-2

Incremental Dependence Analysis

Carl M. Rosene

CRPC-TR90044
March, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

/)

RICE UNIVERSITY

Incremental Dependence Analysis

by
Carl M. Rosene

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

oo Mornadng”

Ken W. Kennedy, Chairman
Noah Harding Professor of Mathematics

A

Lori Pollock

Assistant Professor of Computer Science

A, =

John E. Dennis '
Noah Harding Professor of Mathematical
Sciences

Houston, Texas

March, 1990

Contents

Abstract iv
Acknowledgments v
List of Illustrations vi
List of Tables vii
List of Algorithms viii
Introduction 1
1.1 Dependence Analysis e 1
1.2 PEFC-Plus i i i it e e e e e e e e 4
1.3 Parallel Programming Environments 6

1.3.1 PTOOL et e e e e e e 6

1.3.2 ParaScope o it e e e e 7
14 A Model Environment it e e e 8
1.5 Overview of Incremental Dependence Analysis 9
Analysis of Control Dependence 12
2.1 The Control Dependence Graph 15
2.2 CFGEdgeAddition, 19

2.2.1 Control Dependence Addition 23

2.2.2 Control Dependence Deletion 38
23 CFGEdgeDeletion i 41

2.3.1 Control Dependence Addition 42

2.3.2 Control Dependence Deletion 50
2.4 Complexity Analysis b4
Data Dependence 56
3.1 Definitions v v v v i i e e e e e e e e e e e e e e e e 56

3.1.1 Scalarsand AITays v« c t v v bt e e e 57

3.1.2 Independence Tests 59

3.1.3 A Stronger Notion of Dependence
3.2 Algorithms. L
3.2.1 Batch Algorithm
3.2.2 An Incremental Calculation
3.3 Generalizing the Algorithms
3.3.1 Extended Array Descriptors
3.3.2 CoveringbyalLoop
3.33 NestedLoops e e e e
3.4 Calculation of Anti and Output Dependences
3.5 Complexity Analysis,

Symbolic Analysis for Subscript Testing

4.1 Integer Expression Folding
4.2 Loop Invariant Testing
4.3 Induction Variable Identification

Experiments and Results
5.1 Measurements e et e e
51.1 JInslland ||mel] - - - - - - o o oo
512 Il - - v h e e e
5.2 Implications and Further Arguments

Related Work

6.1 Dependence Analysis 0.
6.1.1 Parallelism Detection
6.1.2 Intermediate Analysis
6.2 Programming Environments
6.3 Incremental Techniques.

Conclusions and Future Work

Bibliography

iii

117
118
135
138

143
144
144
147
149

152
152
152
154
154
155

157

159

7]

)

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

210

2.11
2.12
2.13

3.1
3.2
3.3

4.1

5.1

Illustrations
Post Dominator Relation 13
A Control Flow Graph and Its Control Dependence Graph 16
Edits Producing an If-Then-Else 20
Splittinga CFG Nodeo 21
Example for Lemma 2.3 oo 24
CFG Edge Additiono 26
Example for Theorem 2.2 o 27
Example for Lemma 2.4 29
Example for Lemma 2.5 L 31
Examplefor 2.9 e 39
Dependence formed by postdomination of immediate successor 43
Amulti-exitloop oo o 47
Deletion of a Control FlowEdge &0
Data Statements in the Control Flow Graph 79
Set Storage Scheme e 80
Combs e e e e e e e e e e e e e 106
Shadow Expressions and Links 123
CFG fragment from SIMPLE« ¢t v vt v v oo v o oo 148

5.1
5.2
5.3
5.4

Tables

Programs from RiICEPS 144

Complexities of the Dependence Update Algorithms 145
Distribution of values forn,andn, 147
Distribution of valuesforn 150

I/

)

Incremental Dependence Analysis

Carl M. Rosene

Abstract

New supercomputers depend upon parallel architectures to achieve their high rate of
computation. In order to take advantage of the power of such a machine, programs
must be executed in parallel, that is, parts of the program must execute on different
processors. When a program is executed in parallel it is impossible to guarantee the
ezecution orderof the parts of the program being executed by different processors. De-
pendence analysis identifies the statements whose execution order must be preserved
in order for the program to be correct. Making available the results of dependence
analysis in an interactive programming environment can aid a programmer in writ-
ing programs which will execute more efficiently on a parallel machine. In order to
provide the results of dependence analysis to the programmer in as timely a manner
as possible, incremental methods of dependence analysis have been developed. The
performance of these algorithms has been estimated based on static measurements
of FORTRAN programs. This dissertation presents the incremental methods and the

results of estimates of their performance.

Acknowledgments

Any attempt to adequately acknowledge all the people who have contributed to this
work is hopelessly doomed to failure. Nonetheless, in the tradition of PhD disserta-
tions everywhere, I make the attempt.

First, I would like to acknowledge the efforts of my parents who started all this
twenty-eight years ago. My chairman, Dr. Ken Kennedy, has supported me through-
out the effort and has been insistent on my presentation of the best work possible.
Any failure is wholly mine. Dr. Lori Pollock talked with me at an early stage of
the thesis while many of the ideas had yet to solidify. Marina Kalem helped me
collect much of the experimental results presented in Chapter 5. Dr. Randy Allen
suggested the topic. My fellow graduate students have all been eager to serve as
patient listeners and active participants while I have rambled on about the problems
investigated here. The members of my committee and many of my fellow graduate
students have labored mightily to save me from the tortured syntax and awkward
sentence structures that it is all too easy to fall victim to. To all of them, “Thank
You.”

Besides these academic contributions, my many friends have helped make my
graduate school experience what it was. I would especially like to mention the mem-
bers of World Tour, Sixth Floor, The Rice Sailing Club, the Durcans, Tripp and John,
Banks, my fellow graduate students, the residents of Crashwood, and everybody who
just hung out there. You have my deep and abiding gratitude for providing me some
very good times.

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
4.1
4.2
4.3
4.4
4.5

Algorithms

Adding Control Dependences due to Condition 1 of Lemma 2.2
Adding control dependences due to second condition of 2.2
cpG Edge Deletion in Response to CFG Edge Addition
Control Dependence Additions in response to CFG Edge Deletion . . .
Control Dependence Deletion in Response to Control Flow Edge
Deletion . . . v v v i e e e e e e e e e e e e
Main Program AllDeps for Batch Algorithm
Procedure LoopIndependent called from AllDeps.
Procedures LoopIndependent and LoopCarried called from AllDeps .
Updating Dependences in Response to Addition of a Use
Updating Dependence in Response to the Deletion of a Use
Update In Response to Addition of a Definition
Routine to Propagate Added Definitions to May Sets
Routine to Propagate Deletion of Definitions from May Sets
Routine to Propagate Additions to Must sets.
Must Propagation Routines e e
Updating Dependences Due to Deletion of a Definition
Updating Data Dependence After Control Flow Edge Addition
Updating Data Dependence After Control Flow Edge Deletion .
Finding Array Kills oo
Incremental Discovery of Array Kills
Updating Dependences in Response to Addition of a Use
Update for Addition of a Definition in Presence of Nested Loops . . .
Fold Update for Added Use
Fold Update for Deleted Use
Fold Update for Added Definition oo
Fold Update for Deleted Definition
Fold Update for Added Control Flow Edge

32
34
40
49

iX

4.6 Fold Update for Deleted Control Flow Edge 128
4.7 Delete Folds for Deleted Use 129
4.8 Delete Folds for Changed Definition 129
4.9 Delete Folds for Changes in Reaching Sets 130
4.10 Create Folds for Changes in Reaching Sets 130
4.11 Attempt a Particular Fold 131

4.12 Finding IAIVs Lo 141

Chapter 1

Introduction

Efficient scientific programming has always required attention to the low-level details
of how a machine operates. As proof, consider the thousands of FORTRAN program-
mers who know to access two-dimensional arrays in column-major order. Despite the
best efforts of language designers and compiler optimization experts, the emergence
of parallel and vector processors and the existence of still insoluble problems promise
that programmers’ preoccupation with using their machines efficiently will increase
rather than decrease.

More than any other innovation in computer architecture, the parallel nature of
new machines creates the need for sophisticated software tools to help the programmer
exploit the power of his machine. These tools will operate within larger integrated
programming environments that already provide some aid in the form of language-
smart editors and sophisticated debuggers. Time will determine the ultimate form
of these new tools, but by looking at experiences with automatic vectorizers and
parallelizers we can gain insight concerning the kind of information that the tools must
provide to the programmer. This examination reveals that at the center of automatic

vectorizers and parallelizers is a form of data flow analysis called dependence analysis.

1.1 Dependence Analysis

The central problem in programming parallel machines is guaranteeing correctness in
the absence of knowledge on the part of the programmer about the ezecution order of
statements run in parallel. The execution order of statements is determined by their

location in the control flow of the program.

For instance, in the following code segment,

DOI=1,N
S1: A(I) =B(I) +J
S2: B(I) = B(I+1)
ENDDO

statement S1 is clearly executed before S2 during any iteration of the loop. But there
are N executions of S1 and S2 over the N iterations of the loop. The execution of S2
that occurs during the k** iteration of the loop happens before the execution of S1
during the (k+1)th iteration. If the iterations of the loop execute in parallel, we have
no knowledge about the relative execution order of statements in different iterations.

To preserve the semantics of the original sequential program, it is necessary to
preserve the execution order of some statements in the program. However, this re-
striction prevents some parallelization. Maximizing parallelism while maintaining the
semantics of the original program requires a knowledge of how the results of the pro-
gram depend on the execution order of its statements. This requires knowledge about
how the results of statements within the program depend on the execution of other
statements. When the result of a statement z can change based on the result of the
execution of another statement y, then we say that z depends on y, or, equivalently,
a dependence exists from y to z. The dependence in the example above is known as
a data dependence. It results from the interaction of the statements S1 and S2 via a
shared memory location or locations, namely, elements of the array B.

Statements also interact if one statement determines the control flow around the
other statement. A statement s is said to be control dependent on a control statement
(i.e., a statement with more than one immediate successor in the control flow graph)
whose result determines whether s is executed.

Automatic parallelizers and vectorizers use dependence analysis to discover how

statements depend on one another. This information is represented by a directed

or return answers takes so long that the user takes a coffee break, then we have lost
the advantage of working in an interactive system, and we can return to batch systems
for our programming.

The required response time mandates the use of incremental techniques for the
analysis so that whenever the user needs information about his program a minimum
of work must be done to obtain the current information. This dissertation describes
an incremental method for dependence analysis appropriate for use in an environment
for programming multiprocessors. It provides some of the techniques essential for the
development of effective parallel programming environments.

We next describe in the next section of this chapter an automatic vectorizer and
parallelizer known as PFC-Plus which was developed at Rice University . Knowledge
of PFC-Plus will help in the discussion of our own methods for dependence analysis
presented in later chapters. To further motivate and justify this work, the follow-
ing section discusses two tools for parallel programming and the use of dependence
information to aid the programmer of a parallel machine. We follow our discussion
of these two environments with a description of a simple programming environment
which will provide a context in which to consider the new incremental methods of
dependence analysis. At the end of this chapter, we describe the structure of the
dependence analysis phase for a possible programming environment and present an

overview of the dissertation.

1.2 PFC-Plus

PFC-Plus is a source-to-source optimizer that takes serial FORTRAN programs and
produces FORTRAN programs with vectorization and parallelism directives. The di-
rectives for vectorization are in the form of FORTRAN 8X-like triplet notation. Shared
memory multiprocessor parallelism directives take the form of VM/EPEX-style di-
rectives. The following describes in a general way the phases of transformation and

analysis that occur in PFC-Plus.

graph called a dependence graph. Nodes of the dependence graph represent state-
ments, while edges represent the dependences between statements. The dependence
graph represents the statement execution orders in the program that must be pre-
served. Typically, the programmer using an automatic vectorizer or parallelizer does
not see the results of the analysis, and indeed he might not even know what parts
of his program can be parallelized and what parts cannot be. The programmer is
given no aid in writing programs that would parallelize more completely, and the
programmer is unable to help the automatic parallelizer transform his program.

So far, aid to programmers has been limited to automatic vectorizers or paralleliz-
ers attached to either the front or back end of a compiler for a particular machine.
While some parallelism can be exploited in this way, we ask if it is possible to produce
a synergy between the programmer and the optimization process. Is there some way
to help the programmer to write his program so that it will run on the target machine
substantially faster than the product of an unaided programmer and an automatic
parallelizer working separately?

We believe that effective aids for parallel programming can be developed based
on an understanding of how the execution order of statements in a program must
be preserved. With dependence information, a sophisticated compiler embedded in a

programming environment could interactively
e suggest ways of changing the program to obtain greater parallelism,
e perform sequential to parallel transformations under user direction,
e query the user to establish the correctness of particular transformations, or
e confirm that the algorithm itself is inherently sequential.

Such interactive features would justify embedding a compiler in an interactive
programming environment, but only if the response times remain reasonable. That

is, if the analysis required for the environment to make suggestions, present questions,

with the equivalent linear expression involving the loop induction variable. Failure
to substitute the actual induction variable for its auxiliary in a subscript expression
results in a much less accurate test for independence between the reference involving
the subscript expression and other references to the same subscripted variable within
the loop. The inaccuracy arises from the necessity of treating the unsubstituted
auxiliary induction variable as an unknown symbolic value.

After induction variable substitution, dependence analysis begins. Dependences
are calculated for both scalar and array variables during this phase. For scalars, all
possible dependence edges are added for all the loops surrounding both references.
For subscripted variables, independence tests are performed on each pair of references
contained within common loops to attempt to prove that, due to the sequence of values
of the subscript expressions of the references, the two references cannot access the
same memory locations in a particular order during the execution of the loop. Both
the textual order of the references and the order of the loop iterations is considered.
If independence cannot be proven, then dependence is assumed and the appropriate
edge is added to the dependence graph.

Code generation follows dependence analysis. Since this dissertation does not

treat code generation we will not discuss it here.

1.3 Parallel Programming Environments
1.3.1 PTOOL

At Rice University, we have implemented and experimented with a parallel program-
ming aid called PTOOL [ABKP86], which has been used to help debug parallel pro-
grams at Los Alamos National Laboratory and the Cornell Theory Center. PTOOL
identifies variables that must be in shared storage for a loop to be correctly paral-
lelized and, on request, displays dependences that inhibit parallelization. Thus the

user is directed to portions of his code that do not allow parallelism or are most

The input program is first scanned and parsed into an abstract syntax tree (AST).
All other phases operate on this AST. In the output phase, the transformed AST,
with parallelism directives, is converted to the extended FORTRAN output language.

In order to simplify dependence tests on array accesses, do-loops are normalized.
This involves taking inductive do-loops and converting the upper and lower bounds
and the step of the induction variable of the loop so that the lower bound and step
are both 1. The necessary upper bound is easily calculated. All uses of the old
induction variable in the loop are replaced with equivalent expressions involving the
new induction variable.

PFC-Plus then performs if conversion. If conversion is performed for two reasons.
First, in order to translate a statement that is only conditionally executed in a loop
body into a vector statement, a mask must be calculated to control the corresponding
vector instruction performing the specified operation so that it affects only the same
elements of the vector affected by the serial code. Second, if conversion transforms
control dependences into data dependences. In this way, a single phase can be used
to calculate both types of dependence in the dependence graph.

Neither normalization nor if conversion have a direct positive effect on the accuracy
or precision of the data dependence calculation. Do-loop normalization is performed
for convenience in the coding of independence tests for array variables, and if conver-
sion is performed as preparation for vector code generation and to avoid a separate
control dependence calculation. The next phase, in contrast, has a very direct effect
on the precision of the data dependence calculation on statements referencing array
variables.

Induction variable substitution identifies auziliary induction variables within a loop
body and replaces their occurrences with expressions in terms of the actual induction
variable of the loop. An auxiliary induction variable is a variable in a loop whose
value at all uses within the loop body is a linear expression in the actual induction

variable of the loop. PFC-Plus replaces references to auxiliary induction variables

likely to produce indeterminate results. Bringing the user’s attention to these regions
provides significant help in parallelizing or debugging code.

Despite its success, PTOOL is severely limited by its nature. It is merely a browser
and does not support changes of the program to allow its user to attempt to eliminate
a parellism preventing dependence. After the user changes his program using some
editor unrelated to PTOOL, he must resubmit the entire program to PTOOL and
wait for all the dependences to be recalculated, regardless of the significance of the
change. This process can take several minutes even for small programs.

The next tool described, ParaScope, attempts to address this shortcoming of

PTOOL.

1.3.2 ParaScope

ParaScope is an interactive parallel programming environment under development
at, Rice University. Evolved out of both the Rn programming environment project
[CCH*87] and the PFC project [AK87], it provides an interactive editor along with
integrated program composition, execution, and debugging tools. In its ultimate
form, it is intended to provide those desired features absent in PTOOL.

ParaScope’s parallel programming tools will be embedded in an interactive editor.
In response to user queries, parallelization preventing dependences will be displayed,
and the user will be able to attempt to eliminate these dependences on his own.
Or the use can request that the environment perform some particular parallelizing
transformation on the code. Alternatively, the environment could select and perform
the transformations automatically. These levels of support are described as manual
steering, power steering, and autopilot respectively.

This dissertation addresses the third limitation of PTOOL, the lack of an incre-
mental dependence analysis. The techniques developed here are intended for incor-

poration in ParaScope.

1.4 A Model Environment

In order to help motivate the discussion of our methods in the rest of this work, we
will consider them in the context of a model environment. The model is a dependence
browser integrated with some kind of syntax-directed editor. The editor maintains an
intermediate form of the program which includes a control flow graph and a symbol
table. |

We assume that the user is editing a procedure. Occasionally he will stop and
browse the dependences that have changed as a result of his activities. All editing
stops when the user indicates that he wants to browse the dependences. He may be
modifying an already existing procedure or creating one from scratch.

The goal is to provide the user with the dependences as quickly as possible when
he asks to browse them. The advantage of this model is that it focuses attention
on the building of the dependence graph itself while demanding as much from the
calculation of the dependences in terms of precision and response times as any of the
other features of an interactive system we described. If we can satisfy the time and
precision requirements on the calculation of dependences in this application, we will
be able to do so for other interactive applications of dependence analysis that arise
in an effective parallel programming environment.

We also assume the existence of a do-it button which indicates to the environment
when a change is complete. “Change” in this context refers not to the change of a
syntax tree node (which is what the editor sees), but rather the user’s idea of a change.
Thus, a single change might refer to changing all of the subscript expressions in a
loop. The do-it button can be implemented in a number of ways. The user could
simply press a key when he considered a change complete. Dependence a;nalysis will
begin when the button is pressed. This device will avoid false updates—changes that
are undone by a subsequent change. It will be the editor’s job to present a minimal

set of changes to the rest of the analysis.

1.5 Overview of Incremental Dependence Analysis

The processes necessary for dependence analysis in response to arbitrary editing

changes can be divided into five phases:
1. The Editor
2. Control Dependence Analysis
3. Scalar Dependence Analysis
4. Symbolic Analysis to Support Subscript Testing
5. Array Dependence Analysis

Each phase accepts a different kind of information about the changes to the program
to produce the information for which it is responsible. Likewise, each phase produces

a different kind of information about the changes to the program.

The editor communicates directly with the user. It is the original source for
program changes seen by the later stages of analysis. The form of the editor is

outside the scope of the present work. However, we require that the editor
e maintain the program structure as a control flow graph using basic blocks,
o refine the changes ordered by the user into a minimal set of changes, and

e pass these changes to the later analysis phases and invoke the phases as appro-

priate.

The control dependence phase accepts from the editor changes in control flow
edges and basic blocks. This phase performs all of its analysis on the nodes and
edges of a control flow graph representation of the program, based on information

from the editor concerning the addition and deletion of flow graph nodes and edges.

10

The algorithms necessary to update the control dependence graph in response to the
changes presented by the editor are discussed in chapter 2.

Scalar dependences can be calculated using Zadeck’s method[Zad84] for calculat-
ing def-use chains. Zadeck’s algorithm must be modified slightly to include loop-
carried and loop-independent annotations on the dependences. In addition, the tech-
nique must be applied to calculation of anti (use-def) and output (def-def) depen-

dences. The scalar dependence phase

e uses information from the editor concerning added and deleted variable defini-

tions and uses, control flow edges, and basic blocks;
e performs its analysis on statements of the program; and
e provides lists of added and deleted dependences on scalar variables.

Since this problem has been addressed elsewhere[Zad84], we will not describe this
phase further.

Data dependence on arrays is a harder problem. In order to support the kind of
calculation of data dependence required to find all the parallelism in a multiprocessor,
tests for dependence must be applied to the subscripts of the array references. A
symbolic analysis phase (to be described next) contributes to the information available

about the subscripts. Thus, the array dependence analysis

e uses information from the editor and from the symbolic analysis phase to de-
termine which reference pairs require testing of their independence or covering,

and

e performs independence and covering tests on the appropriate array references,
placing the appropriate annotated edges into the data dependence graph in-

dexed by statement.

Dependence analysis on arrays is presented in chapter 3.

-

11

The intermediate symbolic scalar analyses all have as their goal the support of

subscript testing for dependence. This phase

e uses the updated scalar dependences to generate new information about sym-

bolic values in subscripts and

e uses the old control flow graph and scalar dependences to mark the array de-
pendences that must be recalculated due to changes in the results of the inter-

mediate analyses.

This analysis phase is described in Chapter 4.

Since the kinds of tools that are actually provided in the programming environ-
ment will affect the kinds of edits that occur, the actual performance of our tech-
niques can be accurately measured only in an actual implementation under use by
real programmers. Nonetheless, chapter 5, considers the expected performance of
these techniques, based on measurements of real FORTRAN programs. Chapter 6

describes related work in the area. Finally, Chapter 7 presents the conclusions.

14

The definition of control dependence follows[FOW8T].

Definition 2.2 In a program, a statement v is control dependent on a

statement u if and only if

1. a path exists from u to v such that all nodes on the path not including

u or v are postdominated by v and

2. either v does not postdominate u or v = u.

It is easy to prove from the definition of the postdominator relation that a state-
ment, r, is postdominated by another statement, v, if and only if a path exists from
r to v such that all nodes on the path are postdominated by v. This gives rise to the

following equivalent definition®.

Definition 2.3 In a program, a statement v is control dependent on a

statement u if and only if

1. there exists r, an immediate successor of u, such that r is post dom-

inated by v and

2. either v does not postdominate u or v = u.

Intuitively, a control dependence exists from u to v if and only if there is some
outcome of u (i.e. some branch taken from u) that implies the execution of v and some
other outcome that does not imply the execution of v (note that it is unnecessary
that the other outcome imply that v is not executed). The postdominator relation
between two nodes tells us whether the execution of one node implies the execution of
the other node. By convention, the nodes of a CFG that postdominate the beginning

of the program are control dependent on a special node, START.

In the original paper by Ferrante et. al., the definition of the postdominator relation does not
allow a node to postdominate itself. This results in their original control dependence definition. By
extending slightly the definition of the post dominator relation we obtain a simpler and more natural
alternative definition of control dependence.

i_

| .

| -

| .

| R U L R G

-

15

The control dependence relation is represented by the control dependence graph
(cDG). The next section describes the CDG. The two sections following describe how
to update the CDG in response to the addition or deletion of edges in the program’s
control flow graph. We close the chapter with an analysis of the time complexity of

the update algorithms.

2.1 The Control Dependence Graph

In order to assure the greatest generality of the algorithms, we make few assumptions
about the shape of the CFG. In particular, we place no limits on the number of
immediate successors or predecessors of a node in the CFG.

We have discussed the control dependence relation as it applies to individual state-
ments. Since the execution of any statement within a basic block implies the execution
of all the statements in the basic block [AU77], all the statements within a basic block
are control dependent on the same statements. Hence the control dependence relation
can be thought of as one between basic blocks, or between control statements (nec-
essarily the last statement in a block) and basic blocks. An implementation of this
view of control dependence has a practical advantage in that it reduces the number
of nodes and edges in the control dependence graph. Our algorithms apply whether
the nodes in the control flow graph represent statements or blocks, even where our
discussion refers to one or the other.

Each node in the CDG represents a node in the control flow graph of the program
and the edges of the CDG represent the control dependence relation. An edge (u,v)"
exists in the cDG if and only if v is control dependent on u and v postdominates
r, some immediate successor of u. u is the source of the edge and v is the sink.
The edge will be labelled by r. In control flow graphs with out degrees greater than
two, if v postdominates more than one immediate successor of 4 but not all of them
then an edge with label r; will exist for every such immediate successor, r;, of u that

v postdominates. For clarity, we introduce the active term and say that u control

18

determines. By the transitivity of the reaches relation, p» reaches z in the CFG.
Suppose that w does not postdominate z. Since p, reaches z and p, is postdominated
by w and z is not postdominated by w, all paths in the CFG from p, to z must include
w. One of these paths includes the set of nodes {pn,Ppn-1, ...p1}. Some part of this
path will include a segment [p;, ..., w,...p;-1] such that w postdominates p;, but not
pj-1. Since w postdominates p;, all of p;’s immediate successors must reach p;j_; by
paths involving w. p;-; may or may not postdominate w. If p;_; postdominates w
then p;_; will postdominate all of p;’s immediate successors; thus p; does not control
determine p;_;. Otherwise, p;_; will postdominate none of p;’s immediate successors;
again, p; does not control determine p;_. Hence, p; cannot control determine p;_1,
thus contradicting the assumption that p, was an ancestor of z in the cpG. The if
portion of the theorem is proved.

Now we prove the only-if portion. Suppose that w postdominates z. We must
show that w is either a right sibling of z or a right sibling of some ancestor of z.
Consider a path in the CFG from the beginning of the program to w including z, P
= [ENTRY,p, ...T = P, ...w]. If w postdominates ENTRY, then w will be a child of
the START node in the CDG. Some other child of START will be an ancestor of z
or possibly z itself. Since w will postdominate this ancestor of z, it will be a right
sibling of the ancestor.

Suppose w does not postdominate ENTRY. The path P will contain a segment
[pj,pi+1], § < k, where pj;1 is postdominated by w and p; is not postdominated by
w. The edge (p;,w)?i+! will appear in the CDG. First suppose = postdominates pj4i.
Since w postdominates z and w does not postdominate p;, z cannot postdominate
p;. Hence there is a control dependence from p; to z with label pj;;. From the
construction of the CDG w is z’s right sibling, which satisfies the theorem.

Suppose z does not postdominate pj+1. We show that a path exists in the CDG
from p; to z and that the first edge on the path has label pj4;. Since z is an immediate

successor of px_; and it postdominates an immediate successor of pr-i(z itself) it

. L. L L L L

| W W UHE G SEE SR | .

W

i 4 L

19

either postdominates px—; or is control dependent on pi_,. The same rea.sonirig can
be applied to pi—;’s predecessors in the path from ENTRY. By induction, for some p;,
k—1>1:>j+1, the edge (p;, z)P*+* will exist in the CDG of G. The same argument
can be applied for p;, with p; replacing z. Thus, by induction, we prove that a path
exists in the CDG from p; to z. The edge from p; must necessarily have as its sink a
node postdominating p;+1. Hence, the label on the edge will be p;;; and the theorem

is proved. O

2.2 CFG Edge Addition

Before we examine the addition of edges between nodes that are already present in
the CFG, we will examine the addition of nodes to the CFGand the new edges that
arise as a result of the added nodes. Most edits involving the deletion or addition of
control flow nodes in the CFG imply the addition or deletion of edges as well. When a
node is added to the CFG new edges are necessarily added which connect this node to
the rest of the graph. These new edges, though not previously present in the CFG, do
not necessarily imply a new alternate path of control. By restricting how new nodes
are specified we can avoid updating the CDG in response to those new edges that do
not represent new paths of control in the CFG.

When a node is added to the control flow graph it is not initially present in the
control dependence graph. A node in the CDG must be created that corresponds to the
new node in the CFG. The position of the new node in the CFG can be specified by its
immediate successors and predecessors. However, the task of the update algorithms
will be easier if, instead, the node is specified as having been split from a previously
existing node or added on an existing edge. In Figure 2.3 a series of edits is shown.
The first two edits, from a to b to ¢, show the insertion of an if clause. This requires
the splitting of a node and then the addition of an edge from the node containing the

new if. The first edit, the split of a node, only requires the update to add the node

20

QAMV.d @ o2

oof) - §
o) - B

o

1/ \1
©

CFG
CDG:

.

Figure 2.3 Edits Producing an If-Then-Else

21

to the CDG with the correct edges léading to it. However, the addition of the edge
bypassing the second node requires a broader update since the new edge represents the
addition of a new path to the CFG. From c to d, the else clause is added. This addition
requires that a node be added on the existing edge representing the previously empty
else. Since this edit does not add any paths of control that did not already exist, it
will only be necessary to add the new node to the CDG.

When a new node is created by splitting a previous one, two nodes are created.
One of these nodes will be distinguished as "new” and the other as "old”. That is,
the “old” node will be given the same identifier as the node that was split; the “new”
node must be given a new identifier. Figure 2.4 shows a node split into two. On the
right side, either the top or bottom node can have the same name as the old node. If
we give the new node name to the bottom node, then we must change all the control
dependences on the old node with the name 1 to be on the new node named 2. If
instead, we assign the new node identifier to the top node, then the second node can
be left as the old node, and the update of those dependences can be avoided. The
new node, 2, will be control dependent on the same nodes as the old node 1. Adding
the new node to the CDG consists of adding the node to the CDG as a sibling 6f the
old node with identical edge labelling as the old node, but to the left of the old node.

NV 4

AN
/N

Figure 2.4 Splitting a CFG Node

22

If a node is added on an existing edge, it has a single immediate successor and
a single immediate predecessor. Call the new node v, its immediate predecessor u,
and its immediate successor w. Since v has a single immediate successor, w, it is
postdominated by whatever nodes postdominate w. Hence, no nodes are control
dependent on v. If v’s immediate predecessor, u, has more than one immediate
successor (before the node addition), then the new node v is control dependent on u,
and the label of the new edge in the CDG from u to v is v. The new node v replaces w
in the CFG as the immediate successor of u that corresponds to the particular branch
that results in the execution of w and v. Hence, any edges in the CDG labelled with w
must be changed to have the label of the new node, v. If u has only a single immediate
successor, then v will be control dependent on exactly the same nodes that control
determine u. v is added to the cDG by duplicating the current dependences into u
with the v as the sink. These added edges be placed to the right of the corresponding
edges to u.

We now describe updating the CDG in response to new edges that result in the
addition of control paths that do not merely serve to connect new node(s) to the CFG.
Our algorithm for updating the CDG in response to the addition of edges to the CFG
only needs to deal with the addition of an edge between nodes already present in the
CFG. Given an edge (s,t) added to a CFG G, this algorithm will discover all the edges

(u,v)! added to, or deleted from, the corresponding CDG.

By considering carefully the definition of the postdominator relation and the possi-
ble results of the addition of edges on the availability of paths, we derive the following
lemma concerning the possible changes in the postdominator relation caused by the

addition of an edge to the CFG.

Lemma 2.1 Given two complete CFGs G=(V,E) and G'=(V,E'), where
E'=E+(s,t), a node z postdominates a node w in G’ only if z postdomi-

nates w in G.

23

Proof Assume that z does not postdominate w in G. Since G is complete, w can
reach STOP. Since w is not postdominated by = in G, there exists a path from w to
STOP that does not involve z. Since the only difference between G and G’ is the
addition of (s,t), this path will exist in G’. Therefore, z cannot postdominate w in

G a

This lemma serves to limit how the postdominator relation, and hence the control
dependence relation, between a pair of nodes can change in response to the addition

of an edge to the CFG.

2.2.1 Control Dependence Addition

The definition of control dependence leads to the following lemma.

Lemma 2.2 Given cFGs G=(V,E) and G'=(V,E’), the control depen-
dence edge (u,v)" is present in CDG(G’) and not in CDG(G) only if one of

the following is true.

1. v postdominates an immediate successor of u, r, in G’ but not in G.

2. v postdominates v in G but not in G'.

The proof follows immediately from the definition of control dependence.
Hereafter in this section, unless otherwise stated, G = (V,E) represents a control

flow graph and G’ represents the control flow graph (V, E+(s,t)).

24

o 8
O ¢
2 Q
@

Condition 1 Condition 2

Figure 2.5 Example for Lemma 2.3

* From the previous two lemmas we can establish a result that limits the scope of

an algorithm for updating control dependence in response to edge addition.

Lemma 2.3 Given CFGs G and G, the control dependence langleu,v)”

exists in cDG(G’) and not in cDG(G) only if

1. v postdominates ¢ but not s in G and v =s and r =¢, or

2. v postdominates u and r in G but only r in G".

See Figure 2.5.

Proof The control dependence (u,v)" implies that r is an immediate successor of
u in G'. By Lemma 2.1, if v postdominates r in G’ then it does so in G. Hence, the
first condition of Lemma 2.2 cannot be satisfied. Therefore a new control dependence
cannot be formed by the first condition in Lemma 2.2 if r is an immediate successor
" of u in G. On the other hand, the addition of (s,t) causes ¢ to become an immediate

successor of s in G’ when it was not in G. f u =sand r=1¢, 7 is not an immediate

25

successor of u in G, thus allowing the first condition of Lemma 2.2 to be satisfied,
resulting in a new control dependence. By the definition of control dependence, v
postdominates r =t in G’. By Lemma 2.1, v postdominates ¢ in G. By the definition
of control dependence, v does not postdominate s in G’. Thus a path exists in G’
from s to STOP that does not include v. Since v postdominates ¢, this path does not
include (s,t), and thus the path exists in G. Hence, v does not postdominate s in G.
Thus, the first part of the theorem is proved.

Suppose again that r is an immediate successor of u in G. By the reasoning
above, a control dependence can be formed only by the second condition of Lemma
2.2, that is, v postdominates u in G and not in G’. The edge (u,v)"requires that r
be postdominated by v in G’ and Lemma 2.1 implies that the same holds in G. Thus

the theorem is proved. a

The first condition is easy to understand. If execution follows the new edge (s,t)
then of all the nodes postdominating ¢ will be executed. For instance, in figure 2.6,
the new edge from 2 to 5 causes 5 to become control dependent on 2.

The second condition is satisfied when the new edge forms a new path from u to
STOP that does not involve v. In G, the execution of u implied the execution of v.
In G’, the execution of v is dependent on which branch is taken from u. In Figure
2.6, after the addition of the edge from 2 to 5, the execution of 2 no longer implies
the execution of 3, hence a new control dependence is created from 2 to 3.

The second condition gives rise to the question, “When does v postdominate u
and r in G, but only r in G’?” This can occur only when the new edge (s,t) creates
a new path from some immediate successor of u, r; # r, to STOP, not involving v.
Call this new path P. Since we know that P exists only in G’, it must include s and
t. The path begins with r;, so the portion of P up to s comprises a path from r; to s.

Thus, the only nodes that can possibly be the source of, or the label on, a new edge

26

Figure 2.6 CFG Edge Addition

in cDG(G’) are those that can reach s in G. This information can be derived from

the cDG as the following theorem shows.

Theorem 2.2 In a complete CFG G there exists a path P from z to w
such that z is not postdominated by w or any other node in P if and only
if there exists a path Q from z to w in the cDG(G), all of whose vertices

are contained in P. See Figure 2.7.

Proof We prove the if part first. Consider the path P=[z,p1,...pn, w] in G. Since it
is known that no element of P postdominates z in G, then, in particular, p; does not.
Since, in addition, p; is an immediate successor of z, py must be control dependent on
z. Thus, the edge (z, p;)”* must be present in the CDG, thereby establishing a path in
the CDG from z to p; containing only elements of P. Now consider the adjacent pair
p; and p;4;. Assume a path exists in the CDG from z to p; such that the path contains

only vertices in P. Either pi41 is control dependent on p; or pi+1 postdominates p;.

CFG CDhG

Figure 2.7 Example for Theorem 2.2

27

28

If the p;;1 postdominates p; then pi;; is control dependent on whatever nodes p; is
control dependent on. In either case, a path is established from z to p;41 such that the
path contains only vertices contained in P. This completes the inductive argument.
The same argument applies to p, and w. By induction the only-if portion of the
theorem follows.

Now we prove the only if part of the theorem. Consider the path
Q=(z,q), (q1,92)--- (gn,w) in the CDG. Since ¢; can control determine g;4; only
if a path exists in the CFG from ¢; to gi+1, an inductive argument similar to that
above proves that the path P must exist in the CFG. To prove that neither w nor
any element of P postdominates z, suppose that some node p; = g; postdominates
z. Then p; must post dominate every node reached by z in the CFG by a path not
including p;. In particular, p; postdominates gj—;. However p; would not then be

control dependent on g;-1, causing a contradiction. The theorem follows. a

" To find all of the nodes that reach s in the CFG G, we can trace backwards from
s along the edges of the cDG(G). By Theorem 2.2 only a node on this path can
postdominate some node in G that it does not postdominate in G’. Hence, only
a node on this path can control determine some node in G’ that it did not control
determine in G via the second condition of lemma 2.2. The next lemma further refines
the conditions under which a node can be the source of a new edge in the CDG via

the second condition in lemma 2.2.

29

Figure 2.8 Example for Lemma 2.4

Lemma 2.4 Given CFGs G and G’, u can be the source of a new de-
pendence, (u,v)" € cDG(G'), via the second condition in Lemma 2.2 only
if

1. u reaches s in G,

2. r, an immediate successor of u, does not reach s in G, except through

v, and

3. u does not reach t by any path not involving v in G.

See Figure 2.8

Proof By the second condition of Lemma 2.2, v postdominates u in G but not G'.
This implies that there exists a path from u to STOP not involving v in G’, but not
in G. Call this path P. Since the only difference between G and G’ is the addition of
(s,t), P must include (s,t). Hence, P contains a path from u to s. Thus, condition
one is proved.

The existence of P implies that v does not postdominate s in G’. The control

dependence (u,v)” implies that v postdominates r in G’. Hence, any path from r to

30

s in G must include v, else r would not be postdominated by v in G’. Thus condition
two is proved.

The second condition of Lemma 2.3 states that v post dominates r in G. Since
the path P in G’ includes a segment from ¢ to STOP which does not include v and
this segment is present in G, t is not postdominated by v in G. If u reaches ¢ in G
via a path not involving v then u would not be postdominated by v in G and the
control dependence (u,v)” would exist in the CDG of G, contradicting the premise of

the lemma. Thus condition three is proved. O

The set of nodes that can be the sink of a new dependence is limited as shown in the

following lemma.

Lemma 2.5 Given CFGs G and G’ a node v can be the sink of a new
dependence, (u,v)” € cDG(G'), via the second condition in Lemma 2.2

only if

1. v postdominates 7, an immediate successor of u, in G,
2. v does not postdominate ¢ in G, and

3. v postdominates s in G.
See Figure 2.9.

Proof By the definition of control dependence we know that v postdominates r in
G’. Lemma 2.1 implies this is true in G. This proves the first condition.

See Figure 2.9. The second condition of Lemma 2.2 states that u is post dominated
by v in G, but not in G’. For the postdominator relation between u and v to change
in this way, a new path from u to STOP, which does not involve v, must be created
by the edge addition. Hence, the new path includes (s,t). Since this path from u to
STOP in G’ includes ¢ and not v, we know that v does not postdominate ¢ in G. This

proves the second condition.

31

Figure 2.9 Example for Lemma 2.5

u reaches s in G via a path not involving v. Assume that v does not post dominate
s in G. Then v can not postdominate u in G. This violates the second condition of

Lemma 2.2. Thus the third condition is proved. O

We are now ready to present the algorithm for adding edges to the CDG in res‘ponse
to the addition of an edge to the CFG. Lemma 2.3 divides all the control dependence
edges that must be added in response to the addition of a control flow edge (s, t) into
two distinct groups.

The first group of control dependences edges arise from the first condition of
Lemma 2.2 and all have as their source s and as their label {. Lemma 2.3 states
that the sink of every such new dependence post dominates ¢ in the control flow
graph before the update. Theorem 2.1 specifies how these may be found from a walk
backward from ¢ on the CDG before the update. During the walk from ¢, a control
dependence with label ¢ is added from s to all the nodes that postdominate ¢ and do
not postdominate s. This is done in CFAddCDAddnt shown in Algorithm 2.1. The

walk ends when a node is found that reaches s in the CDG. Any node reached by the

32

procedure CFAddCDAddnt(curnode)
if ReachesS(curnode) then return

for every edge (z,curnode)! € cDG(G) (incoming to this node)
for every edge (z,v) to the right of curnode with respect to z
add (s,v)! to cpG
call CFAddCDAddnt(z)
endfor
end CFAddCDAddnt

call CFAddCDAddnt(t)

Algorithm 2.1 Adding Control Dependences due
to Condition 1 of Lemma 2.2

reverse walk from a node that reaches s would postdominate both s and ¢ in G or
neither. In any case it cannot be the source of a new control dependence.

The second group of control dependence edges arise from the second condition of
Lemma 2.2 and are the subject of lemmas 2.4 and 2.5. Lemma 2.4 states that the
source, u, of any new edge must reach s in G and that the label, r, of this edge must
be a node that does not reach s in G. Hence, by theorem 2.2 we can find all the nodes
that are the source of a new dependence by tracing backwards from s in the cDG.
The same walk determines that r does not reach s. By Lemma 2.5 the sink, v, of a
new dependence must postdominate s and r in G. Hence, Theorem 2.1 shows how
to find all the possible sinks of a new dependence during the backward walk from s
and prove that v postdominates r. By lemmas 2.4 and 2.5 and Theorem 2.2 the walk
terminates at a node that reaches s in the CDG. '

This is done in CFAddCDAddns shown in Algorithm 2.2. CFAddCDAddns uses
a set U to maintain pairs containing possible sources of dependences and their imme-
diate successors during the walk. The first member, u, of a pair is a possible source

of a control dependence in G’. The second member, r, of the pair is an immediate

33

successor of u that has not been visited by the algorithm. Let curnode be the name
of the node being visited in the algorithm. A node, v, that postdominates curnode
in G postdominates the both the first and second member of every pair in U in G.
But, in G, only the second members of the pairs in U are postdominated by v. If r is
postdominated by v, then a control dependence is added from u to v and labelled with
r. The appearance of r as the second member of a pair in U during the execution of
the algorithm does not imply that r does not reach s in the CDG." r might be visited
at a later point in the execution. So the dependence (u,v)" is only tentatively added
until all the nodes that reach s in the CDG are visited. If r is visited during the walk
and if it appears as the second member of a pair in U then the pair is deleted from
U. At termination of the algorithm, if r is still present as the second member of the
pair (u,r) in U, then it does not reach s in the cCDG(G), and the tentatively added
dependence edge is added in fact. See Algorithm 2.2.

‘ Both CFAddCDAddnt and CFAddCDAddns make use of the functions ReachesS
and ReachesT. ReachesS and ReachesT take a node in the CFG and return true if the

node reaches s or ¢, respectively, in the CDG.

Theorem 2.3 CFAddCDAddnt in Algorithm 2.1 adds all control de-

pendences that result from the first condition of Lemma 2.2.

Proof From Lemma 2.3 we know that any dependence added via the first condition
of Lemma 2.2 is of the form (s, v)? such that v postdominates ¢ by not s in G. From
Theorem 2.1 we know that if v postdominates ¢ in G, then v is either a right sibling
of ¢ or the right sibling of some ancestor of ¢.

CFAddCDAddnt visits ancestors of ¢ and searches for right siblings of the ancestor.
As they are found a dependence to the right siblings are added. CFAddCDAddnt
terminates when an ancestor would also post dominate s. This occurs when the node
being walked is an ancestor of s. By Lemma 2.3 we know that no dependence is

added to any such node. O

34

procedure CFAddCDAddns(curnode,label,U ,edge)
Delete any edges with curnode as label from set NewEdges
Delete any pair (z,curnode) from U
for every edge (curnode,x)’ to right of edge with respect to curnode with label label
but left of ¢ (if it exists as child)
for every element of U, (u,y)
add (u,z)¥ to NewEdges
endfor
endfor

if ReachesT(curnode) then return

for every immediate successor, [, of curnode which is not marked visited
U = U + (curnode,l)
endfor

Mark curnode visited; Mark edge walked

for every CDG edge incoming to curnode, edge=(u,curnode)!, which is not marked as walked
call CFAddCDAddns(u,!, U ,edge)
endfor
end CFAddCDAddns

NewEdges = ()

U=10

for every immediate successor of s,r
U=U+(s,7)
endfor

for every CD edge incoming to s
edge=(u, s)!
call CFAddCDAddns(u,!, U ,edge)
endfor

Algorithm 2.2 Adding control dependences due
to second condition of 2.2

35

Theorem 2.4 Algorithm 2.2 cofrectly adds to the cDG all the control
dependences which result from the addition of a CFG edge (s,t) and have

a label not equal to t.

Proof In order to prove this theorem we need to prove that every control de-
pendence that should be added is found by the algorithm and that every control
dependence the algorithm identifies truly exists in the cDG of G'.

We use lemmas 2.4 and 2.5 to show that every control dependence is added.
Lemma 2.4 states that for any added dependence (u,v)", u reaches s in the CFG and
does not reach t except through v. By theorem 2.2, we know that this implies that
u reaches s in the CDG of G. Hence a path, Q=[q1, g2...s], exists from u to s in the
CDG. By induction on this path, we know that eventually CFAddCDAddns will be
called with curnode equal to u. Thus we know that all possible sources of new cDG
edges are examined. Each of these nodes and any immediate successor not yet visited
are added together as a pair to the set U.

By Lemma 2.5, we know that v postdominates s, but not ¢t in G. We also know
that v post dominates u in G. The algorithm identifies all of these postdominator
relationships during the same walk. Theorem 2.1 states which these are. The search
ends when all the nodes yet to be found would also postdominate ¢. The set U contains
all the nodes that v postdominates and are possible sources of control dependences in
G’. When a possible sink is discovered, a dependence is added to it from all the first
elements of pairs in U; for each dependence, the label is set to be the second element
of the pair. Therefore we know that all possible control dependences are found.

To prove that only correct control dependences are found, we prove the following

two lemmas.

Lemma 2.6 Upon entry to CFAddCDAddns in Algorithm 2.2, curnode
is not postdominated in G’ by any node which is not equal to s and which

postdominates s but not ¢ in G.

36

Proof CFAddCDAJdd is first called with curnode equal to s. Inside CFAddC-
DAddns, CFAddCDAddns is called with curnode equal to some node with a control
dependence leading to curnode, (i.e., some parent of curnode in the cDG). Thus, a
path exists in the CDG of G from curnode to s. By Theorem 2.2, this implies that,
in the CFG G, curnode reaches s. Suppose that the lemma is false and curnode is
postdominated in G’ by some node v which postdominates s, but not ¢ in G. Since v
does not postdominate ¢, every in G’ path from curnode to s must involve v. Since
the only change is the addition of (s,t), this must also be true in G. By Theorem
2.2, curnode cannot reach s in the CDG of G unless curnode reaches s by a path in G
which does not include a node, v, that postdominates curnode. Thus, a contradiction

is shown, and the lemma is proved. O

Lemma 2.7 If CFAddCDAddns is never called with curnode equal to
some node r, or with edge labelled by r, and an immediate predecessor of
r is visited and does not reach ¢ in the CDG of G, then r is postdominated

by the same nodes in G’ as in G.

Proof Since CFAddCDAddns is never called with curnode equal to r, one of the

following must be true in G.
1. r reaches ¢t
2. r does not reach s
3. r reaches s only by paths that include nodes that postdominate r.
4. r is postdominated by s.

r cannot reach ¢ in the CDG of G because then its immediate predecessor would
reach ¢ in the DG of G, contradicting the premise of the lemma. If r does not reach

s in G then the addition of (s,t) cannot add a path to STOP such that r is not

37

postdominated by some node in G’ that postdominated r in G. Hence, we need only
consider cases 3 and 4 above where r reaches s but is postdominated by s or by nodes
on every path to s.

Let u be r’s visited immediate predecessor in G. Since u is visited, it is not
postdominated by s in G. Thus, if r is postdominated by s in G, then the control
dependence (u,s)” would exist in the cDG of G. The edge (u,s)” would be walked
and the premise of the lemma is contradicted. Thus, case 4 cannot occur.

Finally, suppose that there is some node ¢ that postdominates » and appears on
every path to s from r. Let ¢ be the last such node on the path. Then we can consider
two cases. First, if u is not postdominated by ¢, then ¢ is control dependent on u
with label . A path in the CDG of G exists from ¢ to s, so the premise of the lemma
is contradicted when the edge from u to ¢ with label r is walked. Second, suppose
that u is postdominated by q. We must consider two cases. First, suppose that s is
postdominated by q. This implies that an infinite loop exists in the CFG G, but we
have assumed there are no infinite loops in G. Thus a contradiction occurs. Second,
if s is not postdominated by g but u is, then all paths from u to s must involve q.
Since ¢ postdominates u Theorem 2.2 implies that there is no path in the cDG of G
from s to u and u could never be visited. This proves the last contradiction and the

lemma follows. O

These two lemmas directly prove the necessary result that if a node n is visited by
CFAddCDAddns, and one of n’s immediate successors is not visited, then a control
dependence is added between n and the nodes postdominating n’s immediate succes-
sor that do not also postdominate ¢. Since this is just what the algorithm does, the

correctness theorem follows. a

38

2.2.2 Control Dependence Deletion

By switching the roles of G and G’ in lemma 2.2, a corresponding lemma can be
derived to give the conditions under which a control dependence is deleted upon the

addition of an edge.

Lemma 2.8 Given the CFGs G and G’, the control dependence edge
(u,v)" is present in CDG(G) and not in CDG(G') only if one of the following
is true

1. v postdominates r, an immediate successor of u, in G but not in G'.

2. v postdominates u in G’ but not in G.

From Lemma 2.1 we know that the second condition cannot occur in a complete

CFG. The first condition results in the following lemma.

Lemma 2.9 Given the CFGs G and G/, the control dependence (u,v)"

exists in CDG(G) and not in cDG(G’) only if
1. r reaches s in G,

2. v postdominates s in G, and

3. v does not postdominate ¢ in G.
See Figure 2.10.

Proof Condition 1 of Lemma 2.8 requires r to be postdominated by v in G but not
in G’. This implies that a path not involving v exists from r to STOP ip G’. This
path must involve (s,t) otherwise r would not be postdominated by v in G. Thus, r
must reach s in G.

Since r reaches s in G’ via a path not involving v and v postdominates r, v must

postdominate s in G.

39

Figure 2.10 Example for 2.9

If v postdominates ¢ in G, then r is postdominated by v in G’. This contradicts

condition 1 in Lemma 2.8 Hence, ¢t is not postdominated by v in G. O

We observe that the nodes v which are the sinks of the deleted control dependences
are exactly those nodes that were sinks of added control dependences. Also, the nodes
r labelling the deleted edges and whose immediate predecessors are the source of the
deleted edges reach s are the same nodes that CFAddCDAddns considers as sources
of new control dependence edges. Hence, a walk similar to that which occurs during
CDG edge addition will identify these nodes.

The algorithm for CDG edge deletion in response to a CFG edge addition consists
of walking the cDG of G backward and if

1. the dependence (u,v)" exists where u is the node being visited,
2. r is the label of the edge traveled backward to u, and

3. v postdominates s but not ¢,

then delete the edge (u,v)"from the CDG.

40

program CFAddCDDel

procedure Visit(curnode,label)
if ReachesT(curnode) then return
for every edge (u, curnode)! € cpG(G)
for every right sibling with label {
({u,v)! € cDG to right of (u,curnode))
delete (u,v)! from cpG
endfor
call Visit(u)
endfor
end Visit

for every CD edge (u, s)’
call Visit(s, (u, s)})

endfor

end CFAddCDDel

Algorithm 2.3 c¢DG Edge Deletion in Response to CFG Edge Addition

41

Theorem 2.5 Algorithm 2.3 correctly identifies the control dependences
deleted from the cDG of G in response to the addition of a control flow

edge.

Proof By Lemma 2.6, the nodes visited by the walk of the algorithm are not
postdominated in G’ by any node v that postdominates s in G. The algorithm deletes
all dependences to v with labels equal to a node visited by the walk. By the definition
of control dependence, all these dependences must be deleted. By lemmas 2.8 and

2.9, these edges are all of the edges that must be deleted. a

The walks of the algorithms for CDG edge addition and deletion in response to CFG
edge addition are identical. In fact, the deletion of a control dependence edge implies

the addition of another control dependence edge.

2.3 CFG Edge Deletion

The update of the CDG in response to the deletion of CFG nodes during editing is
a straightforward inverse of the method for addition of CFG nodes. If a node has a
single immediate successor and a single immediate predecessor, then it can be deleted
from the CFG and CDG and any edge leading to deleted node is deleted from the cDG
as well. If the name of the deleted node exists as a label on any CDG edge which is
not deleted when the node is deleted, then that label must be replaced with the name
of the immediate successor of the deleted node in the CFG.

If two nodes z and w have a single edge between them, that is, if z is the sole
immediate predecessor of w and w is the sole immediate successor of z, then they
can be joined. The node w will retain its identifier in order to avoid updé,ting edges
for which it is the source. Node z must be deleted from the CDG and any edges for
which it is the sink must be redirected to w. If z appears as a label on any edge then

z must be replaced by w in the label.

42

We now turn to the update of the CDG in response to the deletion of a control flow
edge. For the rest of this section, G=(V,E) is a complete CFG and G'=(V,E—(s, 1))

is the corresponding complete CFG with a single edge deleted.

2.3.1 Control Dependence Addition

Lemma 2.10 corresponds to Lemma 2.1 for CFG edge deletion.

Lemma 2.10 Let G=(V,E) and G’ = (V,E—(s,t)). If a node z is post-

dominated by a node w in G then z is postdominated by w in G'.

Lemma 2.10 and Lemma 2.2 imply the next lemma which corresponds to Lemma

2.3.

Lemma 2.11 Given complete graphs G and G’, (u,v)” € cDG(G’) and
(u,v)"” € cDG(G) only if r is postdominated by v in G’ and not in G.

| Lemma 2.4 serves to restrict the nodes that can be the source of a dependence
formed as a result of a control flow edge addition. For updating in response to the
deletion of a control flow edge, we find it more natural to state a restriction on the
nodes that can appear as labels on a new control dependence edge. The number of

potential nodes for r in Lemma 2.11 can be restricted as follows.

Lemma 2.12 Given complete graphs G and G’, a node r is postdomi-
nated by v in G’ and not in G only if a path not involving v exists in G

from r to s.

Proof By Lemma 2.11, r is not postdominated by v in G. Hence, there must exist
some path in G not involving v from r to STOP. Since this path is not present in G’,
it must include the edge (s,t). Thus, a path from r to s, not involving v, is shown to

~exist in G. O

The possible sinks of a new dependence are described by the next lemma.

43

o8
o

/@'

Figure 2.11 Dependence formed by

postdomination of immediate successor

44

Lemma 2.13 Given complete graphs G and G/, (u,v)"€ cDG(G’) and
(u,v)" & cDG(G) only if

1. s is postdominated by v in G’, and

2. v is control dependent on s in G.

Proof By Lemma 2.12 a path not involving v from r to s exists in G. Since only (s, t)
is deleted, the portion of the path up to s also exists in G’. For r to be postdominated
by v in G/, all the nodes that r can reach via a path not involving v must also be
postdominated by v. Hence, s is postdominated by v in G’ and the first condition is
proved.

All paths in G from r to STOP that do not include (s,t) are also present in G'.
If any of these paths do not include v in G, then r is not postdominated by v in G'.
Therefore, the only paths in G from r to STOP that do not include v involve s. If
s were postdominated by v in G, r would also be postdominated by v in G. Thus,
s is not postdominated by v in G. The first condition implies that any immediate
successor of s, w # t, is postdominated by v in G. This and the fact that s is not
postdominated by v in G imply that (s,v)* € cDG of G for any immediate successor
of s, w. The nodes v that postdominate s in G’, but not G, are all the possible sinks

of new control dependences in G’. O

The next lemma restricts the nodes that can be a source of a new control depen-
dence so that they may be found via a simple walk from s following the dependence

edges backwards.

Lemma 2.14 Given a control dependence (u, v)", such that (u,v)" € G’

and (u,v)” € cDG(G), a path exists from u to s in cDG(G).

Proof From Lemmas 2.11 and 2.12 we know that, given a control dependence
(u,v)" deleted from cDG(G) to form cDG(G'), a path, P, exists from r to s in G.

From Theorem 2.2 we know that either

45

1. r is an ancestor of s in the cDG(G),
2. r is postdominated by s in G, or
3. r is postdominated by some node, w, on the path from r to s in G.

If 1, then, since the edge (u,r)" is present in CDG(G), u is an ancestor of s in CDG(G).

By Lemma 2.13 we know that v postdominates s in G('). u is not postdominated
by s in G because if it were then it be postdominated by s in G’ and hence u would
be postdominated by v in G’ and (u,v)" would not exist in CDG(G’). Thus 2 implies
that the control dependence (u,s)" is present in CDG(G). Hence, a path exists from
u to s in cDG(G’).

If 3, then assume, without loss of generality, that w is the last node on P that
postdominates = in G. Since the segment of P beginning at w is a path from w to
s, and there are no elements of this segment of P that postdominate w in G, either
condition 1 or 2 above apply with w taking the place of r. Thus, a path will exist
from w’s immediate predecessor in P to s in CDG(G). By induction, a path from w

to s is shown to exist in CDG(G). O

We now present the algorithm. Let V be an ordered list of nodes such that V
contains the name of every node v for which a control dependence edge exists in
cDG(G) with label equal to w # t for every immediate successor w of s. That is, v
is contained in V if and only if for every immediate successor w # t of s the control
dependence edge (s, v)¥ is present in CDG(G). The members of the list are ordered
so that every node postdominates the nodes that come after it in the list. If r is not
postdominated by some node v on the list then it is not postdominated by any node
that follows v in the list. Similarly, if u is postdominated by a node v on the list then
it is also postdominated by every node preceding v on the list.

Consider a node, u, that control determines s. Let r; be the label of the control

dependence from u to s. 7 is an immediate successor of u that is postdominated by

46

s. For every node v € G, if the control dependence (u,v)™ does not already exist in
the CDG of G and if some immediate successor of u, r; # r, is not postdominated
by v in G’, then the control dependence (u,v)™ must be added to the cpGg. No
node that reaches u in cDG(G) will be postdominated by v in G’ since u is not
postdominated by v in G’. Hence, none of the nodes reaching u can be the label of
a new control dependence with the sink at v. Thus the addition of a dependence to
v is the termination condition for the search for dependences to v. In our algorithm
we will delete v from V upon adding a dependence (u,v)". The algorithm terminates
when V is empty.

On the other hand, it is possible that all of u’s immediate successors not equal
to r; are postdominated by v. In this case, u is postdominated by v in G’. We can
then consider all the nodes on which u is control dependent as potential sources of a
new control dependence on v. In this case, v is not deleted from V and the algorithm
cqntinues.

A naive way to see if all of u’s immediate successors not equal to r; are postdom-
inated by v is to search for the control dependence (u,v)™ for all of u’s immediate
successors 7; # r;. The problem with this scheme is illustrated by Figure 2.12. In
the figure we see that node 1 becomes postdominated by v upon the deletion of (s, t).
However, in the cDG(G), there is no control dependence from 1 to v with the label
'2, because 2 is not post dominated by v in G. In fact, there is no way to prove that
either 1 or 2 becomes postdominated by v by examining 1 and 2 and the nodes that
they control determine separately. Instead we must consider 1 and 2 as a unit. This
is true of multi-exit loops in general; because any loop exit is postdominated only
by those nodes that postdominate all of the loop exits, all of the loop exits must be
considered together. In our example, looking at 1 and 2 together, we can conclude
at 1 that both 1 and 2 are postdominated by v in G’ since 2 control determines v.

We thus avoid placing an incorrect control dependence into the CDG and can move

47

A

CFG CDG

Figure 2.12 A multi-exit loop

on to examine the node control determining 1 as a possible source of a new control
dependence.

Some nodes or loops will still have immediate successors that will not be postdom-
inated by v. These nodes can be discovered during the update process as follows. F;)r
each of these immediate successors, a new control dependence is added when the walk
from s traverses the CDG edge to the immediate successor. When the last-immediate
successor is reached, control dependences will be already present in the cDG for all
the other immediate successors. At this point, it can be discovered that u is post
dominated by v. The control dependences previously added to the other immediate
successors can be deleted and the process can continue onto the nodes which control
determine u.

The algorithm shown in Algorithm 2.4 follows the preceding discussion. The CDG
is walked backward from s examining each node n to see whether n newly control
determines any node in V' or whether n is newly postdominated by the nodes in V.
The walk continues along all possible paths backwards from s. Each time a control
dependence is added, the sink of the dependence is deleted from V. The walk ends

48

when V is empty. When multi-exit loops are encountered, in order to determine post-
domination, the exits of the loop and their dependent nodes are considered together.
The loops are recognized as they are created during the cDG update in response to

CFG edge addition. See Figure 2.13.

Theorem 2.6 A control dependence (u,v)"€ cDG(G’) and (u,v)"¢
CDG(G) if and only if CFDelCDAdd in Algorithm 2.4 will add (u,v)"to
the cDG.

Proof From Lemma 2.14 we know that a path exists from u to s in cDG(G). This
path specifies a call chain from s to u. This chain will be followed and visit called
with curnode equal to u and V containing v unless a dependence (g,v)’ is added
when visit is called with curnode equal to ¢ where ¢ is some node in the call chain.
Suppose (g,v)! is added to the cDG. This implies that g is not postdominated by v
in, G’. Thus, since r reaches g in the CFG G, r is not postdominated by v in G’ and
(u,v)"¢ cDG(G’) and a contradiction proved. Hence visit will be called with curnode
equal to u, label equal to r, and v contained in V. Since (u,v)"€ cDG(G’), there is at
least one immediate successor, [, of u that is not postdominated by v, and hence the
(u,v)! will not be present in cDG(G). Thus, the test for edges to v from u for all of
u’s immediate successors will fail and (u,v)"will be added to the cDG.

Upon every call to visit, label is postdominated by every element of V. Hence, the
existence of another immediate successor of curnode ! which is not postdominated
by v in G’ is sufficient to prove that (curnode,v) € cDG(G') where v € V. visit
determines this by testing if the control dependence (curnode,v)’ is absent from the
CDG for some immediate successor, [, of curnode. If later, visit is called with label
equal to [, then visit will determine that curnode is postdominated by v and the
control dependence (curnode,v)' will be deleted from the CDG.

Thus, by the time of termination, a new control dependence edge is added to the

CDG if and only if it is present in CDG(G’).

49

program CFDelCDAdd:

Create the ordered list V containing the nodes control dependent on s in G
with labels for every immediate successor of s not equal to t in G.

Thus V contains those nodes that postdominate s in G’ but not G.

procedure visit(curnode,label, V')

upostdominated = false
do until upostdominated or V is empty
v = last element of V'
if curnode is an exit from a multi-exit loop then do
if (enode, v)! € cDG for all exit tests, enode and exit branches, !
then looppostdom = true
endif
if looppostdom or (curnode,v)! € cDG for all successors, | # label, of curnode
then do
for all u,r where (u,curnode)” € CDG
call visit(u,r,V)

ii endfor
upostdominated = true
/* Deletion of dependences will be shown in Algorithm 2.5 */
endif
else
add (curnode,v)'t to cpG
V=V-v
endelse
end visit

for all u,r where (u,s)” € cDG
call visit(u,r, V)
endfor

end CFDelCDAdd

Algorithm 2.4 Control Dependence Additions in
response to CFG Edge Deletion

I

\!

50

Figure 2.13 Deletion of a Control Flow Edge

2.3.2 Control Dependence Deletion

Lemma 2.8 specifies the conditions for the elimination of a control dependence due
to the addition of control flow edge. The lemma applies without change to the case
of a deletion of a control flow edge. Lemma 2.8 plus Lemma 2.10, which specifies the
possible change to the postdominator relation as a result of the deletion of a control

flow edge, lead to the following lemma.

Lemma 2.15 Given G and G/, (u,v)"” € cDG(G) but not G’ only if

1. r is no longer an immediate successor of u, or

2. u is postdominated by v in G’.

Assuming G and G’ are complete, the first condition implies that u = s, r =,

and v is a node postdominating ¢. The deletion of the CFG edge (s,t) is sufficient

51

for the removal of any dependence edge from s with label ¢ in the cDG. Thus, any
dependence (s, v)! must be deleted.

The second condition implies that all of u’s immediate successors are postdomi-
nated by v. The existence of the control dependence (u,v)” in the CDG of G implies
that r is postdominated by v in G, but some other immediate successor of u was not
postdominated by v in G. Any such immediate successor becomes post dominated by
v in G’. Lemma 2.12 specifies how a node can become post dominated by another as
a result of a control flow edge deletion. A lemma similar to Lemma 2.13 describes

the sink of any deleted dependence.

Lemma 2.16 Given complete graphs G and G, (u,v)"€ cDG(G) and
(u,v)"” € cDG(G’) only if

1. s is postdominated by v in G/,
2. 8 is not postdominated by v in G, and

3. v is control dependent on s in G.

Proof The edge (u,v)"is deleted from the CDG only if v postdominates u in G’ and
not in G. This implies that some immediate successor, r, of u is postdominated by v
in G’ and not G.

The rest of the proof is identical to the proof of Lemma 2.13. a

The same walk as for control dependence addition contained in Algorithm 2.4 can
be used to find when all the immediate successors of some node u are postdominated
by v as a result of the edit. The difference is that we now delete dependences from u
when all its immediate successors are postdominated by v, instead of continuing the

search for new control dependences.

Lemma 2.17 Given a control dependence (u,v)", such that (u,v)" € G
and (u,v)” € cDG(G’) as a result of condition 2 of Lemma 2.15, a path

exists from u to s in CDG(G).

I

L\

52

Proof If u is equal to s then the lemma is true. If (u,v)" is deleted as a result of
condition 2 of Lemma 2.15 and u is not equal to s, then u is postdominated by v in
G’ but not G. By Lemma 2.12, a path exists from u to s in G.

The rest of the proof is similar to that for Lemma 2.14. a

Algorithm 2.5 shows the deletion of control dependences in response to the deletion

of a control flow edge.

Theorem 2.7 A control dependence (u,v)"€ CDG(G) and (u,v)"¢
CcDG(G’) if and only if CFDelCDDel in Algorithm 2.5 will delete

(u, v)"from the CDG.

Proof Dependences deleted as a result of condition 1 in Lemma 2.15 are deleted
explicitly by CFDelCDDel when control dependences of form (s, v)! are deleted from
the cDG. Since ¢ is no longer an immediate successor of s, any control dependence of
form (s,v)! is deleted from the control dependence relation upon the removal of the
control flow edge (s, t).

CFDelCDDel forms V from all the nodes that are control dependent on s in G
and which postdominate s in G’. Thus, by Lemma 2.186, if (u,v)" is deleted as a result
of condition 2 in Lemma 2.15, then v is contained in V when V is forme&.

By Lemma 2.17 we know that a path exists from u to s in CDG(G). Since u
is postdominated by v in G’, any node on the path in the CDGfrom u to s is also
postdominated by v in G’. Hence at every node, ¢, on the reverse path from s to u
dependences will be found to v for all of the node’s immediate successors not equal
to the label of the edge traveled to ¢ and v will not be deleted from V. Thus, a
call chain is shown such that visit will be called with curnode equal to u, label equal
to r, and v contained in V. Thus, at u a test is made for the existence of control
dependences (u,v)* for all of u’s immediate successors w # ! where [is the label

of the edge traveled to u. If these dependences are found, since we know that [is

53

program CFDelCDDel

delete all edges (s, v)! from cDG

Create the ordered list V containing the nodes control dependent on s in G
with labels for every immediate successor of s not equal to t in G.

Thus V contains those nodes that postdominate s in G’ but not G.

Delete all the dependences from s to a member of V

for all u,r where (u,s)” € cDG
call visit(u,r)
endfor

procedure visit(curnode,label)

unotpostdominated = false
for every element, v, of V, in order do until unotpostdominated
if (curnode, v)! € cDG for all immediate successors, I, of curnode # label
then delete all (curnode, v)! from cpG
else do
unotpostdominated = true
delete from V', v and all the elements following v in V'
endfor-until

for all u,r where (u,curnode)” € cDG
call visit(u,r)
endfor

end visit

end CFDelCDDel

Algorithm 2.5 Control Dependence Deletion in
Response to Control Flow Edge Deletion

|

¥

54

postdominated by v, all dependences from u to v with any label, and in particular

label r are deleted.

a

2.4 Complexity Analysis

Algorithms 2.1 and 2.2 involve walks on two distinct sets of nodes in the cDG. The
first set, 7, contains the nodes in the CDG which can reach t but not s in the cDG.
CFAddCDAddnt is called for each member of this set.

For each node, curnode, on which CFAddCDAddnt is called, it adds control de-
pendences to the nodes which postdominate curnode in G. This involves finding all of
curnode’s right siblings. To do this, it examines all the control dependence edges for
which curnode is a sink. For each of these edges the algorithm determines whether
any edges out of the source are to the right of the incoming edge to curnode. The
sinks of all the edges to the right postdominate curnode in G. A control dependence
edge must be added for each of these nodes. The amount of work required for this
determination is bounded by the sum of the out degrees of all the nodes which control
determine curnode. This, in turn, is loosely bounded by the product of the in-degree
of curnodes parents in the CDG. Over the whole graph G, we can bound the response
time to an edit to be proportional to the product of the maximum in-degree and
out-degree of nodes in the CDG times the size of n:, || 7:]|.

The second set, n,, walked by CFAddCDAddns, contains the set of nodes that
reach s, but not ¢, in the ¢DG of G. CFAddCDAddns is called on all of the nodes
in n,. The sinks of the new control dependence edges are the children of curnode
to the right of the edge walked to curnode. Dependences are added to each of these
nodes. The sources of the dependences are the members of U, U contains node pairs

consisting of nodes reaching s and their immediate successors that do not reach s.

53

The time for the addition of these dependences is bound by the number of members
of U, ||U || times the number of children of curnode.

CFAddCDDel in Algorithm 2.3 visits the same set of nodes as CFAddCDAdd and
thus their time complexities are equal.

Algorithms 2.4 and 2.5 update the CDG in response to the deletion of a control
flow edge. It walks the set of nodes 7,. During each visit, all of curnode’s immediate
successors are examined to see if a control dependence edge exists from curnode to v
with the label on the edge equal to curnode’s immediate successor. If an immediate
successor is found for which this the edge does not exist then a dependence edge
with labelled by the immediate successor is added from curnode to all the nodes
control dependent on s, in G. Otherwise dependences for curnode to the nodes control
dependent on s in G are deleted. Thus, during a single visit, the work is bounded by
the out-degree of s in the CDG of G. Thus, in response to the deletion of a CFG edge

(s,t), the worst case complexity for an update is O(|| 7,|| - out-degree(s)).

—

»

Chapter 3

Data Dependence

3.1 Definitions

As defined by Allen [All83], a data dependence arises when one statement can affect
the result of another statement through a change to a memory location accessed by
both statements. A data dependence between two statements can be characterized

by the types of the two memory accesses involved.

Definition 3.1 Given two statements S1 and S2 such that the execution

of S1 precedes S2,

e a true dependence exists from S1 to S2 if S1 assigns to a memory

location that S2 uses;

e an ant: dependence exists from S1 to S2 if S1 uses a memory location

that S2 assigns;

e an output dependence exists from S1 to S2 if S1 and S2 both assign
to the same memory location; and

e an input dependence exists from S1 to S2 if S1 and S2 both use the

same memory location. !

Note that “a dependence exists from S1 to S2” is equivalent to “S2 depends on S1”.

This can be written S101.52 with the subscript, ¢, denoting the type of dependence.

1Under most models of parallel computation the order of two reads from a single memory location
cannot affect the result of any computation and thus would not truly represent a dependence or
execution order constraint. Nonetheless, these so-called dependences have become useful in other
optimizations and we include them for completeness’ sake.

56

57

The rest of our discussion will concentrate on the calculation of true dependences.

Generalization to other types of dependences is discussed in section 3.4.

3.1.1 Scalars and Arrays

True dependences correspond to def-use chains defined for scalars. But array variables
are much more difficult to analyze. Consider the following example.
DOI=1,N
DOJ=1,N
S1 A(IJ) = ...
S2 e = A(LJ+1)
ENDDO
ENDDO

If we treat array variables like scalar variables, then we find a true dependence from
S1 to S2. In fact this true dependence does not exist, since no location that is written
by S1 is afterward used by S2.

The dependence relation for subscripted variables is fundamentally different from
that for scalar variables because the name of the variable alone does not determine
the memory location involved in an array reference; the memory location involved
in an array reference is also determined by the subscript expression in the reference.
For two references to access the same member of an array, their subscript expressions
must be equal at the times of the respective references.

Array references may appear within loops and their subscripts may contain vari-
ables whose values change during execution of the loop. Consider two subscripted
references inside a single loop body with induction variable I, a definition, A(f(I)),

and a later use, A(g(I)).

h

p

)

58

DOI=L,U
A(fD)) = ...
= Ag(D)

ENDDO

If f equals g, then the two references access the same memory location during every
iteration. This results in a loop-independent true dependence, so named because
the dependence exists regardless of any action of the loop. In contrast, if f is not
equal to g, but f(j) equals g(k) for some j less than k within the bounds of the
loop induction variable I, then the two references access the same memory location in
different iterations of the loop and a loop-carried true dependence exists from the first
to the second reference. We say that the loop “carries” the dependence. We define
the threshold or distance of the dependence to be the smallest positive t = k—j, where
J and k are contained within the bounds for I, and f(j) = g(k) 2. The threshold
represents the minimum number of iterations between which the two references access

the same memory location. If f(; + ¢) = g(k) for a constant c and all values of j and

'k, then we call ¢ a constant threshold. Constant thresholds will be important in the

algorithms presented later in this chapter.

In the above example, the two references are contained in a single loop and hence
there is no ambiguity concerning which loop is carrying the dependence. If the two
references of a loop-carried dependence are contained in more than one loop, we define
the level of the loop carrying the dependence to be the level of the lowest numbered
loop for which the references forming the source and sink of the dependence occur on
different iterations and where levels are numbered from outermost to innermost.

Subscript expressions can be quite complex. But even for the relatively simple
case of affine expressions involving induction variables of the surrounding loops, deter-

mining exactly when a dependence exists between two statements with references to a

2More formal definitions are given by Allen and Kennedy [AK87].

59

common subscripted variable requires integer programming techniques [Al183, Wol82].
As a consequence, a conservative approximation is used. All possible dependences
between subscripted variables are assumed to exist unless a simpler analysis of their
subscripts proves independence. Typically, attention is restricted to pairs of array
references with subscript expressions which are affine functions of the loop induction
variables. All other pairs of array references are assumed to be dependent. One or
more independence tests are applied. These tests cast the problem as proving that
there are no integer solutions for the loop induction variables in the the equation
obtained by setting the difference of the subscript expressions equal to zero[BanT79).

For instance, in the previous example, where the induction variable of the loop
ranges from L to U, we determine whether there exist any integral solutions for x and

y in the following equation.

f(x) - g(y) = 05
L<x<y<U

If we can prove that no solution exists, then no true dependence can exist between

the references.

3.1.2 Independence Tests

Independence tests may be divided broadly into three types:,
1. range tests,
2. integral tests, and
3. exact tests.

Range tests prove that the maximum and minimum values of two subscript ex-
pressions do not overlap in the range of the possible values for the induction variables

contained in the subscript expressions. This is done by finding the maximum and

)

2

k

60

minimum values for the two expressions over the range of the induction variables and

comparing them. Banerjee’s test is an example of this type of test[Ban79]. In the

following,
DOI=1,N
S1 A(D = ...
S2 .= A(I + N)
ENDDO

the maximum value of the subscript in the definition in S1 is less than the minimum
value of the subscript in the use in S2. Thus, Banerjee’s test (as implemented at
Rice) would conclude independence. Banerjee’s test is formulated to work correctly
in nested loops with subscript expressions involving more than one induction variable.

Integral tests prove that the only possible values of induction variables which could
result in equality of the two subscript expressions are nonintegral. Since the induction
variables are necessarily integer quantities, this proves independence. The GCD test

described by Cohagen[Coh73] is an example of this type. In

DOI=1,N
S1 A(2D) = ...
S2 o= A(2I41)
ENDDO

the definition in S1 only writes to the even numbered array elements and the use in S2
only reads the odd numbered elements. Therefore, they are independent. The general
case is proved by comparing the greatest common divisor (GCD) of the coefficients of
the induction variables in the subscript expressions with the difference of the constant
terms of the expressions. If the difference is not evenly divided by the GCD then
independence is proved.

Finally, there are a number of ezact tests. Although exacts tests are too expensive

for the general case, a number of special cases of subscript expressions are susceptible

61

to proving inexpensively that there exist values of the induction variables which result
in equality of the subscript expressions. Since the existence of such values of the
induction variables proves a dependence, these tests are called “exact” to distinguish
them from the approximate range and integral tests.

Exact tests normally apply only to arrays with a single subscript and subscript
expressions involving only a single induction variable. These tests are called Single
Induction Variable (SIV) tests. An even more restricted test is the Simple SIV test,
which only applies to subscript expression pairs where the coefficient of the induction
variable in each expression is the same. Since these subscript pairs also have the
property that they result in constant thresholds, we shall consider this test in detail.

Consider a pair of subscript expressions.
al+b

al+c.
These expressions result in the dependence equation,

ax+b=ay+-c,

which, when solved for (y - x) yields
y-x=(b-c)/a=t.

The threshold of the dependence, if one exists, is given by t. Since the threshold of
any dependence must be an integer, we can conclude independence if (b - ¢)/ a is
not an integer. If the bounds of the loop can be determined, and the possible thresh-
old is greater than the maximum number of iterations between loop iterations, then
there can be no dependence. If this test fails to prove independence and ¢t =(b - ¢)/a
is an integer, then ¢ is said to be a constant threshold, because the number of itera-
tions between the definition and use that cause the dependence is the same over all
iterations of the loop. For a loop with inductive step 1, upper bound U, and lower
bound L, if this constant threshold is less than the number of iterations of the loop,

then there exist at least U—L—t iterations of the loop during which a statement on

12

)

)

62

one iteration shares a memory location with a statement on another iteration. Hence,

the dependence is proved.

3.1.3 A Stronger Notion of Dependence

The data dependence calculation that we have described so far ignores the effect of
a definition to an array on the propagation of information from an earlier definition.

Consider the following example.

DOI=1,N
S1 A(I) = 0.0
S2 A(I) = F()
S3 B(I) = G(A(I))
ENDDO

The method that we have described for discovering data dependence we have de-
scribed will detect a true data dependence from S1 to S3 and from S2 to S3. But,
there is no memory location that is written by S1 and is read by S3 that has not
in the between time been written to by S2. In other words, there is no way for the
value in the definition at S1 to reach the use in S3. The definition of A in S2 kills
the previous definition in S1. Kuhn called this effect covering [Kuh80]. The data
dependence calculated from S1 to S3 is the result of ignoring the covering effect of a
definition to an array variable or one of its elements.

A more precise or minimal data dependence graph would not include the edge
from S1 to S3. Instead the execution order constraint between S1 and S3 would be
represented as one data dependence between S1 and S2 and another dependence from
S2 to S3. |

The transitive closure of this minimal dependence graph includes dependence
edges (u,v) for each pair of statements where the minimal dependence graph has

edges e;e;...e, such that e; = (u,81), ea = (Sn-1,v), and all other e; = (8i-1, Si)-

63

We call edges (u,v) transitive edges whenever the same edge does not exist in the
minimal dependence graph.

In automatic vectorizers and parallelizers, the transitive closure of the dependence
graph is used to test for the correctness of a parallelizing transformation. Since this is
the only form of the dependence graph that is required for the generation of parallel
code, no attempt is made to distinguish between transitive and nontransitive edges
as data dependences are calculated.

For our purpose of providing a dependence graph to be inspected by the user, this
strategy is not acceptable. The transitive dependence graph contains dependences
that are confusing to a user and typically are so numerous that they obscure the in-
formation that may be helpful to the user. Consequently, we desire a graph containing
as few transitive edges as possible.

Kuck [Kuc78] defines data dependence with respect to the flow of values through
a variable rather than with respect to the assignments and uses of a memory loca-
tion. A kill represents the end of the presence of a previous value contained in a
variable. Hence, Kuck’s idea of defining data dependence in terms of the flow of value
corresponds to the minimal dependence graph we have just described.

In order to draw a firm distinction between these two approaches to dependence,

we offer the following definition.

Definition 3.2 A strong dependence exists on the variable A between

two statements, S1 and S2, if and only if

1. S1 and S2 access the same memory location in their references to

identified by A and

2. there exists some execution path such that the memory location
within A accessed by S1 and S2 is not written between the executions

of S1 and S2.

64

A strong dependence is characterized as true, anti, output, or input under the same
conditions as in definition 3.1. Only definitions can act as covers, regardless of the
type of dependence being calculated. In the following we discuss the calculation of
strong true dependences. Section 3.4 will show how to extend the algorithms to
calculate strong anti and output dependences.

If only scalars are considered, a dependence graph containing only strong true
dependences corresponds exactly to def-use chains. When we extend the notion of
strong dependence to arrays, we gain the same kind of information about subscripted
variables as def-use chains give for scalars.

Arrays are not atomic data structures. It is insufficient to know that a statement
assigns to or reads from a particular array. Instead, we need to know what part of
the array is defined or used by the statement. For this purpose, we will associate
with the statement s an access descriptor, denoted A7, for the set of elements of
the array defined by s and A for the set of elements of the array used by s3. These
access descriptors are functions of the context or state of the program at the time of a
particular execution of s. For an assignment statement contained in a loop and with
left hand side containing the array A, with the subscript expression being a function of
the induction variable of the loop, A} is equal to the subscript expression on the left
hand side and the context of the execution is the value of the induction variable at the
time of execution of s. For example, the access descriptor of an assignment statement
with left hand side equal to A(I+41) is I+1. If a call is made to a subroutine that
defines the Ith column of a two dimensional array A, then the access descriptor is a
set containing the first column of the array. This set can be denoted by (*,I). Since
these access descriptors are sets of array elements, set arithmetic may be performed on
them. Whenever we show arithmetic operations on access descriptors, the operations

will denote set arithmetic.

3In our discussion we will concentrate on the calculation of dependences on the ubiquitous array A.
In practice, access descriptors for s can be calculated for all the arrays of the program. If the array
does not appear in s, then its access descriptor will be equal to the empty set.

65

According to Definition 3.2, a definition at a statement d can be the source of
a strong dependence at a statement s only if the definition reaches s; that is, some
memory location z is written by d and there exists a control path in the program from
d to s where no statement on the path writes to . We collect the definitions that can
be the source of a strong dependence at s in the set may(s). The set may(s) consists
of pairs containing the name of a statement, d, and the part of A that d defines and
which has not been defined by some other statement between the execution of d and
s. We will denote a pair by enclosing a statement identifier an the access descriptor
in parentheses separated by a colon. For instance, the pair (11:2I+1) indicates that
at statement 11, a single array element is defined and, during a single execution of
the statement, it is the element given by (2I + 1) where I is the induction variable
of the surrounding loop.

The propagation function f(s) specifies how the value of the set may(s) changes
as the value of s changes from s to one of its immediate successors. The value of
may(s) is calculated by performing a meet operation on the values of f(p;) for all of
s’s immediate predecessors, p;. If s does not define A then f(s) is equal to may(s).
Otherwise f(s)is calculated as follows. All the memory locations defined by s must
be subtracted from the access descriptors contained in the pairs which are elements
of may(s). So, for each pair (u : X') in may(s), if XY—A} is not equal to the empty
set then the pair (u: X~ A}) is placed in f(s). Next, the pair (s:. A7) is added to
f(s) to represent the definition at s. The set may(s) is formed from the union of the
propagation functions of all of s’s immediate predecessors.

A strong true dependence exists from a statement S1 to a statement S2 if (S1:X)
is an element of may(S2), there exist iterations ¢ and j of the loops surrounding S1
and S2 such that A" evaluated on 7 is equal to Aj, evaluated on j. If this occurs we
say there is a non-empty intersection between X' and A%,.

Unfortunately, the test for a non-empty intersection between two access descrip-

tors is equivalent to an exact test for weak dependence between general subscripts

b

66

and hence is NP-hard for affine expressions. We are forced, therefore, to seek an
approximation to the notion of strong dependence. The approximation should be
conservative in the sense that all strong dependences must be represented in the
approximation.

Our approximation involves an attempt to prove covering between a restricted
form of array references within and between iterations of inductive loops. Inductive
loops have an associated induction variable whose value is an affine function of the
number of the iteration where the use of the variable occurs. If analysis of the
control flow shows a path between a definition and a use of an array variable, and
the independence tests fail, and we are not able to show that a cover exists between

the two references, we assume a dependence.

3.2 Algorithms

In the following discussion, unless otherwise stated, “dependence” denotes strong
dependence.

In order to motivate our algorithm we make the following observations:

1. A use cannot be the sink of a loop-carried dependence if the memory location

that it uses is always defined previously in the loop body.

If a use is covered from above by a definition d in the same loop iteration, then
d prevents any possible loop-carried dependence with its sink at the use. For
instance, in the following example, the use of A(I) cannot be the sink of any
loop-carried dependence because it is defined within the same iteration that it

is used and textually before the use in the loop body.

67

DOI=1,N-1
A(D) = ...
.. = A(D)
A(I+1) =

ENDDO

2. If a memory location used on iteration i is always defined on iteration (i — c)
where c is a known constant, then no definition from an iteration earlier than

(i — ¢) can reach the use on iteration i.

A definition, d, that results in a loop-carried dependence can cover the sink of
the dependence from any definitions that occurred before d. A definition only
covers in this way if it is one that occurs on every loop iteration. In the following
example, the use of A(I) would be the sink of a dependence from S3 except
that definition in S2 occurs on an iteration that is closer in time to the use.
Since the definition to A(I41) occurs on every iteration, no dependence with
its sink at the use of A(I) could possibly exist at this level with a threshold

greater than one.

DOI=1,N-2
S1 . = A(I)
S2 A(I41)=
S3 A(I+2)=

ENDDO

3. Information about the pattern of definitions that can occur between loop itera-
tions can be derived from a set representing all the definitions that may occur
during a single iteration and a set representing all the definitions that must

occur during any iteration.

Without simulating the execution of conditionals, all iterations must appear

alike to the dependence analysis. The set of all definitions that can occur during

}

68

the execution of the loop body provides all the possible sources of dependences.
The set of all the dependences that must occur during any iteration provides all

the definitions that can prevent some loop-carried dependence from occurring.

We first present a batch algorithm to calculate our approximation of strong de-
pendence. Using the batch algorithm as a guide, we will develop an algorithm for
updating the dependence graph after arbitrary editing changes. The algorithms first
presented are correct for innermost loops without call sites. That is, they are de-
signed to work in the absence of call sites or loops nested within the loop carrying
the loop-carried dependences that we are testing. In a later section we will show how

to generalize these algorithms to handle call sites and multiple nested loops.

3.2.1 Batch Algorithm

We assume that the references in which we are interested reside in a single loop with
a single entry point called the loop header; all iterations of the loop begin at the
loop header. Given a particular use of an array A, we calculate all the dependences
with their sink at this use. Reflecting the observation above, we need the following

information.

e The definitions of A that can reach this use from within the same iteration of

the loop.

The set may(s) consists of the same pairs as described in subsection 3.1.3. The

propagation function associated with may(s) is f(s).

o Definitions of A that can reach the beginning of an iteration of the loop from

an earlier iteration.

The set loopmay(s) contains the same kind of pairs as may(s), but contains a
pair for each definition that can reach an iteration from an earlier iteration.
loopmay(s) is calculated by combining the may sets for all the statements that

reach the loop header from inside the loop.

69

e The part of A that must be defined previous to the use in the same iteration.

Information about what elements of A must be defined during a single iteration
from the beginning of the loop body up to s is contained in the set must(s). The
elements of must(s) are access descriptors describing the part of A defined by

some statement in the loop. The propagation function associated with must(s)

is g(s).

o The part of A that must be defined during a previous iteration and the num-
ber of iterations that must have occurred between the iteration containing the

definition and the current iteration .

The elements of A that must be defined during any iteration is contained in

loopmust.

The set equations defining this information are presented below.

Definition 3.3
g(s) = must(s) + A}
F(s) = may(s) if s does not assign to A
f(s) = {(3 : X) where (¥ :) € may(s)and X = Y — A} # 0} + (s : A})
may(s)= U f(p)
pepred(s)

must(s)= (] g(p)
pepred(s)
loopmay = U may(?)
ie{back edge to loop header}

loopmust = N must(z)
ie{back edge to loop header}

—

Theorem 3.1 Given a singly-nested inductive loop with lower bound
L and upper bound U, array accesses restricted to affine functions of the
induction variable, and the solution to the set of equations above, a loop-
independent strong dependence exists from a definition contained in a
statement u to a use contained in a statement v if and only if there exists

(u: X) € may(v), and integer k, L < k < U, such that X(k) N A7 # 0.

Proof We prove the if part of the theorem first. The use at v intersects with some
element (u,)) € may(v). Hence, we know u writes a location which v reads. Now,
we show that this intersection is not written in the interim between their executions.

Suppose that the intersection of the use in v and Y in the element of may(v) is

X. Then there exists a path in the program, u, s;,...85, v, such that

f(sn) o f(Sn=1)e.f(s1) o f(u) 2 (u:Y): Y 2 X.

From the definition of f, it is clear that this implies that no statement s; writes to
X. Hence a strong true dependence exists from u to v. This completes the proof of
the if portion of the theorem.

A loop-independent strong dependence implies that u writes to some memory
location) that is read by v. Also, it implies that there exists a path, [s;, s2...5,] from
u to v, such that no s; on the pé;th writes to). From the definition of f, we know
that (u : AY) € f(u). Also from the definition of the propagation function f, since
s; does not write to), if (r, W) € may(s;) and W 2O Y then

(u:Z) € f(si)whereW D Z D).

This along with the definition of the meet operation proves that there exists X such
that X 2) and (u : X) € may(v). Hence, from the definition of strong dependence,
since Y C X, there exists k, L < k < U, such that X N A; # 0. Thus, the theorem

is proved. a

Theorem 3.2 Given a singly nested inductive loop with lower bound
L and upper bound U, array accesses restricted to affine functions of the
induction variable, and the solution to the set of equations above, there is
a loop-carried strong dependence between the statements v and v if and

only if

1. (u: X) is an element of loopmay,
2. there exist 1 and j, L <:<j <U,suchthat Z=A;NX # 0,

3. Z is not contained in any element within must(v) (Z € must(v)),

and

4. the threshold between u and v is less than or equal to any threshold

calculated between an element of loopmust and v.

Proof We prove the if portion first. Since u appears in loopmay, there exists a path
from u to the end (or the beginning) of the loop‘ body such that the array element
that u defines during some iteration is not defined along the path. This particular
element is a function of the particular iteration of the loop. Call this element Al.
Condition 2 above implies that there exist iterations ¢ and j such that A is used by
statement v during iteration j. Condition 4 tells us that there is no iteration between
¢ and j such that a definition must occur to the memory location(s) that u and v
share. Hence, there is a path from the end of iteration z to the beginning of iteration
j such that no statement on the path defines Ai. Condition 3 implies that there is
a path from the beginning of an iteration to v such that no statement on the path
defines the element that v uses. During iteration j this element is A%. Thus we have
proven the existence of a path from u to v such that no statement defines A%. Since
u and v share A}, the if part of the theorem is proved.

Given a loop-carried dependence from u to v, we know that there must exist a
path, P, from u to the beginning of the next iteration, through some number of

iterations of the loop and then from the beginning of the loop body to v such that

-~
(8]

no statement on this path defines the array element that u defines and v uses. The
existence of the portion of P from u to the beginning of the next iteration proves
that u will appear in loopmay, thus proving item 1 above. By the definition of strong
dependence, there must be an intersection between the memory location written by u
and that read by v, thus proving item 2. The existence of the portion of P from the
beginning of the loop body to v proves that no member of must(v) can write to the
element that v uses. Thus, item 3 is proved. Finally, the number of iterations between
the definition at u and the use at v establishes that no element of loopmust defines
the array during an iteration closer to the use in v than u, and hence no element of
loopmust can possibly have a lower threshold with respect to v than u. Thus item 4

is proved and the theorem follows. a

Given precise tests on array subscripts and precise calculation of the sets, this
theorem describes a precise calculation of strong dependence within a single inductive
loop. Within a singly nested loop and with subscript expressions restricted to those on
which the SSIV test can be applied, these tests are precise. For subscript expressions
outside outside the restricted set, we approximate our sets and our tests.

In the algorithm we present we assume the existence of three routines:

1. TestForLoopIndependent(def,use) uses information about the surround-
ing loop to perform an independence test on def and use, checks for a loop-
independent dependence, and places the edge in the dependence graph if inde-

pendence is not proved.

2. TestForContainment(AD1, AD2) takes two access descriptors, AD1 and
AD2, and information about the surrounding loop structure, and tests if AD2
covers AD1 in a loop-independent way. If the access descriptors represent
subscript expressions of the restricted form, the obvious test is placing the two

access descriptors into a normal form and testing for equality. If AD1 or AD2

73

program AllDeps(1):

/* 1 is the header of an innermost loop */
may(*) =0

must(*) = 0

loopmay= 0

loopmust= Q /* Universal Set */

for all successors, succ, of [
if succ # | then place succ on worklist
else loopmust = 0
endfor
do until worklist is empty
take s from worklist
call LoopIndependent(s)
call LoopCarried
end AllDeps

Algorithm 3.1 Main Program AllDeps for Batch Algorithm

represent ranges, then the test will be more complex. We will discuss this in

more detail later.

3. FindThreshold(AD1, AD2) takes two access descriptors, AD1 and AD2,
and performs a test similar to the SIV test to discover, if possible, a constant

minimum threshold. If a constant threshold is found, it is returned.

4. TestForCarriedIndependence(defpair, u, M) takes the access descriptor
of an element of a mayset, defpair, and a use, u, and information about the
surrounding loop and performs an independence test searching for a loop-carried
dependence. If independence is shown, or a minimum threshold is found that
is greater than M, then the routine returns without adding the dependence.
Otherwise a dependence from the definition in defpair to bf u is added to the

dependence graph.

procedure LoopIndependent(s):
may(s) = 0; must(s) = 0
inmay = 0; inmust = emptyset

/* Calculate may(s) and must(s) */
for all predecessors of s, p
inmay = may(p) cup inmay
inmust = must(p) cap inmust
endfor for all (u:A]) € inmay
call TestForLoopIndependent((u:A7), s)
if s assigns to A then do

diff = Af — A}
if diff # 0 then may(s) = may(s) + (u : diff)
endif

endfor

/* Store f(s) in may(s) */
may(s) = may(s) + (s:A})

for all w € inmust
if TestForContainment(A;, w) succeeds then mark s as “covered”
endfor

/* Store g(s) in must(s) */

must(s) = inmust + A}
for all successors, succ, of s
if succ # 1
then place succ on worklist
else do
loopmay = loopmay U may
loopmust = loopmust N must
endelse
endfor
until worklist is empty
take n from worklist
if LoopIndependent has been called on all of n’s predecessors
then call LoopIndependent(may, must, succ)
end until
end LoopIndependent

Algorithm 3.2 Procedure LoopIndependent called from AllDeps

75

procedure LoopCarried:
for all statements in loop / not marked as “covered”, s
for all w € loopmust
M = min(M FindThreshold(w, s))
endfor
for all (u:A}) € loopmay
TestForCarriedDependence((u:A*), s, M)
endfor
endfor
end LoopCarried

Algorithm 3.3 Procedures LoopIndependent and
LoopCarried called from AllDeps

All these routines are based on the independence tests described in 3.1.2. The al-
gorithm consists of two passes over the loop. During the first pass, the algorithm
calculates the sets may(s) and must(s) sets for each statement s contained in the
pl:ogra.m. At the same time loop-independent dependences with their sink at s are
calculated. If a use of a variable z is covered by the must set for = at the statement
containing the use of z, then it is marked as one that cannot be the sink of a loop-
carried dependence. However, in the set variables may(s) and must(s) is stored the
values of the propagation functions f(s) and g(s), respectively. These are stored in
the batch algorithm in order to ease later comparison of the batch and incremental
algorithms.

After may(s) and must(s) have been calculated for all the statements of the loop
body, we construct the two sets loopmay and loopmust. loopmay is formed from the
union of the may set of all those statements with a back edge to the loop header.
Similarly, loopmust is formed from the intersections of the must sets of these state-
ments.

With these sets in hand, the second stage of the algorithm calculates loop-carried

dependences. For each use contained in a statement v in the loop body not marked as

76

covered from carried dependences, the use is compared to each element of loopmust.
Each comparison yields a constant threshold if one exists. Call the minimum of these
thresholds M. Since for every iteration, the part of A which v uses has been defined
only M iterations previously, M represents the maximum possible threshold of any
loop-carried dependence with v as a sink.

We then compare the use in v with each element of loopmay. For each element,
if the independence test succeeds, then no dependence exists. If the test fails, but a
constant or minimum threshold can be calculated, and this threshold is greater than
M, then no dependence is added. Otherwise a loop-carried dependence is added. See
Algorithm 3.1.

Before proving AllDeps correct we prove the following lemma.

Lemma 3.1 AllDeps calculates may(s) for each statement s in program

P.

Proof By Definition 3.3, may(s) is equal to the union of f(p) for all of s’s immedi-
ate predecessors in P. AllDeps performs this calculation in the first loop in procedure
LoopIndependent which is called for every statement in P. The proper initial condi-

tions are set at the beginning of AllDeps. Thus the lemma is proved. O

Theorem 3.3 AllDeps terminates after calculating dependences accord-

ing to theorems 3.1 and 3.2.

Proof AllDeps calls TestForLoopIndependent to test whether the set of elements
described by some access descriptor contained in an element of may(s) intersects
with the set of elements used by the statement. Thus AllDeps calculates the loop-
independent dependence according to Theorem 3.1.

loopmay is equal to the union of the sets f(i) where i is a statement with an edge
to the loopheader. In the third loop of LoopIndependent, if a successor of a statement

s is the loop header, then the set may(s) which contains f(s) is unioned with loopmay.

7

Since union is commutative and associative this is equivalent to unioning f(s) for all
the statements with edges to the loop header. Thus loopmay is calculated correctly.
The proof that loopmust is calculated correctly is similar.

must(s) is equal to the intersection of g(p;) for all of s’s immediate predecessors,
p;. The third loop of LoopIndependent calculates the propagation function g(p) and
performs the intersection to create must(s).

LoopCarried determines whether a use in a statement s is covered by an element
in must(s). If not, it forms the maximum threshold M from the elements in loopmust
and the use. Then this threshold is compared to the threshold between each member
of loopmay and the use. A dependence is added from each element of loopmay, d, to
s for which independence is not shown between d and s and the threshold between d

and s is less than M. Thus, by theorem 3.2. The theorem follows. O

3.2.2 An Incremental Calculation

Before presenting the incremental algorithms we describe the notion of a correct

update to be used as the criterion for the correctness of our incremental algorithms.

Definition 3.4 An algorithm performs a correct data dependence update
if and only if given a program P, the sets loopmust and loopmay for each
loop in P, and may(s) and must(s) for all statements in P as calculated
by AllDeps, the algorithm, given an edit to produce P’, produces the
new data dependence graph and the sets loopmust, loopmay, must(s), and

may(s) as produced by algorithm AllDeps on P.
All edits can be classified as one of three categories[Zad84]. These are

1. the addition or deletion of a node from the control flow graph,
2. the addition or deletion of a variable definition or use, and

3. the addition or deletion of a control flow edge

78

We will treat each category of edit separately, describing how to update the data
dependence information and proving that the resulting dependence graph is the same
as obtained when using the batch version of the algorithm. First, we discuss some de-
tails of managing and organizing the information that is maintained by the algorithm

between updates.

Set Information Management and Organization of Statements

Assignment statements are contained in control flow graph nodes which represent
basic blocks. Figure 3.1 shows part of a control flow graph and the data statements
contained in the nodes of the graph. A control flow graph node can have more than
one predecessor. To simplify the algorithms, we assume that the first statement in
each node is a pseudo statement called the node header, which contains no definitions
or uses. The node header serves as target for all the node’s predecessors. The may
and must sets for this pseudo statement are equal to the union or intersection of
the predecessors of the node, respectively. Thus, all statements containing a use
or definition have only a single predecessor. This allows us to calculate may(s) and
must(s), for a statement s that contains a use or definition, by examining just may(p),
must(p) and s, where p is s’s predecessor.

For a particular array variable, the may and must information does not necessarily
change from one statement to the next. We would like to maintain distinct sets only
for each point in the control low graph where the sets actually change. However, given
any statement, we must be able to quickly find the correct sets for the statement.
This is done by keeping, for each variable, a table of pointers to distinct values of
may and must. For each statement, s, we keep a vector of indices into these tables.
See figure 3.2. For each variable there is a vector element which indexes into that
variable’s table. The entry indexed by this vector element holds the pointer to the
appropriate set for s. Thus, two indirections are required to access a set associated

with a particular statement and variable.

Node Header
A(I) = F(I)
IFI> 100 GOTO X

X: Node Header
B(I+1) = B(I+1) + G(A(100)

Node Header
B(I+1) = G(A(I+1))

Node Header

Figure 3.1 Data Statements in the Control Flow Graph

79

80

Index Vectors Pointer Table

S2: A(I+1) = ...

= A(D

Si: A(I) = ... | —r— {(s1:I)}
/——j\ ——> {(S1:I), (S2:I4
/
/
A

Figure 3.2 Set Storage Scheme

Addition and Deletion of a Node

In chapter 2, we have discussed how a node might be added or deleted from the
control flow graph. A node can be created by splitting an existing node or placing a
node on an existing edge. To be consistent with the convention developed for control
dependence, we call the second node of a split pair the old node and the first node of
the pair the new node. The second (old) node will require a new pseudo statement as
its head. Since our sets and data dependences are kept on the statements contained
within a node, no update is required in response to a name change of the node. If
a node is placed on an existing edge, then it is initially empty; the new node will
initially contain only the pseudo statement which acts as the node’s single entry.
Again, no update of the data dependence information is required. In both cases, a
new variable vector must be created for the pseudo statement contained in the new
node, and its elements copied from the last statement of the node preceding the new

node.

81

Flow graph nodes that are deleted by joining two nodes require no special update.
If a node is deleted from an edge we assume that the deleted node is empty, and again

no update of dependences or sets is required.

Addition of a Use

A use can be added to an existing statement or as part of a new statement. In either
case the new use will be part of an existing node in the CFG. If the use is part of a new
statement, then new may and must sets must be created for the new statement. Since
only the first statement in a node can have more than one predecessor and the first
statement in a node will always be an empty pseudo statement, we know that any
new statement containing a new use will have only a single immediate predecessor.
Hence, the may and must sets of the new statement are calculated by computing the
appropriate propagation function on the new statement’s predecessor.

. After the may and must sets are updated the possible dependences resulting from
the added use can be determined. A use blocks no dependences and is not the source
of any new dependences. But an added use can be the sink of new dependences.

A loop-independent dependence is added if and only if the access descriptor of
one of the elements of may(p) has a non-empty intersection with the new use where
p is the predecessor of the statement containing the new use.

In order to find loop-carried dependences, we first check the new use against all the
elements of must(p). If the use is covered by a preceding definition in the loop body,
then, as in the batch version, no loop-carried dependences can have this use as their
sink. This is tested by determining whether the use is contained within any of the
elements of must(p) where p is the predecessor of the statement containing the new
use. If the use is not covered by any of the elements in must(p), then we calculate
the constant thresholds between the new use and each element of loopmust. The
minimum of the thresholds above zero, M, is the maximum threshold of any possible

loop-carried dependence to this use. Independence tests are performed between all

82

program AddUse(s,var,use)

/* s is the statement location containing the new use

/* var is the variable involved in the new use

/* use holds the expression containing the new use. e.g. A(I)

p = predecessor of s

for all elements, (u:A*), of may(p)
call TestForLoopIndependent((u:A*),use)
endfor

for all elements, W, of must(p) do until covered
covered = TestForContainment(W,use)
endfor

if not covered then do
for all elements, W, of loopmust
M = min(M ,FindThreshold(W,s))
endfor

for all elements, (u,.A%), of loopmay
call TestForCarriedIndependence((u,.A*),use,M)
endfor
endif
end AddUse

Algorithm 3.4 Updating Dependences in Response to Addition of a Use

*/
*/

83

the elements of the set loopmay and the added use. If the independence test indicates
possible dependence, and with a threshold less than or equal to M then a loop-carried

dependence is added. See Algorithm 3.4

Theorem 3.4 AddUse performs a correct data dependence update ac-

cording to definition 3.4.

Proof Since a use cannot be the source of any true dependenc.es and cannot block
any definitions from reaching any other uses, the only possible change to the depen-
dence graph is the addition of some number of edges with v as their sink. Thus, in
order to ensure that the dependence graph is correctly updated by AddUse, we only
have to consider the addition of dependences with their sink at the new use. may(p)
in AddUse, where p is s’s predecessor, is identical to the set may(s) in algorithm 3.1.
Inspection of the first loop in AddUse shows that the same tests are performed for
members of may(p) against v as are done for members of may(s) in the first loop
of LoopIndependent in Alldeps. This proves that loop-independent dependences are
calculated identically to the batch version.

In Looplndependent, there is a test for covering of v by members of must(s).
This same test is performed by the second loop in AddUse. In both, when a cover
is not found, loop-carried dependences are tested. In AllDeps the testing for loop-
carried dependences occur in LoopCarried. In AddUse the tests are performed in the
third loop. Both algorithms search for the minimum threshold, M, between the use
and elements in loopmust, and then add loop-carried dependences from definitions
in loopmay with thresholds with respect to v that are less than M. Thus, the data
dependence graph updated by AddUse will be identical to the graph calculated by
AllDeps on the updated program.

AddUse makes no changes to any sets may(), must(), loopmust, or loopmay.
In AllDeps the calculation of these sets is strictly dependent on the definitions in

the loop, and since these definitions are identical in P and P’, the sets may, must,

84

loopmust, and loopmay will be identical for the two programs. Hence AddUse, making
no changes to the sets, will produce the same sets during its update as AllDefs when

called on P’. This concludes the proof. O

Deletion of a Use

Updating data dependences in response to the deletion of a variable use is very simple.
Since none of the may or must sets of any statements change as the result of the
deletion of a use, only dependences to the deleted use must be deleted. Assuming
a mechanism to translate from a statement in the editor’s intermediate form of the
program to the corresponding node in the dependence graph, it is easy to identify to
the appropriate dependences in the dependence graph and delete them. Algorithm
3.5 shows the update of the dependence graph in response to the deletion of a variable

use.

Theorem 3.5 DelUse performs a correct data dependence update ac-

cording to definition 3.4.

Proof The same reasoning of the proof for theorem 3.4 applies here to show that

the sets may(), must(), loopmust, and loopmay will be correctly updated (i.e. the sets

program DelUse(s, u)

/* u is a use contained in s. */

for all the dependences (d,u) with sink % in s
delete the dependence (d, u)
endfor

end DelUse

Algorithm 3.5 Updating Dependence in
Response to the Deletion of a Use

85

remain unchanged). Also, by the same reasoning, we can restrict our attention to
dependences having their sink at the deleted use v.

Since the use v does not appear in P/, AllDeps cannot add any dependences with
v as their sink. Since the deletion of these dependence edges is the change made to

the dependence graph by DelUse, the theorem follows. O

Addition of a Definition

Updating the dependence graph in response to the addition of a variable definition
is more difficult than updating the dependence graph in response to the addition
of a use, because the change in the may and must information is not limited to the
statement containing the new definition. Changes to these sets must be propagated to
all the statements that the new definition reaches during a single loop iteration and,
if necessary, to the loopmust and loopmay sets. This propagation is accomplished
by following the possible flow of control, updating the sets for each statement as
necessary. At the same time the algorithm accounts for the covering action of the
statements through which the changes are being propagated. If after updating the
may and must sets for some statement s, the value of one of the updated sets is
identical to its value before the update, then we need not propagate the change to
that set any further from that statement. At some point the sets will either cease
changing, or all the sets for the loop body reachable during a single iteration from the
inserted statement will have been updated. During the propagation of the changes to
may and must sets, every time the may set of a variable used in a statement changes,
the existence of a new loop independent dependence from the added definition to the
use is tested.

For loop-carried dependences there are three cases to consider. First, neither the
loopmay nor loopmust sets change. In this case, there is no change in the loop-carried

information. Second, only the loopmay information changes. In this case, all the uses

86

program AddDef(s, var, def)
/* s is the location of the new definition
/* var is the variable involved in the new definition

/* def holds the added definition
p = predecessor(s)

oldmay = may(s)

oldmust = must(s)

may(s) = may(p) — { definitions covered by def } + (s:def)
must(s) = must(p) U def

/* Propagate deletion of the covered definition
/* and the addition of the new new definition
DeltaMayMinus = oldmay — may(s)
DeltaMayPlus = may(s) — oldmay

DeltaMust = oldmust — must(s)

for all successors, r, of s
if DeltaMayMinus is not empty then call PMCMinus(s, r, DeltaMayMinus)
if DeltaMayPlus is not empty then call PMCPlus(s, r, DeltaMayPlus)
endfor

if DeltaMustPlus is not empty then do
for all successors, r, of s
call PMustCPlus(s, r, DeltaMust)
endfor
endif
if MustXIteration
then calculate all carried dependences in loop body
else if MayXIteration
then calculate carried dependences on the added definition

end AddDef

Algorithm 3.6 Update In Response to Addition of a Definition

*/
*/
*/

*/
*/

87

procedure PMCPlus(src, sink, DeltaMay)
if DeltaMay — may(sink) = @ then return

if sink is the loop header then do
loopmay = loopmay U DeltaMay
MayXlIteration = true
return
endif

for all elements, (d : A1), of DeltaMay
for all uses, u, at sink
call TestForLoopIndependent((d : At), u)
endfor
endfor
oldmay = may(sink)
may(sink) = may(sink) U DeltaMay — {elements covered by definitions in sink}
DeltaMay = may(sink) — oldmay
for all successors, s, of sink
call PMCPlus(src, s, DeltaMay)

endfor

end PMCPlus

Algorithm 3.7 Routine to Propagate Added Definitions to May Sets

88

procedure PMCMinus(sre, sink, DeltaMay)
if may(sink)— DeltaMay = may(sink) then return

for all predecessors of sink, p, not equal to src
DeltaMay = DeltaMay — may(p)
endfor

if DeltaMay = § then return

if sink = loop header then do
loopmay = loopmay — DeltaMay
MayXlIteration = true
delete loop-carried dependences from DeltaMay
return
endif
for all elements, (d : A*) of DeltaMay
for all uses, u, in sink
delete any loop-independent dependence from d to u
endfor
endfor

may(sink) = may(sink) — DeltaMay
for all successors of sink, s
call PMCMinus(sink, s, DeltaMay)

endfor

end PMCMinus

Algorithm 3.8 Routine to Propagate Deletion

of Definitions from May Sets

89

procedure PMustCPlus(sre, sink, DeltaMust)
for all predecessors of sink, p,
DeltaMust = DeltaMust N must(p)
endfor

if sink = loophdr then do
if DeltaMust contained in loopmust then return
loopmust = loopmust U DeltaMust
MustXIteration = true
return
endif
else do
DeltaMust = DeltaMust — A?,,,
if DeltaMust contained in must(sink)
then return
must(sink) = must(sink) U DeltaMust
endelse

for all successors of sink, s

call PMustCPlus(sink, s, DeltaMust)
endfor

end PMustCPlus

Algorithm 3.9 Routine to Propagate Additions to Must sets

90

procedure PMustCMinus(src, sink, DeltaMust)

if sink = loop header then do
loopmust = loopmust — DeltaMust
MustXlIteration = true

return
endif

DeltaMust = DeltaMust — A},
if. DeltaMust = () then return
must(sink) = must(sink) — DeltaMust
for all successors of sink, s
call PMustCMinus(sink, s, DeltaMust)

endfor

end PMustCMinus

Algorithm 3.10 Must Propagation Routines

91

in the loop not covered by their must sets must be checked for possible loop-carried
dependence on the new definition. Third, if both the loopmay and loopmust sets
change (a change in the loopmust set implies a change in the loopmay set) then all
the dependences carried by the loop on the variable in the new definition must be
recalculated. The flags MayXIteration and MustXIteration are set to true if loopmay
and loopmust change, respectively.

Algorithm 3.6 updates the dependence graph in response to the addition of a
variable definition. It uses algorithms 3.7, 3.8, and 3.9. Algorithms 3.7 and 3.9
propagate the addition of the new definition to the may and must sets, respectively,
of the affected statements. A new definition can kill definitions that occur earlier in
the program. Algorithm 3.8 propagates the removal of killed definitions from the may

sets of affected statements of definitions.

Theorem 3.6 AddDef performs a correct data dependence update ac-

cording to definition 3.4.

In order to prove this theorem we first prove the following three lemmas.
Lemma 3.2 Given

1. may(j) for all statements j in program P,

2. a definition u contained in statement s to form P’= P + u, and

3. a definition pair (d : D) € may(z), (d : D) €may (z) as calculated
by AllDeps on program P and P’, respectively,

PMCMinus will delete (d : D) from may(z).

Proof (d:D) € may (z) as calculated by AllDeps on program P implies that there
exists a path from d to z in P such that D is not defined by any statement on the
path. Because the definition pair (d : D) is not contained in P, all such paths include

s. Suppose there is only one such path, @ = d,q1,...k = $,..-qn, Z- PMCMinus will

92

be called on statement s. PMCMinus calls itself on all the immediate successors, not
equal to the header of the loop, of any node it visits until DeltaMay becomes empty.
DeltaMay is passed from visited node to visited node. DeltaMay is reduced by the
elements contained in may(p;), where p; is a predecessor of the current visited node
not equal to the predecessor from which DeltaMay was passed. Since there is only
one path from d to z, at each ¢;, 7 > k, there is no predecessor p such that may(p) will
contain (d : D). Hence, PMCMinus will be called on z and DeltaMay will contain
the definition pair (d : D). This results in deleting (d : D) from may (z).

Suppose there is more than one path from s to z, Q; = s,¢i1,...gi,n;. For each
Qi let k; be the maximum such that there is only one path from s to ¢;x,. We know
that PMCMinus will propagate the change in may sets to g¢; k. ¢ix;’s successor in
Qi) Giki+1, s a member of some other path, @;. Suppose PMCMinus reaches g;x,
first. Then the may information at ¢;;; will be updated to remove (d : D). When
PMCMinus is called on ¢;,+1 it will discover (d : D) in may of its predecessor g;;.
PMCMinus will not be called then any further at this point. However, PMCMinus,
in its walk from s will eventually travel path Q;. When PMCMinus is called on
Gk, +1 = Giki+1, if Qi and Q; are the only paths from s to this point, PMCMinus
will not find a predecessor with (d : D) contained in its may set and PMCMinus will
delete (d : D) from may(g;,+1) and continue to g¢; x,’s immediate successors. If there
are more than two paths to g, then PMCMinus will halt at g;x;, and revisit again.
Eventually, when the last path to this point has been walked, PMCMinus will make
the deletion from the may set and continue. This same reasoning applies to every
point on the paths from s to z which has more than one predecessor whose may set
before the update might contain (d : D). Thus, the propagation of the change will

continue to z and the lemma is proved. a

Lemma 3.3 Given

1. may(j) for all statements j in program P,

93

9. a definition u contained in statement s to form P’= P + u, and

3. definition pair (d : D) & may(z), (d : D € may(z) as calculated by
AllDeps on program P and P’, respectively,

PMCPlus will add (d : D) to may(z).

Proof (d:D) € may(z) as calculated by AllDeps on P’ implies that there exists a
path Q = ¢1,...¢x from d to z such that no node on the path writes to D. (d: D) ¢
may(z) as calculated by AllDeps on P implies that (d : D) ¢ may(g:) for any member
of Q. Otherwise, AllDeps would have propagated (d : D) into may(z). Also, d must
be equal to s.

PMCPlus will propagate the change forward until some node y covers the def-
inition being propagated forward or d already exists in may(y). We have already
established that neither of these actions can occur on the path Q. Hence, PMCPlus
will add (d : D) to may(z). O

Lemma 3.4 Given

1. must(j) for all statements j in program P,
2. a definition u contained in statement s to-form P'= P + u, and
3. u € must(z), u € must(z) as calculated by AllDeps on program P

and P’ respectively,

PMustCPlus will add u to must(z).

The proof is similar to the proof for lemma 3.2.
With these three lemmas established, we now prove theorem 3.6.
Proof PMCMinus and PMCPlus both add loop-independent dependences as they

update the may sets. If, during propagation of the change, they encounter a point

94

where the change would propagate to the next iteration, they set the flag MayXIter-
ation. In this case we know that we must update loopmay and test for loop-carried
dependences from the added definition. If PMustCPlus detects a point where must
information crosses an iteration, it sets the flag MustXIteration. If this flag is set then
we must update loopmust and retest loop-carried dependences everywhere in the loop.
The update of loopmay and loopmust is done as in AllDeps. If loopmust is unchanged
then we only calculate loop-carried dependences on the new definition as reflected in
its addition to loopmay. The algorithm calculates loop-carried dependences identical
to those calculated by AllDeps. Because the loopmust and must sets are identical, the
only possible new loop-carried dependence have the new definition as their source.
AddDef calculates these dependences in an identical fashion to AllDeps. If loopmust
changes, then we recalculate all the loop-carried dependences in the loop. These
dependence are calculated identically in AddDef and AllDef. Thus the theorem is
proved. O

Deletion of a Definition

Handling the deletion of a definition is similar to handling the addition of one. When
a whole statement is deleted, the may and must sets of its successors must be re-
calculated from the sets of the deleted statement’s predecessor and the statements
themselves. The changes to the may and must sets must be propagated in a man-
ner similar to the propagation of changes to these sets in response the addition of a
definition.

Deleting a definition from a statement’s must set, can allow previously killed

definitions to propagate beyond the changed statement. For example, in the following,
A(I) = ...
A(D) = ...
= A(I)

95

deleting the second definition allows the first definition to propagate forward into the
may set of the statement containing the use.

Thus, any definitions previously covered by a deleted definition must be propa-
gated and possible dependences with these definitions as the source calculated. See

algorithm 3.11.

Theorem 3.7 DelDef performs a correct data dependence update ac-

cording to definition 3.4

Proof We first state the following lemma.
Lemma 3.5 Given

1. must(j) for all statements j in program P,
2. a definition u deleted from statement s to form P’, and

3. u € must(z), as calculated by AllDeps on program P and P’, respec-
tively,

PMustCPlus will add u to must(z).

The proof of the lemma is similar to that for lemma 3.2.

DelDef calls PMCPlus, PMCMinus, and PMustCMinus. Thus, by lemmas 3.3,
3.2, and 3.5, the may and must sets will be updated over the entire program. DelDef
removes any dependence edges from the data dependence graph with their source
equal to the deleted definition.

PMCPlus adds any dependences involving a definition previously covered by the
deleted definition.

This completes the update. This is shown as follows. If AllDeps calculated a
dependence {u,v) in P’ and not P that is not covered in P by the deleted definition
then « must reach v in P’. This implies the existence of a path in P’ from u to v that

does not include the deleted definition. But since the only change from P to P’ is

96

program DelDef(s, var, def)

/* s is the statement containing the deleted definition.
/* varis the variable whose definition is being deleted
/* def contains the definition that was deleted.

delete any dependences with def as the source

/* Assume predecessor(s) and successor(s)
/* remain unchanged until after the dependence update.

p = predecessor(s) /* Only one predecessor if it contains a definition
DeltaMayMinus = may(s) — may(p)

DeltaMayPlus = may(p) — may(s)

DeltaMustMinus = def — must(p)

for all successors, succ, of s
call PropMayChangeMinus(s, succ, DeltaMayMinus)
if DeltaMayPlus # 0
then call PropMayChangePlus(s, succ, DeltaMayPlus)
if DeltaMustMinus # 0
then call PropMustChangeMinus(s, succ, DeltaMustMinus)
endfor

if MayChangeCrosseslteration
then update loopmay

if MustChangeCrosseslteration
then update loopmust

if loopmust changes

then update carried dependences throughout loop body
if loopmay changes

then update carried dependences where necessary

end DelDef

Algorithm 3.11 Updating Dependences Due to Deletion of a Definition

*/
*/

*/
*/

97

the deletion of the definition, this path must also exist in P. Since the definition does
not cover u in P, AllDeps would calculate (u,v) in P. A similar argument applies to

dependences present in P but not P’. O

Addition of a Control Flow Edge

Changes in control flow affect data dependence at a statement by changing the set
of definitions which can reach the statement. If a control flow edge is added from an
existing node, u, to another node, v, containing statements z and w, respectively, and
may(w) did not already contain some element, e, of may(z) which the statements in
u, previous to w, do not cover, then e must be added to may(w). If must(w) contains
some element e not contained in must(z) and not due to a statement in v before w,
then e must be deleted from must(w).

The sink of the new control flow edge will actually be an empty header statement at
the beginning of the target node containing the original target statement of the edge.
From there the changes in dependence and the must and may sets will be propagated
forward to the statements contained in the node. The propagation function of the
statement that is the actual target of the new edge is the identity function. The may
and must sets for this target, w, are quite easy to calculate. To form the may set
for w, may(w) is unioned with may(z). To form the must set, must(w) is intersected
with must(z).

These changes to w’s may and must sets must then be propagated forward to all the
statements that p can reach. This is done exactly as in the case of an added definition,
except that now many definitions are propagated. The changes are propagated from
statement to statement until either the sets stop changing or all the sta.teménts within
the loop have had their sets updated. Algorithm 3.12 contains the update of data

dependences in response to the addition of a control flow edge.

98

program AddCF(e)
z is the source of e; w is the sink of e

for each variable in the program
DeltaMay = may(z) — may(w)
DeltaMust = must(w) — (must(w) N must(z))

for each successor of w
call PMCPlus(z, w, DeltaMay)
endfor

for each element of DeltaMust
call PMustCMinus(z, w, DeltaMust)
endfor

if MustXlIteration
then calculate all carried dependences in loop body
else if MayXlIteration
then calculate carried dependences on the added definition

endfor

Algorithm 3.12 Updating Data Dependence After
Control Flow Edge Addition

99

Theorem 3.8 AddCF performs a correct data dependence update ac-
cording to definition 3.4.

Proof The only difference between P and P’ relevant to the calculation of depen-
dence information is that P’ contains additional paths that include the control flow
edge (s,t). Since any control flow path appearing in P also exists in P’ and there are
no changes to the uses or definitions at any statement, for any statement w in P, any
element of the set may(w) must appear in may(w) in P’. Thus, the changes to the
mayset of any statement are limited to the addition of elements. Hence, changes to
loop-independent dependences are limited to the addition of dependences.

An element X’ appears in the set must(w) only if a definition to the array elements
represented by A" occurs on every path from the loop header to w. Since every path
present in P’ is present in P, if X is an element of must(w) in P/, then X is an element
of must(w) in P. Similarly, the only possible changes to loopmay are additions and
the only possible changes to loopmust are deletions. Hence, the only possible changes
to loop-carried dependences are the addition of dependences.

Suppose the element (z : X) is added to may(w). This implies that there exists a
path in P’ from z to w involving (s,t) such that no statement on the path contains
a definition covering X. Hence, there exists such a path from z to s and such a
path from ¢ to w. The existence of the path from z to s implies that (z : X) will
be a member of may(s). This implies that PMCPlus will be called with DeltaMay
containing (z : X). That a path exists from ¢ to w such that (z : X) is not covered
implies that PMCPlus will eventually add this element to may(w) and that PMCPlus
will add a loop-independent data dependence from z to w. PMCPlus will also set
MayXlteration if necessary. .

If an element X is deleted from must(w) in P’, then there exists a path in P’
including (s,t) from the loop header to w such that the array elements represented
by A are not defined. Hence, there exists such a path from the loop header to s

and another from ¢ to w. Hence, must(s) will not contain X and DelDef will call

100

PMustCMinus with DeltaMust containing X. The path from ¢ to w implies that
PMustCMinus will delete X from must(w). (and calculate any new loop-carried
dependences to w). PMustCMinus will continue and set MustXIteration if necessary.

Changes in loop-carried dependences arising from additional elements to loopmay
or deleted elements from loopmust are calculated just as in AllDeps. Thus, the theo-

rem is proved. : O

Deletion of a Control Flow Edge

Deletion of a control flow edge (z,w) requires recalculation of the may and must sets
from the union of all the remaining predecessors of w. The changes to these sets
are propagated in a manner similar to that for deletion of a definition, using the
procedures PMCMinus, but now PMCMinus must be called for many definitions and
many variables. Propagation of the changes in the sets to other statements occurs
just as in the deletion of a definition. Algorithm 3.13 contains DelCF which updates

data dependences in response to the deletion of a control flow edge.

Theorem 3.9 DelCF performs a correct data dependence update ac-

cording to definition 3.4.

The proof is similar to that for theorem 3.8.

3.3 Generalizing the Algorithms

In the previous section, we developed a dependence analysis that incrementally cal-
culated dependence information between pairs of accesses to arrays that consisted of
a single subscripted reference. In the presence of call sites or nested loops, the analy-
sis must deal with groups of statements or multiple executions of a single statement

accessing multiple elements of an array. Consider the following example.

101

program DelCF(z,w)
/* z is the source of the edge, w the sink of the edge. */

if w has no predecessors then do
may(w) = empty; must(w) = empty
delete any dependences with w as sink
return
endif

oldmay = may(w)

for each variable in the program
may(w) = U may(p) for all predecessors, p, of w. (excluding z)
DeltaMay = oldmay — may(w)

if DeltaMay = 0
then return

for all successors, s, of w
call PMCMinus(w,s,DeltaMay)

endfor

if MayXIteration
then update loop-carried dependences where necessary

endfor

end DelCF

Algorithm 3.13 Updating Data Dependence After
Control Flow Edge Deletion

DOI=1,N
CALL SUBR(A(1,I))
DOJ=1,N

S1: B(1,J) = F(A(J,I+1))

ENDDO

ENDDO

SUBR(S):

DOK=1,N
S(K) = G(K)

ENDDO

The call to SUBR results in a definition to an entire column of an array (assuming
that the array is stored in column major order). Since this column is not involved
in the right hand side of S1, no true dependence exists, but we can only conclude
that there is no dependence if we adequately represent the effect of the call site on
the array A. The identical problem arises if the call to a subroutine is replaced by a
loop defining only a single row of A. Some method to summarize the results of a call,
or an inner loop, is required for our analysis to be correct in the presence of these

constructs. 4

3.3.1 Extended Array Descriptors

We need a form of summary information that can represent a part of an array that may
or must be referenced by a single reference or many references. This information can
be used by the analysis algorithms to determine if the references represented by the
this summary information result in dependences or if they cover other dependences.

A number of schemes for providing summary information have been proposed [CK87,

4Previous dependence analysis schemes subsumed this problem in their independence tests while
considering inner loops. This is incompatible with our goal of including the effect of covering in our
dependence calculation because it is impossible to take advantage of the effect of covering without
looking at the inner loops.

103

Cal87, Bal89], primarily for summarizing the effect of subroutine calls. We propose
to use such a scheme for summarizing the effect of a loop.

Balasundaram has developed Data Access Descriptors(DADs) to be used for sum-
marizing the activity of a call or a loop. We will describe a simplified form of these
DADs known as simple sections[Bal89).

A simple section describes a portion of an array that is bounded by planes or
hyperplanes parallel to the primary coordinate axes and to planes that are at 45
degrees to those axes. Balasundaram proved that a simple section of an n dimensional
array can be bounded by at most 2n? boundaries[Bal89).

The majority of access patterns for arrays will be either rectangular or triangular
(along the major diagonal). These .patterns can be represented exactly by DADs.
Other shapes must be represented by the best conservative approximation. The
conservative approximation for information that represents a use or definition that
may occur is one that contains every element that is used or defined. Hence, the
approximation for a definition contained in a may set will be a DAD containing every
element in the represented shape. In contrast, the conservative approximation for
information that represents a definition that must occur is one that contains only
elements that are defined. Hence the approximation for a definition contained in a
must set will be a DAD containing only elements in the represented shape.

The generalized algorithm treats an inner loop or a call site as a statement with
definitions and uses summarized by DADs. Using the summarized information, we
determine whether we can prove independence or covering. The operations performed
on the DADs are set intersection, set union, and tests for set containment. These tests
are described in Balasundaram’s dissertation[Bal89]. We have already described how
may information can be collected for inner loops; this is the calculation of loopmay.
Others have treated this problem for call sites[Cal87, Coo83].

In order to use the summary information to prove covering we must discover when

the action of an inner loop, over all of its iterations, kills an entire array or part of an

104

array. This is an alternate statement of the problem of discovering must information
about the effect of a loop on an array. In the next section, we describe a method for
acquiring information about the region of an array killed in a loop. We then present

the generalized form of the dependence update algorithm.

3.3.2 Covering by a Loop

Restricting ourselves to affine array expressions, an exact solution to the problem
of array kills by a loop requires solving the same integer programming problem as
required for an exact solution to dependence. Thus, the problem is NP-hard. We
present, therefore, an approximation.

Within an inductive do-loop, kills to array sections occur through assignments
to elements of the array. The subscript expressions of these assignments appear
as functions of the induction variables of the loops surrounding the assignments.
The only assignment statements of a loop body that can kill an array definition are
the assignments that will be executed every time the loop body is entered. These
assignments are found in the loopmust set for the loop. In order to make the problem
tractable we restrict the subscript expressions we examine to be expressions which are
affine functions of only a single induction variable. An array kill involving subscript
expressions that are either not affine or involve more than one induction variable will

not be discovered.
Theorem 3.10 Given an array A with vector denoted
A(21,22, eey ¥, ueln)
and a definition of A within a loop,
A(i1,82y 00y Jy ooer Bn),

the vector is killed by the definition if and only if j takes on all integral

values from 1 to N.

105

This is illustrated in the following example.
DIM A(100)

DO 1001 =1, 50
A(2I-1) = ...
A(2I) = ...

ENDDO

In this example, the entire array A is killed by the combined action of the two state-
ments.

Generally, an array A is killed when one or more assignments to the array within
a loop body collectively assign to the entire array or subarray over the range of
the induction space. To discover these cases we examine the constant terms and
coefficients of the induction variable in all the subscript expressions within the loop.

Consider the set of subscript expressions in a single dimension of an array,

{ai* I+ b} fori=1tom,

where [is the induction variable of the surrounding loop in which we are currently
interested. We gather all the expressions with equal a;’s and call this set a comb.
The product of the induction variable coefficient, a;, and the step of the induction
variable is called the length of the comb. (Negative lengths are acceptable.) If the
comb includes additive constants b; for the integral range from some j to a; — 1 + j,
then the comb is complete. See figure 3.3. If a loop body contains a complete comb,
then a single iteration of the loop defines a contiguous portion of the array of size at
least equal to the length of the comb.

If the induction variable of the loop obtains values from (1 — j)/length to (N -
length+1—j)/length (Where N is the size of the dimension of the array), for positive
comb lengths, or from (1—j)/length to (N +length—1— j)/length for negative comb
lengths, then that entire dimension of the array is defined. See figure 3.3. Thus, from

the loop bounds we can calculate the possible values of j in the comb completeness

106

DOI=1N,4
A(I+1)=..
A(D = ...
AL+ 2) = .. |-1]of1]2]
AI-1) = ...
ENDDO

A Complete Comb

DOI=1,N4
AI+4+1) =..
IF F(I) A(D) = ... |
A+ 2) = .. 1] |1]2]
A(I-1)=..

ENDDO

An Incomplete Comb

Figure 3.3 Combs

test above. Algorithms 3.14 and 3.15 contain a batch and incremental algorithm,

respectively, to find array kills.

Theorem 3.11 Within a loop, if a complete comb exists on an array
A in subscript position k, and the loop body is executed for all integral
values of the induction variable, then the dimension associated with the

comb is killed by the loop.

Occasionally a loop, [/, will define only part of an array. If a loop, m, executed after
I, restricts its access to the part of the array defined in [, it will be useful to detect
that ! kills the part of the array that m uses. Using combs we can easily discover what
part of the array was defined in l. If the representation of the summary information
information is capable of representing bound information, this information can be

calculated and used in the dependence calculation.

107

procedure find_combs(Im, var, ivar):

/* Im is the set loopmust calculated by another phase of dependence analysis */
/* */
/* var is the name of the array variable about which we are determining */
/* kill information. */
/* istep is the step induction variable of this inductive-do loop. */

partition Im into sets such that all the members of a set
have equal coefficients of the induction variable.
define Teeth[MazCombLength, MazCombLength]

For each set, s, with coefficient, a, from smallest coefficients to largest coefficients
/*We know each set has a distinct constant additive term */
if size of s > a then do
Il =a* istep
order the constant additive terms

step through this ordered list. If there exist / adjacent numbers, then a comb is found
let j be the smallest of these adjacent numbers

lower bound of array defined by this comb is a * Ib + j.

upper bound of array defined by this combisa*ub+j+1-1

if bounds are insufficient to cover array then continue looking for combs

endif
endfor

Algorithm 3.14 Finding Array Kills

108

procedure FindKills(DeltaLoopMustPlus, DeltaLoopMustMinus)

for all elements, e, of DeltaLoopMustMinus
a = coefficient of loop induction variable in e
tooth = constant term in e
if tooth is an element of comb of length istep * a
then mark comb as invalidated.
endfor

if no comb marked invalidated and kill exists
then return

for all elements of DeltaLoopMustPlus, e

a = coefficient of loop induction variable in e

tooth = constant term in e

if comb of length a * istep is marked invalidated
then attempt to prove comb again, using tooth

else attempt to prove new comb with length a * istep using
all other elements of loopmust.
if attempt is successful and bounds of new kill better than

old bounds then retain comb and new kill
endfor

if a complete kill existed before edit, and now does not
then attempt to prove combs with members of loopmust with coefficients not

represented in DeltaLoopMustPlus

end FindKills

Algorithm 3.15 Incremental Discovery of Array Kills

109

It is possible for combs of different lengths to combine to define a contiguous area
of an array, but it will be difficult to prove covering in this more general case and we

believe that these cases will rarely occur.

3.3.3 Nested Loops

Nested loops complicate subscript testing in two distinct ways. When testing two
array references for independence, the test is made for either a loop-independent
dependence or a loop-carried dependence carried at a particular level. Loops outside
the loop carrying the dependence affect the calculation in a completely different way
than loops within the loop carrying the dependence.

If the subscript contains an induction variable of a loop outside the loop carrying
the dependence being tested, the value of this induction variable will be equal at
the point of evaluation of the two subscript expressions and can be treated as a
loop invariant symbol by the independence tests. However, the action of the outer
loop increases the ranges of the two subscript expressions and makes intersection and

dependence more likely. For instance, consider the following code fragment.
DOI=1,2
DOJ=1,N
A(2I4J)=...
. =A(I4+J+N+1)
ENDDO
ENDDO

A comparison of the minimum and maximum values of the two references inside a
single iteration of the I loop finds that the minimum and maximum values of the
subscript in the definition are 2I+1 and 2I4+N , respectively, and for the use the
minimum and maximum are I4+N+2 and I4+2N+1. For I= 1, the references will not
share a memory location. But for I= 2, the references will share a memory location,

A(N+4), thereby causing a dependence. The effect of the loops outside the carrying

110

loop is taken into account in the independence tests given by Banerjee[Ban79]. Since
covering is performed by statements or loops within the loop carrying the tested
dependence, the presence of outer loops does not affect the covering test.

Loops within the loop carrying the dependence being tested complicate the prob-
lem in a different way. Independence tests must assume that the induction variables of
the inner loop take on the entire range of their values. In the following code fragment
the range space of the subscript expressions is shared over the space of the two loops
at the inner level although the subscript expressions themselves are not equal. Thus,
when the two J loops are executed, they share the same memory locations during a
single iteration of the outer I loop. This results in a loop-independent dependence

between the statements S1 and S2.
DOI=1,N

DOJ=1,N
S1: A(LYD)= ...
ENDDO
DOJ=1,N-1
S2: e=A(L,J+1)
ENDDO
ENDDO

In addition, an inner loop may create a cover as we saw in the previous section.
The array kill information calculated by the previous section must be used to test for
covering between dependences.

The complications due to nested loops are neatly accommodated in a generalized
algorithm if we calculate dependences from the innermost loops to the outermost
loops. As the algorithm moves its attention from a loop at level k to a loop at level
k-1, the access descriptors contained in the loopmay and loopmust sets at level k
go through a process called translation to convert them from DADs in terms of the

induction variables of the k outer loops to DADs in terms of the induction variables

111

of the outer k-1 loops [Bal89]. The translated access descriptors contained in loopmay
and loopmust are collected in sets called Xmay and Xmust respectively. Uncovered
uses are likewise translated and placed in a set called Xuses.

At the entry of a loop, we store the summary information containing the transla-
tions of definitions and uses from within the loop. Thus, when a definition is added
outside a loop /, when the change is propagated through [, we can perform the tests
for independence and covering between the added definition and uses contained in [
without visiting any statement in /.

AddDef, DelDef, .AddEdge, and DelEdge begin by calculating dependences and
updating the sets maintained for each statement and loop at the innermost level.
If the information contained in loopmay or loopmust has changed as a result of the
update at the innermost level, the additional elements of loopmay and loopmust will
be translated and added to Xmay and Xmust at next higher level, and the translated
versions of the elements deleted from loopmay and loopmust will be deleted from
Xmay and Xmust. After the translation, the algorithms call themselves at the next
outer loop level in order to propagate the changes beyond the loop. The inner loop
is replaced in the analysis by a pseudo statement whose definitions will be translated
loopmay and loopmust sets. This process continues until during the translation phase
the information contained in Xmay and Xmust does not change. The routines to
propagate the changes to mayand mustsets are unchanged from their earlier versions.

AddUse and DelUse act similarly. The two algorithms, after updating the depen-
dences at the innermost loop, translate the changes to uses not covered by a definition
inside the loop to the next outer level, and call themselves at the next level. This
continues for each level containing the new use in AddUse and Del.

We present the generalized forms of AddUse and AddDef in algorithms 3.16 and

3.17, respectively. The generalizations of the other routines are similar.

112
program AddUse(s,var,use)
/* s is the statement location containing the new use */
/* var is the variable involved in the new use */
/* use holds the expression containing the use. e.g. A(D) */

if s is a loop entry statement then
add use to Xuses(s)

p = predecessor of s

for all elements, (u:A*), of may(p)
call TestForLoopIndependent((u:A*),use)
endfor

for all elements, W, of must(p) do until matchfound
matchfound = TestForContainment(W,use)
endfor

if not matchfound then do
for all elements, W, of loopmust(s)
M = min(M, FindThreshold(W, s))
endfor

for all elements, w, of loopmay(s)
call TestForCarriedIndependence(w,use,M)
endfor

Xu = translation of use to next higher loop level

Xs = statement(not an assignment) containing the entry to this loop

call AddUse(Xs, var, Xu)
endif
end AddUse

Algorithm 3.16 Updating Dependences in
Response to Addition of a Use

NE

|t

%)

113
program AddDef(s, var, def, mustflag)
/* s is the statement containing the new def */
/* varis the variable involved in the new definition */
/* def holds the added definition */

if s is a loop entry statement
then add def to Xdef(s)
p = predecessor(s)
oldmay = may(s);oldmust = must(s)
may(s) = may(p) U (s : def)
if mustflag
then mus(s) = must(p) - {any definitions covered by def } + def
DeltaMay = oldmay - may(s)
DeltaMust = oldmust - must(s)

if DeltaMay is not empty then do
for all successors, r, of s
call PropMayChange(s, r, DeltaMay)
endfor
if DeltaMust is not empty then do
for all successors, 7, of s
call PropMustChange(s, r, DeltaMust)
endfor
endif

if MayXlIteration then update loopmay
if MustXIteration then update loopmust

if loopmust changed, then do

update all carried dependences on the array throughout the loop body

Xs = innermost containing loop’s entry statement
Xd = translation of def to next higher level
call AddDef(Xs, var, Xd, mustflag)
endif
if only loopmay changed, then do
update carried dependence where necessary
Xs = innermost containing loop’s entry statement
Xd = translation of def to next higher level
call AddDef(Xs, var, Xd, mustflag)
endif

end AddDef

Algorithm 3.17 Update for Addition of a
~ Definition in Presence of Nested Loops

114

3.4 Calculation of Anti and Output Dependences

The algorithms presented in this chapter calculate an approximation to strong true
dependences. Modifications to these algorithms are required to calculate other types
of dependence.

The algorithms determine whether a path exists from a definition of an array
element to a use of the array element that does contain a definition to that array
element. An anti dependence exists if a path exists from a use of an array element
to a definition such that the path does not contain a definition to the array element.
Such a path exists in a program from a use to a definition if and only if such a
path exists in the reverse program from the definition to the use. Hence, in order to
calculate strong anti dependences, we can apply the same algorithms to the program,
reversing the order of statements and basic blocks in the program. In addition, it
will be necessary to calculate thresholds as though the iterations of the loops in the
program occur from last to first. This has the effect of changing the sign on the
thresholds.

Definitions are both the source and sink of output dependences. Since the addition
and deletion of uses have no effect on output dependence, AddUse and DelUse are
unnecessary for their calculation. Instead, the functions of AddUse and DelUse must
be placed in AddDef and DelDef, respectively. the code inside AddUse and DelUse
may be added without change except that the added or deleted definition takes the

place of the use.

3.5 Complexity Analysis

The complexity analysis for AddUse is straightforward. The new use must be com-
pared to all the elements of may(p), must(p), loopmust, and loopmay, where p is the
predecessor of s. In addition, the use must be translated to the levels of all the loops

containing the new use and the same comparisons must also be performed at those

115

levels. The time for the comparisons and the translations is bounded by the time
required at the deepest level. If the use is contained in & loops and we assume k to be
small, then the time required to update data dependence in response to the addition
of an array use is O(k-(||may(p)|| + ||must(p)|| + |loopmust|| + |[loopmay]|)).

DelUse is even easier to analyze. It merely deletes the dependences with the use
as sink. Thus, its complexity can be expressed in terms of the out-degree of the data
dependence subgraph, O(in-degree of s).

AddDef propagates the new definition around the innermost loop everywhere that
the may or must information changes, and when a use is present, compares the use
against the new definition. Let the number of nodes reached by the definition at a
particular level k be 7;. The propagation of changes to may and must sets within the
innermost loop containing the new definition and the calculation of loop-independent
dependences requires O(7;) operations. If the new definition crosses an iteration, then
loop-carried dependences must be calculated throughout the loop. Let the number
of uncovered uses of the array contained in the loop be ||74]|. The calculation of
loop-carried dependences for a particular loop requires O(|| loopmust Il + || loopmay
| - llmull) subscript comparisons. The definition is then translated to the next higher
level and the process repeated. If we assume that the time required for a translation
is bounded, it takes O (D_(mx + ||loopmust,|| + ||loopmay,|| - ||uses||)) to update data
dependences in responsekto the addition of a definition enclosed in k loops.

To update in response to a definition deletion requires deleting dependences with
their source at the deleted definition. In addition, the may and must sets containing
the deleted definition must be recalculated. If the change propagates to the loopmay
or loopmust set, then loop carried dependences on the array throughout the loop
body must be recalculated as well. The time required to update the dependences is
proportional to the out degree of the definition, which is bounded by the out degree
of the data dependence subgraph. The number of may and must sets at level k

containing the deleted definition will be 7. Calculating loop-carried dependences

116

can require O(|| loopmust || + || loopmay ||) subscript comparisons if the loopmust set
changes. Thus, the time required to update in response to definition deletion is the
same as for definition addition, O (}_nx + (||loopmust,|| + ||loopmayy|| - [|usesk||)).
The update in response to cont:ol flow edge addition involves calls to the may
and must propagation routines. The update in response to the edit involves all the
variables of the program. The changes to the may and must sets at the sink of the
added edge resulting from the edit are calculated for each variable in the program.
Then the propagation routines (PMCPlus, PMustCMinus) are called to propagate
the changes. Let V be the set of array variables in the program. Then the complexity

of AddCF is O((Y_(2D_(nk + |lloopmust,|| + ||loopmayy|| - ||usesk||))). The update in

veV k
response to control flow edge deletion is similar and results in the same complexity.

In the worst case, the time required for AddCF or DelCF is equal to the time
required for executing the batch algorithm to calculate dependences for the entire
program. However, the may and must propagation routines (PMCPlus, PMCMinus,
PMustCPlus, PMustCMinus) only visit statements in the program where the may
or must information has actually changed as a result of an edit. Hence, DelCF and
AddCF are optimal calculations of the changes in the may and must information for
the data structure holding this information.

If a control flow edge is added so that the sink of the edge is close to the source,
then it is likely that few variables, relative to the number of variables contained in
the program, will have a difference between their may or must sets at the source and
sink of the added or deleted edge. Thus, a “typical” edit can be expected to require

the propagation of changes to this information for only a small number of variables.

A}

Chapter 4

Symbolic Analysis for Subscript Testing

Both the independence tests and the tests for covering used in our dependence analysis
require subscript expression pairs to be affine functions of the induction variables of
containing loops. The covering test presented in the previous chapter requires that
these functions be of an even more restrictive form, (al + b;) and (aI + b,) where
I is a loop induction variable and a and b; are loop invariant.

Unfortunately, not all.subscripts, even when they can be expressed in these forms,
will be so written by the programmer. For instance, another variable might be used
in place of the loop induction variable. Even when the subscripts are written in these
forms, analysis must be done to recognize loop invariant expressions.

Thus, accurate dependence analysis on subscripted variables requires the results of
a number of symbolic scalar analyses. Allen and Kennedy described the importance of
symbolic scalar analysis for subscript testing and its implementation in PFC[AKS84].
In this chapter we present new incremental algorithms to calculate the results of three

symbolic scalar analyses. These scalar analyses are

1. Integer Expression Folding,

2. Loop Invariant Testing, and
3. Auxiliary Induction Variable Identification.

These analysis phases will use the dependence graph for scalar variables. The
dependence graph for scalars can be incrementally built using Zadeck’s techniques
[Zad84]. Zadeck describes how to build def-use chains. For scalars, def-use chains

are identical to true dependences. Zadeck’s technique is easily converted to build

117

122

expressions have been fully folded and their form simplified and put into normal
form, the potential for successful application of independence and covering tests is
greatly enhanced.

The algorithm for integer expression folding works as follows. Consider a subscript
expression, s. For every variable v in s, we will determine whether another expression,
e, can be used in place of v in s. If more than one true dependence!, that is, a def-use
link, reaches the use of v in s, and any of the right hand sides of these definitions are
not identical, then no folding may take place for the use of v, since it is not possible
to determine which definition of v should be folded into the use of v in s. Otherwise,
the right hand side of the definition, d, which reaches s is examined, to determine
whether it can be folded into s.

If d contains only integer variables, constants, and arithmetic operators (no func-
tion or procedure calls), then it can be folded into s if none of the variables involved
in d can be redefined before their use in s. To determine this, for every variable z in
d,‘ we compare the reaching definitions of z at d with the reaching definitions of z at
s. If they are identical, then the substitution can proceed. If they are not identical,
then the definitions which reach s that do not reach d are marked “blocking”.

In order to perform integer expression folding in response to a series of edits,
we need to be able to invalidate folds as they become invalid and recognize new
opportunities for folding as they occur. Obviously, if a definition used in a fold is
changed, then the particular substitution is no longer valid, though the opportunity
for a new fold might be created. This implies the need for a link from a folded
definition to the point where it is substituted. We will mark as “folded” all definitions
folded forward at the point of their original placement. A link will be placed to the
point where the definition is substituted. These links will form a chain from the

folded expression to all the shadow expressions into which the expression has been

1A true dependence will exist from a special node, START, to all uses of a variable that can be
reached prior to a definition within the containing procedure. Constants propagated into the proce-
dure will be represented this way.

- '\i.‘_‘._. . t;-:

| S Sy

I
o

[

]

L=3 }

O U=L=*xK+M U=3*xK+M
DOI =1, 10
N=U=+2 N=3=*K+2
AN + 1) = AB*K+2+1I)=
ENDDO

& - definition is blocking
QO - definition is outermost

Figure 4.1 Shadow Expressions and Links

sﬁbstituted. In order to recognize when an added definition invalidates a fold by
making the reaching definitions set at the sink of the fold different from that at the
fold’s source, we will mark the reaching definition set for the substituted variable
at the substituted use as “sink important”, to represent the fact that the reaching
definition set is important to a fold with its sink at this statement. Likewise, we
will mark as “source important” the reaching definition sets of the variables that
appear in a folded expression. This indicates that the reaching definition set of a
particular variable is important to a fold whose source is at this statement. When
one of these sets changes, by traveling the links backward, we can readily invalidate
all the necessary folds.

In order to discover new opportunities for folding as they arise, we mark as “out-
ermost” any definition whose left hand side has been folded forward and whose right
hand side contain unfolded variables. These are the definitions at which it would

benefit us to substitute forward something on the right hand side. If the true de-

124

pendences incident on one of these “outermost” marked definitions change, then we
can check for possible new opportunities for folding into the right hand side of the
definition. Definitions that are discovered to block a fold will be marked “blocking”.
In addition to the mark, a link will be included from the blocking definition to the
sink of the prevented fold. If the blocking definition is deleted, then we can try to
perform the relevant fold.

The results of integer expression folding will be stored in shadow expressions at
every location where a substitution has taken place. Figure 4.1 illustrates the links and
shadow expressions that result from the application of our algorithm for a particular
code fragment. The update to integer expression folding is driven by the additions
and deletions of definition and uses and to changes to the reaching definitions sets.

The algorithm we present comprises six programs:

o AddUse is called when a use is added to the right hand side of an assignment

statement;

e DelUse is called when a use is deleted from the right hand side of assignment

statement;
o AddDef is called when a definition (an assignment statement) is added;
e DelDef is called when a definition (an assignment statement) is deleted;

e AddCF is called when a control flow edge is added between two existing state-

ments;

e DelCF is called when a control flow edge is deleted between two statements that

remain in the modified program.

Theorem 4.1 Given a program P, the folded expressions for P, and the
links and marks on reaching definitions in P and a use added to form pro-
gram P/, AddUse in Algorithm 4.1 will form the correct folded expressions
and links and marks for P’.

program AddUse(s,use)
/* s is the statement to which use has been added */

call ChangeDefUnfold(s)

if use is contained in a subscript or s is marked “outermost” or s is the sink of a fold
then do)
let v be the variable contained in use
call TryFold(v,s)
endif

end AddUse

Algorithm 4.1 Fold Update for Added Use

program DelUse(s,use)
/* s is the statement from which use has been deleted. */

call ChangeDefUnfold(s)

call DelUseUnfold(s, use)
call TryFold(use)

end DelUse

Algorithm 4.2 Fold Update for Deleted Use

126

program AddDef(s)

/* s is an added assignment statement containing a scalar definition */

let v be the name of the variable on the left hand side of s

let I be a list of statements whose reaching definition sets of v have been modified

for every member, w, of [
call ChangeReachingSetUnfold(v,w)
endfor

for every member, w, of [
call ChangeReachingSetFold(v,w)

endfor

end AddDef

Algorithm 4.3 Fold Update for Added Definition

Proof Since the expression on the right hand side has been changed, any fold from
s is invalidated. The addition of a use has no effect on the value of reaching definitions
sets. Hence, from Definition 4.1 no fold is invalidated whose source is not at s. Folds
from s are invalidated in AddUse by a call to ChangeDefUnfold. Thus, the marks,
links, and expressions associated with any fold invalidated by the addition of a use
are removed or undone by AddUse.

The definition whose right hand side contains the added use might be folded after
the addition of the use. In order to determine this AddUse calls AddUseFold on the
statement containing the added use. AddUseFold determines if the statement con-
taining the added use is marked “outermost” and then tests the conditions contained
in Definition 4.1 to see if the definition can be folded forward. Then, if the definition
is marked “outermost”, AddUseFold tests if any definitions can be folded into the
use. Thus, any folds created after the addition of a use are performed by AddUse.
a

127

program DelDef(s)

/* s is a deleted assignment statement containing a scalar definition */

let v be the left hand side of s

let [be a list of statements whose reaching definition sets of v have been modified

if s is marked as “folded” then do
for every link, link from s
let t be the sink of link
if link is the only link to ¢
then remove from the shadow expression at ¢ the expression folded from s
remove link
/* Since s is deleted it is unnecessary to mark as not “folded”. */

endfor
endif

for every member, w, of |
call ChangeReachingSetFold(v,w)
endfor

if s is marked “blocking” then do
use block link to find statement w containing use blocked from substitution by s
call TryFold(v, w)
endif

end DelDef

Algorithm 4.4 Fold Update for Deleted Definition

program AddCF()
let [be a list of pairs of statements and variables whose reaching
definition sets have been modified

for every member, (w,v), of

/* the reaching definitions set of variable v has changed at w */
call ChangeReachingSetUnfold(v,w)
endfor

for every member, (w,v), of [

/* the reaching definitions set of variable v has changed at w */
call ChangeReachingSetFold(v,w)
endfor

Algorithm 4.5 Fold Update for Added Control Flow Edge

program DelCF()

let [be a list of pairs of statements and variables whose reaching
definition sets have been modified

for every member, (w,v), of |

/* the reaching definitions set of variable v has changed at w */
call ChangeReachingSetUnfold(v,w)
endfor

for every member, (w,v), of |

/* the reaching definitions set of variable v has changed at w */
call ChangeReachingSetFold(v,w)
endfor

Algorithm 4.6 Fold Update for Deleted Control Flow Edge

130

procedure ChangeReachingSet Unfold(v,s)
/* The reaching definitions set of v at s has been changed */
if the reaching definition set of v at s is marked “sink important” then do
for every expression e folded into shadow expression at s
if e includes v then do
remove e from shadow expression, replacing substituted variable
mark s outermost /* Since shadow expression now contains an unfolded variable */
for all sources, src, of links, {, for which use of v at s is the sink
if / is only link out of src then do
mark definition at src as not “folded”
mark reaching set of v at src¢ as not “source important”
endif
delete [
endfor
endif
endfor
endif
if the reaching definition set of v at s is marked “source important” then do
for every sink sink of link ! with source at s
replace folded expression of / from shadow expression at sink with left hand side of s
for every definition d in reaching definition of v at sink
not present in reaching definition of v at s
mark d as “blocking”
endfor
endfor
mark reaching definition set of v at s as not “source important”
mark definition at s as not “folded”
endif

Algorithm 4.9 Delete Folds for Changes in Reaching Sets

procedure ChangeReachingSetFold(v,s)

if s is marked “outermost” and v is unsubstituted and appears on right hand side of s
then call TryFold(v,s)

Algorithm 4.10 Create Folds for Changes in Reaching Sets

129

program DelUseUnfold(use)

/* use is a particular use of a variable which has been deleted */
if use is not the sink of a fold then return
let v be the variable in use
let s be the statement containing use
if the deleted use is the only appearance of v in s
then mark reaching definition set of v as not “sink important”
for every link ! with sink at use
let d be the source of [
if | is the only link with source at d
then
mark d as not “folded”
mark reaching definition of v at d as not “source important”
for every folded use, u on right hand of d
call DelUseUnfold(u)
bf endfor
endfor
delete [
endfor
end DelUseUnfold
Algorithm 4.7 Delete Folds for Deleted Use
program ChangeDefUnfold(s)
/* s is the location of a modified definition */

let v be the variable on the left hand side of s

for every link, I, for which s is source
reverse fold at sink of [, replacing right hand side of s with v
endfor

mark s as not “folded”

end ChangeDefUnfold

Algorithm 4.8 Delete Folds for Changed Definition

—

131

procedure TryFold(v,use)
/* Test whether an expression can be folded for the uses of v in s */
let s be the statement containing use
let D be the set of sources of all the true dependences on v with sink at s
if right hand sides of all members of D are equal to a single expression, e, then do
for every variable, z, in e
test if reaching definitions of z at s and members of D are identical
if test fails then do
for {every definition d in reaching definition set at s
that is not present in a reaching definition set at some member of D}
mark d as “blocking”
add block link from d to use of v in s
endfor
TestFailed = true
endif
endfor
if not TestFailed /* over all z * / then do
fold e into uses of v in shadow expression at s
place link from every element of D to s
mark every member of D as “folded”
endif
endif

Algorithm 4.11 Attempt a Particular Fold

132

Theorem 4.2 Given a program P, the folded expressions for P, and the
links and marks on reaching definitions in P and a use, u, contained in a
statement s, that is deleted to form program P’, DelUse in Algorithm 4.2

will form the correct folded expressions and links and marks for P’.

Proof Since the expression on the right hand side has been changed, any fold
from s is invalidated. The deletion of a use has no effect on the value of reaching
definitions sets. Hence, from Definition 4.1, no fold is invalidated whose source is
not at s or whose sink is not u. Folds from s are invalidated in DelUse by a call to
ChangeDefUnfold. Thus, the marks, links, and expressions associated with any fold
invalidated by the addition of a use are removed or undone by AddUse. Folds into u
are removed by DelUseUnfold.

The definition whose right hand side contains the deleted use might be folded
after the deletion of the use. If the definition is marked “outermost”, DelUse calls
TryFold to test if any definition can be folded into the use and perform the fold if so.
Thus, any folds created after the addition of a use are performed by AddUse. O

Theorem 4.3 Given a program P, the folded expressions for P, and
the links and marks on reaching definitions in P and a use deleted to
form program P/, AddDef in Algorithm 4.3 will form the correct folded

expressions and links and marks for P’.

Proof When an assignment statement containing a scalar definition is added to P,
reaching definition sets for the variable on the left hand side change at statements
that are reached by the added definition. These are the only reaching definitions sets
that can possible change as a result of the added definition. ChangeReachingSetUn-
fold tests for all three conditions contained in Definition 4.1 which might no longer
hold given a change in the reaching definitions sets at a statement. If a fold is found

to be invalidated, ChangeReachingSetUnfold reverses the fold. Since ChangeReach-

133

ingSetUnfold is called for every statement where the reaching definition sets change,
any fold that is invalidated by the added definition is reversed by AddDef.

New opportunities for folding arise at the same statements where the reaching
definition sets change. ChangeReachingSetFold tests whether any fold involving the
variable on the left hand side of the added definition can be performed at any of
these statements and performs the fold if so. Inspection of Definition 4.1 shows that
the conditions for an integer expression fold can be expressed solely in terms of the
reaching definition sets at the source and sink of the fold. Thus, only a statement
where a reaching definition set has changed can possible be the source or sink of a new
fold. Since all of these are inspected by ChangeReachingSetFold, any opportunities
for folding are found.

Note that any new folding into the right hand side of the statement containing

the new definition will be performed by calls to AddUse. O

Theorem 4.4 Given a program P, the folded expressions for P, and
the links and marks on reaching definitions in P and a use deleted to
form program P’, DelDef in Algorithm 4.4 will form the correct folded

expressions and links and marks for P'.

Proof When a definition is deleted, it will be removed from any reaching definition
set in which it appears. Thus, if two reaching definition sets containing the deleted
definition are identical before the deletion of the definition, then they are identical
afterward. Hence, no fold will be invalidated by a violation of the third condition in
Definition 4.1. Condition 2 of Definition 4.1 cannot be invalidated by the deletion of
a definition. Thus, the only way in which a fold can be invalidated by the deletion
of a definition is by eliminating the only definition that reached the sink of the fold,
implying that the deleted definition is the source of the fold. All folds invalidated
by the deletion of the definition will be reversed by reversing the folds of the deleted

definition in the shadow expressions in which it appears.

134

If a definition blocks a fold from a occurring, then its deletion can result in the
fold. Whether the deleted definition is marked “blocking” and whether this results
in a new fold is tested in DelDef. The rest of the proof concerning new opportunities

for folding is identical to the argument contained in the proof for Theorem 4.3. a

Theorem 4.5 Given a program P, the folded expressions for P, and the
links and marks on reaching definitions in P and a control flow edge added
to form program P’, AddCF in Algorithm 4.5 will form the correct folded

expressions and links and marks for P’.

Proof The addition of a control flow edge will affect reaching definition sets for
any variable that is defined on all paths from s to ¢ in P, if at least one exists, or any
variable that is defined on a path to ¢ from a node that does not reach s if no path
from s to t exists in P. The same argument contained in the proof for AddDef leads
to the conclusion that a fold can be invalidated only if the reaching definition sets
change at either the source or the sink of the fold. |

By noting the scalar variables and statements that specify a particular reaching
definition set that is modified, we can use a call to ChangeReachingSetUnfold and
ChangeReachingSetFold to test the statements where the reaching definition sets
change to see if they are the source or sink of either an invalidated or new fold. This

is done in the two for loops contained in AddCF. O

Theorem 4.6 Given a program P, the folded expressions for P, and
the links and marks on reaching definitions in P and a control flow edge
deleted to form program P/, DelCF in Algorithm 4.6 will form the correct

folded expressions and links and marks for P’.

The proof is identical to that for Theorem 4.1.

135

Complexity Analysis

The complexity analysis of the algorithms is straightforward. In response to a changed
use, we trace and delete the links back to the definitions folded into the changed use.
The time required for this is equal to the number of links that must be followed
backward. These links must be deleted only if the definition at the head of the link is
not folded forward into any other use. If a link is not deleted then it is not necessary
to follow the link backward to the source of the link. ‘

In response to a changed definition, we must perform a number of tasks. First,
the uses into which this definition has been folded must be updated so that their
shadow expressions reflect the changed definition. Depending on the nature of the
change, this might require that the folds be undone or just a different right hand side
be folded forward. Second, the changed definition might be one that is marked as
blocking. If so, then it is necessary to find those expressions that can now be folded
forward and fold them.

The time required to do this is proportional to the affected area, in the sense that
no more work is required than the area of the change to the data structure holding the
information. For a change to a use, the actual time required can be loosely bounded
by the product of the in-degree of true dependences on a statement times the length
of the longest chain of links. A change to a definition requires time proportional to no

more than the out-degree of true dependences times the length of the longest chain.

4.2 Loop Invariant Testing

Subscript testing can benefit from the knowledge that a variable appearing in two
different expressions has the same value in both expressions. Such a variable can be
deleted from the two expressions without affecting the outcome of any test on the
intersection of the ranges of the two expressions. A variable that always has the same

value regardless of where it is encountered in a loop is called loop invariant.

136

Any variable not defined within a loop is, obviously, loop invariant with respect
to that loop. These variables can be easily detected at their use by checking whether
the use is the sink of any true dependence from within the loop. Assuming that all
loops are dominated by a single node, the loop header, whether there exist more than
one true dependence from outside the loop is irrelevant.

Occasionally a variable defined within a loop body will be invariant with respect

to the loop, as illustrated by the following code fragment.
SUB(L,M)
DOI=1,10
K =L*M
A(K+I) = ...
ENDDO

In this example the variable K is equal to the same value through all its uses in all
the iterations of the loop that follow its definition.

Implicit in the above definition is the notion that a loop invariant variable is
invariant with respect to a particular loop in which it is contained. We would like to
be able to identify the loops for which it is invariant. A variable is variant for all the
loops containing the innermost loop for which it is variant. However, there may still
be loops containing the variable, contained within thése loops, for which the variable

is not variant. Consider the following code fragment.

137

DOI=1,N
L=o
DOJ=1,N
DOK=1,N
A(LJ,K,L) = F(I,J,K,L)
ENDDO
L=L+1
ENDDO
ENDDO

L varies with the outermost and the next inner loop. However, L does not vary in

the innermost loop.

Definition 4.2 A variable, v, is loop invariant with respect to a loop /

if and only if either

1. v is not defined within the body of ! or

2. every use of v within [is reached only by definitions of v with right
hand side, e, that contain only loop invariant variables and do not

contain v or any call to a subroutine.

Integer expression folding provides enough information to recognize that a variable
is loop invariant. If a variable is truly loop invariant and it appears in a subscript
expression before integer expression folding, then either no definition of the variable
appears within the loop or, in the shadow expression corresponding to its use, the
variable will have been replaced by its definition that appears within the loop. Since
integer expression folding continues to attempt folding on folded expressions within
subscripts, it follows that, after the completion of integer expression folding, no loop
invariant variable that is defined within the loop will appear in a shadow expression

of a subscript expression. Hence, after the completion of integer expression folding,

138

to test whether a variable appearing in a shadow expression of a subscript expression
is loop invariant we test whether any definition from within the loop reaches the use
of the variable in the shadow expression. If no such definition reaches the use of the
variable in the shadow expression, the variable is loop vinva.riant. This test can be

performed on the fly during subscript testing.

Theorem 4.7 If a variable v is loop invariant with respect to a loop 1,
then, after integer expression folding, the shadow expression representing

the use of v will not contain any variable defined within [.

Proof From the definition we know that if v is loop invariant, then either v is
not defined within [, satisfying the theorem, or the use is reached by definitions with
identical right hand sides, e. e contains only loop invariant variables not equal to v.
Let the set of variables defined within [be V. The only variables that may appear
in e are those that are elements of V' = V —v. Consider any of these variables, v'.
The right hand side of the definition reaching the use of v can contain only variables
defined outside ! or members of the set V" = V' —v'. Eventually the only variables

that may appear in the shadow expression are those that are defined outside {. O

4.3 Induction Variable Identification

For dependence analysis to effectively deal with subscripted variables, it must iden-
tify every variable within a subscript expression that can be treated as an auziliary
induction variable. Auxiliary induction variables behave as induction variables but
do not appear as the induction variable of a loop. The independence tests for array
accesses use the effect of induction variables and auxiliary induction variables on the
value of subscript expressions to prove the values of the subscript expressions are

different over iterations of a loop.

139

K=o
DOI=1,100
K=K+ 2
A(K) = F(A(K-1))
ENDDO

In the above example, K is an auxiliary induction variable with step 2. In the
subscript expression, the use of K can be replaced by I*2.

Generally speaking, we would like to detect cases where a variable v in a loop, can
be replaced by an expression of the form i * ¢ + a, where i is the induction variable

of the loop and c and a are constants.

Definition 4.3 A variable, z, is an identifiable auziliary induction vari-

able(IAIV) for a loop if and only if

1. the entry to the loop is reached by a single definition of z and

2. during every iteration of the loop, z is assigned a value equal to itself

plus a loop invariant value.

An obvious case of an IAIV would be a variable with a single definition in the
loop such as |
v = v +/- loop invariant ezpression.
These cases are easy to identify. A more difficult case is illustrated by the following
code fragment.
DO
I=J+1
J=I+4+1
AQJ) = ...
o = A(T)
ENDDO

140

I and J are called mutual induction variables. Their definitions result in a step of 2
for both I and J during a single iteration. An algorithm that searches for assignments
to variables with a right hand side equal to the left hand side plus or minus a loop
invariant expression will miss auxiliary induction variables of this type.

An algorithm based on integer expression folding can discover these cases quite
easily. Using the shadow expressions left by integer expression folding, the above code

fragment becomes, after one step,
DO

I=J+1

J=1+41

AdI4+1)=..

.. = A(I)
ENDDO

Next, integer expression folding attempts to fold forward an expression for J in the
right hand side of the definition of I. This will not be successful because J is reached
by two definitions: one loop independent from outside the loop, the other loop carried.
The loop carried definition is an inductive expression for I, the left hand side of the
statement where we are attempting the substitution. From this information and the
knowledge that this inductive assignment occurs every iteration, we can identify I
and J as auxiliary induction variables. In order to see that the inductive assignment
occurs on every iteration we check that the statement containing the assignment is
directly control dependent on the loop header. Thus, we can identify auxiliary loop
induction variables during integer expression folding. While testing for expression
folding, the algorithm tests for the formation of statements with an inductive form
in the shadow expression of the right hand side. When such a statement is found,
the algorithm tests the control dependence relation to see that the statement occurs

every iteration. See algorithm 4.12.

141

Input: An assignment statement s whose right hand side (possibly a shadow expression)
is being examined for possible opportunities for folding into it.
Output: Identification of whether the left hand side is an JAIV

let the left hand side of s be the variable J

let the right hand side of s (possibly a shadow expression) of the assignment statement be rhs
where v is a program variable

where ¢ and d are loop invariant expressions

if rhs is of form v + ¢:
then if v is the sink of one loop-independent dependence
and one loop-carried dependence
then if the loop carried dependence is from a definition of the form I +d
then if an edge from the loop header to s is contained in the cpg
then [is an IAIV

Algorithm 4.12 Finding IAIVs

Theorem 4.8 Given an IAIV [in a loop, algorithm 4.12 will identify I
as an IAIV.

Proof From definition 4.3, we know that on every iteration of the loop I is assigned
to a value equal to itself plus a loop invariant value. From theorem 4.7, we know that
the variables in the expression forming this loop invariant value will be replaced in
the shadow expression with expressions involving variables defined outside the loop.
From definition 4.3, the other part of the original expression is I. Thus, the shadow
expression will consist of I plus anbexpression involving variables defined outside of
the loop. Hence, the test in algorithm 4.12 will succeed and I will be identified as an
TAIV. | O

Complexity Analysis

The only non-constant work done in algorithm 4.12 is the testing of whether c is a
loop invariant value. The amount of work for this testing is bounded by the number
of variables in the expression. This work is added to the overall complexity of the
integer expression folding algorithm. If the I is the length of the longest chain of
integer expression folding links present, and v is the maximum number of variables
on the right hand side of an assignment statement, then the time required to perform

and identify IAIVs is bounded by O(I + (v +1)).

Chapter 5

Experiments and Results

It was the requirement for quick response time in an interactive programming tool that
led us to postulate the need for incremental techniques of dependence analysis. As a
step to confirming the practicality of the techniques, we analyzed the time required
by the algorithms presented in this dissertation to perform a single update. These
complexities appear as functions of characteristics of the programs being edited, the
dependence graphs of the program, and the edit being made. See Table 5.2.

Unfortunately, these analyses alone are inadequate to confirm the practicality of
the incremental algorithms. It is always possible to construct a program and an
edit which will require a complete recalculation of the dependence information of the
program. What is needed is a calculation of the performance of these algorithms
when presented with the kind of programs and edits that they are likely to encounter.

Logs of editing sessions with programmers using interactive parallelism tools are
not currently available, but examples of the large computationally intensive programs
these programmers will be editing are available. We have used them to produce
measurements of the characteristics of programs and edits which are important to
the performance of our algorithms.

For our study we selected four programs from the Rice Compiler Evaluation Pro-
gram Suite (RiCEPS). They are described in Table 5.1. RiCEPS is a collection of
whole FORTRAN programs designed to provide examples of common programming
techniques and coding styles. Thus, the four programs we have used to produce per-
formance estimates of our algorithms possess the characteristics of programs that a

user of our algorithms are likely to meet.

143

144

Programs | Routines | Lines of Description
Code

ONEDIM 12 659 | Calculates the eigenfunctions and eigenenergies
of the time independent Schroedinger equation
for a one dimensional potential.

LINPACKD 10 706 | Performs various linear algebra procedures and
collects timing.

SPHOT 5 1200 | Uses Monte-Carlo method to solve photon trans-
port problem in a spherical geometry.

SIMPLE 7 1312 | A 2-D Lagrangian code with heat diffusion.

Table 5.1 Programs from RiCEPS

5.1 Measurements

In order to determine which program characteristics are critical to the success of our
algorithms, we turn to the time complexities shown in Table 5.2. Inspection of Table
5.9 reveals that the time required for updating dependence information in response
to a program edit is particularly sensitive to a few characteristics of the program
being edited, its control and data dependence graphs, and the particular edit. These
characteristics are ||n,]|, ||7ll, and ||n]|. The other factors appear only linearly and
have natural limits to their sizes, such as the nesting level of a progra,m. or the size
of the right hand side of an assignment statement. The only limit to ||ns||, |[7¢ll, and
|Inll is the length of the program.

5.1.1 ||n,]| and ||n:]|

lIn.|| and ||7¢]| are values derived from the relative position in the control dependence
graph of the source and sink of an edge added to the control flow graph of a program.
One way to attempt to estimate the average values of ||7,|| and ||7:|| would be to
measure ||7,]| and ||| for each pair of nodes in the program. This would produce a

measure of the length of paths in the control dependence graph. But this calculation

In the following, let

In,]l = the number of nodes that reach s but not ¢ in the cDG(QG)
l|7:]l = the number of nodes that reach ¢ but not s in the CcDG(G)

d; = the maximum in-degree of any node in ns and 7,

d, =
d? =

= the maximum out-degree of any node in 7,and 7,
the maximum in-degree of any node in the data dependence graph

n = the set of nodes reached by an array definition
k = the loop level of a use or definition

CFAdd | [In|l - di - do + [[ns[[(llns - do + s -)
CFDel |7,-d,
AddUse | k- | may(s) | + |loopmust| + [loopmay]
DelUse | |d¢]
AddDef | > “ni + (||loopmust, || + |[loopmay, || - ||usesk||)
k
DelDef | D i + (||loopmust, || + |lloopmay, || - ||usesk||)
k
AQdCF | 3 2(3 ¢ + (loopmusty | + Toopmay, |- Tlasesa])
veV k
DelCF | > 2()_ m + (||loopmust, || + |lloopmay, || - ||uses]|)
veV k

Table 5.2 Complexities of the Dependence Update Algorithms

145

146

would be correct only if it were equally likely for a control flow graph edge to be
added between any pair of nodes in the control flow graph regardless of their relative
positions.

The complete program provides a record of which edges were added to the control
flow graph. In order to calculate more accurate values for 7, and 7, we derived from
a finished program a series of edits that could be used to produce the program and
calculated ||7,|| and ||n:|| for each of the edits.

We assumed that the series of edits would directly produce the program, that is,
there would be no addition of edges which were deleted afterward. The number of
edits required to produce the program were counted, and 7, and n; for each of the
edits were recorded.

In order to understand how 7, and 7, were measured, consider the control flow
fragment from the eighth subroutine of SIMPLE shown in Figure 5.1. The series of
e@its that we assume were used to create this fragment begins with an edge from node
3 to itself. Nodes 4, 6, 8, and 14 were then added to this edge. We recorded the sizes of
n, and 7, associated with the addition of this edge as 0 and 0, respectively. Any edge
added from a node to itself will produce 5, and 7; equal to the empty set. Another
simple case in the sequence of edits used to create this fragment is the addition of the
edge from node 25 to node 36. The sizes of n, and 7; associated with this edge are
1 and 1, respectively. This is an example of an edge whose sink postdominates the
source of the edge. In this case 7, and 7, will contain only s and t, respectively. Edges
whose source and sink are the same node and edges whose sink postdominates the
source of the edge are easy to identify from the control flow graph, and the sizes of
their , and 7; can be immediately recorded. These edges account for ninety percent
of the edge additions counted in our measurements.

A more complicated edge to examine is the edge added from node 8 to node 36.
In the control dependence graph previous to the addition of this edge, node 8 is
dependent on 6 which is dependent on 4 which reaches the sink of the edge, 36. Thus

147

7s contains nodes 6 and 4 which results in a 17| of 2. 7; contains only node 4 and
hence ||7]| is equal to 1.

This process was carried out by hand for all the subroutines in the programs we
measured. This produced the distribution of values for ns and n; shown in Table 5.3.
The distribution of values shows that only for rare cases will 7, or 7, be greater than
two or three. In fact, for over ninety percent of the edits either adding or deleting a

control flow edge, 7, and 7, will be equal to one or zero.

5.1.2 5|l

Mk is the set of statements at level £ whose may and must sets must be modified
in response to the program edit. 7 is the sum of nk for all k loops surrounding the
location of the edit. If the program edit is the addition of an array definition then
lInll is equal to the number of statements that the array definition reaches.

. |Inll is a function of the added definition and the form of the program at the time
that definition was added. Since so many of the statements that an array definition
reaches follow the definition textually in the program, if we were to assume that the
program was written from the beginning to the end, we would produce an average ||7||
that was very low. So we chose instead to measure n for every array definition in the
program as if the definition were the last to be added. This measurement exaggerates

the size of 7.

[EA [l
Program 0 1123(47|>8 0 1({23(>4
ONEDIM 40 | 10 0 0 0| 40| 10 0 0
LINPACKD | 18 | 10 0 0 0| 18| 10 0 0
SPHOT 14| 85 6| 10 2| 14 {101 1 1
SIMPLE 76| 24 3 1 0] 76| 25 3 0
Total 148 | 105 6| 10 21148 | 146 4 1

Table 5.3 Distribution of values for 7, and 7,

148

Figure 5.1 CFG fragment from SIMPLE

" The count proceeded as follows. Flow sensitive interprocedural summary infor-
mation of the type discussed in Chapter 3 was assumed. The number of statements
a definition reached was indexed by the level of the reached statement. If a definition
occurred at level I, then each statement at that level and within the same loop were
counted as one. Statements enclosed in the same [level loop as the definition but
nested at a deeper level than [were not counted; the loop at level I was counted.
Statements at a level less than ! were counted as one but at the higher level. For

instance, consider the following code fragment from ONEDIM.

149

DO 500I=2,N,1
L=1I-1
Z(N,L) = Z(L,L)
H = D(I)
IF (H .EQ. 0.0D0) GOTO 380
DO 330K =1, L, 1
330 D(K) = Z(K,]) / H
DO 380J=1,L,1
G = 0.0Do
DO340K=1,L, 1
340 G =G + Z(K, J) - G*D(K)
380 CONTINUE
500 CONTINUE
DO510I=1,N,1
510 Z(N,I) = 0.0D

The definition of Z at level one reaches an assignment and a GOTO statement
inside its own loop at that level. In addition it reaches two loops at this level. vThus,
M in this code fragment is equal to four. At level 0 the definition reaches the loop
which has 510, following its own. Since this loop kills the definition of Z, it can reach
no further. Thus 7o is equal to 1. The sum of these is three. This is the value recorded
in Table 5.4. The distribution of ||7|| is shown for all the definitions in the programs
studied.

5.2 Implications and Further Arguments

When examining these results we must remember that the incremental methods are
designed as alternatives to batch algorithms to perform the same task.
The sizes of 7, and 7, from Table 5.3 indicate that almost all updates to the control

dependence graph can be done much more quickly using our incremental technique

150

Program 01 1]2374-7]8-15]16-31 | 32-63 64-127 | 128-255
ONEDIM 7116(25| 33 18 5 0 0 0
LINPACKD | 7| 6 71 10 37) 0 1 0
SPHOT 21 1 0 0 0 24 25 0 0
SIMPLE 0| 2 8| 13 25 28 28 57 46
[Total _ [16]25] 40] 58] 80] 62] 53] 58 | 46 |

Table 5.4 Distribution of values for n

than a batch algorithm. Thus, the empirical results indicate the practicality of those
techniques.

The sizes of 7 indicated in Table 5.4 indicate that in some cases the addition of a
definition must be propagated widely around the program. This makes an incremental
method less appealing. But most of the time an edit involves the definition of only a
single array variable. Except where a use or definition of the variable is encountered
and subscript testing is required or a meet operation must be performed at the end
of alternate branches of control, the propagation of the changes to the may and must
sets of the variable requires only the copying of pointers. This operation can be
performed within a small number of machine instructions. Subscript testing, on the
other hand, requires a much greater amount of work. In the incremental algorithm
the only subscript testing that occurs involves the variable involved in the added
or deleted definition. In contrast, the batch version requires subscript testing over
the entire program for all the array variables appearing in the program. Thus, the
incremental version can still be significantly faster in practice.

For an edit involving the addition or deletion of a control flow edge, this argument
is less compelling. But another argument may be made. Suppose that few array kills
appear in the program. Then when a control flow edge is added it will be likely
that all the array definitions from the source of the new edge will already appear in
the may sets at the sink of the new edge. Thus it will be unnecessary to propagate

any changed information about this variable and the algorithm terminates quickly.

151

On the other hand, suppose many array kills appear in the program. In this case,
while changes must be propagated, they must only be propagated until a kill to the
changed information is encountered. Since a kill is likely to be encountered, the
algorithm again terminates quickly. Thus, even the addition or deletion of a control
flow edge could benefit from the use of incremental techniques. Further research is }
required to accurately assess the value of the incremental techniques for updating

data dependences in response to control flow changes.

Chapter 6

Related Work

6.1 Dependence Analysis
6.1.1 Parallelism Detection

Work on automatic parallelization techniques began in the 1960’s. Researchers during
this time explored techniques for parallelization at granularities both below and above
the statement level. During this period, relatively less work was done exploring
parallelism between loop iterations. In 1973, Baer published a survey [BaeT3] where
he summarized the work that was done at all levels. In this survey he discussed the
work done by Bernstein, Russell, Muraoka, and others in calculating data dependence
and automatically using this information to look for parallelism between statements.
The work by some of the same researchers in detecting parallelism between iterations
of DO-loops is discussed as well.

Lamport’s paper [Lam74] was one of the first successful treatments of the auto-
matic transformation of sequential DO-loops to parallel form. This paper contains
one of the first mentions of an iteration space. He identified two forms of parallel
calculations on arrays within do-loops. The Coordinate Method involves splitting or
distributing the individual statements in a loop and then performing the calculation
on each member of the array independently. This kind of parallel calculation is more
commonly known as SIMD parallelism or vectorization. The other method, which
he called the Hyperplane method, is applicable to multiprocessors and is identical to

what is known as the wavefront method discussed by others in [Kuh80, Wol82, Mur71].

152

153

Included in this paper is a very simple test on subscript expressions for identifying
when transformations from sequential to one of the parallel forms are safe.

Towle explored the analysis of control and data dependence and its use in paral-
lelizing transformations in his Phd thesis [Tow76]. Kuck et. al. [Kuc78, KKP+*81]
discussed the value of dependence analysis in optimizing programs for parallel archi-
tectures and characterized dependences as anti, output, flow, and input.

Covering was described by Kuhn in his Phd thesis [(Kuh80]. Kuhn’s methods calcu-
lated a dependence relation that resembled closely our concept of strong dependence.
He described array accesses by convex sets and performed a complex calculation on
these sets to arrive at his relation. His methods were tested in Paraphrase but were
eventually abandoned in favor of Banerjee’s tests. Banerjee [Ban79] first published a
range test for dependence analysis in the presence of subscripted variables when the
subscript expressions are affine.

~ Wolfe [Wol82] developed a scheme to annotate dependence information with di-
rection vectors and then showed how to use the direction vectors to determine the
correctness of various optimizations. Allen [All83] characterized dependences as car-
ried or loop independent. This distinction is the key to optimizing for concurrent
architectures, since it is the loop carried dependences that inhibit parallelization for
these machines.

In 1983, Ferrante, Ottenstein, and Warren presented the Program Dependence
Graph [FO83, FOW84], which they claim to be a dependence representation sufficient
to represent the program itself. In their control dependence graph they use region
nodes to consolidate dependence on identical conditions. They present a calculation
of control dependence based on post dominator information. This control dependence
relation is minimal in the sense that a statement is control dependent only on those
statements whose execution and result can imply the execution of the first statement.
This minimality corresponds closely to that of the strong dependence relation defined

in chapter 3.

154

Brandes [Bra88] discusses the desirability of what he calls direct dependences in
automatic parallelization. A direct dependence is a dependence in a weak dependence
graph that is not equal to the composition of any combination of other direct depen-
dences. That is, it is not equal to any transitive edge. His method for calculating
these dependences is to prune transitive edges after he has calculated the entire weak
dependence graph. He has made the observation that this pruned dependence graph
is more useful for a user to see than the full transitive dependence graph calculated
by traditional methods. This notion of direct dependence in some ways approximates
our definition of strong dependence. The distinction is that strong dependences repre-
sent all possible flows of value when more than one execution path is available, where
the direct dependences do not. We think strong dependence is the more natural and

intuitive notion.

6.1.2 Intermediate Analysis

The intermediate analysis required to effectively apply independence tests in PFC has
been discussed by Allen and Kennedy in [AK84]. The analysis required to identify
loop invariant expressions was first developed to support optimizations intended to
move code out of loops so that it would be executed less frequently [Coc70]. The
results of this loop invariant analysis are used in their analysis of loop induction
variables in a manner similar to that discussed in Chapter 4{AK87]. In PFC, the
induction variables are not merely identified but actually substituted into the code
being analyzed. For this reason they call their procedure Induction Variable Substi-

tution.

6.2 Programming Environments

At Rice, the Rn programming environment is geared toward numerical applications.
One of its primary goals is exploring the use of extensive interprocedural information

in the compilation of scientific programs. The heart of this system is a database

155

that keeps information about how programs are composed of individual procedures
and interprocedural information for each procedure. The environment includes a
procedure editor that calculates intraprocedural information [CKT85]. Allen and
Kennedy [AK85] proposed that Rn evolve into a parallel programming environment
called ParaScope. The methods and techniques presented in this dissertation are
directly aimed at fulfilling the requirements for the planned parallel programming
environment.

FORGE is a parallel programming environment that allows the user to direct the
editor to perform parallelizing transformations on his behalf. Between the trans-
formations, dependence information is calculated incrementally. These incremental
updating techniques are limited to a small set of well-defined program changes and
do not apply to arbitrary changes made by a user.

SUPERB is an interactive parallelizing tool built to support programming on the
SUPRENUM project [KBGZ88]. Its goals are similar to those of ParaScope with
t};e exception that arbitrary editing changes are not allowed. SUPERB makes use
of incremental techniques to update the dataflow information in response to user

directed transformations of his program.

6.3 Incremental Techniques

Incremental compilation was first investigated as a method for making better use of
scarce computational resources available for compilation. The goal was to avoid
repeating an entire compilation in response to relatively small program changes.
Schemes using the statement as the basic unit of change were developed. Nonetheless,
typically programmers were still limited to recompiling an entire procedure at a time
[Loc65). As computing resources became less scarce, these techniques fell out of favor,
and work on incremental analysis and compilation ceased.

When interactive programming environments came into vogue, incremental tech-

niques regained attention. However, their requirements were somewhat changed. In

156

particular, the new structure or syntax-directed editors provided a use for techniques
that could limit recompilation to a finer granularity, such as the statement or sub-
statement level.

Ryder’s original technique [Ryd83] for incremental data flow analysis is one of the
first in this new body of work. It is limited in that it does not allow for changes
in control flow. The entire data flow problem must be re-solved in response to any
change in control flow. One of Ryder’s contributions was the recognition that worst
case complexity analysis of incremental algorithms in terms of the size or number
of changes is misleading. Ryder and Carroll [RC86] have more recently presented an
incremental method of interval analysis that does not suffer from the earlier limitation
of being unable to deal with control flow changes.

Zadeck [Zad84] developed another method of data flow analysis, called the Par-
titioned Variable Technique (PVT), that is both more general than Ryder’s original
wgrk and has the fastest algorithmic complexity of any known solution for partition-
able data-flow problems. While it is limited in the type of data flow problem that it
can calculate directly, it is quite capable of handling the calculation of def-use chains
for scalar variables. We have proposed to use Zadeck’s techniques for the calculation
of data dependence on scalars.

Reps [Rep82)] presented an optimal time algorithm for updating attribute trees
in a syntax-directed editor. Reps showed that his algorithm was optimal by proving
that, for any change to his input, within a constant factor his algorithm only looked
at parts of the graph that changed in response to the change in input. Since these
changed parts of the graph require change by any algorithm updating the attribute
tree, within a constant factor, he did only as much work as any correct algorithm.

Pollock has more recently developed techniques to be used for incremental opti-
mization of intermediate code [Pol86]. She addresses not only the problem of per-
forming the analysis required for optimization of programs but also the problem of

managing an optimized program in an incremental programming environment.

Chapter 7

Conclusions and Future Work

Computer science is, essentially, an engineering discipline. Its goal is to provide tools
useful for calculating the solution to some problem. Hence, the validation of the
importance of any work in computer science must necessarily lie in how the results
of that work enable the solution to some problem important to society outside of
computer science.

If basic science is the collection of facts about the world in the absence of any
clear idea of how these facts can be used, then basic engineering is the design of tools
without any clear idea what they will be used to build. It is the paradox of basic
research that its importance can never be confirmed at the time it occurs.

We are fortunate in computer science that for the foreseeable future there exist
problems requiring ever faster computers and these faster computers and the harder
problems on which they are applied will require more effective programming tools
to program them. This thesis has developed a part of what may become a tool for
programming these faster, parallel, computers.

In chapter 2 we presented a definition of control dependence that, while equivalent
to the most common one presently in use[FOWB87], is more easily used and thought
about. We developed and presented a form of the control dependence graph which
contains not only the control dependence relation but the postdominator relation as
well. This allowed us to develop algorithms for updating the control dependence
relation without reference to any data structures other than the control dependence

graph and the control flow graph of the program.

157

158

In chapter 3 we discussed the notion of data dependence as it is calculated and
applied today. We saw the difficulties presented by this form of the data dependence
relation and defined the strong data dependence relation to make clear the distinction
between the two notions of the relation. We showed how an approximation for strong
dependence can be calculated efficiently in a batch algorithm and then presented
algorithms to update the relation incrementally.

In chapter 4 we addressed some of the problems in efficiently performing the
subscript testing necessary for the algorithms in chapter 3. These required that infor-
mation about the equivalence of scalar values appearing in subscripts be calculated.
After presenting an incremental method for integer expression folding we developed
novel methods of identifying loop invariant variables and auxiliary induction variables
that were able to take advantage of the work done by integer expression folding so
that only one phase is required to perform all three of these scalar optimizations.

~ In chapter 5 we looked at the time complexities of the algorithms presented in
chapters 2 and 3 and determined which characteristics of an update were most likely
to adversely affect the time required for updating the dependence information in
response to a typical edit. These characteristics were measured on real FORTRAN
programs. We found that the time required for control dependence update will be
nearly constant for most edits. The time for updating data dependence will be greater
than this but should still be only a fraction of the time required for calculating the
relation in batch.

Further work requires the construction of an interactive programming environment
implementing these algorithms. Thus, the ease of implementing the algorithms can be
tested during the design and construction of the environment and their performance
in updating can be measured during actual use.

Any piece of basic research in engineering must wait to be validated by the presence
of its results in a later piece of work. We present this work in the hope that it will

find a place in the researches and implementations that follow.

[ABKPS6]

[AK84]
[AKS85)
[AK87]

[AKPWS3]

[ALI83]

[AUTT]
[BaeT73]
[Balg9]

[Ban79]

Bibliography

J. R. Allen, D. Baumgartner, K. Kennedy, and A. Porterfield. PTOOL:
A semi-automatic parallel programming assistant. In Proceedings of the
1986 International Conference on Parallel Processing. IEEE Computer
Society Press, August 1986.

Randy Allen and Ken Kennedy. Automatic translation of fortran pro-
grams to vector form. Technical Report Rice COMP TR84-9, Rice Uni-
versity, July 1984.

Randy Allen and Ken Kennedy. Programming environments for super-
computers. Technical Report Rice COMP TR85-18, Rice University,
March 1985.

J. R. Allen and K. Kennedy. Automatic translation of FORTRAN pro-
grams to vector form. ACM Transactions on Programming Languages
and Systems, 9(4):491-542, October 1987.

J.R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conver-
sion of control dependence to data dependence. In Conference Record
of the Tenth ACM Symposium on Principles of Programming Languages,
January 1983.

J. R. Allen. Dependence Analysis for Subscripted Variables and Its Ap-
plication to Program Transformations. PhD thesis, Rice University, April
1983.

A. Abo and J. Ullman. Principles of Compiler Desging. Addison-Wesley,
1977.

J.L. Baer. A survey of some theoretical aspects of multiprocessing. ACM
Computing Surveys, 5(1):31-80, March 1973. '

Vasanth Balasundaram. Interactive Parallelization of Numerical Scien-
tific Programs. PhD thesis, Rice University, April 1989.

U. Banerjee. Speedup of Ordinary Programs. PhD thesis, Dept. of Com-
puter Science, University of Illinois at Urbana-Champaign, October 1979.

159

[Bra88]

[Cal8T]

[CCH*87]

[CCKTS6]

[CK87]

[CKTS5]

[CocT0]

[CohT3]

[Coo83)

[FO83]

[FOWS84]

160

Thomas Brandes. The importance of direct dependences for automatic
parallelization. In Proceedings of the International Conference on Super-
computing, 1988.

David Callahan. A Global Approach to Dependence Analysis. PhD thesis,
Rice University, 1987.

A. Carle, K. Cooper, R. T. Hood, K. Kennedy, L. Torczon, and S.K.
Warren. A practical environment for Fortran programming. Computer,
October 1987.

David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon.
Interprocedural constant propagation. In Proceedings of the SIGPLAN
'86 Symposium on Compiler Construction, pages 152-161, June 1986.

D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a
parallel programming environment. In Proceedings of the First Interna-
tional Conference on Supercomputing. Springer-Verlag, Athens, Greece,
1987. Available as Rice University, Department of Computer Science
Technical Report TR87-56, July 1987, To appear: Journal of Parallel
and Distributed Computing.

Keith D. Cooper, Ken Kennedy, and Linda Torczon. The impact of in-
terprocedural analysis and optimization in the rn programming environ-
ment. Technical Report Rice COMP TR85-27, Rice University, December
1985.

John Cocke. Global common subexpression elimination. SIGPLAN No-
tices, pages 20-24, July 1970.

William L. Cohagen. Vector optimization for the asc. In Proceedings of
the Seventh Annual Princeton Conference on Information Sciences and
Systems, 1973.

Keith Cooper. Interprocedural Data Flow Analysis in a Programming
Environment. PhD thesis, Rice University, 1983.

Jeanne Ferrante and Karl Ottenstein. A program form based on data
dependency in predicate regions. In Conference Record of the Tenth ACM
Symposium on the Principles of Programming Languages, January 1983.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. Technical Report RC 10543, IBMTJW,
May 1984.

[FOWS7]

[KBGZ8S]

[KKP+81]

[Kuc78)

[Kuh80]

[La.m74]

[Loc65]

[Mur71]

[Pol86]

[RC86]

[Rep82]

161

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319-349, July 1987.

Ulrich Kremer, Heinz-J. Bast, Michael Gerndt, and Hans P. Zima. Ad-
vance tools and techniques for automatic parallelization. In Proceedings
of the Second International Suprenum Colloguium, 1988.

D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Depen-
dence graphs and compiler optimizations. In Conference Record of the
Eighth ACM Symposium on the Principles of Programming Languages,
January 1981.

David J. Kuck. Computers and Computations, volume 1. John Wiley
and Sons, 1978.

Robert Henry Kuhn. Optimization and Interconnection Complezity For:
Parallel Processors, Single-Stage Networks, and Decision Trees. PhD
thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, February 1980.

Leslie Lamport. The parallel execution of do loops. CACM, 17(2):83-93,
February 1974.

Kenneth Lock. Structuring programs for multiprogram time-sharing on-
line applications. In Proceedings AFIPS Fall Joint Computer Conference,
pages 457—475, 1965.

Y. Muraoka. Parallelism Ezposure and Erploitation in Programs. PhD
thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, February 1971.

Lori L. Pollock. An Approach to Incremental Compilation of Optimized
Code. PhD thesis, University of Pittsburgh, 1986.

Barbara Ryder and Martin D. Carroll. An incremental algorithm for
software analysis. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Envi-
ronments, 1986.

Thomas Reps. Optimal-time incremental semantic analysis for syntax-
directed editors. In Conf. Record of Ninth ACM Symposium on Principles
of Programming Languages, 1982.

[Ryd83]

[Tow76]

[Wol82]

(Zad84]

162

Barbara Ryder. Incremental data flow analysis. In Conference Record of
the Tenth ACM Symposium on the Principles of Programming Languages,
1983.

Ross Albert Towle. Control and Data Dependence for Program Transfor-
mations. PhD thesis, Dept. of Computer Science, University of Illinois
at Urbana-Champaign, March 1976.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis,
Dept. of Computer Science, University of Illinois at Urbana-Champaign,
October 1982.

K. Zadeck. Incremental data flow analysis in a structured program editor.
In Proceedings of the SIGPLAN 84 Symposium on Compiler Construc-
tion, June 1984.

