What is Easy?
E.F. Van De Velde

CRPC-TR90046
March, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892












What is easy? *

Eric F. Van de Velde
Applied Mathematics 217-50
Caltech
Pasadena, CA 91125

CRPC-90-1
March 7, 1990

Abstract

According to our new Center poster “The goal of the Center for
Research on Parallel Computation is to make parallel computers usable
for high-performance scientific computing problems.” In this CRPC
forum, I will lead a discussion on the fundamental aspects of this goal:
Why is concurrent programming difficult? How can concurrency be
simplified? What is usable? What is easy?

To kick off the discussion, I shall present one view and think through
its consequences by means of a specific case study. Hopefully, this will
inspire a debate on the design of concurrent scientific programs.

1 Introduction

Concurrent programming is difficult and needs to be simplified. This simple
statement is the most important goal of the Center for Research in Paral-
lel Computation. The new focus on simplification is a natural extension of
early research in concurrent computing, which was concerned mainly with
feasibility. The accumulated experience of feasibility studies is overwhelm-
ingly positive. For almost all concurrent machines that were available for
an extended period, a substantial number of core applications were imple-
mented, and all but a few exceptions ran efficiently. These feasibility studies

*Subject of a CRPC discussion forum. This material is based upon work supported by
the NSF under Cooperative Agreement No. CCR-8809615. The government has certain
rights in this material.






required machine-dependent program and problem reformulation. To raise
the concurrent technology from the level of feasible to that of usable, cur-
rent research focuses on simplification of the concurrent-programming task.
Although an easily stated goal, a solid interpretation lacks: When is one
computing system easier than another? What makes a program easy or
difficult? What does “this program is easy to parallelize” mean? What is
easy?

These questions are rarely asked or answered explicitly. Instead, we are
guided by some vague and intuitive notions, typically shaped by (senior)
colleagues or derived from the computer systems we most frequently used.
With significant practical experience available, we must now examine these
fundamental questions more carefully. A good answer will allow us to ap-
proach the task of simplification more scientifically, because it will point to
objective criteria for evaluating how difficult concurrent systems are. What
may result is a solid framework for the heuristics that have been and are
being developed.

The concurrent-programming task involves several levels: architectures,
languages, compilers, software tools, and applications. Before addressing the
main question, I shall examine complexity and/or simplicity at each level.
After this overview, I shall give a plausible definition of the term “easy.”
In the mean time, its intuitive meaning will suffice. The term efficiency is
used informally throughout the text, although it is assumed that reasonable
measures of efficiency exist.

2 Architectures

The two reasons for concurrency are hardware-related:

e Concurrency avoids the fundamental limit on the sequential computing
speed, ultimately determined by fundamental laws of physics.

e Systems that consist of many duplicated components are inherently
more economical.

There are no other inherent benefits to concurrency: anything that can be
computed concurrently in finite time and with a finite number of processors
can be computed sequentially in finite time.

Historically, computer architectures have grown ever more complex. What
is different about the evolution toward concurrent machines, is that the end
user must be aware of the concurrency in the system. Process scheduling,






memory management, synchronization, and communication strategies based
strictly on information available at the hardware and system-software level
cannot meet the required efficiencies, because efficiency on concurrent com-
puters is a global property, encompassing the whole program, including all
software levels, as well as the hardware.

Here, we must briefly expand on the importance of efficiency. If breaking
fundamental computing speed barriers is the main reason for using concur-
rent computers (a view appropriate for national laboratories), efficiency may
be so critically important that other goals, like easiness, must yield. It is
not that easiness is not important; only that all techniques that lead to
higher absolute performance will be used, easy or not. However, the success
of concurrency according to our other view — that concurrency is a more
economical way to performance, perhaps at levels that are reachable sequen-
tially — critically relies on concurrency being easy. Efficiency is nevertheless
important: a minimum requirement is that the concurrent hardware costs
less than the sequential alternative with the same sustained performance
level.

Whatever view of concurrency one subscribes to, both efficiency and eas-
iness are important, albeit with different emphasis. It is tempting to express
our goal in optimization terminology as follows: we wish to maximize easi-
ness under the constraint that efficiency must be above a certain minimum
level. The required minimum efficiency guarantees that the concurrent hard-
ware is either faster or more economical than its competition. Henceforth, I
shall consider only those programs that satisfy the efficiency constraint: we
do not design a system to make inefficient programs easy to write. Rather,
we wish to simplify writing efficient software. (This argument also holds if
one replaces efficiency with correctness: it is not our intention to simplify
writing incorrect programs.)

3 Languages

A computer language achieves two objectives: abstraction and notation.
Abstraction allows one to formulate problems at a level nearer to the
application and more removed from the machine. Is an abstract program
necessarily easier? One can definitely argue convincingly by comparing pro-
grams for clean text-book problems. It is more difficult to make the case
for real-world problems that do not readily fit into an abstract framework.
Abstract versions may have other desirable properties, however, like formal






verification and more general applicability.

The efficiency of highly abstract languages (determined by execution
times of compiled programs) has been a problem. Is this because not enough
time was spent to develop the compilers? Or must performance be poorer in
principle? This debate is not within the scope of this discussion. However,
one aspect of the conflict between abstraction and efficiency does seem true
in principle: whenever low-level optimizations are needed, abstraction stands
in the way, because the purpose of abstraction is to shield programmers from
the lower levels, not to give access to them. When comparing programs of
similar performance, a low-level program may be judged easier than a high-
level program, because the optimization of the latter was more difficult.

Notation is another aspect of computer languages, much less ambitious
than abstraction. Notation determines how the ideas embodied in a pro-
gram look on paper. Although good notation is important, it is ultimately
misleading as a criterion for level of difficulty. How often does one hear
statements along the following lines: “Look how easy this language is; it
only took ten lines of code to write this operation.” Another: “We only
had to change three lines to parallelize the code.” At most, these criteria
indicate the level of difficulty of typing the program, not of developing it.
The intellectual effort goes into deciding which constructs are needed; not
in writing them down.

4 Compilers

It is the task of compilers to translate source code into correct and efficient
executable code (we do not consider the speed of the compilation itself).
There is no compromise possible where correctness is concerned. All other
goals, like efficiency, must yield. Ideally, the produced object code runs
at a speed close to predicted by operational counts and machine perfor-
mance. To achieve this on supercomputers, interaction between user and
compiler is commonplace, because compilers cannot perform automatically
all task scheduling and data-dependency analyses necessary to obtain effi-
ciently running programs. The interactions take the form of compiler direc-
tives or program restructuring, often suggested by the compiler. Because
barely readable restructured code and machine specific compiler directives
that implement low-level details add an extra layer of complexity, writers of
parallelizing compilers now put an increased emphasis on the design of the
user interface.






Software tools for performance analysis and visualization help the user
to locate bottlenecks and other performance troubles. An inherent limita-
tion is that these tools are diagnostic only, although some problem solving
capability is obtained if performance analysis tools and parallelizing com-
pilers are combined into one expert system. The development of techniques
that avoid performance troubles in the first place are inherently preferred
(whether such techniques could be packaged as software tools is unlikely).

When evaluating particular computing systems, we must consider all
steps necessary to produce code that meets all requirements, including effi-
ciency.

5 Software

Software is the last level that may hide problems left unresolved by either
architecture, language, or compiler. The main issue in concurrent software
development is the definition of interfaces. Experience shows that it is diffi-
cult to combine two independently developed software packages for concur-
rent computers into one application. E.g., two incompatible protocols for
communication might have been used. In this case, one must rewrite the
communication aspects of at least one of the packages.

6 Applications

Today, concurrency is merely a nuisance for application programmers. Only
researchers interested in the concurrent computing aspect itself put up with
it, hoping for a future dividend in performance or economy.

Application programmers typically have several alternatives for solving
their computing problems. This freedom of choice can be exploited to tai-
lor the application to the computer. New numerical methods that have a
higher degree of concurrency can only be welcomed. The fate of concurrent
computing would be disastrous, however, if its success hinged on the inven-
tion of new numerical techniques for every new architecture. The judgment
of the success or failure of concurrent computing should be based on the
(un)availability and efficiency of classical methods.






7 What is easy?

Let us imagine a future of concurrent computing. The research in the areas
described above has blossomed, and the creative genius of many researchers
has delivered a wide variety of architectures, languages, compilers, and an
array of software tools. Our future programmer sits in front of his or her
ultra-high-resolution-graphics work station (the ConNeXT) with a color pal-
let that rivals Da Vinci’s, HI-FI sound, and built-in voice recognition. Of
course, the system is highly concurrent.

Our programmer, a budding genius who wishes to test his /her new theory
for turbulence, is ready to start dictating his or her program. A possible
scenario of the programming effort follows:

1. Invent a new concurrent method to solve the Navier-Stokes equations.
2. Write program in high level language.

3. Use fast compiler, one that produces inefficient code, during initial
stages of code development until code satisfies formal specifications.

4. Iterate the following steps:

(a) Use parallelizing compiler in an effort to meet performance spec-
ifications.

(b) Introduce compiler directives, telling the compiler how to compile
loops, distribute data, vectorize, assemble data into messages,
etc.,...in an effort to increase performance even more.

(c) Use feedback from the compiler-expert system to restructure pro-
gram. (If an error creeps in while restructuring, start over.)

(d) Use performance evaluation tool to identify bottlenecks and other
performance problems.

Is this the future we want?

(Concurrent) programming is difficult because many goals must be met
simultaneously: formal correctness, load balance, minimum communication,
synchronization, vectorization,...Each one of these goals must be weighed
against all others, because solving one problem is usually at the expense of
another. Concurrency is not one difficult issue; it is a set of mutually inter-
fering issues, each of which — when considered separately — is quite man-
ageable. Many small problems interfering with one another, that requires

6






strategic thinking, that requires the iterative process of code optimization,
that requires user input.

If we accept current wisdom that concurrency requires human interven-
tion, what is the best one can hope for? That, for the user, concurrency is
reduced to one single issue. The hardware and all system software should
be geared toward eliminating all other issues, toward removing the interde-
pendencies, and toward simplifying the one issue that needs to be resolved
by the user.

What is easy? One single, independent problem.

According to this criterion, we make concurrency easy by reducing it
to one single issue. If realized, the need for strategy in concurrent code
development is reduced dramatically, because there are no mutually con-
flicting requirements to be balanced. Strategy, if any is required, is limited
to optimizing the one remaining issue.

8 A case study

We choose one particular issue for the user to resolve (let us call it the pri-
mary issue). All others are relegated to the underlying levels of hardware,
language, compiler, and software. The implementation of such a global view
of concurrency requires a multi- and interdisciplinary approach, impossible
within the scope of a limited one-person project. It was possible, however,
to develop one particular concurrent software package according to our sim-
plicity criterion. We chose the narrow application area of linear algebra as a
test bed. In spite of the restriction that all ideas had to be implemented at
the software level, excellent performance was obtained. Moreover, to obtain
the best performance for a particular program using this package, the user
needs to resolve the primary issue only. By this criterion, this particular
concurrent software package is easy. We stress, however, that the applica-
tion of our answer to “What is easy?” transcends the narrow scope of these
initial implementations.

We chose data distribution as the primary issue. This is not the only
possible choice, perhaps not the best choice. Its justification is that we
were able to develop easy software, in the sense that the introduction of
a data distribution is sufficient to obtain an efficient concurrent program
from a sequential one. The user assigns a locality to all values occurring in






the execution of a program. In a local memory environment, a value must
be assigned to a variable of a particular process. Processes are assigned to
particular processors (in this framework, a process is a value and a processor
is a location). The mapping of values to locations may, in principle, be
dynamic. The mapping of values to processes determines the amount of
work done by each process. Both mappings have a bearing on the load
balance and on the communication.

For the implementation of our linear algebra package, we identify pro-
cesses by means of a process coordinate pair (p,q), with 0 < p < P and
0 < g < Q. Each matrix entry am, of an M X N matrix A is allocated
to a particular process by means of the mappings p = p(m) and ¢ = v(n).
Vectors are distributed compatibly with either the row distribution or the
column distribution of the matrix. We consider the first only, the other fol-
lows by duality. With p = u(m), entry vnm of the M-vector ¥ is mapped to
all processes with first coordinate equal to p. Hence, the entry is duplicated
Q times. Scalars are duplicated in every process.

What are the consequences of this approach for developing the software?
The most far reaching is that all component subroutines must be written so
that they are independent of the data distribution. This is trivially possible
for most matrix-vector operations. For LU-decomposition, it required im-
plicit instead of explicit pivoting, see [2]. For QR-decomposition, it required
a deeper understanding of the connection of this algorithm with recursive
doubling, see [3].

According to our easiness-criterion, this software package is easy if an
efficient user program is obtained purely by tuning the data distribution.
Thus, the user’s sole task (as far as concurrency is concerned) is to supply
the mappings p and v. Can a good choice substantially affect the efficiency?
Is the best efficiency thus obtained close to optimal? In tests, both ques-
tions are answered positively. Although some low-level efficiencies cannot
be exploited by the software, other high-level efficiencies become accessible,
more than offsetting any losses.

Low-level inefficiencies that were incurred include the need for memory
access in irregular patterns and the impossibility of exploiting properties of
particular data distributions. E.g., Geist and Romine in [1] exploit the com-
bination of a particular data distribution and pivoting strategy to overlap
some computation and communication in LU-decomposition. Because in our
approach the data distribution is unknown, such strategies are inaccessible.

Consider the following simple example to clarify the type of high-level
efficiencies that are accessible in our approach. Let A be an M X N matrix,






and x and y vectors of dimension N and M, respectively. The implementa-

tion of the assignment:
y = Ax (1)

requires the evaluation of a matrix-vector product. If this were a self-
contained program, not part of a larger program, the optimal data distribu-
tion and corresponding optimal program is easily derived. For a computation
with P concurrent processes, one should:

e Distribute A by rows only, i.e., Q@ = 1.

e Allocate M/P rows of A to each process.

e Distribute y compatibly with the row distribution of A.
e Duplicate the vector x in each process.

The resulting program is optimal, because it is perfectly load balanced (if
M is divisible by P) and it requires no communication. Similarly, for the

assignment:
zT :=yTA (2)

one should apply a data distribution dual to the one for (1), i.e., reverse the
role of rows and columns.

For a composite program that evaluates both assignments (1) and (2)
neither distribution is optimal. The best distribution is a function of the
ratio of the number of times (1) versus (2) is evaluated. Generally, the best
distribution has both P # 1 and Q # 1. If the software package were to
supply these operations for their respective “optimal” distributions only, a
data redistribution is necessary between evaluations of (1) and (2).

In [4], a more realistic example is given. There, the data distribution is
dynamically adapted to the pivot locations of LU-decompositions. In this
way, maximum load balance is obtained throughout the computation. This
achieves vectorization of the code as well. The data distribution is the only
concurrency-related issue addressed at the user level. All code-optimization
strategy is limited to adapting the data distribution.

These examples show that optimality is not preserved under program
composition. This has the important practical consequence that perfor-
mance often decreases as a function of program size. A global approach
toward concurrent program optimization has a higher probability of avoid-
ing this problem than the loop by loop approach, which inherently does not






address the global nature of concurrent performance. The examples show
how global optimization might work.

For our approach to be generally applicable, the inherent limitation of
working at the software level only must be removed. If data distribution
were adopted as the primary issue, one could develop data-distribution-
independent languages and /or compilers, methods for dynamically changing
data distributions, node hardware that makes it easier and more efficient to
access memory in irregular patterns (e.g., scatter/gather hardware),.. .

9 Conclusion

Interdisciplinary collaboration has long been recognized as crucial to make
concurrency work. A problem of such collaborations is to combine in a ho-
mogeneous and consistent framework the many ideas coming from different
directions. Currently, concurrency is a hodgepodge of techniques based on
heuristics. To streamline, we must have a common goal. My answer to
“What is easy?” is an attempt to provide such a goal: the elimination of all
but one concurrency-related issues.

References

[1] G. A. Geist and C. H. Romine. LU factorization algorithms on
distributed-memory multiprocessor architectures. SIAM Journal on Sci-
entific and Statistical Computing, 9(4):639-649, July 1988.

[2] E.F. Van de Velde. Ezperiments with Multicomputer LU-Decomposition.
report CRPC-89-1, Center for Research in Parallel Computing, 1989. To
appear in Concurrency: Practice and Experience.

[3] E. F. Van de Velde. Multicomputer matrix computations: theory and
practice. March 1989. Proceedings of the Fourth Conference on Hyper-
cube Concurrent Computers and Applications.

[4] E. F. Van de Velde and J.L. Lorenz. Adaptive Data Distribution for
Concurrent Continuation. report CRPC-89-4, Center for Research in
Parallel Computing, 1989.

10






