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Abstract

A detailed analysis on the accuracy issues in calculating the eigen-
systems of rank-1 perturbed diagonal systems is presented. Such cal-
culations are the core of the divide-and-conquer technique proposed
in [4]. In particular, we prove that the computed eigenvectors are
guaranteed orthogonality provided the secular equation is evaluated
in a precision that doubles the working one. An efficient algorithm
that simulates such “doubled precision” in working precision is also
provided. Numerical results that confirm our analysis and implemen-
tation are presented.

AMS classification: Primary 65F15, secondary 65G05.

Key words and phrases: Divide-and-conquer, rank-1 update, sim-
ulated extra precision.

*This author’s work was supported in part the IBM Scientific Center in Bergen (June-July 1988) and
by NSF cooperative agreement CCR-8809615.

tThis work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.



1 Introduction

The symmetric eigenvalue problem is fundamental in computational mathematics. In [4],
a new parallel algorithm was presented for the symmetric tridiagonal eigenvalue problem.
A surprising result of the work in [4] was that the parallel algorithm developed there,
even when run in serial mode, is significantly faster than the previously best sequential
algorithm on large problems and is effective on problems of order as moderate as 30.

In [4] the difficulty of computing numerically orthogonal eigenvectors was discussed
but not fully resolved. Indeed, for some specially contrived examples, the implementation
in [4] fails to deliver fully orthogonal eigenvectors. This paper presents recent progress
that resolves those numerical difficulties completely.

We present two approaches. One is to efficiently simulate extra precision at one small
critical place within the algorithm. Our analysis shows that such an approach guarantees
numerical orthogonality. Moreover, the simulation is straightforward in clean arithmetic
environments, most notably those conforming to IEEE Standard 754 [8]. Because the
implementation of such simulations may lack portability, it is reasonable to ask whether
we can avoid simulation altogether. Along this line, we propose a second approach
which, in effect, recasts the critical calculation to avoid some (but not all) roundoff
difficulties. Although the second approach is superior to the original method used in [1]
and [4], unlike the simulation approach, it cannot guarantee orthognality always (see
Section 7 for examples). Thus, we recommend this second approach only to those who
wish to avoid subtle use of floating-point arithmetic even in the expense, in this case, of
guaranteed accuracy.

The rest of the paper is organized as follows. Section 2 reviews the core of the algo-
rithm presented in [4]. Section 3 discusses the basic requirement to maintain numerical
orthogonality. Section 4 analyzes the accuracy of root finders in general. That analysis
is the basis of the two approaches presented in Sections 5 and 6. Section 7 presents
results of some numerical experiments illustrating the approaches and confirming our
claims. Section 8 compares our work with the independent work of Kahan. Section 9
gives some concluding remarks and briefly discusses computer arithmetic.and language
issues related to implementing our simulation algorithm as a library routine.

2 The Divide-and-Conquer Scheme

The problem we consider is the following: Given a real n X n symmetric matrix A, find
all of the eigenvalues and corresponding eigenvectors of A. It is well known [13] that
under these assumptions

A=QDQT, with QTQ =1, (2.1)

so that the columns of the matrix Q are the orthonormal eigenvectors of A, and D is the
diagonal matrix of eigenvalues. The standard algorithm for computing this decomposi-
tion is first to use a finite algorithm to reduce A to tridiagonal form by a sequence of



Householder transformations, and then to apply a version of the QR algorithm to obtain
all the eigenvalues and eigenvectors of the tridiagonal matrix [13]. Once this tridiagonal
form has been obtained, the algorithm described in [4], instead of Q R, may be used to
find the eigenvalues and eigenvectors in parallel. The method given in [4] is based on
a divide-and-conquer algorithm suggested by Cuppen [2]. A fundamental tool used to
implement this algorithm is a method developed by Bunch, Nielsen, and Sorensen (1]
for updating the eigensystem of a symmetric matrix after modification by a rank-one
change. This rank-one updating method was inspired by some earlier work of Golub (7]
on modified eigenvalue problems. The basic idea of the new method is to use rank-one
modifications to tear out selected off-diagonal elements of the tridiagonal problem in or-
der to introduce a number of independent subproblems of smaller size. The subproblems
are solved at the lowest level by using the subroutine TQL2 from EISPACK ([10], and
then the results of these problems are successively glued together by using the routine
SESUPD that was developed based on the ideas in [1]. The details of the algorithm and
implementation are presented in [4] and [5].

The crux of the algorithm is to divide a given problem into two smaller subproblems.
To do this, we consider the symmetric tridiagonal matrix

T = ( T, ﬂeke{)

Beref  To

T; e
(% )+ ()t v
where 1 < k < n and e; represents the j-th unit vector of appropriate dimension. The
k-th diagonal element of T3 has been modified to give T, and the first diagonal element
of T, has been modified to give T3. Potential numerical difficulties associated with
cancellation may be avoided through the appropriate choice of 9. If the diagonal entries
to be modified are of the same sign, then ¥ = %1 is chosen so that —9Jf has this sign and
cancellation is avoided. If the two diagonal entries are of opposite sign, then the sign of
9 is chosen so that —98 has the same sign as one of the elements, and the maghitude
of 9 is chosen to avoid severe loss of significant digits when 3/9 is subtracted from the
other. This is perhaps a minor detail, but it does allow the partitioning to be selected
solely on the basis of position and without regard to numerical considerations.

Now we have two smaller tridiagonal eigenvalue problems to solve. According to

Equation 2.1, we compute the two eigensystems

Ty = @1D:1Q7T, T, = Q2D,Q7.

This gives
T = (QIDIQ{

QzDzQ;) +0ﬂ(%::1) (ek 3ei),
+98

(Ql Qz){(Dl Dz) (g;z)("‘T ;l,qu)} (Ql Qz)T’



where ¢1 = Qfe; and ¢; = QFTe;. The problem at hand now is to compute the eigensys-
tem of the interior matrix in this equation.
The general problem we are required to solve is that of computing the eigensystem
of a matrix of the form
QDQT = D + pzT,

where D is a real n x n diagonal matrix, p is a nonzero scalar, and z is a real vector of
order n. It is assumed without loss of generality that z has Euclidean norm 1.

We seek a formula for an eigenpair for the matrix D + pzzT. In [4] such a formula is
derived under the assumptions that D = diag(éy,02,...,8,) with §; < 6, < ... < 6, and
that no component (; of the vector z is zero. Moreover, the deflation process described
in [4] also guarantees that |(j| > ¢ where ¢ is the unit roundoff of the arithmetic precision
in question. We reproduce the key formulas here: If ) is a root of the equation

14p2T(D-AI)"1z2=0

and
¢=a(D - )"z,

then (g, ) is an eigenpair; i.e., it satisfies the relation
D + pz2Tq = \q.

The scalar @ may be chosen so that ||g|| = 1 to obtain an orthonormal eigensystem.
If we write the equation

14pzf(D=-A)'z=0
in terms of the components (;’s of z, then A must be a root of the equation

_ = g
) =1+p3 .

7=1%

(2.2)

This equation is usually known as the secular equation (see [7]). Under our assumptions,
this equation has precisely n roots, one in each of the open intervals (§;,6;+1), 7 =
1,2,...,n — 1, and one to the right of é, if p > 0, or one to the left of é; if p < 0. For
our purpose, we can assume without loss of generality that p > 0 and thus simplify the
presentation, knowing that the n eigenvalues Ay, Ag, ..., A, satisfy

1 <A <2< A<... <8 <A< b+p.

(The last inequality is easy to derive from Equation 2.2.) As soon as any of the eigen-
values is found, we can construct the corresponding eigenvector by the formula

g=a(D - A"z



An excellent numerical method was developed in [1] to find the roots of the secular
equation and, as a by-product, to compute the eigenvectors. Even though this method
is satisfactory for most problems and always delivers accurate eigenvalues, the computed
eigenvectors may lose orthogonality when there are extremely difficult situations in the
secular equation. What exactly contributes to difficult situations and how to cope with
them are the subjects of the rest of this paper.

3 Orthogonality of Vectors

The first result on the orthogonality of the computed eigenvectors is a lemma proved in
[4]): '

Lemma 1 Let

T_(_& G2 ¢n ) I
qA_(al—A,62—A,...,6n—A p/f(A)
for A ¢ {61,682,...,6n}. Then for X and p ¢ {61,62,...,6n},

fA) = f(p)

A=V Fu)

Note that gy in Lemma 1 is always of unit length, and the set of n vectors selected by
setting A to the n roots of the secular equation f(A) = 0 is the set of eigenvectors for
D + pzzT. Moreover, the lemma shows that the eigenvectors for D + pzzT are mutually.
orthogonal (as expected). Finally, the term A — u appearing in the denominator sends
up a warning that it may be difficult-to attain orthogonal eigenvectors when the roots
X and p are close. The key result on maintaining orthogonality numerically is given by
the next lemma, which was proved in [4].

Q;Qu =

Lemma 2 Let §) = 4y/||@all, §u = vu/||vull where

(8l 8 - (88,%)
A—(AI,A2’.“,A71 , and b, = AN A

be the computed eigenvectors corresponding to q) and q,. Let
Aj=(8§-A1+9;), and Aj=(§—p)(1+m)
for j =1,2,...,n. If|9;],|n;l £ v < 1. Then

(33

2
il <2+ (L)
-7

Lemma 2 shows that numerical orthogonality can be assured whenever it is possible to
compute the distances §; — A, j = 1,2,...,n, to a high relative precision.

Indeed, the common goal of the two approaches we take is to accurately compute
6 — iy j = 1,2,...,n, where Ay, Az,...,An are the n eigenvalues of D + pzzT. Before
we present our two schemes for tackling the problem, we first examine the accuracy issue
of a general iterative root finder.



4 Accuracy of Roots Computed by Iterative Solvers

How accurately can a root z* of a certain equation g(z) = 0 be computed by some
iterative scheme such as, say, Newton iteration? This question is germane because the
differences §; — A; that we seek are typically characterized as roots of some equation, such
as the secular equation. Since we are interested in computing the differences 6; — A; to
high relative precision, we now investigate under what condition an iterative root finder
can locate a root to high relative precision.

A common scenario of iterative root finders is as follows. Let z(¥) be the approximate
root at the k-th iteration. To advance to the next iteration, the scheme prescribes a
correction term 7(*) so that z(¥) + (¥ is an improved approximate root. To continue
the iteration, z(¥*1) is set to z(*) 4 7(*), In the absence of rounding errors, robust root
finders would yield a sequence of z(¥) that converges to z*. In the presence of rounding
error, however,

computed 7(¥) # 7,

Therefore, in order that the root be determined to nearly full relative accuracy, the
number of correct digits in “computed 7(¥)” must be roughly equal to the number of
digits in 7(¥) that will affect fI(z(¥) + 7(¥)), Thus we must have

78
=

computed 7(¥) — (%)
(k)

< M-g, (4.3)

where M is a constant not much bigger than unity, and ¢ is the relative precision of the
machine. For example, if z(¥) approximates z* to 13 digits in a 17-digit environment,
then it suffices to have computed 7(¥) accurate to 4 digits. Even though z(® + 7(¥)
may approximate z* to 26 digits (for a quadratically convergent root finder), having the
correct 7(¥) would not further improve the already satisfactory situation, because

fl(z® + computed 7)) = fI(z® + k),

What, then, determines the accuracy in “computed 7(¥)”? In order to have a su-
perlinearly convergent root finder, it is necessary that r(¥) approaches the Newton step
—g(z(®))/g'(z(¥)) in both length and direction (see [6]). Typically, for such iterations
7]) = —g(z(®)/D*) where D*) approximates ¢’(z(¥)). Assuming g'(z*) # 0 implies
that, as z(F) approaches z*, the number of correct digits in “computed 7(*)” s roughly
the same as the number of correct digits in “computed g(z(¥)),” the computed value of
the function at the k-th approximate root. This means that

computed g(z(*)) — g(z*))
9(z®)

The situation is a competition. As z(*) approaches z*, the accuracy requirement on the
computed correction relaxes; but the actual accuracy of that computed quantity also

computed (%) — £(¥)
(k)

~




decreases because g(z'¥)) is small, usually suggesting severe cancellation has taken place
in its computation. The indicator on how accurately z* can be determined is therefore
the quantity

z(k)

computed (k) — (k)
(k)

1
€

which is approximately

(k)
2

computed g(z(¥) — g(z(¥)
g9(z®)

As z(*) approaches z*, |g(z¥))| = |t g/(z*)|. Thus, assuming |g'(z*)| > 0,

1
€

1 |computed r(¥) — (k) (k) 1 computed g(z*)) — g(z¥)) . ¥
€ (¥ z(®) € 9(z®)) 2
|computed g(z*)) — g(z(*))|
elz* - g'(z*)| '

Hence the crux is to be able to compute g(:c(”)) so accurately that the quantity

|absolute error in computed g(z(®)|
elz"‘ . gl(z:)l

is bounded by a moderate constant. If M = 1, one can expect * be computed to nearly
full accuracy. If M =~ 103, say, then “computed z*” will in general be approximately
3 digits short, unless, of course, if the absolute error in “computed g” is reduced by a
factor of 102 via, for example, extra-precise arithmetic.

5 The Secular Equation

Consider the eigenvector corresponding to the i-th eigenvalue A;. We now reexamine the
method proposed in [4] which calculates the differences A} := 6; — Ai, j = 1,2,...,n, by
solving for the root of

n_ (2

f=1+p3 =

- Ajzﬁj—A=6]‘—6]—()\—6I) J=12,...,n,
j=1"9

in the interval (6;,6;41) , where §; is the endpoint of this interval which is closest to
); . With this definition, our scheme fits exactly into the previous description with
g(z) := f(61 + z), where z := X\ — 6;. Hence, we must estimate the absolute error in
computing f and f’s derivative at A;. Since

min(|A7] [A%aD) € min 143



the indicator is thus .
_ |absolute error in computed f|

e -min(|A]], [ATL]D) - [F/(A)]

Clearly, if the function f is computed in the obvious way, the absolute error will be at
least

€ max
1<5$n

2
55
ij

in general. Thus, the quantity of interest is

(2

pj; |
¢2

emin(|A]|, |A%4]) pZISan ZJ-T
J

€ maxi<;<n

M =~

¢?
maXxigj<n [PR=
a7

min(|A7], A7)

¢?
P Ligicn 737/
J

If |A?] < |A,+1| and if maxj<i<n

occurs at index ¢, then

¢2
PA;

M= ' -
- G

|A] P Xigign AT
j

<1’

implying that A} can be computed to high relative precision even when f is evaluated in
the most straightforward way. Although one may think that when AT is small, the term
|¢?/A;| would dominate, the “weights” (? may be distributed so that in fact |¢?/A]]
is nowhere near dominating. Indeed, in the contrived examples, the weights can be
distributed so that M is as large as 1/e. As shown in Section 7, the loss of orthogonality
exh ited by the implementation in [4] is totally consistent with the analysis here.

..et us now obtain a general estimate for M:

¢?
maXigj<n [P R
~ J
M= rEk
mln(lA‘l !A3+1|) pEIS]sn A"‘!
J

Let

and min |A}| = |AL]-
1<j<n

&

l<]<‘n pA'



If | = m, then M is trivially bounded by 1. If [ # m, then

2
ZCJ' >sz+C3n

™ = * * 2
lstnAjz A,2 Az

CICm
> 2 .

= “|aran

Thus,
1

< §1§g%nla/<ml-

The deflation process in [4] guarantees that |(j| > € for j = 1,2,...,n. On the other
hand, |¢j| < ||zl = 1, for j = 1,2,...,n. Thus
' 1
M< —.
- 2%
Thus, the analysis shows that if f is evaluated in a way equivalent to carrying double the
working precision for all intermediate computations, the eigenvectors will be guaranteed
mutual orthogonality.
The challenge is, therefore, to evaluate the function values at the iterations as if
“doubled precision” were used throughout before the result is rounded back to working
precision. The expression of the function values has the form

no(2
= 22
= 1+”Z:A,~
=1
n CJz
= 1+pS —2
p;AI—(él—ﬁj)

where I € {4,i+ 1} and |A;| = min{|A;|}. If working precision is single precision and if
double precision is available (or when working precision is double and “quad” precision
is available), the problem is trivially solved. We therefore address the situation where
working precision is double precision and that it is the highest precision available. For
simplicity, we assume that the floating-point environment conforms to IEEE Standard
754 [8]. The techniques below, however, also work correctly on VAXes and IBMs.

5.1 Some Extra-Precision Primitives

~We introduce several basic extra-precision operations which will be used to evaluate the
secular equation accurately in the next subsection. A natural data type for simulating a
precision that doubles the working one is a pair of working-precision variables. Therefore,



we call a pair of working-precision numbers (X,z) to be in simulated double precision
(SDP) if
|z] < 10-¢|X]|.

The idea is that the mathematical sum (i.e., not evaluated in computer arithmetic) X +z
is a number having twice the number of significant bits than working precision can offer.
The constant “10” is more or less arbitrary and is chosen here for ease of presentation.

The first primitive has to do with getting an SDP sum of two working-precision
numbers. The technique is standard (see [3] for example).

Algorithm 1 DP_Add2(A, B : working precision) return SDP.
1. X:=A+B
2. If |A| < |B|, swap A and B (so |A| > |B| always).
3. z:= (A — X) + B; must observe parentheses.
4. Return (X, z).

The next primitive generalizes DP_Add2 to sum a SDP number and a working-
precision number.

Algorithm 2 DP_Add3 ((X,z):SDP, Y : working precision) return SDP.
1. (S,s) := DP_Add2(X,Y).
2. T:=s+z.
3. (Z,z) := DP_Add2(S,T).
4. Return (Z, 2).

Finally, we need a primitive that produces an SDP quotient of a working-precision
number divided by an SDP number A/(X, z). The method first approximates A/(X +z)
to working precision by Y := A/X. Then, the “correction term” (4/(X +z))-Y is
carefully calculated to working precision.

Algorithm 3 DP_Div (A: working precision, (X, z): SDP) return SDP.
1. Y:=A4/X.
2. X; := round-to-double(round-to-single(X)), X2 := X — X;. See the notes below.
3. Split Y into Y;,Y> similarly.

10



4. Form (X; + X2)(Y1 + Y2) carefully by

A1 = XixY
Ay = X1*xY;
Az = XxY
Ay = Xa+xY,

The idea is that A1, A2, and A3 are all calculated exactly.
.ti=z Y.
(S,s) := DP_Add2(A2, A3).
. (S, s) := DP_Add3((S, s), A4).

Z :=(((A—- A1) — §) — 8) —t... Observe order!
y:i=2/X.
10. Return (Y,y).

5°9°\l.°>°‘

Notes: Step 2 of DP_Div needs some elaboration. The idea is that X has to be de-
composed in a way that the leading part X; has slightly fewer than half the significant
bits of working precision. This ensures that both X; * X; and X, * X, are computable
exactly in working precision. Since our use of DP_Div involves numbers that are not ex-
treme in magnitude, the “round-to-single” operation is convenient to use and would not
suffer intermediate over/underflow. An alternative to the decomposition when the IEEE
754-recommended functions “logh” and “scalb” are available is the following: With all
intermediate calculations rounded to working precision, compute

T := sign(X)-scalb(logb(]X|)+ 28,1),
X, = (T+X)-T, and
X2 = X - X1.

5.2 Extra-Precise Evaluation of the Secular Equation

We now describe how the expression

n 2
_1+p2 I—(5I—5)

j=1

can be calculated as if all intermediate computations are carried out in SDP. First com-
pute in working precision B :=1/p and 4; :=(; *(j, j = 1,2,...,n. Then it suffices to

calculate
B
( P ))

j=1

11



accurately because this is tantamount to perturbing p and ¢;’s in the last bit prior to
solving the rank-1 update problem in question.
Algorithm 4 DP_Sec (Ais, B, Ay, 8;'s, p: working precision) return working precision
1. ®:=B, ¢:=0, ¥ :=0, ¥:=0.
2. Forj=1,2,...,ndo

o (P, P;) := DP_Add2(-6y,6;).
‘e (X,z):= DP_Add3((P, P2),A)).
e (Y,y):= DPDiv(4,,(X,z))
o If j < i then
- (¥,Y) := DP_Add2(¥,Y).

- Y=9%+Y +y.
o else
- (®,Y) := DP_Add2(9,Y).
-¢:=¢+Y+y
e End if.
3. End do.
4. Z:=p*x((2+ %)+ &+ v)... Observe order!
5. Return Z.

It is important to note that in the whole course of computing the i-th eigenpair, DP Sec
needs only be invoked once. The reason is that

2

1+pY 5
J

1=1

new f

n CJ2

= current f + p7 ) —o——
E Aj(Aj—T)

= current f + f(7).

Note that f can be easily computed to full working precision (without simulation). Thus
the iterative root finder can base its iteration on straightforwardly computed f until

| f| = |absolute error in computed f|.
At that time, DP Sec is invoked. Subsequent function values are obtained by
new f = current f + f(new 7).

This computation needs no extra precision.

12



6 Reformulation of the Secular Equation

In this section we characterize the i-th eigenvalue as a root of another equation g(A) =0
such that, most of the time, working-precision evaluation suffices for orthogonality’s sake.
From Lemma 1, we have

oTo. = f(A) = f(u)

= ’ A’ 5,...,5,,,
AV (A—M)'p #¢{1 }

where

‘vT=( G _G o )
z 61—3,52—2’”"6”—2: ’
and
n C;.’
f(z)=1+p26_z'
Jj=1"7

Thus, if the (i — 1)-th eigenvalue A;_; € (i1, 6;) is known, the i-th eigenvalue is char-
acterized by
gA) =0, A€ (S, bi41),
where
9(z) = ”f'v)\.'-x .
To predict whether such a reformulation helps maintain orthogonality of eigenvectors,
we apply the analysis in Section 3:

2

U] J
0; = Aim1

g(z) =) -=, wheren; =

A’ , and Aj = §; — .

i=1

At the root A;, g(A;) =0, 7'{-",- < 0, and -g-%— > 0 for j # i where A} = §; — A;. Thus

I
A

n

>
Aj

for j # 1.

Consequently, at =~ );, g(z) evaluated in the straightforward manner would have an
absolute error equal approximately to

T

8-
-
Aj

Next, we would have to estimate the derivative g’ at A;:

g =2 5
oAy

13



Lemma 3 Let |\; — 6| = a|X; — §;—1], (0 < @ < 1). Then

lg'(A)l > (1~ a)

L3
A’

Proof. Let Aj=6;-XN,7=12,...,n

n
n;
g = Y=
1 AJ’2

Note that %‘{%{- > 0 and & > 0 for j # ¢; thus ¢’(\;) > 0 and
) J

6 — 68: 1| m;
/ b J J
9N =2 w2 R |-

i#i AFAT 4]

For 7 > 1,

>
' A; 6 — A 21
For j < 1,
6 —6; 1_/\,-—6,
A; Ai — 6;
A — 6;
> 1-
2 1 Ai— 61
2 1l-a.
Hence
' (1-a) N5
g 2 - -~
|7l ;AJ’
(l-—a)|n
> 1 |L].
- Ay |Ar

14



With the bound in Lemma 3, we have
|AT(1-a)?
= minlSan{lA;l}.

Hence, whenever |); — §;| is not too large compared to |Ai = 8i—1], Ai can be computed
to nearly full accuracy without any need of extra-precision arithmetic. Lemma 3 helps
us evaluate the potential of the reformulation; it also guides us in creating challenging
examples (see Section 7). Note that the quantity |6; — 6i+1|/|6; — 6i—1|, which is known
a priori, can be used instead of |A; — &;|/|\; — 6i-1|; although this a priori bound is not
as sharp.

The analysis shows that A} can be accurately obtained whenever a is reasonably
below 1, say, < 0.9. Therefore, orthogonality can be assured provided |A}| < |A},]| or
provided i = n. What happens if |Af,;| < |A}| and i < n — 1?7 The bound in Lemma 3
is not helpful in this case. We turn to our next estimate of g'(};).

Lemma 4 Fori<n -1,

2

Y GiCit1
9l 2 y—

ArAT, )

-1

Proof. Since
f(z) = f(Ai1)
(z—Xi-1)-p
f(=z)
(z = Aic1)p’

9(z)

therefore
f'(N)
(Ai = Aic1)p
1 & ¢
Ai — A1 =1 (5]' - /\,')2
2 GiGir
Ai — i1 [ATAT,

gN) =

2

With the new estimate, if ¢ < n — 1 and |A},,;| < |A]|, we have

| 2]

M ——eee
|A%41l - 1g(A0)]

< |AizAn] | G

= 6= Al 1Gw

15



This analysis shows that as long as é; is not too much closer to A;_; than to A; and that
|Gi/Ci+1] is moderate, the scheme is able to deliver A +1 to high relative accuracy.

Unlike solving for the root of the secular equation w1th function evaluation by DP Sec
which guarantees orthogonality, solving g(z) = 0 is effective only some of the time. The
latter approach, however, has the advantage that, in some practical situations, it is able
to maintain orthogonality where otherwise extra-precision simulation would be needed,
should we try to solve the secular equation.

6.1 A Root Finder for g(z)
We now present a quadratically convergent root finder for the reformulated equation
9(z)=vTlvy_, =0.

The root finder is based on rational interpolation, similar to the root finder in [1].
(2

Let A € (6;,6:+1) be an approximate root, and define A; = §;-), n; = T rES YT Pye
j=2i-1)(05=
i=12,...,n,and n;
()= > A
1<j<n,j#i
Then the goal is to solve n
‘ —
Ai—-T1
for T.
The method is based upon a,pproximating &¢(7) in a neighborhood of 0 by
A?2¢'(0
bry= 520 )4 600~ A60) ~ 7).
Note that the interpolation conditions
#(0) = $(0), ¢'(0)=4¢(0)
hold and that ¢(7) has a pole at A. We take
A= {A.‘+1, if ¢/(0) > 0;
Al'—lv if ¢,(0) <o.
Then the approximation to the solution 7* is computed by solving
i A’¢'(0)
= 6.4
A+ S e - A0 =0 (6.4)

This equation may of course be solved via computing the solution of a quadratic equation.
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It can be shown that the resulting iteration converges globally and quadratically. To
demonstrate quadratic convergence we note that

0 = Fomter)

- B E

- @& jtf-:;(_A:-)_ ™) (T§¢ @, $(0)) + ¢(0) + #'(0)7* + ¢"(9)7"?),
and thus

AT s g5 (- 1) = - B gy
so that
(= (¢(T‘) +4/(0 )AA+ Z)(r =) = 0(r*2).
e -1 X.% + (")

is bounded away from zero, the expression above will imply that
Ty = o(r*?)

where 7* = A* — A and 7} = A} - A
Providing initial approximations that give upper and lower bounds on the root 7™ €
(A¢, A1) is a simple but important matter. Note that

Cz C£+1

F = 7o+ s + O,
where
C2
PN =1+ 3 .
J#4, t+1
Now, ¢'(A) > 0 for A € (é;,6i+1), and thus
$(6:) < ¥(A) < P(bi42)-

If f(A;) =0, then

2 2
~¥(i41) < & 6 il 5‘_’_(;“ < ).

Solving

¢ G s
6 — A * biv1— A —¥(%)
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for the root in (&;, §;41) gives a lower bound A when j = i + 1 and an upper bound A*
when j = ¢ so that

6 < M < A < A% < 4.
These bounds have been used in the original code developed by Sorensen to implement
the algorithm developed in [1].

These approximations can be used to construct an iterative algorithm to find the
zeros of g.

Algorithm 5 Given the root A\;_; € (6;-1,6;), this algorithm locates the i-th eigenpair.
1. Construct an initial guess A € (6;,6;41) of the root ;.

2. Put Aj=6; — A andnj = 3—i—forj—1 2,.
3. Repeat until “converge”:

e Solve Equation 6.4 for t;
e Aj:=Aj—T1 forj=1,2,...,n; and
o A:=A4T.

As will be shown in the following section, this iteration is successful.

7 Numerical Results

In this section, we present various numerical results obtained from the three different
schemes:

WP _Sec: The original scheme in [1] and [4] which solves the secular equation solely in
working precision.

Acc_Sec: The original scheme WP Sec with the extra-precise function evalution DP Sec
invoked once in the search of each eigenpair as described in Section 5.

Reform: The scheme presented in Section 6 which solves for the zero of the inner
product.

For a given A = D + pzzT where

{A1,A2,. .-, A0} and Q=[q1,---,qn]
is the computed eigensystem, we obtained the two common accuracy measures:

ax [QTqi —eill /nllAlle  and  max [|Ag — Aigil| / ne,

l<z< 1<i<n

where ¢ is the unit roundoff and ||-|| is the Euclidean norm. In addition, we also tabulated

the quantity :
|abs. error in computed g(\;)|

ax T
i e-minigi<n{|A}|}g'(A)]
to illustrate our analysis in Section 4.

M:=m
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7.1 Testing WP _Sec and Acc_Sec
We apply WP Sec and Acc_Sec to three sets of test problems.

Test 1: These problems arise in applying the divide-and-conquer algorithm in [4] to the

matrix
Wa B
B Wiu B
T B Wa ,
B
B Wy

where Wy, is the symmetric tridiagonal matrix of order 21 with diagonal elements
(10,9,...,1,0,1,2,...,10) and off-diagonal elements all 1’s. The value of 3 is cho-
sen to be small. The matrix W5, is an example devised by Wilkinson to illustrate
difficulties that algorithms might have with nearly equal eigenvalues. The matrix
has pairs of extremely close eigenvalues. The matrix T can be made arbitrarily
large of order k x 21 by adjoining k copies of W3;. The resulting matrix will have
eigenvalues in k clusters, eventually giving rise to difficult rank-1 update problems.

Test 2: This is a simple four-dimensional problem that illustrates the need for extra-
precise function evaluation. Set n :=4,6; = 1,64 = 3%, 6, =2-0,and 63 = 2+ 5,
where 8 = 10~} is a parameter. By specifying w? = [2,5,5,2], p = ||w||?, and
z = w/||w||, we make A2 = 2 an eigenvalue. Thus,

¢?
=
¢?
162 = Aol lca 52557

That z, p, and §;’s are not exactly representable in computer arithmetic does not
affect the nature of this test.

max

1
2 ==

Test 3: Here n = 10, §; = 1, 610 = 3, the rest of the é§’s are of the form 2 + j - 3,
j=1234and g = 10~ for various values of /. Random vectors w whose 10
components satisfy max |w;/wy,| < 2 are generated. Then

pi=llwl? and  z:=w/|ull.

This problem illustrates that as long as max; m |(;/(m| is moderate, working preci-
sion suffices even in the case of clustering eigenvalues.

Table 1 summarizes the test results. Note that the parameters 3 are chosen so that
the problems are not to be deflated.

We make several observations on Table 1. First, our analysis in Section 4 is confirmed.
Whenever M ~ 10* for some k > 0, roughly k digits are lost in orthogonality when using
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Test

n

20
20
20
48
36

4

10

—log,0(8)

IS I IPR PR PN

ORIV QI

—
w o

——
Lo b=

Table 1: Testing WP _Sec and Acc_Sec
Machine: Sun 4; Precision: IEEE Double

max; Q7 g: - esl| / ne

log,0(M)

5.88
8.55
4.30
9.40
11.95

0.76
3.72
6.72
9.72
12.72

0.06
0.08
0.08
0.08
0.10

WP Sec

1.1 x 10*
1.9 x 106
3.2 x 102
2.9 x 107
8.6 x 1013

1.0
1.7 x 103
1.4 x 10%
8.2 x 108
4.0 x 1014

2.1 x 10~
2.2 x 10!
2.0 x 10!
1.3 x 10!
1.1 x 10-!

20

max; || 4g; — igil| / nell 4]

AccSec WP_Sec_ AccSec
14x10°! | 42x10"2 8.0x10-?
16x10-! | 3.8x10-2  5.1x10"?
10x10"! | 3.8x10"2 6.8x 10~2
85x10-2 | 1.8 x 10~2 2.8 x 10"2
1.1x10"! | 5.4x 10! 5.1 x 10~2
51x10"! | 35x 102 5.5x10"2
41x10"' | 2.2x 10! 1.2 x 10-1
51x 10! [ 89x10-2 5.2x 102
29x10"! [ 20x 10!  2.0x10-!
39x10-1 | 3.1x10?! 2.1x 10!
2.5x 10! | 6.2 x 102 1.1x 101
1.5x 10" | 6.9 x 10~2 5.1 x 102
1.2x 10"! | 4.1 x 10~2 9.9 x 10-2
1.6x10~! | 6.9x10"2  7.5x10"2
1.5x10"! | 6.9x10-2  5.0x 10~2




WP Sec, a phenomenon suggesting that some of the calculated differences §; — A; are
losing k digits. Second, Acc_Sec works well (as expected). That full orthogonality
is maintained even in cases where M = 103 illustrates that indeed our simulation is
capable of evaluating the function as if “doubled-precision” were used in all intermediate
calculations. Finally, the fact that WP _Sec is able to produce small ||Ag — Ag]| is not
surprising. A simple analysis similar to the one in Section 4 shows that

|abs. error in f|
a ’
VE g

where M is a moderate constant. Thus, when f is evaluated in working precision alone,

lAg - Agll £ M -

2
S
4a;

€ - max;

|Ag — Aq|| M-

IA

s

J
Me - max |(j)
3

< Me.

IA

Next, we illustrate the portability of our simulation by running our Fortran code on
a VAX 8700 (under VMS) and an IBM 370. The precisions we used are Real*8 and
Real*16. Although Real*8 is not the highest precision in those environments, we still
use our simulation technique instead of a simple computation using Real*16. In the
Real*8 case, the Fortran code that ran on the Sun needed no change to run correctly
on the VAX and the IBM. In the Real*16 case, the only change required was to alter
all declarations from Real*4 and Real*8 to Real*8 and Real*16, respectively. Table 2
summarizes the results. Residues 1 and 2 are the measures

max[|QTg: —eifl /ne  and  max|lAg - Nigill / nellAl,

respectively.

7.2 Testing Reform

The reformulation solves the i-th eigenpair based on the (i — 1)-th eigenvalue. Thus,
the obvious implementation uses WP _Sec to locate the first eigenpair and then uses the
reformulation to locate the remaining eigenpairs (A2,¢2),(A3,43),...,(An,gn) in order.
Recall that the reformulation may reduce the difficulties caused by rounding error in
evaluating the secular equation. The measure of difficulty is quantified by our measure

_ |abs. error in computed function|
"~ |root| - |derivative of function at root|’

Tables 3 and 4 compare WP _Sec with Reform on our first two sets of tests. Note the
improvements in M and the residues as a result of using Reform.
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Table 2: Testing Acc_Sec on Various Machines

Residue 1 for Test | Residue 2 for Test
Machine Precision — log, () 1 2 3 1 2 3
Sun 4 IEEE Double 52 0.16 0.51 0.25 | 0.08 0.21 0.11
VAX/VMS D-format 55 0.22 0.14 0.61 | 0.10 0.11 0.22
G-format 52 0.21 0.13 0.63 | 0.11 0.08 0.21
H-format 112 0.36 0.10 0.53 | 0.11 0.08 0.22
IBM 370 | IBM Double 52 0.41 0.37 097 |0.15 0.07 0.77
IBM Quad 108 042 025 0.61|0.16 0.08 0.42
Table 3: Comparing WP _Sec and Reform on Test 1
Machine: Sun 4; Precision: IEEE Double
logio(M) | maxi[|QTq; - esll / ne | maxi [|4gi — Nigsll / nell 4l
n | WPSec Reform _V_VP.Sec__ Reform WP Sec Reform
20 5.88 0.04 1.1x10* 1.0x10"! | 4.2x 102 4.2x 1072
20 8.55 0.08 19x10° 1.6x10~! | 3.8x 102 6.0 x 102
20 4.30 0.04 32x102 1.3x10"! | 3.8x 1072 5.3 x 102
48 9.40 0.77 29x107 87x10"%2| 18x10~? 2.2x 102
36 | 11.95 1.08 |8.6x10® 1.1x10"!| 54 x 10 4.0 x 10~2
Table 4: Comparing WP _Sec and Reform on Test 2
Machine: Sun 4; Precision: IEEE Double
logio(M) | max;[|QTq: —eill / ne | maxi||Ags — gill / nell4l
—log,(8) | WP Sec Reform | WP Sec Reform WP _Sec Reform
1 0.76 0.75 1.0 3.8x10"! | 3.5x10°2 4.9 x 10!
4 3.72 0.60 1.7 x 108 3.4 2.2x 101 1.3
7 6.72 0.61 1.4x10° 20x10"! | 8.9x 102 1.0
10 9.72 0.60 8.2x10% 26x10-!|20x10°! 1.5
13 12.72 068 |4.0x10* 3.8x10"!| 3.1x 10! 4.9 x 107!
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Table 5: Comparing WP _Sec and Reform on Test 3
Machine: Sun 4; Precision: IEEE Double

logio(M) | max;[[Q7q: —eill / me | max;||Agi — Aiaill / melAll
—log,o(8) | WP.Sec Reform | WP Sec Reform WP Sec Reform

0.06 0.83 |[21x10"! 15x10~!|6.2x10"2 1.0x 107!
0.08 269 |22x10"! 20x10® |69x10"2  3.4x10°
0.08 568 |2.0x10"! 19x10° |41x10"2  3.6x10°
0.08 879 |13x10"* 3.0x10% |6.9x10"2  4.4x10°
0.10 1.7 | 1.1x10"! 33x10' | 6.9x10"2 4.6 x 10!

—
wo Nk

Is Reform better than WP _Sec? The most obvious drawback is that Reform is intrin-
sically serial. A good parallel implementation of the divide-and-conquer scheme in [4]
using Reform would have to divide the §’s into several groups and apply the method to
each group in parallel; i.e. the first eigenpair of each group is solved by WP Sec before
the remaining eigenpairs are located using Reform.

But Reform has another problem. It can fail miserably while WP _Sec succeeds.
Table 5 illustrates the situation. The values of the M’s tell us that reformulating these
problems changes them from easy to hard — a scientific illustration that reformations
are not all beneficial.

In short, Reform must be used cautiously. WP_Sec should be used as long as M is
moderate. A switch to Reform should be made only when WP Sec yields a large M. But
even then, this combination of WP _Sec and Reform offers no guarantee of high accuracy
for all possible problems. Clearly, Acc_Sec is our choice!

8 Comparison with Kahan’s Method

We first reported in the summer of 1988 [12] our experimental success with the two ap-
proaches here. A more recent presentation can be found in the 1989 Numerical Analysis
conference at Dundee [11]. The full analysis is more recent work. Kahan studied the
same problem independently and documented his work in an unpublished manuscript
“Rank-1 Perturbed Diagonal’s Eigensystem” dated July 1989. In this section, we sum-
marize Kahan’s method and offer some comparisons with ours.

8.1 Kahan’s Method

The gist of Kahan’s method is similar to our scheme Acc_Sec. To compute the i-th
eigenpair, Kahan considered the translated secular equation

o(z) = %zf(61+ z)
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CZ
= 2 2
RIS M e R =r

where

== +
Clearly, the root z* of g(z) that Kahan sought is the A} that we tried to locate. Next,
Kahan computed v using simulated extended precision before rounding the value back to
working precision. Note that v;’s form is similar to the function we tackled in Acc_Sec.
The simulation technique is similar to ours. (This is not surprising since the second
author learned those techniques from Kahan in the first place.) After the working-
precision y; was obtained, Kahan solved g(z) = 0 using solely working precision.

8.2 Kahan’s Analysis

Kahan offered only a brief analysis of his proposed method. The conclusion of his analysis
was that in order to compute the root accurately enough to ensure orthogonality, the
rounding errors in the computation of 4 are potentially harmful and therefore have to
be “attenuated by the use of doubled-precision arithmetic.” Is such doubled precision
really sufficient in his case?

8.3 Examples and Counterexamples

Kahan coded his method in Basic on an IBM-XT with an Intel 8087 coprocessor. We
first ran the program “TestAbp” (the executable module that he supplied us) on such
a machine with the difficult subproblems from the W7, test described previously. The
eigensystems were all calculated to full machine precision in those cases. Clearly, in those
difficult cases where our analysis showed that a “doubled-precision” evaluation of f is
necessary, the constant 4y must have accounted for most of the cancellation.

Unfortunately, situations are not always that favorable. Let us apply our analysis in
Section 4 here. Since

2
Cj 2

g(z)=zy1+2 g:l G =6 =) (1

is evaluated in working precision,

|abs. error in g| > €|zvi|
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Table 6: Kahan’s TestAbp on 2 x 2 Examples

—log,o(8) | max; ||QT i — ei]| / ne | max; ||Ag; — Aigil| / nel|Al

in general. Since g(z) = £ f(é + z), at z* = A — 4,

lg'(=")I

Z(&:-A)?

J=1
The indicator of accuracy is
M = |abs. errorin gl/elx“‘g’(z“)[
= lonl / Z
J"l

Hence, if |v1| is large compared to ) W, accuracy will be lost. The following 2 x 2
example illustrates the situation.
Define 6; := 1 -3 (0 < 8 < 1), 6 := 1, w7 := [wy, wy] where

=482 wi= 172, pi=wl?, and z:=w/|ju].

It is easy to show that A = 2 is an eigenvalue. But at i = 2,y = 1/8 and f'(\2) = 1
Hence by choosing 8 = 10—/, 1 > 0, we expect an error of 10' in either ||QTq; — &;||/]|Alle
or ||Agi — Aigi||/ne, or both. Table 6 confirms our analysis. That the error grows like
10'-2 instead of 10/ is probably due to the fact that the Intel 8087 coprocessor does all
arithmetic to roughly 3 digits more than IEEE double precision.

In the same way, we created some 4 X 4 examples as follows: n := 4, §; := 1 — 40,
0 :=1,683:=2+4+30, b4 := 2+ 48,

1
=ILL3+36,1, pi=ulf, and zi=w/lul.

Once again, errors of the order of 1/ are exhibited, as shown in Table 7. Ironically, the
simple method WP _Sec (without simulation) works fine on both sets of problems. (This
is expected, since all the components of z are of comparable magnitude.)
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Table 7: Kahan’s TestAbp on 4 x 4 Examples

~ logyo(8) | maxi 1Q7qi = eill / me | max; |1 Ag: = igsll / mell ]

5.0 x 102
4.7x 103
2.8 x 104
8.3 x 10*
2.9 x 10

0o =3 O O

Towards the end of his presentation of his method, Kahan mentioned that an alter-
native would be to search for the root of

3(z) = %sz +2),

where 9 is a better approximation to A; than 67 is. The associated constant vy would then
be calculated by using extra-precision arithmetic. Kahan stated that this “alternative
has not been found necessary, so it has not been elaborated, though it may deserve to
be explored.”

But the alternative is necessary. In fact, our scheme here is exactly the extreme end
of the alternative: the ¥ is simply the root of f in (6;,6;+1) computed by using working
precision alone. At this point, the magnitude of f is approximately the absolute error in
evaluating f. Acc_Sec is then invoked, which is tantamount to calculating 79. Had Kahan
explored and implemented this alternative, the differences between his and our methods
would have been only the root finder scheme. Kahan used quadratic interpolation while
we use rational interpolation. We believe that a robust and efficient scheme can very
likely benefit from both interpolations.

9 Concluding Remarks

We have shown that the important problem of determining the eigensystems of rank-1
perturbed diagonal matrices can be solved very accurately. Moreover, good computer
arithmetic, most notably IEEE 754, has made highly reliable software for this problem
possible. Good arithmetic hardware, however, is not the only necessary ingredient for
such software. Language must offer good support to the hardware environment at hand;
and compilers must appreciate various subtle uses for floating point; for example, the
compilers must at least be controllable not to take various “optimization techniques” such
as rearranging the order of computations and thus destroying the accuracy of carefully
crafted codes.

Finally, it is unfortunate that neither Reform nor Acc_Sec would work on machines
whose arithmetic subtraction lacks a guard digit (or bit); notable examples are Crays
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and CDCs. It is even more unfortunate because, despite the many anomolies those
arithmetics offer, merely adding a guard digit (or bit) would allow AccSec to work.
The ultimate misfortune is that robust programs such as Acc_Sec may never appear in a
federally funded software library such as LAPACK simply because the program may not
run on a few aberrant machines whose manufacturers have not implemented the extra
guard digit in thier hardware. These include some of the most powerful high performance
computers.
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