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While efficient new algorithms for interprocedural data-flow analysis have made these techniques prac-
tical for use in production compilation systems, a new problem has arisen: collecting and using inter-
procedural information in a compiler introduces subtle dependences among the procedures of a pro-
gram. If the compiler depends on interprocedural information to optimize a given module, a subse-
quent editing change to another module in the program may change the interprocedural information
and necessitate recompilation. To avoid having to recompile every module in a program in response
to a single editing change to one module, we have developed techniques to more precisely determine
which compilations have actually been invalidated by a change to the program’s source. This paper
presents a general recomptlation test to determine which procedures must be compiled in response to a
series of editing changes. Three different implementation strategies, which demonstrate the funda-
mental tradeoff between the cost of analysis and the precision of the resulting test, are also discussed.

Categories and Subject Descriptors: D.2.6 [Software Engineering|: Programming Environments;
D.3.4 [Programming Languages|: Processors — compilers, optimization

General Terms: compilers, languages, performance

Additional Keywords and Phrases: data-flow analysis, recompilation analysis, interprocedural analysis
and optimization

1. Introduction

Traditional optimizing compilers have advanced to the point where they do an excellent job of optim-
izing code within a single procedure or compilation unit. Accordingly, code optimization research has
begun to focus on interprocedural analysis and optimization. Recent work has included both faster
algorithms for some interprocedural data-flow problems and efficacy studies of some interprocedural
transformations [BuCy 86, CCKT 86, Call 8, Chow 88, CoKe 88, Wall 88, CoKe 89, RiGa 89a, RiGa 89b]. These
techniques are also being applied in compilers that try to automatically restructure programs to expose
parallelism. In each of these areas, the goal is to improve the efficiency of code generated for a whole
program by giving the compiler more context over which to optimize.

Unfortunately, interprocedural optimization directly conflicts with one of the most treasured
features of FORTRAN and ALGOL-like programming languages: separate compilation. Interprocedural
data-flow analysis gives the compiler facts about the naming environment in which the code will exe-
cute at run-time and about the side effects of procedures that will be called at run-time. Using such
information makes the correctness of compile-time decisions for one procedure dependent on the
source text for other procedures. Cross-procedural optimizations, like interprocedural register
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allocation and inline substitution, have a similar effect, although they may rely on information derived
even later in the compilation process, like the specific mapping of names to storage locations. As soon
as information from other procedures is used to make compile-time decisions, the object code pro-
duced by the compiler becomes a function of those other procedures. In such a system, editing
changes made to one procedure can invalidate prior compilations of other procedures.

To produce a practical system that performs interprocedural analysis and optimization will
require a mechanism for tracking such recompilation dependences, detecting when they are violated,
and automatically recompiling the necessary parts of the program. Of course, the compiler could
adopt the naive approach and recompile the entire program after a change to any single procedure —
sacrificing any possible benefit of separate compilation. The alternative is to perform a recompilation
analysts to determine, at compile-time, the set of procedures that may need to be recompiled in
response to editing changes to one or more procedures in the program. The power (and success) of
such an analysis should be measured by the number of spurious recompilations that it avoids — pro-
cedures recompiled unnecessarily.

This paper examines the recompilation problems introduced by the use of interprocedural data-
flow information as a basis for compile-time decisions. We present a general approach to recompila-
tion analysis and three specific techniques for implementing it. The general framework is based on
observing the nature of the interprocedural sets themselves and the ways in which an optimizer can
use them. The different implementation techniques produce recompilation tests of successively greater
precision, with a concomitant increase in the expense of the test. Each of the techniques represents a
significant improvement over recompiling the entire program.

This problem has not received much attention in the literature, primarily because few compilers
have actually computed and used interprocedural information. For example, the PL/1 Optimizing
Compiler trivializes the problem by limiting its analysis to a single compilation unit [Spil 71]. Other
systems, like the ECS project at IBM Research, appear to recompile the entire program for each exe-
cutable [AlCa 80]. Some systems ignore the problem completely — for example, the Cray FORTRAN
compiler will perform inline substitution, but doesn’t provide the user with support for managing the
resulting recompilation problems.

However, there are two systems that are closely related to this work. Feldman’s make system is
an ancestor of our system. It pioneered the idea of automatic reconstruction based on an analysis of
the internal dependences of a system [Feld 79]. However, make requires that the programmer explicitly
specify the compilation dependences, while our method derives them analytically. The system pro-
posed by Tichy and Baker [TiBa 85| analyzes the recompilation dependences introduced through the use
of tnclude files. For each module that uses a specific include file, it records those definitions that are
actually referenced in the module. Using this information, it can determine which modules must be
recompiled when an include file is changed. Although it is similar in flavor to our approach, the
Tichy-Baker method cannot be used to limit recompilations that are forced by changes to interpro-
cedural data-flow information. ‘

Although the implementations of this work have been in the context of systems that analyze
FORTRAN, the techniques are applicable across a wide variety of languages. They work directly with
data-flow information produced by a compiler; the complications introduced by specific language
features are thus folded into computing the base information on which our methods work.






The remainder of this paper is subdivided into eight distinct sections. Section 2 describes our
model of the compilation system. Section 3 introduces the three specific kinds of interprocedural
data-flow information addressed by our work. Section 4 describes the general recompilation frame-
work and presents several implementation techniques. Section 5 proposes a compiler implementation
methodology that can lead to more precise recompilation tests. Section 6 discusses optimizations that
directly use interprocedural facts. Section 7 generalizes the work to deal with multiple procedures in a
single compilation unit and to account for the effects of interprocedural optimizations. Section 8
addresses the dual of the problem — predicting when a recompilation might be desirable to improve
the results of optimization. Finally, section 9 contains a summary and some conclusions.

2. Compilation model

To simplify the remainder of this discussion, we will first present a model of the compilation system.
The techniques that we describe in this paper are intended for use in a compiler that attempts both
separate compilation and the collection and use of interprocedural data-flow information. Such a com-
piler must be structured differently than one that supports a traditional separate compilation scheme.
The differences arise from two principal requirements:

(1) The compiler must have access to information about all the procedures in a program as it compiles
each of them.

(2) The compiler must have the ability to retract optimizations, after the fact, in response to changes
in the interprocedural information that was used to justify them.

Together, these observations suggest a new relationship between compiler, source code, and program-
mer, depicted in Figure 1.

The entry tool provides the programmer with a means to create and modify source text that
resides in the system’s database. The entry tool can be implemented as a language sensitive editor or
some combination of editor, version control system, and compiler front-end. A similar path must
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Figure 1 — Our comptlation model






allow the programmer to construct a representation of the program — a recipe that specifies how to
bind together individual source code modules to form a single executable program. The recompilation
tool creates an executable image for this program. It uses information from the database to determine
what must be compiled and uses the compiler and linker as needed. The compiler has direct access to
the database for interprocedural information, as well as the results of previous compilations. We
assume that the compiler translates only one procedure at a time; in Section 7, we show how to extend
the recompilation tests to larger compilation units.

The techniques described in this paper have been designed to operate in a system structured like
our model. The model is not overly restrictive. It can accommodate an implementation in the con-
text of a programming environment — the IR" programming environment for FORTRAN is an example
[CCHK 87]. Similarly, an implementation within a more conventionally structured compiler can fit the
model — the PTRAN analysis system for FORTRAN is an example [ABCC 88]. Both of these systems
implement recompilation analysis using techniques described in this paper.

3. Interprocedural Information

Familiarity with interprocedural data-flow information is a prerequisite to understanding the recompi-
lation tests, so we begin with some background. Interprocedural information provides the compiler
with knowledge about the run-time conditions under which a procedure will actually be invoked and
about the impact of executing other procedures on the run-time values of variables in the procedure
being compiled. Thus, we are concerned with three distinct interprocedural phenomena: aliasing, side
effects, and constant propagation.

Whenever two names can refer to a single storage location, they are potential aliases. Because
an assignment actually modifies both the name and all of its aliases, the compiler needs reasonably

precise information about potential aliases.! In the absence of such information, it must assume that
all formal parameters and global variables are potentially aliased, in order to preserve the relative ord-
ering of loads and stores. In practice, this eliminates opportunities for optimizations involving those
variables. For example, the compiler cannot retain the values of global variables or formal parameters
in registers. To obtain knowledge of aliasing patterns, the compiler can compute, for each procedure
P, a set ALIAS(p) containing those pairs of names that are aliased along some path leading to p
[Coop 85].

Stde cffect summary snformation describes the effects of executing a procedure call on the values
of variables. At a call site, executing the body of the called procedure can both reference and change
the values of individual variables. Since the compiler relies on derived knowledge about the values of
variables to determine the safety and profitability of optimizations, it must understand the impact of a
procedure call on the values of variables in the calling procedure. The compiler uses this information
to sharpen its analysis within a single procedure. In the absence of precise information, the compiler
must assume that the call both modifies and uses every variable available to it. Using such worst case
assumptions decreases the accuracy of the data-flow information computed for the calling procedure,
potentially inhibiting optimization within that procedure.

1 Strictly speaking, the FORTRAN standard permits the compiler to ignore aliasing. The standard contains a restriction
that neither of the two aliases may be modified in a standard-conforming program [ANSI 78]. Nevertheless, many compilers at-
tempt to trace aliases because information about potential aliases can be useful as a diagnostic aid to the programmer and be-
cause the resulting systems achieve a higher level of predictability than the standard requires.






In our model system, the compiler will annotate each call site ¢ in a program with two sets,

Mob(e) and REF(¢).2 The former contains all variables that might be modified as the result of execut-
ing e, while the latter contains all those variables whose values might be referenced as the result of
executing ¢. For example, in traditional available expression analysis, a procedure call must be
assumed to kill every expression involving either a global variable or an actual parameter. But, if the
compiler encounters an expression v that is available immediately before call site ¢ and it determines
that none of the constituent variables of v are in MOD(e), then it can assume safely that v is still
available after e.

In large programs, information is often passed between procedures in the form of constant-
valued actual parameters or global variables. This is particularly common in numerical programs that
incorporate modules from standard libraries such as LINPACK [DBMS 79|, and in programs where the
dimensions of major data structures are stored in variables to simplify later modification. Interpro-
cedural constant propagation attempts to identify formal parameters and global variables that will
have the same known constant value on each invocation of a procedure within a given program. Find-
ing a precise solution to the general constant propagation problem is undecidable [KaUl 77 and the
usual approximate constant propagation problem is intractable in an interprocedural setting [Myer 81).
However, a useful subset of the complete and precise set of interprocedural constants can still be
profitable for the optimizer. The algorithms for this problem proposed to date compute approxima-
tions to the sets of constant-valued parameters and global variables [Torc 85, BuCy 86, CCKT 86, WeZa 88 |.
In our model system, the compiler computes, for each procedure p in the program, a set
CONSTANTS(p) of constants known to hold on entry to p. Elements of CONSTANTS(p) are pairs of the
form (z,v), where z is the name of a formal parameter or global variable and v is its known constant
value.

program a subroutine b(p1l, p2) subroutine c(p3, p4)
integer x,y,z,v1,v2 integer p1, p2 integer x,y,z,p3,p4
common /global/x,y,z e common /global/x,y,z
e 7: call c(p1, p2) e

v2 = 17 P2 = pl * 3 p3 = pd * 2
a:  call c(x, v2) . cee
. end end
B:  call b(vi, v2)

V2 = y2 * x

end

Figure 2. Example program fragment.

2 For consistency with the rest of the literature on interprocedural data-flow analysis, we will call this set REF, even
though we have used the name USE in the past. USE appears in several sources as the set of variables whose values can be read
before modification. REF ignores the issue of whether or not a modification intervenes between the call site and the first use in a
called procedure. Thus, the REF set is inherently flow-insensitive, while the USE set is inherently flow-sensitive.






As an example, consider the program fragment shown in Figure 2. Assuming that all of the
relevant statements are shown, the aliasing and constants sets for its procedures would be:

procedure ALIAS CONSTANTS

a (%) %)
b %) { (p2,17)}
c {(xp3)} {(pa17)}

The potential alias for procedure c arises when call site a passes the global variable x as an actual

parameter. The constants come about from passing the constant valued variable v2 as an actual at o
and B; v simply passes the value through to procedure c. The summary sets for the program frag-
ment would be:

call site MobD REF
a {x} {v2}
B {viv2} {viyv2}
2l {p1} {p2}

The only statements that either modify or use the value of a variable are the three assignments. The
Mop and REF information arises from the assignments in procedures b and ¢, along with parameter
bindings at the various call sites.

4. The General Framework

We have formulated our techniques for recompilation analysis as a test that determines when a pro-
cedure must be recompiled. All of our techniques apply the same test; they compare the current inter-
procedural information for a procedure against previously recorded annotation sets. The annotation
sets contain those interprocedural facts that can be true without invalidating the procedure’s previous
compilation. Our specific implementation techniques differ in the precision with which they assign
values to these annotation sets. We attach the following sets to the program’s call graph:

(1) MayBeAlias(p), for each procedure p — the set of alias pairs that are allowed without forcing a

recompilation. If a change adds a pair to ALIAS(p) that is not in MayBeAlias(p), recompilation is
required.

(2) MayMod(e), for each call graph edge ¢ — the set of variables that may be modified as a side effect
of the call without forcing a recompilation. If a change adds a variable to Mob(e) that is not in
MayMod(e), recompilation is required.

(3) MayRef(e), for each call graph edge ¢ — the set of variables that may be used as a side effect of
the call without forcing a recompilation. If a change adds a variable to REF(e) that is not in
MayRef(¢), recompilation is required.

(4) MustBeConstant(p), for each procedure p — the set of constant pairs that must hold on entry to
procedure p if recompilation is to be avoided. If 3 (z,v)€ MustBeConstant(p) that is not in
CONSTANTS(p), recompilation is required.

Given these sets, the recompilation test can be expressed quite simply. A procedure p is recompiled if
any of the following are true:






(a) ALIAS(p) - MayBeAlias(p) # &)

(b) MoD(e) - MayMod(e) # (), for any call site ¢ in p
(c) REF(e) - MayRef(e) # (), for any call site ¢ in p
(d) MustBeConstant(p) - CONSTANTS(p) #

Set subtraction is defined so that a € (X-Y) if and only if a is a member of X and not Y.

To construct a list of procedures needing recompilation, the recompilation tool first initializes
the list to include every procedure where editing has produced a semantic change since its last compi-
lation. Next, it applies incremental techniques to update the program’s ALIAS, MOD, REF, and CON-
STANTS sets. Whenever this update changes the value of one of these sets, the compiler applies the
appropriate test. If the test indicates that recompilation is necessary, the corresponding procedure is
added to the recompilation list. Because the analyzer only tests sets that change during the incremen-
tal update, the test requires a number of set operations proportional to the size of the region of
changed data~flow information.

As an example, consider the following assignment of values to the annotation sets: for each pro-
cedure p let
MayBeAlias(p) = and
MustBeConstant(p) ={ (z,Q2), for all z declared in the program},

where z ranges over the parameters and global variables of p and (2 is a constant value that appears
nowhere in the program, and for each call site e let

MayMod(e) = and

MagyRef(e) =@.
With these annotation sets, the compiler will recompile every procedure where either the source text
or some associated interprocedural set has changed. It will not recompile procedures for which the

information is unchanged because the test is not applied at those procedures. Hence, this test is a
slight improvement over the naive approach of recompiling every procedure.

Consider the impact of deleting the assignment statement from procedure b in the example pro-
gram. To determine which procedures must be recompiled, the analyzer begins with b, the changed
procedure. After updating the interprocedural information, it discovers that only two sets have
changed: MoD(8) ={v1} and REF(8) ={v2}. Because sets associated with procedure a have changed,
it applies the test to a and slates it for recompilation. Since none of the sets associated with ¢ have
changed, the analyzer ignores c¢. Thus, it determines that only a and b must be recompiled.

The effectiveness of the testing procedure used by the recompilation tool depends entirely on the
values assigned to MayBeAlias, MayMod, MayRef, and MustBeConstant. To improve the precision of
the test involves expanding MayBeAlias, MayMod, and MayRef to include more allowed facts, or
shrinking MustBeConstant to exclude more facts. The next three sections present different methods of
computing values for these sets. The methods are presented in increasing order of complexity; each
successive method gives rise to a recompilation analysis of improved precision.

4.1. Most Recent Compilation

Our first approach to computing the annotation sets simply remembers the values of ALIAS, MOD, REF
and CONSTANTS used in the most recent compilation of the procedure. In other words, whenever we
compile a procedure p, we set



o



(1) MayBeAlias(p) =ALI1AS(p),

(2) MayMod(e) =MoOD(e), for each call site ¢ in p,
(8) MayRef(¢) =REF(e), for each call site ¢ in p, and
(4) MustBeConstant(p) =CONSTANTS(p).

This set of assignments reveals the principles underlying the recompilation tests. The summary and
aliasing sets identify events whose occurrence cannot be ruled out by the analysis. For example, if a
variable is in the MOD set for a given call site, the compiler must assume that it may be modified, but
if a variable is absent from the same set, the compiler may safely assume that the value of that vari-
able will be unchanged upon return from the call. In other words, in considering the ALIAS, MOD, and
REF sets, the compiler can only depend on what is not in the sets. If an optimization is safe when a
variable is present in one of these sets, that optimization will still be safe if the variable is removed
because the compiler must have already considered the possibility that the associated event may not
occur. Hence, changes in these sets necessitate recompilation only when they expand the sets. Thus, a
deletion cannot invalidate the correctness of previous compilations, although it can create a new
opportunity for optimization. This principle motivates tests (a), (b), and (c).

On the other hand, the CONSTANTS(p) set contains facts that are true on every path leading to
an invocation of p. Thus, if a pair (z,v) is in CONSTANTS(p), the compiler can rely on z having value
v on entry to p and can replace references to z on paths where z is unmodified with the constant
value v. If a subsequent editing change removes (z,v) from CONSTANTS(p), this forward substitution
by the constant value is invalidated. Thus, removing a fact from CONSTANTS(p) may mandate a
recompilation. An addition to CONSTANTS(p) cannot invalidate a previous compilation, but it can
open up'new opportunities for optimization. This provides the rationale for test (d).

Consider once again the impact of deleting the assignment statement from procedure b in our
example, assuming that annotation sets have been generated using information from the most recent
compilation. The analyzer repeats the steps described earlier, placing b on the recompilation list
because of the editing change and applying the test to procedure a because of changes to MoD(8) and
REF(B). The test indicates that procedure a need not be recompiled, since both of the changes are
deletions from flow-insensitive summary sets. Thus, with these annotation sets, the same testing pro-
cedure limits the recompilation list to procedure b.

4.2. APPEARS Information

Although the direct use of information from the most recent compilation yields a recompilation test
that is significantly better than the naive approach, it fails to take full advantage of the information
that the compiler could make available. For example, the test from Section 4.1 will recompile a pro-
cedure whenever a variable is added to its MOD set, even if that variable does not appear in any exe-
cutable statement in the procedure. Determining which variables actually appear in the procedure
leads immediately to an improved test. The compiler can easily produce the additional information
needed to support such a scheme. The sets must be computed as part of the initial information for
computing the MOD and REF sets.

To describe the annotation sets for this improved test, we define three additional sets. For a

procedure p, APPEARS(p) is the set of variables either used or modified inside p. If the only
occurrence of a variable inside p is as an actual parameter at some call site in p, then the variable

need not be included in APPEARS(p). APPEARSY(p) is defined to be the set of all variables either used






or modified in p or some procedure invoked as a result of executing p. Both APPEARS(p) and
APPEARS¥(p) can be computed trivially from information produced in the summary computation.

Finally, the set ALIASAPPEARS(p) describes pairs of variables, one of which appears locally in p and
the other appears in p or one of the procedures that can be executed as a result of invoking p. This
set is defined as
ALIASAPPEARS(p) = {(z,y) | z € APPEARS(p) andy € APPEARSY(p)}
Given these sets, the annotation sets at compile time can be computed as follows:
(1) MayBeAlias(p) =ALIAS(p) U ALIASAPPEARS(p),
(2) MayMod(e) =MoD(e) U APPEARS(p), for each ¢ in p,
(3) MayRef(¢) =REF(¢) U APPEARS(p), for each ¢ in p, and

(4) MustBeConstant(p) =CONSTANTS(p) N APPEARS(p). 8

Computing the annotation sets from these definitions eliminates spurious recompilations that arise
from information about irrelevant variables. In practice, this is important — procedures often contain
declarations for global variables they never reference. FORTRAN codes often contain large COMMON
blocks that define many global variables; a given procedure may only use a subset. In other languages,
widespread use of include files achieves the same result. In fact, this is one of the phenomena that
motivates Tichy and Baker’s work with include files — their system avoids recompiling procedures
that rely on a changed include file if the change doesn’t involve declarations that are actually relevant
to the procedure [TiBa 85].

To see this more graphically, consider adding the statement
X = p4d * 17

to procedure c in the example from Figure 2. This changes MOD(%) to {p1,x} and MoD(8) to {v1, v2,
x}. Under the most recent compilation test, this would have required recompilation of both a and b.
Using APPEARS information, the test determines that a requires recompilation, but b does not, since
x doesn’t appear in b.

The equations are presented in this form to convey the underlying ideas; an actual implementa-
tion should avoid instantiating sets like APPEARS(p) and ALIASAPPEARS(p). A careful refactoring of
the equations leads directly to a much more efficient implementation.

A word of caution is required at this point. There are optimizations that, on first consideration,
appear to be limited to a single procedure but are, in reality, inherently interprocedural. A prime
example is converting a sequential loop into a parallel loop. If the loop contains no call sites, the
transformation’s scope is limited strictly to the single procedure. If, however, the loop contains a call
site, the transformation is really interprocedural in its scope.

This distinction gives rise to the issue of “hidden variables” described by Burke and Cytron
[BuCy 86]. As we have formulated them, the recompilation tests determine when an intraprocedural
optimization can be invalidated by a subsequent change in an interprocedural set. The APPEARS test
will not handle interprocedural optimizations correctly, when it is applied in a straightforward
manner. Such optimizations require a more complex treatment; we describe one such method in

®The intersection in definition (4) is not intended to be taken literally; CONSTANTS(p) contains (name,value) pairs while
APPEARS(p) contains only names. Our intent is to compute the set of pairs in CONSTANTS(p) where the name is also a
member of APPEARS(p). This operation is a join over APPEARS(p) in relational algebra.






Section 7. Note, also, that the simpler test described in Section 4.1 will produce correct results for
such ‘“hidden variable” problems.

5. Compiler Cooperation

The techniques presented in Section 4 compute approximate annotation sets. While the best of these
techniques can eliminate many spurious recompilations, the question remains, can we compute more
precise annotation sets? Spurious recompilations arise from a simple fact — the compiler cannot capi-
talize on every interprocedural fact presented to it. Thus, the APPEARS test of Section 4.2 may judge
that some change in an interprocedural set mandates a recompilation, even though the fact is actually
irrelevant, simply because the compiler had no opportunity to exploit the fact during the previous
compilation. This section explores a methodology for computing more precise annotation sets by rely-
ing on the compiler to record those interprocedural facts that it actually uses.

To illustrate how such a method would work, we will consider a set of four optimizations and
the global data-flow information required to support them. The optimizations are common subexpres-
sion elimination, code hoisting, global constant propagation, and eliminating register stores. We will
classify each optimization as being one of two types with respect to recompilation analysis.
Throughout this discussion, a procedure p will be represented by its control-flow graph, G=(N,E n,).
The nodes of this graph represent basic blocks, sequences of statements with no control flow branches.
The edges e=(m,n)EE represent control flow between two basic blocks. Control enters the procedure
through its entry node n,,.

To unify the data-flow equations that we are considering, we will use terms similar to those
presented in Aho, Sethi, and Ullman [AhSU 86]. Consider equations of the form:

out[b] = “//\b)(gcn[a] U (out[a]Nnkill[a])) (1)

where out[b] contains the meet over all paths solution for block b, gen[a] contains local information
generated in block a, and nkill[a] contains those facts not invalidated in block a. Here, A is the
appropriate meet operator, |_J or (). Finally, let P[b] be the set of predecessors of b in the flow graph
and S[b] be the set of successors of b in the flow graph. Then, f[b] is either P[b] or S[b], depending
on whether the problem is a forward or backward flow problem.

5.1. CALLSBETWEEN Sets

To capture the information needed to compute more precise annotation sets, the compiler will need to
compute some auxiliary information during its standard global flow analysis. Assume that we have a
data flow event o and a block b in the control-flow graph where the presence of « is used to justify an
optimization. Then, to understand the impact that a specific interprocedural fact has on the values of
the sets produced by forward data-flow analysis, the compiler will need to determine the set of call
sites between the last occurrence of event a and block b, along all paths leading from a to b. We will
call that set CALLSBETWEEN(a,b). For backward data-flow problems, the compiler will need to deter-
mine the set of all call sites between block b and the first occurrence of event «, along all paths lead-
ing from b to a. We will call that set CALLSBETWEEN(b,a). For the sake of simplicity, we will refer
to both types of information as CALLSBETWEEN sets and assume that the difference is clear from the
order and type of the subscripts. Thus, for our purposes, the direction of the data-flow equation
affects the way that gen(a) is defined, whether f(b) is P(b) or S(b), and the region of interest con-
sidered for CALLSBETWEEN.
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To compute CALLSBETWEEN sets, we will expand the domain of the equations that define the
global data-flow problems used to support the optimization. We refer to this process as solving an
auxiliary data-flow problem. In the original formulations, the elements of the various sets, out, gen,
and nkdl, are names of data-flow events. Thus, the presence of an element « in out[b] asserts some
property that holds true at 5. In the auxiliary data-flow problem, the presence of a in out[b] still
denotes that o is a data-flow event holding at b, but it is now represented in terms of a pair
(a.name,a.calls), where a.name represents the literal name of the event and a.calls is
CALLSBETWEEN. To solve this auxiliary problem, we expand the domain of the gen and nkill sets
accordingly:

o For a€gen(b], if the data-flow problem is a forward problem, a.calls is the set of call sites in b
after the last occurrence of a; if it is a backward problem, a.calls is the set of call sites in b before
the first occurrence of a.

o For agnkill[b], a.calls is the set of all call sites in b.

We must also extend the definitions of the operators to work over the expanded domain. The new
interpretations are:

XNY Tocompute X N Y, for each element z € X such that 3y € Y with z.name =y.name, add
(z.name,z.calls U y.calls) to the result.

XUY To compute X U Y, first determine the set Yonly, containing every element of Y whose
name does not appear in X. Then the desired result is the natural union of X and Yonly *

XAY Tocompute X A\Y, if the appropriate meet operation is U then for each element z € X
such that 3 y € Y with z.name=y.name, add (z.name,z.callsUy.calls) to the result. For
each z € X (and y € Y) where there isno y € Y (z € X) with z.name =y.name, add z (v)
to the result. If the appropriate meet operation is (M) perform the intersection as defined
for X N Y above. Note that in both cases, .calls is computed as the natural union of the
call sites from all the appropriate paths.

Once we have reformulated the problem in this manner, we can solve it using traditional global data-
flow techniques. The solution to the reformulated problem contains both the solution to the original
problem, encoded as the name fields of set elements, and the additional CALLSBETWEEN sets, encoded
as the calls fields of set elements. We will use this technique in each of our four examples.

5.2. Type I Optimigations

The type I optimizations rely on the presence of a fact in the set out[b] to justify the safety of
applying the transformation. The three problems that we consider, global common subexpression
elimination, code hoisting, and global constant propagation, are each formulated as a data-flow com-
putation followed by selective application of a transformation. The decision to apply the transforma-
tion is based on the results of the data-flow analysis.

65.2.1. Common Subexpression Elimination

* Note that X U Y as defined here is not a commutative operation. For this to work correctly, X must represent gen|a|
and Y must represent (out|a|Nnkill[a]).
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When the compiler discovers two or more instances of a single expression separated by code that does
not redefine any of the variables used in the expression, it can save the result of the first evaluation
and replace the subsequent evaluations with a simple reference to the saved value. To locate oppor-
tunities for this optimization, known as global common subezpression elimination, the compiler must
know which expressions are avaslable at various points in the procedure. An expression is available on
entry to a basic block b if, along every path leading to b, the expression has been evaluated since the
most recent redefinition of its constituent variables [AnSU 86]. To represent this information, we associ-
ate a set AVAIL(b) with each block 5. AVAIL(b) contains all expressions available on entry to b.
These sets can be derived by solving a forward data-flow analysis problem. The following system of
equations describes the problem:

AVAL(b) = . @(»)(DEF(G) U (AVALL(a)NNKILL(a)))

where P(b) is the set of predecessors of b. DEF(a) contains those expressions computed in a and not
subsequently redefined in a. NKILL(a) is the set of expressions not redefined in a. This system of
data-flow equations is rapid in the sense of Kam and Ullman [KaUl 76|, so it can be solved efficiently
using iterative techniques.

Expressions remain available as long as they are included in NKILL(). For a block b, NKiLL(b)
excludes any expression containing a variable killed locally in b. In the absence of summary informa-
tion about call sites in b, the AVAIL analysis must assume that a procedure call kills every variable it
can access. Thus, if b contains a call site, NKILL(b) must ezclude all expressions containing actual
parameters and global variables that can be modified as a side effect of the call. If summary informa-
tion is available, this exclusion can be reduced to the set of expressions involving variables contained in
Mon(e) for the call site e. REF(e) plays no role in the AVAIL computation.

When a variable ¥ € MOD(e), no expression containing v can be in NKILL(}) for the block b
containing call site ¢, because v may be modified by execution of the procedure call. Thus, if an
expression & € AVAIL(b) for some block b, its constituent variables cannot be in the MOD set of any
call site between a’s most recent evaluation and b, on each path leading to b. If the compiler elim-
inates a re-evaluation of e, the correctness of that decision relies on the values of the MOD sets for the
appropriate call sites. The procedure will need to be recompiled if any of the variables used in o are
added to one of these MOD sets.

To capture this information in the annotation sets, the compiler can compute CALLSBETWEEN
sets along with the AVAIL information and use them to compute MayMod(¢). The CALLSBETWEEN
sets are computed as described in Section 5.1. For each a € AVAIL(b), a.calls is CALLSBETWEEN(a,b).
The following definitions are used for the local sets.

o For a € DEF(b), a.calls is the set of call sites in b after the last definition of a.
e For a € NKILL(b), a.calls is the set of all call sites in b.

The operations used are those described in Section 5.1. In this case, the meet operator is intersection.
Using these definitions, for each o € AVAIL(b), a.calls corresponds to the set CALLSBETWEEN(a,b).
Even with the changes in the operators and local sets in the AVAL computation, calculation of the
new AVAILL and CALLSBETWEEN information is still rapsd in the sense of Kam and Ullman [KaU1 76.

Given CALLSBETWEEN(a,b), MayMod(c) can be constructed as follows:
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(1) MayMod(c) =ALLVARS, the set of all actual parameters and global variables, for each call site
ein p.

(2) Whenever an evaluation of an available expression « is replaced in block b, the compiler re-
moves all constituent variables of a from MayMod(e), for each call site e in
CALLSBETWEEN(«,b) and each call site ¢ inside b occurring before the optimization.®

The resulting MayMod sets model the recompilation dependences introduced by applying this optimi-
zation.

5.2.2. Code Hoisting

An expression is very busy at a point p in a program if, along every path leading from p, the expres-
sion is evaluated prior to redefinition of any of its constituent variables. When the compiler discovers
that an expression is very busy at p, it can evaluate the expression at p, save the result of this evalua-
tion, and replace the subsequent evaluations with a simple reference to the saved value. This transfor-
mation, called code hoisting, reduces the total code space required for the procedure [AlICo 72]. To
locate opportunities for code hoisting, the compiler must know which expressions are very busy at
various points in the procedure. To represent this information, we associate with each block b a set
VERYBUSY(b) that contains all expressions that are very busy upon exit from b.

To find opportunities for code hoisting, the optimizer can compute the set of very busy ezpres-
sions.

VERYBUSsY(b) = . e/s\b) (UsED(a) U (VERYBUSY(a)NNKILL(a)))

Here, USED(a) contains those expressions computed in a prior to redefinition in a of any of its consti-
tuent variables.

When a variable v€MOD(¢), no expressions containing » can be in NKILL(b) for the block b
containing ¢. Thus, if an expression « € VERYBUSY(b) for some block b, its constituent variables can-
not be in the MOD set of any call site between the end of b and the first evaluation of o on each path
leading from 5. To apply the hoisting optimization, the compiler would move the evaluation of a to
the end of b, store the result in a temporary, and replace each of the subsequent evaluations with a
reference to the temporary. The correctness of the decision to hoist a relies on the values of the MOD
sets for the call sites between b and each of the replaced evaluations. The procedure will need to be
recompiled if any of the variables used in « are added to one of these MOD sets.

To capture this information in the annotation sets, the compiler can compute auxiliary informa-
tion in the form of CALLSBETWEEN sets as described in Section 5.1. For each a EVERYBUSY(b),
a.calls represents the set CALLSBETWEEN(b,a). The local sets for the auxiliary problem are defined
as:

o For o € USED(b), c.calls is the set of call sites in b before the first definition of a.
e For o € NKILL(b), a.calls is the set of all call sites in b.

The meet operator is intersection. The data-flow problem is still rapid in the sense of Kam and Ull-
man, even after the addition of the auxiliary problem [KaUl 76].

®The optimizer has assumed these variables are not in MOD(e) at each of these call sites.
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Given CALLSBETWEEN(),a), MayMod(c) can be updated for code hoisting in the following
manner.

(1) MayMod(e) =ALLVARS, the set of all actual parameters and global variables, for each call site
einp.
(2) Whenever the optimizer moves a very busy expression a to the end of block b, the compiler

should remove each of the constituent variables of a from MayMod(¢) for each a in
CALLSBETWEEN(b,a).

The resulting MayMod sets describe the compilation dependences introduced by code hoisting.

5.2.3. Global Constant Propagation

In global constant propagation, the optimizer replaces an expression with a constant value if the value
can be computed at compile time.® This optimization is based on reaching definitions information. A
definition reaches a particular point p in a program if there exists a path between it and p along
which the defined variable is not redefined. To represent this information, we associate a set
REACH(b) with each basic block 5. REACH(b) contains all definitions that reach the entry to block b.
These sets can be derived by solving the following forward data-flow problem.

REACH(b) = \ é(b)(DEF(a) U (REACH(a)NNKILL(a)))

Here, DEF(a) contains those definitions in a of variables that are not subsequently redefined in a.
NKILL(a) is the set of definitions for which the defined variable is not redefined in a. The meet opera-
tor is set union.

However constant propagation is performed, a use of a variable z can be replaced by a constant
¢ only if all definitions of z that reach the use have been recognized as having the value ¢. For a use
of z that is replaced by ¢ at a point p, any call sites that can be executed prior to p can potentially
invalidate the optimization. If z is subsequently added to the MOD set of some such call site, that
change represents a potential change in z’s value. In the absence of better interprocedural informa-
tion, this new definition invalidates the forward substitution of ¢ for z at p.

Note, however, that while a new definition in one of these MOD sets invalidates the actual fold-
ing of ¢ at p, it doesn’t actually invalidate the REACH sets. The safety of the folding transformation
is based on a stronger condition than the presence a definition in REACH(b). The constant can be
folded only if, along all paths, all definitions of z that reach b have the known constant value e.
Thus, adding z to MOD(¢) for some call site ¢ produces a new definition of z that can invalidate the

condition for any block b that the new definition reaches.”
To account for this interaction between interprocedural MOD sets and the global REACH sets, we

can compute auxiliary CALLSBETWEEN sets in the manner described in Section 5.1. For each
a€EREACH(}), a.calls represents the set CALLSBETWEEN(,b). In this case, we use the following

% Where interprocedural constant propagation is performed, the CONSTANTS sets are used as initial information in the sin-
gle procedure, or global, computation. In Section 5.7, we consider the precise computation of MustBeConstant with respect to
global constant propagation.

7 Recall that a definition in MoD represents a data-flow event that occurs along some execution path from the procedure
call, but not necessarily along all paths from the call. Thus, a definition of v must be treated as preserved (not killed) by a call
site e, even if yEMoD(e), since there can be a path through the called procedure that does not include the modification of v.
Thus, adding v to MOD( c) doesn’t invalidate the REACH sets; the reaching characteristics of the other definitions in the pro-
gram are unchanged.
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definitions for the local sets.
o For a € DEF(b), a.calls is the set of call sites in b after the last definition of a.
o For a € NKILL(b), a.calls is the set of all call sites in b.

With these definitions, the revised REACH equations will compute both reaches information and the
CALLSBETWEEN sets.? The revised computation is still rapid in the sense of Kam and Ullman [Kaln 76).

Given the CALLSBETWEEN sets, we can compute MayMod sets that are more precise than those
derived using APPEARS information. To update MayMod(e):

(1) MayMod(c) = ALLVARS, the set of all actual parameters and global variables, for each call site
einp.

(2) Whenever a variable z is replaced by a constant, the compiler must update the MayMod sets
for any call site that lies on a path between a definition of z and the replacement site. These
are the call sites in the sets CALLSBETWEEN(a,b) for each definition a of z in REACH(b),
where b is the block containing the replacement. Additionally, z should be removed from

MayMod(e) for each call site inside block b occurring before the replaced reference.’

The MayMod sets computed this way, however, are still approximate. When an assignment is added
in some other procedure, causing z to appear in the MOD set of some call site ¢, we don’t know the
value that z receives. It is possible that z receives the value ¢ at the new assignment, too. If the
interprocedural analysis finds constant values returned by procedures, the MayMod sets can be com-
puted in a more precise manner to account for those returned constants [CCKT 86).

5.3. Type II Optimizations

Where type I optimizations depend on the presence of a fact in the set out[b], type II optimizations
depend on the absence of a fact from out(b]. As an example, we consider register store elimination,
which depends on the absence of a variable from LIVE sets to remove the last store of a value. This
changes the information that we are interested in computing in two important ways.

(1) The information of interest is associated with facts not in the set. In the type I optimizations,
it was associated with facts in the set. Thus, we are interested in the a.calls fields of facts
that would correspond to the zeroes in a bit-vector implementation. ’

(2) The set CALLSBETWEEN(b,&) now describes a region between b and a point at which the op-
timizer decided that some event involving a did not occur. In the case of register store elimi-
nation, if @ is not LIVE at b, CALLSBETWEEN contains all call sites between block b and a
redefinition of a (or an exit from the procedure if no redefinition exists) along every path leav-
ing b.

These differences are troublesome; we would like to fit type II optimizations into the same basic frame-
work as the type I optimizations.

The solution to this quandary is to coerce the type II optimizations into the form of type 1
optimizations. To do this, we simply compute the information that the optimizer really uses: out(b].
When the optimizer relies on the absence of a fact from some data-flow set, we recast the problem to

8 Note that in this case, X N Y is the empty set, where X = DEr(a) and Y = (REACH(s)NNKILL(s)). So, we could define
X U Y as a natural union instead of the natural union of X and Yonly. However, it is correct as defined here and it fits the
proposed framework.

O If an expression is replaced, rather than a simple variable, the MayMod sets (at the same set of call sites) must be updat-
ed to remove each of the expression’s constituent variables.
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compute the complement of that set, so that the transformation can be based on the presence of a fact
in the complement.

To make this more concrete, we can recast our general formulation, equation (1) from Section 5,
as follows.

outy[d] = Ag (gen[a] U (outo[a]Nnkilly[a]))
a=f(b)

Using DeMorgan’s law, we compute the equation for outy[d]. Note that A is the dual of Ao, Where |
and (") are duals.

outft] = (senola] O (outglal Unkila])

Distribute the intersections over the union to construct a new equation:

outo[b] = '_//\b)((!l‘”o[a]n""alo[“]) U (outo[a]Ngenc[a]))

We can redefine this equation to look like equation (1):
out[b] = />( (gen[a] U (out[a]Nnkill[a]))
amf(b)

with the following assignments out[b]=outo[b], gen[a]=genq[a] N nkilly[a], and nkill[a]=geno[a].
Again, CALLSBETWEEN can be computed as described in Section 5.1. The next subsection shows an
example based on the use of LIVE information.

5.3.1. Eliminating Register Stores

If the compiler discovers a point where the value of a local variable of a procedure exists in a register
and that value cannot be used later in the procedure, it need not store the value back into memory.
To perform this optimization, called eliminating unnecessary stores, the compiler must recognize the
last use of a variable in a procedure.

A variable is live at a point in a procedure if there exists a control flow path from that point to
some use of the variable and that path contains no assignments to the variable. Live analysis associ-
ates a set LIVE(b) with each block 5. LIVE(b) contains all the variables that are live upon exit from
block b. LIVE sets can be computed by solving a backward data-flow problem. The following equa-
tion is a slightly modified version of the equation given by Aho, Sethi, and Ullman [AhSU 88].

LIVE(b) = . e/}(b)(IN(a) U (LIVE(a)NNDEF(a)))

Here, LIVE(b) is the set of variables live immediately after block b, IN(a) is the set of variables whose
values may be used in @ prior to any definition of that variable in a, and NDEF(a) is the set of vari-
ables not assigned values in a.

Without summary information for call sites, the compiler must assume that a call references any
variables visible to it. This assumption extends the live ranges of variables, inhibiting the application
of register store elimination. Interprocedural REF sets can reduce the set of variables assumed LIVE
because of a call site. Because MOD(¢) says nothing about uses, MOD information is not pertinent to
the computation of LIVE information.
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Register store optimizations are invalidated when the life of a variable is extended by addition of
a variable use after the current last use. Thus, any call sites between the eliminated store and the end
of the procedure can potentially invalidate a register store optimization. Assume that the optimizer
has eliminated the last store of a variable z. If a subsequent change to some other procedure adds z
to the REF set of a call site that occurs after the eliminated store, the procedure must be recompiled,
since the change possibly makes the eliminated store necessary for correct execution of the program.

To construct MayRef sets that reflect this dependence on interprocedural REF information in
the LIVE sets, we would like to compute auxiliary CALLSBETWEEN sets in the manner described in
Section 5.1. Because this is a type II optimization, computing the auxiliary information is more com-
plex. First, we must reformulate the data-flow equations as described in the previous subsection. We
recast the equations in terms of LIVE(S). Let out[b]=LIVE(b), gen[a]=IN(a) N NDEF(a) ), and
nksll[a] =IN( a) Let the meet operamon be set intersection. Now the general equation we gave in Sec-
tion 5.0 can be used to compute LIVE.

It is interesting to note how similar the LIVE computation is to the other data-flow equations
that we have considered. Given this reformulatlon, we can derive the necessary CALLSBETWEEN sets
as auxiliary information during the LIVE computation. For each a€out[b], a.calls represents the set
CALLSBETWEEN(b,a). The following definitions work within the general framework described in Sec-
tion 5.1.

o For a€gen(b], a.calls is the set of call sites in b before the first definition of c.
o For a€nkill[b], a.calls is the set of all call sites in b.

After all this manipulation, the final data-flow framework for LIVE with its auxiliary information
remains.rapid in the sense of Kam and Ullman [KaU1 76].

To construct a recompilation test that precisely characterizes the use of interprocedural informa-
tion in the register store optimization, we want to enlarge the MayRef(¢) set. Given this set,
MayRef(¢) can be computed as follows:

(1) MayRef(e) =ALLVARS, for all call sites ¢;

(2) Whenever a store of a variable v is eliminated, the optimizer removes v from MayRef(e) for
each call site ¢ in CALLSBETWEEN(},a) and each call site inside b occurring after the optimi-
zation.

This results in MayRef sets that precisely capture the recompilation dependences for this optimization.

5.4. Rationale

In each of the four examples, we were able to construct more precise annotation sets by using
CALLSBETWEEN sets computed as an auxiliary data-flow problem. The CALLSBETWEEN information
associated with a fact follows the path that the fact takes through the procedure during the data-flow
computation. When a fact is generated in a basic block, the set a.calls associated with it takes into
account the call sites between the point where it was generated and that end of the block where the
data-flow computation exits. In a backward flow computation, this is the the beginning of the block;
for a forward flow computation, it is the end of the block. When a fact a passes through a block
unchanged, all of the call sites in the block are added to a.calls because the block is an a-clear path.
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The operations used in solving the auxiliary data-flow problems are straightforward. Whenever
multiple paths come together, some data-flow facts are invalidated and some are not. Any fact that is
not invalidated has an a.calls set that contains the natural union of .calls sets from the individual
facts that made the new fact valid.

The only operator that is unusual is the X U Y operator, which is interpreted as X U Yonly.
The reason for this operator is somewhat subtle. The standard data-flow equations use binary infor-
mation. In extending the underlying data-flow equations to correctly compute CALLSBETWEEN sets,
we expanded each bit in the original bit-vector to include both the bit and a set that we designate that
bit’s calls set. We designate the original bit as the fact’s name. The set operations on these expanded
objects are based on the presence or absence of the name, i.e., the value of its original bit. In this
framework, the result of X U Y and X U Yonly are not the same. (Recall the definition in Section
5.1.) Furthermore, it is clear that the data-flow events that are of interest to an optimizer are those
computed with the X U Yonly operation because these are the events that happened nearest to the
point of optimization. For a fact in both X and Y, its presence in Y is irrelevant because the
occurrence in X happens on the path to the occurrence in Y. If the operators in the standard data-
flow equations were more descriptive, we could merely state that we compute the a.calls set for a fact
at any point by doing a natural union of the a.calls sets from all of the paths contributing to that fact.

The table in Figure 2 summarizes the data-flow information used in our example optimizations. Glo-
bal common subexpression elimination and code hoisting clearly depend on all-paths information. The
AVAL and VERYBUSY information that we compute for these optimizations is all-paths information.
Even optimizations that, at first glance, appear to depend on any-path information actually depend on
all-paths information. Global constant propagation uses REACH information. REACH is any-path
information, but global constant propagation depends on an augmented form of this information. It
computes some all-paths information — the definition reaches point p with known constant value c.
For a constant ¢ to be folded at p, the same constant value ¢ must reach p along all paths through
the procedure leading to p. Finally, register store elimination is usually based on any-path LIVE infor-
mation. However, the information that is actually used by this optimization is the all-paths LIVE
information discussed in Section 5.3. This is true of other optimizations, like dead-code elimination,
that are based on the converse of any-paths information.

Data-flow Flow Flow
problem Type type Direction

Global common | W I | allpath | forward
subexpressions
Code hoisting VERYBUSY I all-path backward
Global constant REACH I augmented forward
propagation any-path
Rf:gl.ster. store LIvE I any—path backward
elimination

Figure 2 — Summary of examples
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Our examples illustrate that optimizations based on global data-flow information are either
based on all-paths information (type I) or the converse of any-paths information (type I). In either
case, the information actually used by the optimization is all-paths information. This follows from the
simple observation that along all paths through the program, the optimization must preserve the
program’s semantics. Thus, the correctness of the optimization is based on the behavior of the pro-
gram along all paths (and, so, on the meet-over-all-paths solution for some data-flow problem) [Roee 80,
Tarj 81].

The information that we compute for CALLSBETWEEN is any-path information, because optimi-
zations are based on all-paths information. That is, if an event along any path to the optimization is
invalidated, the optimization itself is invalidated because it relied on all-paths information. The any-
path information that we compute for recompilation analysis leads to a precise test for recompilation
due to changes in interprocedural information because it allows us to detect if any path between an
event and an optimization that depends upon that event is broken. Since optimizations rely on the
fact that none of these paths are broken, we know that recompilation is necessary if any of the paths

are broken.!°

5.6. Complexity

Adding the computation for CALLSBETWEEN information to the global data-flow analysis phase
increases the time and space that are required to compute the global data-flow information by a factor
of O(p) where p is the number of call sites in the procedure. The additional space is used to store,
with every data-flow fact in every basic block in the program, the set of call sites associated with that
fact. If the set of call sites is stored as a bit vector, each set requires a bit vector of length p. In
effect, we have a k by p bit matrix, where k is the number of data-flow facts.

Additional time is needed to update the set of call sites associated with the data-flow facts. To
update the call sites information during the data-flow computation, we compute, for each call site in
the bit matrix, those facts that rely on interprocedural information provided by that call site. This
computation requires a constant number of bit vector operations on bit vectors of length k for each of
the p call sites in the procedure. Hence, the time required to compute global data-flow information is
O(p E d(G)) for reducible graphs and O(p EN) for non-reducible graphs, where E is the number of
edges, N is the number of basic blocks in the flow graph of the procedure, and d(G) is the loop-
connectedness of the graph as defined by Kam and Ullman [KaUl 76).

If we assume that nested procedures always occur inside a single compilation unit, an optimiza-
tion that saves both time and space is possible. A clever implementation can capitalize on the fact
that variables not visible to the calling procedure need not be represented in the CALLSBETWEEN set.
This is safe because changing the visibility of variables inside a procedure requires an editing change
— an act that mandates its recompilation.

5.6. Generalization

10 Unless, of course, the editing change to the program makes no real difference in the values being passed around. Con-
sider adding an assignment to some procedure that enlarges the MaD set but doesn’t change the values of any variable on return
from the procedure. If we assign a variable its known constant value, we really don’t invalidate the application of a constant
fold, but the McD-based test will dictate recompilation. This is another example of the limit of precision — the analog of the
‘“‘up to symbolic evaluation condition that Barth gave for summary information.
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Examining our four sample optimizations leads to the following general algorithm for constructing pre-
cise annotation sets. The compiler assigns the annotation sets values that would never mandate
recompilation and then adjusts the sets to reflect each transformation, as applied. The sets get the fol-
lowing initial values:

(1) MayBeAlias(p) =ALLVARSXALLVARS

(2) MayMod(e) =ALLVARS, for each call site ¢ in p
(8) MayRef(e) =ALLVARS, for each call site ¢ in p
(4) MustBeConstant(p) =

Whenever an interprocedural fact is used to justify the safety of an optimization, the appropriate set is
adjusted, subtracting from MayBeAlias, MayMod, or MayRef, or adding to MustBe Constant.

By considering the computation of MayMod and MayRef for the four example optimizations, we
can develop a general strategy toward computing MayMod and MayRef sets with respect to optimiza-
tions based on global data-flow information.

We distinguish between two respects in which an addition to MOD can change global data-flow
information. First, it contributes a new definition that reaches certain points in the program. This
adds definitions to REACH sets and can affect all-paths information that is related to REACH informa-
tion. Our discussion of updating MayMod sets for global constant propagation illustrates the general
strategy for accommodating this kind of impact. Second, it can affect the reaching, exposure, and
availability characteristics of other definitions, uses, and expressions, respectively (i.e., it can kill
them). In the same manner that MOD definitions preserve the REACH characteristics of other
definitions, they preserve any-path global data-flow information in general. Thus, this latter impact is
only important with respect to all-paths information. Our discussion of updating of MayMod sets for
common subexpression elimination and code hoisting illustrates the accommodation of this kind of
impact.

This section showed an approach for computing more precise recompilation information for
changes in MOD and REF sets. Determining which procedures need recompilation due to changes in
CONSTANTS sets is easier. Understanding how the compiler actually uses CONSTANTS information is
crucial. For a procedure p, CONSTANTS(p) describes facts known to hold on entry to a procedure.
The compiler capitalizes on this information by using it to initialize the global constant propagation
phase. Information from CONSTANTS(p) then percolates into other optimizations from folded con-
stants. During global constant folding, the compiler can easily construct a precise MustBe Constant set
by adding a pair (z,v) to MustBeConstant whenever it folds v into a use of z.

The interprocedural constant analysis can also produce sets describing constant values returned
by procedures through global variables, and call-by-reference formal parameters [CCKT 86]. Producing
exact MustBeConstant sets for each call site under such a scheme is more difficult. The optimizer
must know which call sites contributed returned values to each folded constant. Obtaining this infor-
mation requires solving an auxiliary problem similar to that required for AVAIL and VERYBUSY.

For aliasing information, it appears that there is no reason to construct a test that is more pre-
cise than the APPEARS test discussed in Section 4.2. This is true, in large part, because of the manner
in which aliasing information is used. When two variables are potential aliases, the compiler must
preserve the relative ordering of their loads and stores. Doing this requires either that the compiler
track, pairwise, all uses and definitions of each alias pair, or that it simply treat potential aliases
extremely conservatively. Because of the expense and complication involved in the former approach,
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all compilers with which we are familiar adopt the latter strategy. Thus, for aliasing, the test based
upon ALIASAPPEARS sets appears to be as good as we can do in a reasonably efficient compiler.

Computing annotation sets that actually reflect compile-time decisions will likely increase the
compile times for individual modules. We hope that effective interprocedural optimization will miti-
gate the increased compile time, by making individual procedures smaller and localizing recompilation
more precisely.

6. Direct Use of Interprocedural Facts

So far, our discussion has concentrated on finding the recompilation dependences that arise from the
contribution of interprocedural data-flow information to global data-flow information. Once interpro-
cedural information is made available to the compiler, it is reasonable to expect that the optimizer will
make direct use of the facts where appropriate. To preserve correctness in compiled code, our
methods of computing annotation sets must account for such direct use.

As an example, consider the code that gets generated for a procedure call in a language with
call-by-reference parameter passing. For simplicity, assume that all registers are preserved across the
call. If the compiler ambitiously keeps values in registers, then it is likely that one or more of the
actual parameters at the call site will not have a current copy in storage — that is, in memory rather

than in a register.!! Thus, before the call, the compiler must generate code to store each of the actual
parameters and global variables for which the store is not current. Similarly, after the call, it may
need to refresh the register copies of such values from the store, to ensure that they are current.

If the optimizer has interprocedural MOD and REF sets for the call site, it can do better. Any
parameter or global variable that is in a register before the call site and is not contained in the set
(MoD(e)UREF(¢)) need not be stored before the call. Thus, the compiler need not generate either the
address computation or the store instruction. Similarly, any parameter that is mot contained in
Mob(¢) need not be refreshed after the call, allowing the compiler to eliminate both the address com-
putation and the load instruction.

The APPEARS test presented in Section 4.2 will correctly model the recompilation dependences
introduced by such optimizations. In fact, eliminating stores before the call has the effect of making
the APPEARS test for MOD and REF information precise for global variables. If a global variable is
added to either the MOD or REF set at some call site, recompilation will be needed to insert the store
for that parameter before the call site. Otherwise, either a reference inside the called procedure or the
restore after the call can receive an incorrect value.

If a more precise annotation set is being computed, in the manner described in Section 5, the
compiler will need to record such direct use of facts in the appropriate annotation sets. Thus, for each
store eliminated before the call site e, the compiler would need to remove the variable from
MayMod(c) and MayRef(e). Similarly, for each refresh eliminated after ¢, it would need to remove
the variable from MayMod(e).

! The optimizing compiler for R™ tries to keep all scalar values in registers. Non-aliased global scalars are assumed to
have a correct and consistent storage representation only at call sites and procedure entry and exit. A local scalar v is assumed
to have a storage representation only in the neighborhood of a call where it is passed as an actual parameter. It is stored im-
mediately prior to the call and restored afterward. The other mechanism by which a local scalar variable gets moved from a re-
gister to storage is when the register allocator decides that it must spill the variable.
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7. Larger Compilation Units and Interprocedural Optimisations

Our compilation model assumes that each procedure is a distinct compilation unit. Many compilers
treat multiple procedures as an indivisible compilation unit, producing a single object file for all the
procedures in the unit. The presence of multiple procedures in a single unit slightly complicates the
recompilation analysis. When analyzing a unit that contains multiple procedures, the compiler must
recognize that the procedures are related.

To handle this situation, the compiler can build a pair of maps: one from procedures into compi-
lation units and the other from compilation units into procedures. Using these maps, the analyzer can
mark all of the procedures in a unit for recompilation whenever any of its constituent procedures
needs recompilation. This can decrease the total amount of analysis required, since it need not test
any procedures in a unit already marked for recompilation.

This mechanism also provides a natural way of handling interprocedural optimizations. For our
purposes, an interprocedural optimization is an optimization that:
(1) moves code across a call site,
(2) changes the program’s static call graph, or
(3) changes the program’s dynamic call graph.

Examples of these are inline substitution, procedure cloning, and parallelizing a loop containing a call
site, respectively.

Clearly, such transformations introduce new compilation dependences between the involved pro-
cedures. We can use the maps required for multiple procedure compilation units to take account of
such transformations in our testing procedure. The idea is simple; whenever the compiler applies an
interprocedural optimization to a pair of procedures that belong to distinct compilation units, these
units are treated as if they were a single unit. This requires a straightforward adjustment to each of
the two maps described above.

To apply the recompilation test, the analyzer follows the algorithm sketched in Section 4.0.
First, it marks each procedure that has been changed by editing, along with all procedures belonging
to the same unit. Next, it updates all of the interprocedural sets. Then, it applies the recompilation
test to each procedure where an interprocedural set has changed. Of course, if the procedure is
already marked for recompilation, the analyzer need not apply the test. If the test indicates recompi-
lation, the procedure is marked, along with every procedure indicated by the entries in the procedure
to unit map.

The maps represent the presence of multiple procedures in a compilation unit and express the
compilation dependences introduced by interprocedural optimizations. They ensure that the test
behaves correctly and efficiently. Each procedure is analyzed independently. When the tests indicate
that some procedure must be recompiled, the analyzer marks all procedures in the unit for recompila-
tion. Using the maps can decrease the number of test applications that the analyzer must make.

It is important to recognize the difference between this approach and a hierarchical abproach
like that found in structural data-flow algorithms. Our approach maintains separate data-flow infor-
mation for each of the procedures, but accounts for the textual relationships between them. A
hierarchical test would merge graph nodes in some structured way. Merging the nodes for the pro-
cedure would simplify the graph, but would result in merging the information used in the recompila-
tion test and losing some precision in the test information. A fact allowed on entry to one procedure
might be disallowed on entry to another; if the procedures are both represented by a single node and a
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single annotation set, the test must indicate recompilation when the fact is added to either path.

8. Improved Optimisation

We have seen that changes in interprocedural information can invalidate the safety of optimizations
applied in previous compilation. For the MoD, REF, and ALIAS sets, adding facts to a set associated
with a procedure possibly mandated recompiling it, while deleting facts did not. Deletions can, how-
ever, open up new possibilities for applying optimizations. Recall that optimizations based on MoD,
REF, or ALIAS information rely on the absence of a fact from the data-flow set rather than its pres-
ence. Similarly, adding a (name,value) pair to a procedure’s CONSTANTS set can open up opportuni-
ties for new optimizations based on knowledge of the constant value.

As stated, our recompilation tests detect when a procedure must be recompiled to ensure con-
sistency with the program in which it will execute. They do not address the issue of detecting poten-
tial improvements, although analogous tests can be constructed. For each correctness test in the gen-
eral framework, a dual test that detects opportunities for improved optimization can be constructed.
We introduce four annotation sets for the improvement test: WereMod, WereRef, WereAliased, and
WereConstant. For each new annotation set, we can formulate a test to predict when recompilation
may lead to improved optimization:

(a) WereAliased(p) - ALIAS(p) # &

(b) WereMod(e) - MoD(e) # (&, for any call site ¢ in p
(c) WereRef(e) - REF(e) # (J, for any call site ¢ in p
(d) CONSTANTS(p) - WereConstant(p) #

Again, set subtraction is defined so that a € (X-Y) if and only if ¢ is 2 member of X and not Y. The
next subsection shows a method for computing these annotation sets.

8.1. Computing the Annotation Sets

In Section 4.2, we showed a method for computing approximate annotation sets for the correctness
test based purely on static information. Approximate annotation sets for the improvement test can be
computed in a similar manner. At each compilation of a procedure p, the compiler can construct the
four annotation sets, based on the interprocedural data-flow sets described in Section 3 and the
APPEARS sets described in Section 4.2. Specifically, the compiler can compute:

(1) WereAliased(p) = ALIAS(p)NALIASAPPEARS(p),

(2) WereMod(e) = MoD(e)NAPPEARS(p), for each call site ¢ in p,

(8) WereRef(e) = REF(e)NAPPEARS(p), for each call site ¢ in p, and

(4) WereConstant(p) = CONSTANTS(p)UAPPEARS(p).

The rationale for these assignments is analogous to that underlying the correctness test in Section 4.2.

It doesn’t seem reasonable to examine techniques for constructing more precise versions of these
sets. That would require the compiler to consider each interprocedural fact and determine whether or
not there existed an optimizing transformation that the fact prevented. We believe that this type of
analysis would be both difficult to implement and expensive to execute.
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8.2. Practical Application

Whenever recompilation analysis indicates that a procedure must be recompiled for correctness, the
compilation system will recompile it; after all, incorrect code has no real value. Unfortunately, decid-
ing to recompile for better optimization is not as simple a choice. First, the compiler may not be able
to capitalize on the changed interprocedural sets — the optimization might have been prevented by
facts other than the one just changed. Second, even if the optimization can be done, the run-time
improvement obtained may not justify the cost of recompilation, particularly if the procedure is large.
On the other hand, the changed information might make a major difference — for example, if it
exposed a substantial amount of parallelism.

Before we can construct a practical compiler that capitalizes on tests for improved optimization,
we need reasonable estimators that can predict run-time improvement as a function of changes to
interprocedural facts. Until such an estimator is available, recompiling for improvement is almost cer-
tainly a hit-or-miss proposition. The tests we have presented in this section can be used to tell the
compiler which procedures are candidates for such analysis, but they cannot, by themselves, predict
the results of recompiling.

9. Summary and Conclusions

Compiling a program in the presence of interprocedural information introduces dependences between
its procedures that complicate the question of what to recompile when a change is made in the pro-
gram. In the absence of information about these dependences, all procedures in the program must be
recompiled whenever a change is made to any one of them. This paper describes a general frame-
work, based upon annotation sets, for reducing the number of unnecessary recompilations required
after a change. Within this framework, several methods for computing the annotation sets have been
presented. These methods differ in the amount of work required and the precision of the resulting
recompilation analysis. The fundamental tradeoff to be evaluated is compilation time versus number
of spurious recompilations.
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