results in Tables 3 and 4 is that the
partitioning technique that we have described leads to almost linear speedups on the number

11

Table 3: Torsion problem: Timings for function-gradient evaluation

Type of code | 1 processor | 8 processors | speedup
sequential 0.560 0.397 1.41
parallel 0.555 0.0778 7.23

Table 4: Journal bearing problem: Timings for function-gradient evaluation

Type of code | 1 processor | 8 processors | speedup
sequential 1.52 0.934 1.62
parallel 1.21 0.165 7.33

of processors. This is an important observation because this partitioning technique can be
generalized to any partially separable function.

The partition problem for general partially separable functions is a difficult combinato-
rial problem that arises in a number of areas. For example, the general partition problem
arises in the context of estimating sparse Jacobian matrices. For details and references, see
Coleman and Moré [4], where the partition problem is shown to be equivalent to a graph
coloring problem. Recent work in this area includes the software for the partition problem
described by Coleman, Garbow, and Moré [3], and the work of Goldfarb and Toint [5] on
the partition problem for matrices that arise from finite element approximations.

6 Concurrent Evaluation of Hessian-Vector Products

In this section we consider the parallel evaluation of Hessian-vector products for a partially
separable function. We focus, in particular, on the case where the nonzero components of
the vector are in a specified list and when it is necessary to compute only the components
of the Hessian-vector product in this list.

The discussion below extends to general partially separable functions, but we consider
only the quadratic ¢ defined by (2.2). In this case, the product of the Hessian with vector
d in R™ is given by

Vig(v)d = % E V24g; i(v)d.

From this expression it is clear that the Hessian-vector product can be obtained by evalu-
ating each product V2¢; ;(v)d and accumulating the result. This technique, however, runs
into the same synchronization problem as in the function-gradient evaluation. Indeed, note

12

-n

Table 5: Torsion problem: Timings for Hessian-vector evaluation

Type of code 1 processor | 8 processors | speedup
sequential 0.480 0.473 1.01
parallel 0.423 0.0584 7.24

Table 6: Journal bearing problem: Timings for Hessian-vector evaluation

Type of code | 1 processor | 8 processors | speedup
sequential 0.983 0.939 1.04
parallel 0.627 0.0863 7.26

that the vector V2¢; j(v)d has the same sparsity pattern as the gradient Vg; j(v). Given
this observation, it is clear that the synchronization problem can be avoided by partitioning
the functions as in Section 5.

Tables 5 and 6 contain the time (in seconds) needed to evaluate the Hessian-vector
product of the quadratic ¢ for » = 10,000. The sequential code uses the unmodified
Hessian-vector product, while the parallel code partitions the functions gF; and ¢¥; into
three groups as in Section 5. We also note that the times in these tables are the averages
over 100 evaluations.

The vector d used in Tables 5 and 6 had all components nonzero. Since in algorithm
GPCG the vector d is generally sparse, these timings and speedups are not representative.

If we wish to take advantage of the zero components in the vector d, we can do this
by constructing a boolean array mask so that the i-th component of d is zero whenever
mask(i) is false. In the GPCG algorithm, the information needed to construct the array
mask is a natural by-product of the determination of the active and binding sets.

Given the array mask, the product V2g; j(v)d is computed only if mask(l) is true for
any variable v; in gi,j. Of course, if mask(l) is false for all variables v, in g¢; ;, then the
product V2g; ;(v)d is zero.

The above technique can lead to some wasted effort because we usually do not need to
compute all the components of V2g; ;(v)d. Consider, for example, the case where some gi,j
depends on variables in the set {1,3,5}. If the vector d has a zero component in the first
component, then usually the first component of the product V2¢; ;(v)d is nonzero if the
third or fifth component of d is nonzero. However, in applications the first component is

usually not needed. This is precisely the situation in the GPCG algorithm of Section 3.

13

.

If we need to only compute those components of the Hessian-vector product specified
by the boolean array mask, we can satisfy this requirement by making a test on mask(l)
before the computation of the I-th component of V24g; j(v)d. The amount of effort saved by
this technique depends on the function gi,;. However, this test eliminates the computation
of unnecessary components.

The sequential and the parallel code in Tables 5 and 6 used the array mask to define
the nonzero components of the array d and the components of the Hessian-vector product
V2g(v)d that must be computed. We have already noted that the vector d used in these
tables had all components nonzero; for sparse vectors these results tend to improve. For
example, the speedup for a vector with 7000 nonzero components is 7.4 for the torsion prob-
lem and 7.5 for the journal bearing problem. Since both problems have roughly 7000 free
variables at the solution, these speedups are representative of the Hessian-vector product
in these problems.

7 Performance Evaluation

In the previous two sections we have considered the performance improvements in the
function-gradient evaluations and Hessian-vector products for partially separable functions.
We now consider the improvements in computing times for the solution of the model prob-
lems.

Tables 7 and 8 present timings (in seconds) for the solution of the torsion and journal
bearing problem with the parallel version of the GPCG algorithm. The purpose of these
tables is to examine the performance of the GPCG algorithm as a function of the number
of variables.

The version of the GPCG algorithm used to obtain these results uses the partitioning
approach of Sections 5 and 6 to speedup function-gradient evaluations and Hessian-vector
products. We have also used compiler directives to improve the performance of the indirect
addressing required by algorithm GPCG. For example, a loop of the form

do k 1, nfree
i list(k)
z(i) = min(max(1(i),x(i)+alpha*d(k)),u(i))

is used to compute the iterate in (3.3). This loop needs a compiler directive to certify that
the use of indirect addressing does not lead to synchronization problems in the computation
of the array z. In this loop the integer array 1ist contains the indices that are free during
the conjugate gradient iteration, and the array d specifies the approximate minimizer of
subproblem (3.2). The array d has a packed representation because efficiency considerations
have dictated the use of packed arrays in the implementation of the conjugate gradient
algorithm.

14

Table 7: Timings for the torsion problem: Parallel algorithm

Dimension | 1 processor | 8 processors | speedup
2500 23.5 3.84 6.11
5625 72.0 11.7 6.15
10000 189 29.6 6.38

22500 559 90.8 6.15
40000 1172 191 6.13

Table 8: Timings for the journal bearing problem: Parallel algorithm

Dimension | 1 processor | 8 processors | speedup
2500 34.5 5.34 6.46
5625 121 18.0 6.72
10000 261 38.3 6.81
22500 806 128 6.29
40000 1733 287 6.03

The speedups obtained in Tables 7 and 8 compare favorably with those obtained for
typical basic operations. For example, the speedup for the computation of the gradient
projection iterate in (3.3) with the above loop is 5.92 for nfree = 10,000. In general,
speedups above 6 on an Alliant FX/8 are considered quite good. A speedup of 6 on the
Alliant means that we are operating with 75% efficiency.

8 Conclusions

The speedups obtained in Tables 7 and 8 show that significant improvements in the per-
formance of the GPCG algorithm are obtained by making use of partitioning techniques
and the parallel processing capabilities of the Alliant. We have concentrated on the GPCG
algorithm because the numerical results of Moré and Toraldo [9] show that this algorithm
is an efficient solver of large-scale problems of the form (1.1).

We have also shown in Sections 5 and 6 that the partitioning techniques lead to almost
linear speedups on function-gradient evaluations and Hessian-vector products. These results
are of interest because the partitioning techniques are applicable to computations with

15

partially separable functions on any reasonable parallel computer.

We end with a cautionary note. In the presentation of our numerical results we have
concentrated on the speedup obtained by various computations, but we must not forget that
the motivation for this work is to reduce the total computing time for these problems. This
is one of the reasons for using full optimization, automatic vectorization, and automatic
concurrency in our numerical results. As we have noted, the use of automatic vectorization
and automatic associativity leads to smaller speedups, but faster computing times.

Acknowledgments

I would like to thank David Levine for his advice on the Alliant FX/8, and Gail Pieper for
her comments on the manuscript.

References

[1] ALLIANT COMPUTER SYSTEMS CORPORATION, FX/Fortran Programmer’s Handbook,
1988.

[2] M. BIErLAIRE, P. L. ToiNT, AND D. TUYTTENS, On iterative methods for linear

least squares problems with bound constraints, Report 89-5, Namur University, Namur,
Belgium, 1989.

[3] T. F. CoLEMAN, B. S. GARBOW, AND J. J. MORE, Software for estimating sparse
Jacobian matrices, ACM Trans. Math. Software, 10 (1984), pp. 329-345.

[4] T. F. CoLEMAN AND J. J. MoRE, Estimation of sparse Jacobian matrices and graph
coloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187-209.

[5] D. GoLDFARB AND P. L. TOINT, Optimal estimation of Jacobian and Hessian matrices
that arise in finite difference calculations, Math. Comp., 43 (1984), pp. 69-88.

[6] A. GRIEWANK AND P. L. TOINT, On the unconstrained optimization of partially sepa-
rable functions, in Nonlinear Optimization 1981, M. J. D. Powell, ed., Academic Press,
1982.

[7] M. LESCRENIER, Partially separable optimization and parallel computing, Ann. Oper.
Res., 14 (1988), pp. 213-224.

[8] M. LESCRENIER AND P. L. TOINT, Large scale nonlinear optimization on the FPS16/

and CRAY X-MP vector processors, International Journal of Supercomputer Applica-
tions, 2 (1988), pp. 66-81.

16

[9] J. J. MoRE AND G. TORALDO, On the solution of large quadratic programming prob-
lems with bound constraints, Report MCS-P77-0589, Argonne National Laboratory,
Argonne, Illinois, 1989.

[10] Y. SaAD, Krylov subspace methods on supercomputers, STAM J. Sci. Statist. Comput.,
10 (1989), pp. 1200-1232.

[11] S. J. WRIGHT, Implementing prozimal point methods for linear programming, Report
MCS-P45-0189, Argonne National Laboratory, Argonne, linois, 1989.

[12] E. K. YANG AND J. W. TOLLE, A class of methods for solving large convez quadratic
programs subject to boz constraints, preprint, University of North Carolina, Department
of Operations Research, Chapel Hill, North Carolina, 1988.

17

