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Abstract: Progress in implicit-moment methods for plasma simulaticn
on magnetohydrodynamic (MHD) time scales is described. A methed ZIs
sought that is applicable not only to transport on MHED time scales,
but also to plasma interactions with a wall and to sheath formation.
The implicit field equations for a plasma in a DC magnetic field are

given, and a method is described for

their soluticn. An adaptive grid

formulation is outlined, and a problem initialization presented to
illustrate its application. The issue of nonlinear stability, which

is still unresolved, is reviewed.
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It is a major challenge in modeling
magnetically confined plasmas to close
the large gap between the time and space
scales in magnetic fusion experiments,
and the time and space scales on which
one can solve the plasma kinetic
equations. To understand the kinetics of
energy confinement and impurity
production in magnetic confinement
experiments, one must bridge this gap.
Methods to model kinetic effects in
three dimensions on magnetohydrodynamic
time scales in realistic geometries are
the ultimate goal.

Current research in plasma
simulation methods seeks to increase the
capabilities of kinetic simulations
along two lines: the development of new
methods that can be used on the highly
parallel computers of the future, and
the development of new numerical
techniques that can be used on the
supercomputers of the present. Progress
along the second line and its impact on
modeling capabilities in the
intermediate term is emphasized.

It is already a decade since new
methods for simulating plasmas on long
time scales were introduced. The methods
include implicit methods, which allow
one to integrate the equations of motion
using large time steps!s 2. 3, and
gyrokinetic methods, which eliminate the
fast time scales by asymptotic
analysis4. The gyrokinetic methods have
demonstrated capabilities for modeling
drift instabilities in magnetized
plasmas. The implicit methods are
general purpose methods, with
applications to edge effects as well as
transport problems.

The implicit methods use
time-implicit formulations of the
equations of motion that eliminate the
stability constraint on the size of the
time step. The implicit equations yield
time-resolved solutions for all those
processes that evolve sufficiently

slowly, and time-asymptotic solutions
for processes which evolve too rapidly
to be resolved by the time step.
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The equations of motion for a
plasma in a magnetic field include an
equation to calculate the particle
position, Xpo, from the particle
velocity, up,

dxn
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7Y )
a momentum equation to calculate the
particle velocity in the electric, E,
and magnetic, B, fields,

du, g u xB
— 2
T, E+ — 2

(where gg/mg 1is the charge to mass
ratio, and ¢ is the speed of light), and
Poisson's equation to calculate the
electric field from the net charge
density, n,

VoE:duZns. 3)
S

The particles are labeled by the
subscript p, and the species (e.g. ions
and electrons) by the subscript s.

N ical P] S lati

In a numerical calculation, Egs.
(1-3) are approximated by finite
differences. Consider the approximation
to derivatives with respect to time.
Semi-discrete approximations to Egs.
(1-3) are,
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where At is the time
charge density az (
density is cailculated
particle distributicn
S5, with prorerzies,

cer and n® is :ne

—SAC). The charge
by convolwving the

n with a B-spline,

S(xn) = HS(xa;na) (4

= IS ( xu;ha) dxu . (4b)

The convolution is written,

S22 [Sestrrmqegin’, e
s P

and xpe, for example, is given by,

x:=(1-e)xp(t)+8xp(t+At). (6)

When ©6=0, the difference -equations
(1d-3d, 5d) are explicit. An evaluation
of (5d) from the particle data, a
solution of (3d), and a subsequent
solution of (1d) and (2d) comprise a
computation cycle in an explicit
calculation.

With an explicit scheme, the time
step is limited by a linear stability
condition, which for Egs. (1d-3d) is
given by,

2 oAl 058t 5
sn' (59« 2, (5T 0
H
The plasma frequency for each specie is,

41tnsqs

2 -
s = m ' (72

and the sum over species is written
simply, When @p At<2, the roots of
the dispersion relation are real and the
difference equations are stable. When
mpAt>2, the roots are complex and the
equations are unstable. Since ®p can be
much higher than the frequency of
interest, one pays a very high price to
model low-frequency phenomena because
the time step is so small.

Implicit difference equations
eliminate the stability constraint. When
1/2<6<1, Egs. (1d-3d,5d) are implicit,
and the dispersion relation (with 8=1/2)

is
an(Ssn (5 » s 8

Even with very large At, the roots are
real and lie in the interval, O0<wAt<m.
It is difficult to solve implicit

equations. To calculate me, one must
calculate ne- To calculate ne, one must
calculate xpe. To calculate xpe, one

must calculate E®. Langdon§ remarks that
one cannot iterate (1d-3d,5d) to obtain
a solution.

The eguations can ce sclved
approximately using either the dirac:
implicit method?, or the implici:t momsant
method?. "The essence of the "direct"
method is that we work directly with the
particle equations of motion and
particle-field coupling equations. These
are linearized about an estimace
(extrapolation) for their values at the
new time level (t+At)2". The implicit
moment method uses impliciztly
défferenced fluid equations to estimate

The derivation of the implicit
moment equations begins with the
definitions of the current density,

" 3 ., m
= L[ desrrmyswxh, @
P
and the pressure,

0 3, ) 00,,, 0

I (x) -zp:jdx S(x r.h)qsupupé(x X (10)
If one expands the expression for the
charge density about x in powers of
e=k<dx2>1 where k is a characteristic
wave number, and <8x2> is the mean
square particle displacement in a time
step, an approximate value of the net
charge density is given by,

0 112
R=n - Vel oA+ O, (1)
and the net current density by,

R 1 n E*J 8 |4 —+0(¢). (1)
2 M ¢

In a computation c cle of the implicit
moment method, , and II are
evaluated from the partlcle data. If
terms_ of O(e2) are neglected, solving
for EY requires the solution of a linear
system of equations, including the
moment equations, (11-12), and_ Poisson's
equation, (3d). The value of EY that one
calculates this way approximates the
solution of the implicit plasma
equatlons to O(ez). Provided
k<dx2>1/2<1, the errors are small.

a

In a DC magnetic field, one is
required to solve only a single elliptic
equation for the electric field. The
momentum equation can be solved for
Jsl/2. This value is substituted into
into the continuity equation, (11)b and
the result substituted for n in
Poisson's equation, (3d), to derive a
linear equation for Ee written,

VoeoE adr.ni-Tod, AL (13
S
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The current, Jg", is calculazed frem,
S

Q3
J; 'J'X_s—-? Js‘.Q s(%t.)z
I = , (14)
o4,
{e(—
( 2)
where,
0 At
yed-vers (19

The dielectric tensor, &, is defined by,
8 (] ] 8
vE:(H%dE+%“ExBqudB. (16)

(The dielectric, &, is the same as the
"implicit susceptibility” derived for
the direct implicit method2.) The
definitions for the various quantities
that appear in (14-16) are,

Epiv=26’5"€"=' ;Bsu‘i'%mmgzﬁsus ' U

o2 ol
q, & =7 g
(!.’=-m—2-,ﬂs=——--—---2 ,QstB. (‘8)
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14| =—
2

All of these intermediate variables are
easily calculated.

The dielectric tensor contains
information to anticipate the response
of the plasma to the electric field, so
that while the right side contains
information at time t, the electric
field can be calculated at time t+At.

There are difficulties in solving
Poisson's equation, (13) for the
electric field. When the field equation
is replaced by a finite difference
approximation to model an inhomogeneous
and magnetized plasma, one must invert a
matrix that not only has variable
coefficients, but also has no symmetry.
(The symmetry is broken by the ExB drift
term, which is anti-symmetric.) Many
researchers, to avoid the cost of
inverting a matrix with variable
coefficients, have used a global
iteration method’.In this method, a
wyariable-coefficient operator is
approximately a simpler operator whose
inverse may be obtained directly. In
global jteration techniques, this
approximate inverse is applied to the
residue...of the full elliptic equation
2w, The defect-correction iteration is
in a form that can be solved using
standard solvers such as
fast-Fourier-transform (FET). The method
seems to work best for relatively
homogenous plasmas in relatively weak
magnetic fields®r 9. More recent results
with an incomplete Cholesky
decomposition and conjugate gradient
iterationl® in a simulation code,

ZZLESTE, ccntr

wisdom. Eg. (13)
CZLESTE with tim
of magnitude 1
reported using th

y

NAnlinear Stabilicy

For very low-fregquency phenomena,
the fluctuations due tO numerical causes
may dominate the results. Horton et al
12 argue that "In particle simulations a
practical limit is encountered to the
number of gyroradii contained in the

gradient scale length.... Since the
amplitude of the fluctuations scale
proportional to {this
number}...{simulations} are restricted

to the domain of relatively high
fluctuation levels". One result of high
fluctuation levels is plasma heating.
Cohen et al 13 systematically examined
the energy conservation properties of
the direct-implicit method for a wide
range of time steps and plasma
conditions. They found that plasma
heating did occur under certain
conditions. In addition, nonlinear
numerical instabilities have been
observed with implicit methods when
WpeAt (Ope is the electron plasma
frequency? exceeds the number of
particles in a cell 13, The nonlinear
instability causes plasma heating.

(Leel4 argues that the low
fluctuation level of the gyrokinetic
model relative to ordinary plasma
simulations is a unique advantage.
Direct comparisons of gyrokinetic and
implicit plasma simulations are in
progress to evaluate the correctness of
this conjecture.) )

If the heating is too large,
results of calculations of slowly
growing instabilities may not be
meaningful. To reduce heating, numerical
dissipation can be used, but the
dissipation also will reduce the growth
rate of physical instabilities.

In calculations with CELESTE,
heating is observed with mpeAt-loooo.
The heating rate increases with
temperature, as one would expect if the
heating were due to errors in the
estimated fields, (13). The growth time
for the exponential increase in energy
is presently several hundred time steps,
and seems not to depend on the number of
particles per cell, in contrast to
results with the direct method
Further efforts to improve the accuracy
of the calculation of the effective
charge and of the dielectric tensor are
expected to reduce heating to acceptable
levels without adding additional
numerical dissipation. However, the
problem of nonlinear stability of the
implicit simulation remains an
important, and yet unresolved, issue.

Real Geometries

In CELESTE, the particle equations
of motion are solved on a grid of
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for each ¢ omputaticn &as
reeded, and o a prescription
that improves the accuracy or e*f*c;en*y

of the calculaticn. For example, one can
use a body-fitted grid 18 to model the
geometry of magnetic confinement
experiments by causing the computatioral
domain to conform to the structure and
shape of the boundary 17.

+ i

The solution of the equaticns of
motion on an arbitrary grid uses -~ --ural
coordinates, (§,n), which are calc .ated
by mapping each of CELESTE's
quadrilateral cells on to a unit square.
At each vertex, the natural coordinates
assume integer values, (i,3j), which are
constant as the mesh moves. Elsewhere,
the mapping between physical and natural
coordinates is given by bilinear
interpolation, which can be written as a
tensor product of linear B-splines,

x -ZX,, $,(3-in- n-qu $,(E-)S,(n-) (19

The ratural coordinates of a particle,
whose physical coordinates are Xp, are
defined by inverting this mapping. The
particle acceleration, Egq. (2d), is
calculated by interpolating the electric
and magnetic fields from the grid
values.

The particle shape function, S is
defined in terms of the natural
coordinates. With this choice, the grid
defines the particle size in physical
space, but h, the support of S, which
defines the particle size in natural
coordinates, is always 1.

The grid may be completely
redefined from one cycle to the next,
except that the new grid also must map
on to a logical rectangle. In CELESTE,
the number of grid points is fixed, but
the grid points may be moved about as
needed. Presently, one may choose to use
an Eulerian or an adaptive grid.

The adaptive grid is generated by
solving a variational problem, in which
one minimizes a functional. The
functional may be complex, allowing one
to control grid smoothness,
orthogonality, spacing and orientation

or it may be simple, giving
control only over spacing, such as the

functional ,
VEL4+ ¥
I,j[-g—"z]dv. (20)
w
v
To minimize I, one solves

finite-difference approxzmatxons to the
Euler equations.

With w=1, minimizing I
body-fitted gridi8.
When w 1is not constant, its variaticn
controls the mesh spacing. Where w
larger, the grid points are closer
together, and where w is smaller, the
grid points are further apart. If w 1is
an appropriate functicn of the data, the
grid will adapt to provide increased
resolution where it is needed by moving
grid points. For exanple, 1f w is
proportional to the current density in a
calculation of flow in a time-dependent
magnetic field, the grid will cluster to
resolve steep gradients in the magretic
field intensity 21

Adaptive gridding can be useful in
PIC calculations. For example, when w is
proportional to the number of particles
per zone, where the particles are sparse
the zones will be larger. This extends
the range of densities that can be
represented by making the particle size
larger in regions of low density.

Conversely, the adaptive grid can
be used to generate inhomogeneous
initial conditions. One notes that it is
convenient to load a constant number of
particles in each <cell initially.
Further, it is better to give each
particle the same significance, i.e.
mass and charge. Since particles in a
collisionless plasma may move long
distances from their initial positions,
one must expect that particles that were
initially widely separated will
eventually be close together. To avoid
having neighboring particles with
radically different weights, all
particles should begin with
approximately the same weight.

It is only possible to achieve both
aims on a mesh with variable spacing. To
generate the correct spacing, one uses
an adaptive grid, even in two
dimensions.

In one dimension, the Euler
equation that minimizes the adaptive
grid functional, (20), is

Lax
file -

In finite difference form, it is useful
to add a "time-dependent"” term to avoid
singularity when w=0, and write,

1
8(’:"50)‘3(";.‘/2 ”"i~1/2)("':n'2": *":1)

1 U
=5 (W W) (G0 %y) . (22

where & is a small parameter with
appropriate dimensions, and x;0, i=1,N,
is a uniformly spaced grid with N
points.
In this example, the charge
density, n, is given by,
X

nany(tee ), 23
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with L=10. The carticles are genesrated
on the grid =+, with spacing saown in
Fig. (l1). The nunmcer of particlas per
cell is constant, Fig. (2), but the
charge density calculated from the
particles using (2d), Fig. (3), is close
to the prescribed density, (23).
y = 30.492
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Figure 1. The mesh spacing is plotted
against the grid index, i.
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Figure 2. The number of particles per
cell is plotted against the cell index.
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Figure 3. The charge density is plotted -
against the physical coordinate. The
variation is approximately the
prescribed profile, Eq. (23).

The resocluticn reguired to resclve
jradients or to keep the number of
particles per cell constant changes in
-ime, and, consequently, the grid can be
regenerated as often as every time step.
Suring grid generation, the particles
are stationary in physical space, but
their natural coordinates must be
recomputed.

ARR icaticns

A discussion of past and present
applications of the implicit plasma
simulation methods conveys the
opportunities these methods provide.

A computational study of edge
effects in magnetized plasmas has
yielded the discovery of high frequency
sheath oscillations with implications
for future experiments22. Calculations
of edge effects in inhomogeneous plasmas
in two dimensions has uncovered new
transport mechanisms. On much longer
time scales, the comparison of the
results of implicit calculations of
drift instabilities with those from the
gyrokinetic model give perspective on
the relative capabilites of the two

- methods?l.

Discussi

There are as yet unsolved problems
in modeling bounded plasmas. In bounded
plasmas, the need to improve the
definition of particle orbits beyond the
boundary of the domain becomes more
acute as the time step increases.
Magnetized plasmas at a conducting
boundary provide interesting examples of
the nonphysical behavior that may arise.
Additional phHysics must be added to the
simulation models. For
example,collisions in strongly
magnetized plasmas must be modeled. An
implicit, Monte-Carlo model for
collisions provides a gartial solution,
but more work is needed?3.
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