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Abstract

The use of multicoloring as a means for the efficient implementation of many di-
verse iterative methods for the solution of linear systems of equations, arising from the
finite difference discretization of partial differential equations, on both parallel (con-
current) and vector computers has been extensive; these include both SOR-type and
preconditioned conjugate gradient methods as well as smoothing procedures for use in
multigrid methods. Multicolor orderings, corresponding to reorderings of the points of
the discretization, often allow a local decoupling of the unknowns. Some new theory
is presented which allows one to verify quickly whether or not a member of a certain
class of matrices is consistently ordered (or r-consistently ordered) solely by looking at
the structure of the matrix under consideration. This theory allows one to ascertain
quickly that, while many well-known multicoloring schemes do give rise to coefficient
matrices which are consistently ordered, many others do not. Examples are given from
the literature, and other topics related to the theory are discussed. We survey many
alternative orderings and multicoloring schemes proposed in the literature and apply
the theory to the resulting coefficient matrices.

1 Introduction

The discretization by finite differences of elliptic partial differential equations often leads to
the solution of linear systems of equations

Au = f. 1

With the advent of parallel, or concurrent, computers and vector processors, it has become
apparent that the use of alternative orderings, i.e., other than the natural or lexzicographic
ordering, may increase efficiency in the implementation of many iterative methods for solving
(1); these methods include, for example, the Jacobi, Gauss-Seidel, and SOR iterations and
various preconditioned conjugate gradient methods, as well as smoothing procedures for use
in multigrid methods. This leads naturally to the use of the technique of multicoloring in
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order to decouple the unknowns at the grid points of the discretization which was used to
obtain the system (1). This is the subject of § 2.

Not too long ago a fair amount of attention was given to the concept of consistently
ordered (CO) matrices (see § 3) and some generalizations thereof: generalized CO (GCO),
CO(g,r) (see Appendix A), and 7-CO matrices (Young [45]). Much of the foundation of
the work done in this area can be found in the classical texts by Young [45] and Varga [39].
Lately, however, interest as to whether or not the coefficient matrix A of a particular system
such as (1) is consistently ordered or not has somewhat waned. As a result one often works
with a system of equations that is not CO (or GCO, #-CO, etc.) when a simple permutation
of the elements of A might yield a matrix with one or more of these properties. This is, of
course, not always a crucial consideration, but, at times, it can prove advantageous. The
motivation for desiring that the coefficient matrix A have one or more of these properties
is discussed in § 3 along with some concepts related to that of consistent ordering.

In § 4 and 5 we give some new theoretical results as to when matrices with a certain
underlying block structure may be CO or #-CO (“block” CO). In § 6 we apply some of
these results to show the consistent ordering of some standard alternative orderings and the
lack of this property for some other orderings proposed in the literature. Finally, in § 7 we
summarize our results. Appendix A contains some applications of the results to another
class of matrices.

2 Multicoloring

Multicoloring is a technique that can allow for the local decoupling of the unknowns at
the grid points of a finite difference, or finite element, discretization of a partial differential
equation. The basic idea is to “color” the grid points in such a way that unknowns corre-
sponding to grid points of a particular color are coupled only with unknowns of other colors.
Thus, it is possible to update all unknowns of a single color simultaneously, i.e., in parallel,
or with a single vector instruction, assuming the unknowns are stored appropriately.

In general, multicoloring corresponds to a partitioning 7 of the coefficient matrix into
the block p x p form

A1q A2 . . Ap
A2 .
Ap = . ) (2)
: .. Apap
Ap.l . . Ap,p-l Ap.p

where the diagonal blocks A;; are square. For a multicoloring scheme which gives a decou-
pling of the unknowns the A;; are also diagonal. In most instances, a significant number of
the off-diagonal blocks A;; contain only zero entries.

In (2) p is the number of colors. Throughout this paper we shall maintain the notational
convention that a single subscript on a matrix name is used to emphasize the block order
of that matrix; when necessary for clarity, the corresponding partitioning = will carry the
same subscript as in “m,.”

Multicoloring has been used ubiquitously for the solution of linear systems by iterative
methods on both parallel and vector computers (for a review, see, e.g., Ortega and Voigt [29],
also the bibliography Ortega et al. [30]). For instance, Lambiotte [21] used a red/black
ordering to vectorize efficiently the SOR method. For the efficient implementation of the






SOR method on parallel computers Adams and Ortega [4] give a general treatment of
multicoloring with p > 2 colors (see also Adams [1]). O’Leary [27] presents some other
orderings which are amenable to the parallel implementation of a block SOR method.

The technique of multicoloring is not limited in application strictly to SOR-type iter-
ative methods; it can also prove to be a valuable tool for use in conjunction with precon-
ditioned conjugate gradient (PCG) methods. Poole and Ortega [36] use multicoloring to
carry out the incomplete Cholesky conjugate gradient (ICCG) method on vector computers,
and Poole [35] gives many examples of multicoloring schemes and the associated structure
of the coefficient matrices corresponding to a mixed derivative problem and a plane stress
problem; the theory to be presented in later sections allows one to ascertain, virtually at
a glance, that none of the multicoloring schemes proposed there give rise to consistently
ordered or even m,-consistently ordered matrices (p > 2). Harrar and Ortega [19] solved
a three-dimensional generalized Poisson equation using a red/black ordering to vectorize
efficiently the SSOR iteration for use in a PCG method; Harrar [16] elucidates the consid-
erable computational savings that can be obtained using this ordering with this particular
method. The parallel and vector implementation of the SSOR PCG method (as well as
the SOR method) using “many-color red/black” orderings (Harrar [16]) for both two- and
three-dimensional problems is discussed in Harrar and Ortega [17); these can be viewed as
generalizations of an ordering proposed by Melhem [24] and will be discussed in more detail
in § 6.2.

Multigrid methods (Brandt [6]) have proven to be useful and efficient for a wide variety
of problems. When applying multigrid methods to the solution of elliptic problems, much
of the computation time is spent on the relaxation procedure used at each grid level. Mul-
ticoloring is useful in this area as well. Gauss-Seidel smoothing with a red/black ordering
has been shown to be quite effective (Foerster, et al. [13]). Alternating direction line meth-
ods are particularly robust; line methods correspond to a class of multicoloring strategies
(see § 6.1). Also, zebra orderings (§ 6.1), can be particularly effective for anisotropic equa-
tions (Stuben and Trottenberg [38]). See Brandt [7] for further discussion on parallelizing
multigrid relaxation procedures for use on concurrent computers.

3 Consistently ordered matrices and related concepts

In this section we review some background concepts such as consistently ordered matrices,
compatible ordering vectors, m-consistently ordered matrices, and T-matrices. The defi-
nitions given are those of Young [45]. We also introduce the concept of a m-compatible
ordering vector.

3.1 Motivation for consistent ordering

One property that may or may not obtain for the coefficient matrix A as a result of a
reordering of the unknowns is that of being a consistently ordered matriz.

Definition 1 The matriz A of order n is consistently ordered (CO) if for some t there exist
disjoint subsets S1,S2,...,5t of W = {1,2,...,n} such that Uk=1 Sk = W and such that, if
ai; # 0, then j € Skq1 if 7 > 1 and j € Sk_1 if j < i, where Sy is the subset containing i

We remark that some, though not all, of the Sy may be empty.






Determination of the optimum relaxation parameter

2

m, pe = p(J) (3)

Wopt =

for the SOR method applied to the system (1) via Young’s classical SOR theory (Young
[45]) is based upon the relationship

A+w-1)? = Aw?p? (4)
between the eigenvalues p of the Jacobi iteration matrix associated with A
J = DY(L+U) = I-D'4, (5)
and the eigenvalues X of the corresponding SOR iteration matrix
Lo = (D-wL) Y(1-w)D+wU]. (6)

In (5) and (6) above
A=D-L-U (7

is the splitting of A into its diagonal, strictly lower triangular, and strictly upper triangular
parts, respectively. The derivation of (4) is, in turn, based upon the invariance of

A = det(aL + a”'U — kD) (8)

with respect to a for all a # 0 and for all k; this is true for the class of matrices known
as T-matrices (Young [45], Theorem 2.1, pg. 141). (For the definition of a T-matrix, see
Definition 5 in § 4.) CO matrices were introduced as a more general class of matrices for
which the determinantal invariance (8), and hence (4) and (3), hold (in fact, the invariance
of (8) is at times used to define CO matrices as in Ortega [28]).

CO matrices also possess property A as defined by Young [45); in fact, for any matrix
possessing property A, there exists a suitable permutation of the rows and columns of A
such that one can obtain a CO matrix (Young [45], Theorem 4.5, pg. 150).

Varga [39] was able to extend Young’s result to obtain

A +w—1P = W lopp? (9)

relating the eigenvalues of a CO weakly cyclic J acobi iteration matrix J (of index p > 2) to
the eigenvalues of the corresponding SOR iteration matrix L.

Young [44] conjectured that, under certain additional assumptions, orderings resulting
in CO coefficient matrices were optimal in that they give the fastest rate of convergence
for the SOR method with relaxation parameter w = 1, i.e., the Gauss-Seidel method. The
main result of Varga [40] contains as a special case a proof of this conjecture. With L,
defined by (6), wopt given by (3), and letting p denote spectral radius, he showed that under
certain conditions, p(Luep) > Wopt — 1 and minocw<2 p(Ly) > wopt — 1, unless A is CO.

The usefulness of this theory is not limited to the case that one is using the SOR
method to solve (1). For example, Harrar and Ortega [18] used the fact that a matrix with
(2-cyclic) red/black form (44) is CO and a result of Wachspress [43] relating the eigenvalues
of L, to those of S, the SSOR (symmetric SOR) iteration matrix, to derive an optimality
result for the relaxation parameter w in the context of the m-step SSOR preconditioned
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conjugate gradient method. They showed that w = 1 is optimal, in the sense of minimizing
the condition number of the preconditioned system, for any number m of preconditioning
steps. However, the effect of consistent ordering, if any, on the rate of convergence of SSOR
PCG methods is not known. Duff and Meurant [11] investigated the effect of ordering on
the ICCG method; they considered seventeen different orderings, some of which are easily
analyzed with respect to consistent (and/or 7-consistent) ordering using the theory to be
presented in the sequel (see § 6.3). ;

As mentioned in § 1, there are several generalizations of consistent ordering. One of these
is that of generalized (g,r)-consistent ordering (GCO(g,7)) (Young [45]). ((g,r)-consistently
ordered matrices are discussed briefly in Appendix A.) Such matrices are p-cyclic, i.e., the
Jacobi iteration matrix J associated with A is weakly cyclic of index p (Varga [39]). Recently
analysis on convergence domains for the SSOR iteration for certain classes of GCO(g,7)
matrices has been done by Varga, et al. [42] and Neumaier and Varga [25]. Chong and
Cai [8] showed that for GCO(k,p — k) matrices the functional equation

Do — (@ = 12F = M — (0 = DP(2 - w)whp? (10)

holds between the Jacobi eigenvalues p and the eigenvalues A, of the SSOR iteration matrix
associated with A; the parameter k has to do with the locations of the nonzero blocks in the
p-cyclic matrix A. Neumaier and Varga [42] derived (10) for the case k = 1 (we note that
their derivation, unlike most for this type of result, does not make use of a determinantal
invariance such as (8).) Hadjidimos and Neumann [14], [15] used this result to derive
convergence and divergence domain results for the SSOR method applied to this class of
matrices. Finally, we note that Li and Varga [22] very recently derived a new functional
equation which generalizes and unifies all of the recent research articles on the SSOR and
USSOR methods applied to p-cyclic matrices (USSOR is “ynsymmetric SOR,” in which
one uses different relaxation parameters, say wy and wy, for the forward and reverse SOR
sweeps, respectively). For the SSOR method their result reduces to (10).

3.2 Compatible ordering vectors, r-consistently ordered matrices, and
T-matrices

Although it is possible to show consistent ordering directly by appealing to Definition 1, i.e.,
by finding the sets Sk, it is often more convenient to make use of the notion of a compatible
ordering vector.

Definition 2 The vector v = (71,12,...,7n)T where the v; are integers is a compatible
ordering vector for the matriz A of order n if, forai; #0,

o 1 if i> 3,
7“"]‘{-1 if i< (11)

The usefulness of compatible ordering vectors is made clear by the following theorem:

Theorem 1 A matriz A is consistently ordered if, and only if, a compatible ordering vector
ezists for A.

(For a proof see Young [45], Theorem 3.2, pg. 146.) -

" In the sequel we will be concerned primarily with the property of being CO for block
p X p matrices of the form (2). To this end we have a weaker version of consistent ordering
given by






Definition 3 Let the matriz A be partitioned as in (2) and define a p X p matriz Z = (2rs)

by
- 0 if Afa"= 0,
Zrs = { 1 if A #0. (12)

The matriz A is Tp-consistently ordered (mp-CO) if Z is consistently ordered.

We note that, according to our notation, an n X CO matrix is also 7,-CO.
Analogous to Definition 2 for a compatible ordering vector we now introduce the (new)
concept of a m,-compatible ordering vector for a block p X p matrix.

Definition 4 The vector v = (71,72,...,'7,)T where the v; are integers is a wp-compatible
ordering vector for the block p X p matriz A if, for Z, corresponding to A, as defined in
(12), (11) holds.

We state without proof the following analog of Theorem 1.

Theorem 2 A block p X p matriz A is wp-consistently ordered if, and only if, there ezists
for A a m,-compatible ordering vector.

Obviously, a matrix of the form (2) can be 7-CO and still not be CO. For example, a
full 4 X 4 matrix partitioned as a block 2 X 2 matrix is m3-CO but is not CO since we cannot
construct a compatible ordering vector for it. This is because in such a matrix we have
a;; # 0 for all indices 4,7, and it is easily seen that

Observation 1 It is impossible to construct a (m-)compatible ordering vector for a matriz
of (block) order greater than two all of whose elements are nonzero; that is, no (block) full
matriz of (block) order greater than two is (7- )consistently ordered.

We also note that

Observation 2 All matrices of order greater than one are 74-consistently ordered.
One type of matrix of the form (2) which is both 7-CO and CO is a T-matriz.

Definition 5 A matriz with the block tri-diagonal form

D, H,
K, . .
T, = Ce , (13)
Hp1
Kp—l Dp

where the D; are square diagonal matrices is a Tp-matrix.

With Theorems 3 and 4 we show that Tp-matrices are both 7,-CO and CO. That a
T,-matrix is 7,-CO is a corollary of

Theorem 3 A block p X p tri-diagonal matriz is a Tp-consistently ordered matriz.

proof: We assert that v = (1, 2, ..., p)T is a mp-compatible ordering vector for a matrix of
the form (13) where the D; need not be diagonal. In the matrix Z of (12) corresponding
to a matrix of this form, the only off-diagonal nonzero elements are z; ;41 and 2i41,; where
i=1, ..., p—1. Thus, in the construction of a compatible ordering vector for Z we require
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only that yi41 —71i=1,i=1, .., p— 1. Clearly, the elements of the vector 7y satisfy this
condition, and hence 7 is a compatible ordering vector for Z and, in turn, a mp-compatible
ordering vector for a matrix of the form (13) where the D; are not necessarily diagonal.
Therefore, by Theorem 2, a block p X p tri-diagonal matrix is 7,-CO. O

Now, although a block tri-diagonal matrix is not, in general, CO, if its diagonal blocks
are diagonal matrices, i.e., if the matrix is a T-matrix, then we have the following result.

Theorem 4 A T-matriz is a consistently ordered matriz.

(For a proof see Young [45], Theorem 3.1, pg. 145.)

The property of being 7-CO is important because it is often the case that although a
given matrix may not be CO, it is #-CO for some partitioning = of A into blocks. And,
in such circumstances, one may apply the results of the classical SOR theory to the par-
titioned matrix, i.e., one obtains the eigenvalue relation (4) where p and A are now the
eigenvalues of the Jacobi and SOR iteration matrices, respectively, corresponding to the
block partitioning of A. That is, the Jacobi and SOR iteration matrices are still given by
(5) and (6), respectively, except now (7) is the splitting of A into its block diagonal, block
strictly lower triangular, and block strictly upper triangular parts. This allows, for example,
the computation of the optimal relaxation parameter wop and the corresponding spectral
radius pop for line SOR methods (see § 6.1).

In subsequent sections we search for classes of more general block matrices (having more
than just three nonzero block diagonals) which are also CO or at least 7-CO.

4 The addition of block bi-diagonal matrices B, to T,

In the present section we seek to investigate what types of matrices can be added to block
tri-diagonal matrices (and hence also to T-matrices) so that the resulting matrix sum is still
7-CO. In this way, we will find other classes of matrices, which have an underlying block
tri-diagonal structure, that are also 7-CO.

This section is divided into three subsections. In the first we examine the case that the
block tri-diagonal matrix has no zero blocks on either the first sub- or super-diagonal, that
is, H; £ 0or K; # 0fori=1,...,p—1in (13). In the second subsection we consider the case
that the block p X p tri-diagonal matrix has intermittent zero blocks on these diagonals, say
Hig=0,Kpq=0fork=1,..,7 where r = p/q and g is some integer which divides p evenly;
the generalization to the case for which these zero blocks are spaced non-uniformly should
be obvious. Finally, in the last subsection we consider the case that the block tri-diagonal
matrix is a T-matrix. In this case we will find that we can say something about such a
matrix being CO, not just 7-CO.

Of course, it is important to keep in mind throughout this paper that all results on
r-consistent ordering for block matrices inherently have concomitant corollaries for the case
of consistent ordering of non-block matrices as a result of the correspondence implied in
Definition 3. That is, all results for block p X p matrices with blocks A;; in terms of =-
consistent ordering imply exactly analogous results for n X n (where n = p) matrices with
elements a;; in terms of consistent ordering.

4.1 T, has no zero blocks on the first sub- or super-diagonal

Here we consider a certain class of block p X p tri-diagonal matrices Tp; namely, those that
have no zero blocks on either the first sub-diagonal or the first super-diagonal. We want to
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know what type of block p X p matrices Ay, if any, can be added to T, so that the resulting
matrix sum T}, + A, is 7,-CO. We will find that A, must, in fact, also be block tri-diagonal;
this is shown to be the case in the following theorem.

Theorem 5 Let T, be a block tri-diagonal matriz of the form (13) where the D; are not
necessarily diagonal, and suppose A, has the block p X p form (2) where the blocks are
partitioned commensurately with those of Tp. If H; # 0 and H; # —Aiip1, or K; # 0 and
K; # —Aiy1i, fori=1,..,p— 1, then the matriz T, + Ap is a Tp-CO matriz if, and only
if, Ai;;j =0ifi>j+1lorj> i+1, i.e., A, is block tri-diagonal.

proof: Clearly the sum of block tri-diagonal matrices is also block tri-diagonal so that if 4,
is then so is T}, + Ay, and therefore T, + 4, is 7,-CO by Lemma 3.

Now, assume T, + A, is m,-CO and suppose A;; # 0 for some i,j with, without loss
of generality, j > i + 1. Since T, + Ap is m,-CO, we can, by Theorem 2 construct a mp-
compatible ordering vector v for Tp + Ap. Now, either [Tp + Ap); ;43 = Hi + Aii # 0 or
[Ty + Apliyy; = Ki + Aip1i # 0, for i = 1,...,p— 1 since H; # —Aii1 or Ki # —Ait1,
respectively. Therefore, we must have 7i41 — 7% = 1fori=1,..,p—1. Now, [T, + A;); ;=
A;; # 0 so that we also require v; — vi = 1. However,

vi—% = (= vie)+ i —m) = (15— Yis1)+1>1

since j > i + 1, a contradiction. Therefore, we must have A;; = 0 for j > i+ 1. The case
Ai; 70 withi>j+1is exactly analogous. O

We note that, under the assumptions of Theorem 5, if T, and A, are T-matrices then
T, + A, will be CO by Lemma 4 since the sum of T-matrices is a T-matrix. However, the
corresponding “only if” part of the theorem will not hold, in general, for T-matrices and
consistent ordering. Although it is possible to add matrices other than T-matrices to a
T-matrix to obtain a CO matrix, the only type we can add without knowing anything about
the internal structure of the off-diagonal blocks of T and A is a T-matrix.

Note that an immediate corollary of Theorem 5 is

Corollary 1 Let the n X n matriz A be such that all of the elements on the first sub- or
super-diagonal are nonzero. Then A is CO if, and only if, a;; = 0 for j > i+1andi > j+1.
4.2 T, has intermittent zero blocks on the first sub- and super-diagonal

We now consider block tri-diagonal matrices which have intermittent zero blocks on the
first off-diagonals. That is, we let the matrix T have the block r x r diagonal form

T = diag(Tu,ng, ...,T,-r), (14)
where the ¢ X ¢ diagonal blocks Tkx are of the form

Aiyri41 Alerg42
Aip20+1 .
T = . . . , (15)
Alyg-1]+q
Alggitg-1  Altgl+g

for k = 1,...,r, where I = (k — 1)q and p = ¢r. According to our notational convention,
T = T, = Tp, where T is block 7 X 7 uni-diagonal with g X ¢ blocks and T, is block p X p
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tri-diagonal with zero blocks every gth entry on the first sub- and super-diagonal. Since T),
is block tri-diagonal, it is 7,-CO by Lemma 3 (it is also trivially 7,-CO). Of course, if the
diagonal blocks Aj4ii4i, ¢ = 1,...,q are square diagonal matrices, i.e., Aj4ii+i = Diti in
(15) then T}, given by (14), (15) is also a T,-matrix and hence CO by Theorem 4.

Now consider the class of block r X r bi-diagonal matrices of the form

0 12
B34
B = .. . , (16)

m
r—1,r

m
ror—1 0

where the ¢ X ¢ nonzero blocks Bl ., k= 1,...,7 — 1 either have only one nonzero block
lower diagonal (m = mp)

Al+mL»kq+l
mpr —_— mrL —_
Bl = Lk = . ) (17)

I Akq,(k+1)g—(mr~1)
where my, = 2, ...,q, or a nonzero block main diagonal (m = mp)
B;’:}?.*.] = Dk,k+1 (18)

(note that m = mp is equivalent to the case mp = 1in (17)), or one nonzero block upper
diagonal (m = my)

Al41,kg+my .‘

Bita = hp1 = . ) (19)
Akg—(my-1),(k+1)g

L o

where my = 2,...,q. The blocks BY,, i, k =1,...,r — 1 have the same block structure as
the blocks (B +1)T. Note that T}, is block tri-diagonal of block order p while B is block
bi-diagonal of block order r = p/q; the block orders are different.

We now have the following lemma.

Lemma 1 Let T, be given by (14), (15) and BI" be given by (16) with (17), (18), or (19).
Then the matriz Tp + BI" is 7,-CO for all values of

mp = 2,..,4, -
m = mp = 1, (20)
my = 2,..,4.






proof: We show that the matrices Tp + B™ are m,-CO by showing the existence of 7p-
compatible ordering vectors 7. We treat separately the cases that the blocks B[, have
the form (17), (18), or (19), i.e., m = mr, m = mp, or m = my, respectively. First, assume
that the Biy,q = Ly'%4y so that they have the form (17). In this case one can verify that
a mp-compatible ordering vector for T, + Bt is given by

¢ = [1,.h¢,mp+ 1., mp+ 0, 2mp +1,....2mp+ ¢, ...,
(r—=mp+1,..,(r—1)mp + qlF

or, in a somewhat more compact form notationally,
7L = [((k - l)mL + 17(k - l)mL +2,..., (k - l)mL + Q)vk =1,.., T]T‘ (21)

If Bf'y1 = Dijsr, i, m=mp = 1, we substitute 1 for my in (21) to obtain
7D = [(kyk + 1’-"9k + q- 1),k = 17""T]T (22)

as a mp-compatible ordering vector for T, + B"P. Now, suppose m = my, i.e., Big41 =
Uty has the form (19). Then we obtain the mp-compatible ordering vector

W = (k= 1)(my = 2) 4 1, (k= 1)(my = 2)+ 2, oy (b = 1)(muy = 2) + @)y = L] (23)

for T, + By*v. We note that for the case my = 2, i.e., the B;:f*_l are nonzero only on

the first block superdiagonal, we obtain Y =1[Q1,..,9,k= 1,..,7)7 as a mp-compatible
ordering vector. One may verify that the vectors 4L, 4P, and 4V given by (21), (22), and
(23), respectively, are T -compatible ordering vectors for the matrices T}, + By" where the
blocks Bf,, of Bf" have the form (17), (18), and (19), respectively. Thus, by Theorem 2,
T, + B[ is m,-CO for all values of m given by (20). O

The regularity among the elements of the m,-compatible ordering vectors for the matrices
T, + BT is quite striking. It is important to note that the elements of these vectors corre-
sponding to a given block By, are consecutive integers beginning with the (k — 1)g + 1st
element of the vector; this is true for k= 1,...,7. That is, we have

V(k=1)g+i = Y(k-1)g+i-1 +1, 1=2,..,0, k=1,..,r. (24)

Therefore, for a given k, the only element of ¥ which depends on elements corresponding
to another value of k is the (k — 1)g + 1st, the rest of the elements for that given k can
be obtained using (24). This suggests that it may be possible to construct ,-compatible
ordering vectors for matrices Ty, + Br (T given by (14), (15)) where the matrix B, now has
the somewhat more general block r X r bi-diagonal form

0 BT
By} .
B, = .. . R (25)

me—1
r-1,r

By 0
where each of the ¢ X ¢ nonzero blocks By f,;,%=1,...,7—1 has one of the three forms (17),
(18), or (19); that is, each mj can take on any value m in (20). We shall see in Lemma 3
that we can indeed construct mp-compatible ordering vectors for these matrices Tp + By
thereby showing that they are 7,-CO by Theorem 2. However, in the proof of that lemma
we need the following
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Lemma 2 If v is a (w-)compatible ordering vector for a matriz A, then so is f =7+ 6
where § is any constant vector.

proof: Note that for any elements Bi, B; of B =7 + & we have
Bi—B; = (+6)—(+8) = (—)—(E—8) = 7—7

since & is a constant vector. Similarly 8; — B; = 7; — 7i- Thus, since v is a (7-)compatible
ordering vector for A, (11) holds with 7;, 7; replaced by f;, 8;. Thus, Bis a (7-)compatible
ordering vector for A. O

We can now prove

Lemma 3 Let T, be given by (14), (15) and let B, be given by (25) with each By, given
by one of (17), (18), or (19), and where each my takes on a value of m from (20). Then
the matriz T, + B, is 7p-CO for all choices of B,, i.e., for all combinations of the my.

proof: Using the 7p-compatible ordering vectors which we constructed in the proof of
Lemma 1 we will show how to construct a m,-compatible ordering vector for T, + By,
given any B, of the form (25). Consider the block B}ty If this block has the form (17)

so that m; = my, for some mp, then we notice from (21) that in going from 'y,f‘q to 71%(; 41 we
need only add mr to 7(1,;_1) o+l Similarly, if By'f,, has the block diagonal form (18), we
obtain 'yﬁ 41 from 7(2_1) 41 DY adding mp = 1to 7(2—1)q - I B,'c",’c‘ +1 has the block strictly
upper triangular form (19), we see that 7,?(; 41 can be obtained by subtracting my — 2 from
7(%_1) +1° In summary then, we have

Vk-1)q41 + Mk, i mp = mp,
Yhe+1 = Yk-1)g+1 + 1, if my = mp, (26)
7(k_1)q+1—(mk—2), if my = my.

Of course, as noted above, the remaining elements are contiguous and would be cal-
culated using (24). Now, the construction of a 7,-compatible ordering vector for Tp, + B,
proceeds as follows. First, we take as the first ¢ elements of the vector v the integers 1,...,9,
ie., 7 =1i,i=1,...,q. Next we consider the block By;. If this block is block strictly lower
triangular, then we set Yg41 = 71 + M1 = 1+ M1, To4i = Vo+i-1 +1,i=2,...,q. Similarly,
if BY'3 is of the form (18), i.e., my = 1, we use (26) with k =1 to obtain 7441 and calculate
the next q — 1 elements using (24). However, if BY; is block strictly upper triangular we
cannot simply use (26) to calculate 7441 since for my > 2 we would obtain a value for vg41
which was non-positive. In order to mitigate this problem, we would add m; — 2 to the first
q elements of 7 then calculate 441 using (26) and the next g — 1 elements again using (24);
we can do this since we know from Lemma 2 that if v is a r-compatible ordering vector
then so is 7 + 6§ where § is any constant vector. With the blocks B,'c",'; k=2, -1
we proceed in exactly the same fashion obtaining Vke+1 from 7(k_1)q+1 using equations (26)
with m = my and then using (24) to calculate the next g — 1 elements of 4. Of course, if

x k41 has the form (19), we first check to be sure that Ykg+1 = Y(k-1)e+1 ~ (mr —2) > 0;
if not then we first add my — 2 to the thus far computed kq elements of v. When we have
proceeded through all of the blocks BL",’; 115 Ve have constructed a m,-compatible ordering
vector for T, + By, thus, by Theorem 2, Tp + By is m,-CO. O -

We again emphasize that it is important to remember that all of the results of this section
can be used to show consistent ordering for matrices of the form T}, + B, (or T, + BT) if
the Aryits; of (15) and the Aiyikg+s of (17)-(19) are 1 x 1 matrices, i.e., scalar elements.
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We now show that, if B, is of the form (25), then Tp + By cannot be 7,-CO unless each
of the blocks Bz 1, k= 1,...,7 — 1, has one of the uni-diagonal forms (17)-(19).

Theorem 6 Let T, be given by (14), (15) and let B, be given by (25). Then the matriz
sum Tp + B is 7p-CO if, and only if, each B;:,’:_’_l, k=1,..r—1 is given by one of (17),
(18), (19), where each my takes on a value of m from (20).

proof: If each B['f,, is given by one of (17), (18), or (19) with m; taking on a value of m
from (20), then Tp, + B, is 7,-CO by Lemma 3.

We now show that if any of the blocks By £, has a form different from one of the uni-
diagonal forms (17)-(19), then it is impossible to construct a mp-compatible ordering vector
for T, + By; thus, the matrix sum T, + By is not 7,-CO by Theorem 2. Consider the block
B;c",’: +1 Where k is now fixed and is chosen from the range of values k = 1,...,7 = 1. We
assert that given one nonzero block Ay kq+; (recall that I = (k—1)q), where i,j € {1,....q},
in BZ‘,’: +1» the only other blocks of B;:,’c‘ +1 Which can be nonzero are those lying along the
diagonal of which A4 ke+; is a member. We shall treat two cases: Case 1. (¢ 2> 7): Aitikg+j
is in the lower triangular portion of B}'f,, or on the main diagonal of By s, and Case 2.
(i < §): Aitikg+;j is in the upper triangular portion of Bi'f, ;.

Case 1. (i > j): From (17) we see that Bt = BL’:,’;H where mp, = i — j + 1 and
Alyikg+; # 0 for some ¢, where mp, < i< gand 1< j<qg—(mL— 1). We claim that,
in order that a m,-compatible ordering vector exist for T, + By, the only other allowable
nonzero blocks in B::,’; 1 will lie on the diagonal of which the block Ajyike+j is a member.
The parameter my, uniquely determines this diagonal, and it can be seen that all elements
of this diagonal are of the form A4 kq+; Where the integer pair (i,7) is a member of the set

Am, = {(i,j)ImLSiSq,ISjSq—(mL—l)andi—j=mL—1} . (27)

Assume now that, for some £,7 € {1,...,q}, Al4¢kg+n # 0 and (€,7) is not an element
of Apmy. Then in order that a mp-compatible ordering vector exist, the requirement (11)

becomes
_ _ 1 if 1+€>kg+nm,

However, since £,7 € {1,...,q}, we can never have I+ &> kq+n. Noting that kg -1 =
kg—(k—1)g=gsothat [+ {<kg+7 is always satisfied, we thus require

Vi4g = Thgtn = —L. (28)
Now, since the elements of « are consecutive for indices from I + 1 to kg,

vve = (Mg — Naem1) + (M1 — Nag-2) + oo+ (M2 — Yi41) + V41
= ((-1+n4- (29)

Similarly, the elements of v are consecutive for indices from kq + 1 to (k + 1)g so that

Tegtn = (Tegtn — Thatn-1) + (Yhatn-1— Yhgtn—2) + oo+ (Yhg#2 = Yhg+1) + Tho+1
= (71— 1)+ Yke+1- - (30)

Subtracting (30) from (29) and using the first line of (26), we have
Yite = Thotn = (E= M)+ M41 = Yrg1 = (E—1) —mL- . (31)
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Substituting into (28) this gives
E—n = mp—1.

But then from the definition of A,,, we would have (§,7) € Am;,a contradiction. Therefore
we must have Aiy¢ kqtn = 0 for (§,1) not in Am, .

Case 2. (i < j): In this case we assume that the block By, contains a nonzero block
Alyikg+; Wherenow 1 < i < g — (my — 1) and my < j £ ¢. Thus, Bl’:iﬂ has the form
B'Y,, where my = j —i+ 1. Then, in order that a mp-compatible ordering vector exist for
T,+ B,, we assert that all other nonzero blocks of this B;:,‘; 41 lieon the diagonal determined
by my. From (19) we see that for any element Ary;kqe+; of this diagonal the integer pair
(i,7) is a member of the set

Ty = {G)1<i<qg—(my—1),my<j<gandj—i=my—1}. (32)

Now, assume that Apy¢q4n # 0 for some &, € {1, ...,q} such that (£,7) is not in Trmy.
Then, analogous to Case 1, in order that a mp-compatible ordering vector exist for T, + B;,
we again obtain the requirement (28). Using (29) and (30) and the third line of (26), from
which Y141 — Tket1 = MU — 2, (31) becomes

Vise = Thatn = E—m)+mu —2.
Substituting this into (28) we get
§-n=1-my

so that (£,7) is in Tmy, a contradiction. Thus, Alyekgsn = 0 for (§,1) not in Ty
Therefore, we conclude that, in order that a mp-compatible ordering vector exist for T, + By
so that T}, + By is mp-CO, the nonzero blocks B} 41 of By must, for each k, have one of the
uni-diagonal forms (17), (18), or (19), and the proof is complete. O

4.3 T, is a T,-matrix

Now, we consider the case that T} is a Tp-matrix with intermittent zeroes on the first sub-
and super-diagonal. Of course, in this case a matrix of the form T, + B, will still be 7,-CO
by Theorem 6, but it turns out that such a matrix is also CO.

Theorem 7 Suppose the diagonal blocks Ay 4 of (15) are such that

Al+i,l+i = Dl+i, t= 1,..,q, (33)

where the Dyy; are square diagonal matrices, and let B, be a block bi-diagonal matriz of
the form (25). Then any matriz of the form T, + B, where T, is given by (14), (15), and
(83) is CO if each of the blocks By, of B, is given by one of the uni-diagonal forms (17),
(18), or (19).

proof: If each B['f,, is given by one of (17), (18), or (19) with my taking on a value of
m from (20), then we will show that we can easily construct a compatible ordering vector
for T, + By using our previous results. Let s denote the order of the diagonal blocks given
by (33). (The case that the diagonal blocks Dyy; each have different order, say si4i, is no
more difficult to prove; however, the subscripting may be confusing enough as it is, thus,
for ease of notation, we assume the order of these blocks is constant.) We assert that in
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order to construct a compatible ordering vector v for Tp + B, all we need do is take the
7,-compatible ordering vector (which we now denote 7™) for T, + By, constructed as in the
proof of Lemma 3, and repeat each element s times. That is, with { = (k — 1)q we set

V(i+i-1)s+i = Wi =108 1=1,.,4 k=1,..,r (34)

In order to verify that v constructed in this manner is a compatible ordering vector for
T, + By, we must show that (11) holds for all nonzero elements a,p, of Tp + B; note that
g,h € {1,...,n} where n = grs. There are two situations that we must treat: agn # 0
represents an element of one of the off-diagonal blocks Ajyiiti+1 of (15) and agp # 0
represents an element of some Ariikg+j Of B ts1- Consider the case that agp # 0 is an
element of one of the off-diagonal blocks of (15), Aiyigyi+1- Then we have

g=(U+i-1)s+i, h=(+i)s+],
where i, € {1,...,s}. So, the requirement (11) becomes

— = e Aanss = 1 if (I+i-1)s+i>({+i)s+],
To— Th = VHi-Ds+i T Ve+I = | Z1 if (I+i-Ds+i<(@+i)s+]

Since i,j € {1,...,8}, we can never have (I + 1 — 1)s +i> (I +1)s + j so we require

Vgi-1)s4i = Vtidati = ~1-

By (34) this is equivalent to requiring that

T n _
Tgi — Wair = —1

which is true in our construction of 7™ by (24).
Now, we consider the case that ag, # 0isin a block Ajtikg+j of B,'c':,'c‘ 1 Then we have

g=(+i-1)s+i, h=(kg+j-1)s+], (35)

for some i,j € {1,...,s}. Proceeding as before, we obtain the requirement

Y+i-1)s+i ~ V(kg+i-1)s+i = -1.

By (34) we thus require
TWei = Vegej = —L- (36)

This is the requirement (28) with { = 4,7 = J which we found to hold if and only if
(&,m) = (3,7) is in Ay o Ty, depending on whether my = my (or mp) or my = my;
that is, if and only if Aj4ike+; lies along the diagonal determined by mj. This is true by
assumption, thus (11) holds for v, and v corresponding to agp.

So, for any nonzero element of either of the two “types” of nonzero blocks (A4 I+i+1 and
Alyikg+j) of Tp+ By, the corresponding elements of 7 given by (34) satisfy the requirements
set forth in Definition 2 of a compatible ordering vector. Therefore, using (34), where the
elements 7f,; are found as in Lemma 3, we can construct a compatible ordering vector for
Ty + B: so it is a CO matrix by Theorem 1. D -

As was the case with Theorem 5 in § 4.1, we cannot strengthen the above result to
be an “if and only if” statement. It is, however, possible to show that an ordering vector
constructed as in the proof of Theorem 7 will be a compatible ordering vector for T, + B,
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if and only if each BY'f,, of Br has one of the block uni-diagonal forms (17)-(19). To
prove this one would combine elements of the proofs of Theorems 5 and 7 as follows: As
in the proof of Theorem 5 we would treat the cases ¢ > j and ¢ < j separately. For the
case i > j we would do exactly as in the proof of Theorem 5 up to the sentence after the
definition of A, given by (27). However, now we note that the assumption given in that
sentence would mean that ags # 0 for some g,k given by (35) with i, replaced by &,7 and
i,7 € {1,...,8}. Using exactly the same logic that follows equation (35) we are lead to the
requirement (36), again with i, replaced by £,1. We notice that in the notation of the
proof of Theorem 7 this is exactly equation (28) of the proof of Theorem 5. The remainder
of the case i > j would then proceed exactly as in the proof of Theorem 5 from equation
(28) onward, resulting in the desired contradiction. The proof of the case i < j would be
done in an analogous manner.

In summary then we have that, although the blocks BZ:,‘: +1 of By do not necessarily have
to have one of the block uni-diagonal forms (17)-(19) in order that the matrix sum T} + B
(with T, a Tp-matrix) be CO, we can only use the method of constructing a compatible
ordering vector given in the proof of Theorem 7 if the Bk, do have one of the uni-diagonal
forms. Otherwise, we need to know something about the internal structure of the Ai4ii4is1
of (15) and the A1+;'kq+j of B;c':l’e‘+1'

We note that the method of proving Theorem 7 can be extended in an obvious way to
prove the stronger and very useful result:

Theorem 8 Let the block p X p matriz A be given by (2), and suppose the diagonal blocks
Ay, i = 1,...,p are diagonal matrices. If A is 7p-CO, then A is CO.

A proof of Theorem 8 would go something like the following. If A is m,-CO, then by
Theorem 2 there exists for A a 7,-compatible ordering vector, say 7"?. Let s; denote the
order of the diagonal block Aj;, for i = 1,...,p. Now construct a vector ¢ by repeating each
element ‘y:' ? of v s; times. Then, using the method of proof used for Theorem 7, we would
show that the vector 7, consisting of 3_F_; s; elements, is a compatible ordering vector for
A. Thus, A is CO by Theorem 1.

Often, when using a multicoloring scheme, one obtains a block matrix in which the
diagonal blocks are diagonal matrices. When this is the case, Theorem 8 can provide an
efficient way of showing whether or not that matrix is CO by simply finding a mp-compatible
ordering vector for it rather than a compatible ordering vector. In general, this should
represent a substantial simplification.

We note that the following Corollary of Theorem 8 may also be useful.

Corollary 2 Let the block p X p matriz A have diagonal blocks A;;, i = 1,...,p which are
block diagonal of block order s. Assume that A can also be partitioned as a block t Xt matriz
with t = ps. If A is 7,-CO, then A is 7-CO.

We use this result in § 6.1 to show that zebra orderings result in 7-CO matrices.

5 The addition of more general block matrices M, to T,

In the present section we consider the addition of a more general class of block matrices
M, to block tri-diagonal matrices T, where the M, have more than just two nonzero block
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diagonals. We consider matrices M, of the form

0 My, . . My,
Ma, . .
M, = . . . . . s (37)
: .. My,
Mr,l . . Mr,r—l 0

where we again assume that this matrix is symmetrically structured. That is, the nonzero
block structure of a block M;; is the same as that of MJ-I,: . In the language of previous
sections these matrices would be referred to as block “(2r — 2)-diagonal” matrices. (We
note that the assumption of symmetric structure is not a restrictive one; such a structure is
obtained for all discretizations based on SO-stencils as defined by Adams and Jordan [2].)

As was the case with the block bi-diagonal matrices B, (and BJ*) of § 4 we have again
assumed all diagonal blocks contain only zero entries. Of course, this is not essential; all
results we obtain are also valid if the diagonal blocks of M, are nonzero. If T}, is assumed
to be a Tp-matrix, again all of the results hold if the diagonal blocks of M, are nonzero, so
long as they are diagonal. However, since the focus of this research is not specifically what
types of block matrices we can add to T}, in order that the resulting matrix be (7,-)CO,
but rather what structure beyond that of T, is allowed so that this property obtains, we
assume for simplicity that these diagonal blocks of M, contain only zero entries.

In § 4.1 we found that given a block tri-diagonal matrix T}, with no zero blocks on either
the first sub- or super-diagonal, all blocks outside of the main diagonal and these first off-
diagonals had to be zero if the matrix were to be 7,-CO. However, in § 4.2 we found that in
the case that there were intermittent zero blocks on these two diagonals we could add to this
matrix any matrix from a certain class of block bi-diagonal matrices and still maintain the
property of being 7,-CO. It turns out that the wp-compatible ordering vectors constructed
in the manner prescribed there allow for even more nonzero blocks in the matrix sum; these
nonzero blocks must again take one of the uni-diagonal forms (17)-(19).

We denote the off-diagonal blocks of the matrix M, of (37) by Mk k+i, where k = 1,...,7
and i = 1,...,r — k; associated with each of these blocks will be a value my x4, selected
from equation (20), which will determine the uni-diagonal structure. Thus, ¢ serves as an
index for the super-diagonal (and, by the symmetrical structure assumption, the associated
sub-diagonal) under consideration; the case i = 1 was the subject of § 4.

We begin with the case i = 2. There are several possible situations. We will see that the
allowable value of my r+2 depends on the values of my k41 and mpyq ky2; that is, mikio
depends on the values of m in the block to the left and in the block below the k,k + 2nd
block. There are four possibilities depending on whether these values of m are of the form
my, or my (throughout this section we shall subsume the case m = mp = 1 into the m’s,
i.e., mp =1 = mp =1). The four possibilities, and the corresponding allowable values of
Mj k42 in order that we maintain p-consistent ordering, are given below.

i. mg 41 = mp = 1,...,q and My k42 = ML = 1,..,q

Me k41 + Met1,k+2 S ¢ = Mik42 = ML = M ki1 + Mi41,k42, (38)
kk+2 __
M k41 + Met1k42 > ¢ = M i3 = 0.

il. mggs1 = mu = 2,..,¢ and Mgy k42 = MU = 2,054

Mi k41 + Met1h42 — 2§ = Miky2 = MU = Mikd1 + Me41k+2 — 2,
2 M’"k.k+2 =0 (39)
Mg k41 + Mit1k42 — 2> 9 = kkt2 = V- :
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iii. mggy1 =mp =1,..,4 and M41k+2 = MU = 2,4

Mk k41 > Mep1 k42— 2 = Mik+2 = ML = Mik+1 — Mh+1k+2 +2, (40)
Me k41 S Mg sz — 2 = Mikt2 = MU = Mit1k+2 ~ Thk+1:

iv. mgg41 = MU = 2,..,4 and Mgy k42 =ML = 1,..,¢

Mep1k+2 < Meks1 — 2 = M2 = MU = Mik+1 ~ ME41,k+25 ( 41)
Mig1k2 > Mek+1 — 2 = Mikt2 = ML = Mkt1,542 ~ Mg k41 + 2.

Now, for values of i greater than 2, it turns out we need to use the values of any
pair of m’s, Mg k4t and Meiek+is where 0 < t < i. For instance, to obtain the allowable
value of, say mj k44, W€ could use any of the pairs mg k41, Mk+1,k+4 OT Mk k+2> Mk+2,k+4 OF
Mk k+3) Mk+3,k+4- The formulas to obtain the allowable value of my k+i are exactly those
given above with k + 1 replaced by k +t and k + 2 replaced by k + i. Note, however,
that when a block was set to zero as in the second lines of (i) and (ii) above, we do not
assume a value of 0 for m in that block, rather m would carry the value indicated in the
corresponding first line, although greater than gq.

In this manner, it is possible to check a block matrix for the property of being 7,-CO.
If all of the diagonal blocks Aj4ii+i are diagonal matrices then, by Theorem 8, the matrix
can be checked for the property of being CO.

6 Application of the theory to some multicolor orderings

In this section we apply some of the results of § 4 to some well-known and not so well-known
orderings which appear in the literature. In order to concretize some of what follows, we
shall apply the discussion to the solution of the two-dimensional Laplace problem

Viy =0 in Q = [0,1] x[0,1],

vu=0 on 00N (42)
We assume that there are an even number N of grid points in each of the two coordinate
directions in the discretization of (42).

First we will consider the so-called line orderings and also zebra orderings. Next we dis-
cuss the row-wise and plane-wise red /black orderings of Harrar and Ortega [17]. Harrar [16]
gives this group of orderings the somewhat oxymoronic name of “many-color red/black or-
derings” for reasons that should become clear from the presentation given in § 6.2. Finally,
in the last subsection we consider some other orderings proposed in the literature.

6.1 Line and zebra orderings

One frequently used class of orderings is the class of line orderings. These are multicoloring
schemes in which all of the points on a given line of the grid, or group of lines, has the same
color. Thus, for example, for a two-dimensional problem on an N X N grid, a 1-line ordering
results in N colors, while a k-line ordering gives N /k colors (one, in general, chooses k so
that it divides N evenly).

It is easy to show that such multicoloring schemes, corresponding to different partition-
ings =, give rise to 7-CO matrices for five-point finite difference discretizations of (42) (and
seven-point discretizations of its three-dimensional analog). If we order the lines, or groups
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of lines, in the natural ordering from bottom to top, then the coefficient matrix will, as with
a natural ordering of the grid points, have the form

T -1 4 -1
-1 . . -1 . .
A= e , T = e . (43)
.= |
-1 T -1 4

Here the matrix T is N X N, and I is the identity matrix of order N. Different values of
k, corresponding to different numbers of lines of a single color, will give rise to different
partitionings of this matrix. For k = 1, we have a block N x N structure. For general k, A
would be partitioned as a block % X % matrix of kN X kN blocks. In each case, the matrix
is block tri-diagonal of block order N/k and hence is 7/;-CO by Theorem 3. (We note that
in the literature, when discussing line orderings, the subscript on = usually gives the number
of lines per group, e.g., Tk is the partitioning according to groups of k lines and 7o denotes
the natural ordering. However, here we maintain the convention used throughout this paper
that the subscript denotes the block order of the corresponding coefficient matrix.)

It is well known that the use of block iterative methods often results in faster convergence
rates. For the problem (42) the line Jacobi and line Gauss-Seidel methods will converge
twice as fast as the corresponding point methods; similarly, line SOR with optimal relaxation
parameter will converge approximately 21/2 times as quickly as the point SOR method
(Young [45]). For more on the rate of convergence of k-line iterative methods see, e.g.,
Parter [31], [32] and Parter and Steuerwalt [34], [33].

As mentioned at the end of § 3, one important aspect of m-consistent ordering is that
while A may not be CO, it may be 7-CO for some partitioning x. This is often useful when
the grid stencil for a particular problem contains more than five points (in the case of a
two-dimensional problem). For example, while a nine-point grid stencil will not yield a CO
matrix, it will, with a grouping by k lines, yield a my/;-CO matrix.

Now, consider a zebra ordering. We color all of the odd-numbered rows of the grid, say,
black and all of the even-numbered rows white. Within each color we then number the grid
points in the natural ordering. Using a five-point stencil in the discretization of (42), the
coefficient matrix would have the red/black (block 2 x 2) form

A=[2& gz], (44)

T -1
. I .
Dy =Dy = . , C = .. , (45)

where

T -1 -1
and T is given in (43). The D; and C are block % X -121, and T, I are N X N.
Since A is m2-CO with Dy, D, block diagonal, we can appeal to Corollary 2 and determine
that the coefficient matrix A for a zebra ordering is also mn-CO. ..
We note that k-line orderings will, in general, require the solution of more complicated

systems of equations at each iteration since the diagonal blocks will not be diagonal. How-
ever, if we further impose a red/black ordering on each group of k lines (rows) of the
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grid, then these diagonal blocks will take on the red/black form (44) where Dy and D; are
%1\—' X -’% and diagonal. Such orderings are the subject of the next subsection.

6.2 Many-color red/black orderings

Although the rate of convergence of some iterative methods such as SOR may be enhanced
by the use of multicoloring, this is not true for others such as the SSOR preconditioned
conjugate gradient (PCG) method. For example, for the red/black ordering, the optimum
relaxation parameter, in the sense of reducing the condition number of the preconditioned
system, is wept = 1 for any number m of preconditioning steps as shown by Harrar and Or-
tega [18]. Solving a three-dimensional generalized Poisson equation using red /black SSOR
with w = 1 as a preconditioner for the conjugate gradient method, Harrar and Ortega [19]
found the rate of convergence to be considerably worse than that of natural order SSOR
with experimentally determined wope > 1. These results are consistent with similar experi-
ments by Adams [1], Ashcraft and Grimes [5], Duff and Meurant [11], Elman and Agron [12],
Melhem [24], and Poole and Ortega [36] for preconditioning by SSOR or ILU factorization.

Harrar and Ortega [17] (see also Harrar [16]) proposed a compromise between the faster
convergence rate obtained with the natural ordering and the superior degree of parallelism
and/or vectorization provided by the red /black ordering. Their many-color red/black order-
ings are of two general types: row-wise red /black orderings and planar red /black orderings.
The 1-row and 2k-row red/black orderings, involve imposing a red/black ordering on every
row or 2k rows (lines) of the grid where k = 1,2,..., N/2 and N is the number of rows. For
three-dimensional problems one can also consider 1-plane and 2k-plane red/black orderings
where a red/black ordering is imposed on every plane or 2k planes of the grid, respectively.
In either case, the red and black unknowns of a given color are numbered in a natural
ordering, and the vector of unknowns is then given by

u = (uRl,uBl’uR2)uB2’uRB7uB3’"')T' (46)
For example, a 2-row red/black ordering of a 6 X 6 grid is shown in Figure 1.

B3 R3 B3 R3 B3 R3
R3 B3 R3 B3 R3 B3
B2 R2 B2 R2 B2 R2
R2 B2 R2 B2 R2 B2
Bl R1 Bl R1 Bl Rl
R1 Bl R1 Bl Rl Bl

Figure 1: 2-row red/black ordering of a 6 x 6 grid

This ordering can be viewed as having been obtained by first introducing a 2-line ordering,
then imposing a red/black ordering on each group of 2 lines.
In general, for a 2k-row red/black ordering the linear system will be of the form

[ D1 A12 0 A14 . . .T UR1 i
A'{z D2 A23 0 . . . UpBp1
0 AL D3 A 0 Az UR?
AT, 0 AL, Dy Ay O upgs | = f. 47
.. o0 AL . )
AL .
L J L -
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Here the D; are diagonal matrices and up; is the vector of unknowns associated with the
Ri grid points, and similarly for up;. For an N x N grid the coefficient matrix will be block
1,% X 1,%, where each block is kN x kN. The internal structure of the off-diagonal blocks is
given in Harrar and Ortega [17] and Harrar [16] and is not pertinent to this research. For
three-dimensional problems on an N x N x N grid, a 2k-plane red/black ordering will again
yield a system of the form (47), where the coefficient matrix is block % X %, except now
the blocks will be kN2 x kN2 and consist of more nonzero diagonals. -

The coefficient matrix of the system (47) is a matrix of the form T, + 4, where p = N/k;
T, is a Tp-matrix (a Tnyx-matrix), and 4, is a block & x & matrix which has all zero blocks
except for A; ;43 (and Aiy3i = A?:,- +3) Where i = 1,3, ...;N — 3. All of the blocks on the
first sub- and super-diagonal of Ty are nonzero. Thus, by Theorem 5, Tp + Ap is not ,-CO.
In order to determine whether or not the coefficient matrix of (47) is CO we would need to
investigate the internal structure of its off-diagonal blocks.

Consider now a 1-row red/black ordering obtained by imposing a red /black ordering on
each row of the grid. In this case the system of equations corresponding to a five-point
finite difference discretization of (42) would have the block 2N x 2N form

[ D; Az Az O o] [ ]
A%? Dy 0 Ay . . . up1
Als 0 D3 Az A3zs UR2
0 AL A, Dy © ug2 | = f, (48)
. AL
| . . I

where each block is %’- X -’; This is also the form of the system of equations for the three-
dimensional analog of (42) in the case of a 1-plane red/black ordering except that each block
would be M;— X g and the A;i41,i=1,...,N —1 would have more nonzero diagonals.

Returning to the nomenclature of § 4, the 1-row (or 1-plane) red /black coefficient matrix
of (48) is a matrix of the form T, + By, where p = 2N, r = N (for two-dimensional problems
and p = 2N%, r = N 2 for three dimensional problems). T, is block tri-diagonal with
intermittent zero blocks every second block on the first sub- and super-diagonal. B, is block
bi-diagonal where each block B[, is block 2x2 with m = mp = 1. This matrix is thus 7p-
CO by Lemma 3. In fact, from the proof of that lemma we see that a m,-compatible ordering
vector for this matrix is given by (22) with ¢ = 2, that is, P =(1,2,2,3,...,2N,2N + DT,
(For the three-dimensional problem with a 1-plane red/black ordering we would replace
N by N2.) Further, since the diagonal blocks of T, are diagonal matrices, we can use
Theorem 7 to obtain as a compatible ordering vector for T, + B

7P = [(V)ny2: (2)Ny2, Q)Ny2s (B)Ny2s s (2N )Ny2s (2N + DnyalTs

where (i), denotes the s-long vector all of whose elements are i. Thus, we know that the
coefficient matrix of the system (48) is CO without knowing anything about the internal
structure of the off-diagonal blocks.

Returning to the 2k-row red/black orderings, suppose we simply reorder the unknowns
in the vector u of (46) so that B

u = (URl,uBl,uBz,um,uRs,uBs,---)T- (49)
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Then, in the coefficient matrix of the system (47), the blocks A;i43,i=1,3,...,N =3, and
their transposes, will move in one block closer to the main diagonal while the blocks A;i+1,
i = 2,4,..,N — 2, and their transposes, will move out one block. That is, the coefficient
matrix would now have the same block form as the 1-row red/black matrix of (48). Thus,
we again obtain a 7,-CO matrix which is, in fact, CO as well. We note that Harrar and
Ortega [17] discussed this reordering as a way to reduce the bandwidth of the coefficient
matrix, but made no mention of consistently (or n-consistently) ordered matrices.

Harrar and Ortega [17] used these orderings and the 1-step SSOR PCG method to
solve a three-dimensional generalized Poisson equation on a Cray-2 (see Harrar [16] for
extended results on a Cray-2 and also a CDC Cyber 205). They found a significant jump in
the number of iterations until convergence when going from the 1-row to 2-row red /black
ordering, and a slow increase in iterations when going from the 2-row to the 4-row to the
8-row, etc. red/black orderings. Then they found another jump when going to a 1-plane
red/black ordering. Corresponding to the behavior of the iteration count was an inverse
effect on the optimum value of the relaxation parameter w. They had no explanation for
this behavior, but perhaps it is related to the observation made here that none of the 2k-row
red/black orderings, as formulated there, yielded (7p-)CO coefficient matrices.

6.3 Other orderings

In this section we discuss some other orderings which have been proposed in the literature.
The primary motivation for many of these orderings is the need for more than two colors
to decouple the unknowns under a nine-point grid stencil (for a two-dimensional problem);
in this case it is well known that at least four colors are necessary. Adams and Jordan (2]
identified seventy-two distinct four-color orderings which could be used to bring about this
local decoupling of unknowns. They grouped these orderings into equivalence classes for
which the convergence behavior is the same. For a nine-point discretization of the model
problem (42) their theory gives six such classes. Adams et al. [3] analyzed four of these
classes and found they could be reduced to two (they were unable to analyze the other two
classes with the proposed methods). All seventy-two of these four-color orderings lead to
matrices which are neither CO nor 74-CO.

Adams and Jordan [2] define a multicolor, or c-color, matrix to be a block matrix of the
form (2) with p = ¢ and where the diagonal blocks A;; are diagonal matrices. They also
define a multicolor T-matriz as a block tri-diagonal matrix of the form

M, L
v . .
™™ = e ) (50)
. La—-l
Us—l Ma

where the M; are multicolor matrices, the L; are block strictly lower triangular, and the U;
have the transposed structure of L;, respectively. Now, by Theorem 8, if a multicolor matrix
as defined above is 7.-CO, it is CO. However, by Theorem 5, if A i1 #0,i=1,..,c—1,
then a multicolor matrix is not 7.-CO if any of the other A;; are nonzero. If some of the
A; i+1 do consist solely of zero entries, then Theorem 6 and the theory of § 5 may- allow one
" to determine whether or not the multicolor matrix is 7.-CO. However, a multicolor T-matrix
given by (50) is always 7,-CO by Theorem 3, and the main result of Adams and Jordan [2]
is that a multicolor T-matrix and its associated multicolor matrix have corresponding SOR
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iteration matrices with the same eigenvalues. Thus, we can apply the classical SOR theory to
the 7,-CO multicolor T-matrix to gain information about the eigenvalues of the multicolor
matrix which may be neither 7-CO nor CO.

Kuo and Levy [20] also consider four-color ordering for a nine-point discretization of a
two-dimensional Poisson equation. Rather than analyzing the Jacobi iteration matrix in
the space domain, they consider a simpler, yet equivalent, four-color iteration matrix in
the frequency domain. This matrix is not 74-CO; however, they point out that it is 72-CO
(recall Observation 2). Hence, they apply the SOR theory to this frequency domain matrix
partitioned as a block 2 x 2 matrix. They thus obtain what they call a “two-level four-
color” SOR method in which they carry out a block (outer) SOR iteration at the first level
followed by a point (inner) SOR iteration at the second level. The two-color (red/black)
SOR method for a five-point grid stencil is shown to be a degenerate case of their general
two-level four-color SOR method.

O’Leary [27] considered certain ordering schemes which would allow for the efficient
implementation on parallel computers of iterative processes such as Gauss-Seidel and SOR.
These schemes include the “P3,” T3 “H + H,” “Cross,” and “Boz” orderings; the names
are indicative of the patterns made by the blocks of grid points of a single color, and each
ordering uses three colors. These ordering schemes give rise to coefficient matrices of the
form (2) where each of the diagonal blocks Aj; is not a diagonal matrix. For example,
partitioned as a block 3 x 3 matrix, the coefficient matrix corresponding to a P3 ordering of
the grid points (under a nine-point stencil) has diagonal blocks A;; which are block diagonal.
She gives the sparsity structure for this matrix, and it is immediately apparent that it is
not 73-CO by Theorem 5 since blocks Aj2 and Aj3 contain nonzero entries but so does
block A; 3. The grid corresponding to the sparsity structure pictured in that paper has five
points “per P if the block of points P is internal to the grid. Thus, many of the diagonal
blocks internal to the A;;, i = 1,2,3, are 5 x 5 and full. Therefore, this matrix is also not
CO (see Observation 1). In order to analyze the rate of convergence of the SOR method in
this ordering, she circumvents the difficulty of having a non-CO (and non-7-CO) matrix by
using the “approximate” validity of the SOR theory for irreducible Stieltjes matrices; That
is, wopt — 1 < p(Lw) < fwopt — 1, Where wop is given by (3) (Young [45)).

Shortley and Weller [37] considered the use of k x k square blocks of points with the
Gauss-Seidel method for the solution of (42). They found that k x k block Gauss-Seidel
converged more quickly than point Gauss-Seidel by a factor of k; also k x k block Gauss-
Seidel was found to be twice as fast as the corresponding Jacobi method. Parter and
Steuerwalt [34] use “plane” iterative methods to solve a three-dimensional elliptic problem.
They point out that the k x k block ordering, as well as the k-line ordering, lead to coefficient
matrices which satisfy block property A (Young [45] refers to this as property AM). In
fact, these orderings give rise to 7-CO matrices. We discussed this for the k-line orderings
in § 6.1. Following the notational conventions of § 4, for a k x k block ordering one obtains a
coefficient matrix of the form T, + B, where T} is a block (&2 x (§)? tri-diagonal matrix of
the form (14), (15) with zero blocks every N /k blocks on the first sub- and super-diagonal.
B, is block % X LZ— bi-diagonal of the form (25) with nonzero blocks B}ty Which are block
1,% X % uni-diagonal with m = mp = 1. Thus, the coefficient matrix corresponding to a
k x k block ordering on an N x N grid is %)Q-CO by Theorem 6.

The effect of ordering on the rate of convergence of preconditioned conjugate gradient
(PCG) methods is not well understood. Duff and Meurant [11] considered preconditioning
by incomplete factorization (specifically, the ICCG(0) method of Meijerink and Van der
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Vorst [23]) in seventeen different orderings, including the natural, red/black, zebra and
four-color orderings already discussed. We now consider some of the other orderings.
Several diagonal orderings of the grid points, attributed to Cuthill and Mckee [9], are
considered; these include forward and reverse diagonal orderings as well as a diagonal or-
dering of k X k blocks. On an N X N grid the forward and reverse diagonal orderings yield
T,N—_1-matrices where the partitioning man_; results in diagonal blocks of different orders,
corresponding to the differing lengths of the 2N — 1 diagonals of the grid. Hence, these
orderings yield T3n_1-CO and CO matrices by Theorems 3 and 4, respectively. The block
diagonal ordering gives rise to a block (2% -1)x (2% — 1) tri-diagonal matrix where the
diagonal blocks, again of varying orders, are block diagonal. Thus, the coefficient matrix is
T, %_I-CO by Theorem 3 and = %a_—CO by the analog of Corollary 2 for the case that the

k

block order of the ith diagonal block is s = s(¢) = % - % — i| = the number of k X k
blocks on the ith block diagonal of the grid. They also consider an “alternating diagonal
ordering” which can be viewed as a zebra ordering of the grid by diagonals. This yields a
79-CO coefficient matrix whose diagonal blocks are diagonal so it is CO by Theorem 8.

The “spiral ordering” (Duff, et al. [10]) results in “east-west” connections for all but
the first and last grid points so that the coefficient matrix has an underlying tri-diagonal
structure with no zeroes on either of the first two off-diagonals. Since there are other nonzero
elements (from “north-south” connections), the matrix is therefore not CO by Corollary 1.

Two orderings attributed to Van der Vorst are obtained by first partitioning the grid
into four 123 X 1;1 blocks. Then, starting with the point of each block which is a corner of
the original grid, one obtains the first ordering by numbering the grid points of each block
row-wise and the second ordering by taking the grid points of each block in a diagonal
ordering. The two orderings are pictured in Figure 2.

1 2 3 21 20 19 1 3 6 24 21 19
4 5 6 24 23 22 2 5 8 2 23 20
7T 8 9 27 26 25 4 7 9 27 25 22
16 17 18 36 35 34 13 16 18 36 34 31
13 14 15 33 32 31 11 14 17 35 32 29
10 11 12 30 29 28 10 12 15 33 30 28

Figure 2: a) Van der Vorst 1 and b) Van der Vorst 2 on a 6 x 6 grid

First we consider Van der Vorst 1 of Figure 2a. The coefficient matrix is of the form
T,+ B, where T} is block 4 x 4 tri-diagonal with zero blocks every ¢ = 2 positions on the first
sub- and super-diagonal. B; is block 2 x 2 with BZ‘,’; = B{',‘ZD (mp = 1) so that Ty + B,
is 74-CO by Theorem 6. Now, the coefficient matrix can also be partitioned as a matrix of
the form Tpn + M4 where Ty is block tri-diagonal with zero blocks every ¢ = 4 positions
on the first off-diagonals. In M, the blocks M{3? and M33* are block uni-diagonal with
myp = maq = mp, = 1, and Mz 3 = 0; these are the allowable values given in (38). Finally,
M, 4 = 0. Thus, the coefficient matrix Ton + M, is man-CO by the theory of § 5.

For Van der Vorst 2 (Figure 2b) the coefficient matrix is again 74-CO using the same
analysis as above. The matrix is also of the form Tyn_1) + M, where Tyn_y) is block
tri-diagonal with zero blocks every ¢ = N — 1 blocks on the first off-diagonals, and My is
such that its off-diagonal blocks M:;" again satisfy the conditions set forth in § 5 showing
that this ordering yields a matrix which is m4(n_1)-CO.
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7 Summary

Multicoloring provides a valuable technique to increase the efficiency of implementing cer-
tain iterative processes to solve linear systems of equations on both parallel and vector
computers. These iterative processes include not only SOR-type methods, but also PCG
methods as well as relaxation processes for use in multigrid methods.

Application of Young’s classical SOR theory is valid when the coefficient matrix of the
system to be solved is CO. Often, especially when a multicoloring scheme is introduced,
one obtains a coefficient matrix which is not CO; however, this matrix may be 7-CO (block
CO) for some partitioning .

The determination of whether or not a given matrix is CO or 7-CO is often nontrivial.
We have presented some theory which allows one to ascertain quickly whether matrices
which have an underlying block tri-diagonal structure are (7-)CO or not; such matrices are
often obtained when a multicoloring scheme is used. We found that the only block p X p
matrices with all nonzero blocks on the first sub- or super-diagonal which are 7,-CO are
block tri-diagonal matrices. Of course, an obvious corollary is that tri-diagonal matrices
are the only CO matrices which have no zeroes on either of the first off-diagonals.

We then found that if there were zero blocks on the first sub- and super-diagonal of A,,
we could have further off-diagonal nonzero blocks and still have a 7,-CO matrix. If the zero
blocks on these first off-diagonals occurred every gth block, then we can have nonzero blocks
in the ¢ x g block B}, whose (g,1)-block A, is the zero block on the first super-diagonal.
However, we found that, in order for A, to be 7,-CO, given one nonzero block Ai4ikg+;j in
BZ‘,’; +1» all other nonzero blocks had to lie along the same block diagonal of which Ay kq+;
is 2 member. In § 5 we showed that more nonzero block ¢ X ¢ uni-diagonal matrices could
appear farther off the main diagonal.

Theorem 8 provides a way of verifying whether or not a block p x p matrix 4, whose
diagonal blocks are diagonal is CO; we need only determine whether or not A, is 7p,-CO
since we can use a 7,-compatible ordering vector to obtain a compatible ordering vector.

The theory was then applied to many examples of ordering schemes from the literature
to show that while some commonly used orderings give rise to CO or 7,-CO (p > 2)
matrices, many others do not. This was particulary true for multicolor orderings with more
than two colors although the theory presented here can be used to show that the class of
multicolor orderings introduced by Harrar and Ortega [17] will yield matrices which are not
only m,-CO with p > 2, but CO as well.

A T,(g,r)-matrices and (g,r)-consistently ordering

As mentioned in § 1 there are several generalizations of the class of CO matrices other than
that of the class of 7-CO matrices. These include (g,)-consitently ordered, generalized
(g, 7)-consistently ordered, and generalized 7 -consistently ordered matrices (Young [45]). In
this appendix we will not treat either of these “generalized” versions, although we will try
to give a few examples of the ways in which the results of § 4 and 5 can be used to obtain
some results concerning (g, r)-consistently ordered ((g,7)-CO) matrices. In particular, these
results will apply to matrices from the class of T(g,7)-matrices; this class represents a
generalization of the class of T-matrices originally defined in § 3.2. We note that in this
appendix ¢ and r have no relation to the ¢ and r of previous sections. When we mean ¢
and r as used previously, we shall denote them by § and 7.
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A formal definition of a (g,r)-CO matrix can be found in Young [45]. We note only that
a (1,1)-CO matrix is a CO matrix in the sense of Definition 1 and that for (¢,r)-CO matrices
we have the following analog of the Jacobi-SOR eigenvalue relation (4) (Young [45])

A+w=-1) = Aw’, s = g+ (51)

Analogous to this generalization of CO matrices, we generalize the concept of a Tp-matrix
to obtain (Young [45]) '

Definition 8 Let g and r be positive integers less than p. The matriz A is a Ty(g, r)-matrix
if it can be partitioned into the block p X p form A = (A;;) where, for each i, Ai; = D; 1s
a square diagonal matriz and where all other blocks vanish ezcept possibly for the blocks
Aiigr, 1=1,2,.,p—1 and A;i—q, t=q+ 1,9+ 2,..,p.

Clearly a T,(1,1)-matrix is a Tp-matrix as given by Definition 5.

Just as T-matrices are CO, so too are T'(q, r)-matrices (g,r)-CO. However, we will try to
show under what circumstances Tp(g, r)-matrices are also 7,-CO and, since their diagonal
blocks are diagonal matrices, CO by Theorem 8.

Now, note that, for the purposes of showing (7-)consistent ordering, a T,(g, r)-matrix
with either ¢ = 1 or 7 = 1 can be treated as a matrix of the form T, + B; where T}, is a
T,-matrix and B; is a block # X  bi-diagonal matrix with nonzero elements on its gth or
rth sub- or super-diagonal, respectively. The case ¢ = 1 is of particular importance since
Varga [41] gave a complete analysis of this case and then Nichols and Fox [26] showed that
the SOR method is not effective if ¢ > 1. Also, the important class of p-cyclic matrices,
p > 2 consists of matrices with nonzero diagonal elements which have a corresponding
Jacobi iteration matrix that is permutationally similar to a Tp(q, r)-matrix where r = p—1
(thus the result (9) which is simply (51) with r = p—1,s=g+r=1+(p- 1) = p).
Therefore, in the sequel we consider only the case that one of ¢ and r is unity.

Appealing to Theorem 5, we obtain our first result.

Theorem 9 Let q¢ and r be positive integers less than p. Suppose A is a Tp(1,7)-matriz
such that A;ij4r # 0, i =1,...,p— 1 and A;; #0,1=2,..,p. Similarly, suppose Aisa
T,(g,1)-matriz such that Aiip1 #0,i=1,.,p—1 and fi,",‘_q #0,i=q+1,9+2,...,p.
Then A is mp-consistently ordered if and only if r = 1, and A is mp-consistently ordered if
and only if¢g= 1.

proof: Let A (A) be as given in the hypothesis of the Theorem. Then A (A) has no zero
blocks on its first sub-(super-)diagonal. Hence, by Theorem 5, A (A) can have no zero
blocks outside the first off-diagonals. That is, we must have r =1 (¢ = 1).

Now, assume r = 1 (¢ = 1). Then A (A) is a Tp(1,1)-matrix, i.e. a Tp-matrix. Thus,
by Theorem 3, A (A) is m,-CO. O

Since Tp(g, r)-matrices, by definition, have diagonal blocks which are diagonal matrices
we have, by Theorem 8,

Corollary 3 Assume the hypotheses of Theorem 9 hold. If r = 1 then A is consistently
ordered. If ¢ = 1 then A is consistently ordered.

Of course, we are forced to drop the “only if” part of the result since we are making no
assumptions about the internal structure of the off-diagonal blocks of A or A.

Analogous to our progression in § 4, we now consider the case that the first sub-diagonal
(g = 1) or the first super-diagonal (7 = 1) has some zero blocks. The remainder of the results
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of this appendix are stated only for the case ¢ = 1, but it is trivial to adjust the proofs to
handle the case r = 1; this should be clear from the proof of Theorem 9 given above.

First we treat the case that A is Tp(1,r)-matrix, with r = p — 1, and has at least one
zero block on the ¢ = 1 sub-diagonal; in this case A is trivially a p-cyclic matrix.

Theorem 10 Let A be a Tp(1,p — 1)-matriz. A is m,-consistently ordered if and only if
Aii-1 =0 for some i = 2,...,p.

proof Assume Ag x_1 = 0 where k = 2,...,p is fixed. The nonzero blocks of A are A, and
Aii-1, 1= 2,.,k—1,k+1,..,p. Thus, in the construction of a 7,-compatible ordering
vector for A, we require 7, — 11 = 1 and 7; — %1 = 1, where ¢ = 2,.,k—1k+1,..,p.
One may easily verify that the elements of the vector

7(1r,) = (p,p+ 1,...p+k+1,k+ 2,k+3,...,p+ l)T (52)

satisfy both of these requirements. Thus, we have constructed a mp-compatible ordering
vector for A and A is 7,-CO by Theorem 2.

Now, let A be a mp-CO Tp(1,p — 1)-matrix and assume Ai;—y # 0 for i = 2,...,p. By
Theorem 9, a Tp(1,7)-matrix all of whose blocks on the first sub-diagonal are nonzero can
be 7p-CO if and only if r = 1. However, we have r = p— 1, a contradiction. Thus, we must
have that one of A;;-1, ¢t = 2,...,p is zero. O

As with the previous Theorem, since the diagonal blocks of T;,(g, 7)-matrices are diagonal
matrices, we again obtain an immediate corollary.

Corollary 4 Let A be a Tp(1,p — 1)-matriz. If Aii—1 = 0 for some i = 2,...,p then A is
consistently ordered.

The above Theorem and Corollary are easily adapted to show that a Tp(p — 1, 1)-matrix A
is (7,-)CO if (and only if) A;;+1 = 0 for some ¢ = 2,...,p.

In § 4.2 we considered the case that T, was tri-diagonal with intermittent zeroes every
gth entry on the first sub- and super-diagonal. We conclude this appendix with a natural
extension of the results of that section. Recall that there we eventually allowed my, which
determined the position of the sole nonzero block diagonal in the block BL",’C‘ 41 of B;, to
vary with each block. However, here we must keep m constant for all k£ so that the nonzero
blocks Ajtikq4j of all of the B k41 will lie along the same diagonal. This leads us to the
final result of this appendix which we state without proof.

Theorem 11 Let A be a Tp(1,r)-matriz with zero blocks every gth position on the first
(q = 1) sub-diagonal. Suppose r = § + my for some my = 2,.,§orr=4—(mp—2)
for some mp = 1,...,4. If the rth super-diagonal has m — 1 zero blocks following every
G — (m — 1) possibly nonzero blocks (where m = my or m = mp, depending on whether
r = r(my) or r = r(my), respectively), then A is Tp-consistently ordered and consistently
ordered.

Of course, an analogous result holds for Tp(g, 1)-matrices.
The results given here show that under certain conditions T,(g,r)-matrices with either
g =1orr =1 are not only (¢,7)-CO, but also 7p-CO and even CO.
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