Improving Parallelism after
Inline Substitution

Mary Hall

CRPC-TR90061
July, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Improving Parallelism after Inline Substitution

Mary Wolcott Hall *

Department of Computer Science
Rice University
P.O. Box 1892
Houston, Texas 77251
(713) 527-6077
marf@rice.edu

Abstract

This paper describes some properties of programs after inline substitution.
Optimizations are outlined to take advantage of these properties in order to
improve the parallelism of such programs. These optimizations can be incorpo-
rated into a compiler that already supports automatic or programmer-specified
inlining to increase parallelism in programs with inlined procedure calls. The
effectiveness of these optimizations is demonstrated with experimental results.

Keywords: inline substitution, optimization, parallelization, loop distribution, loop-
invariant code, induction variable, range analysis, scalar expansion

*This research has been supported by National Science Foundation grants CCR 86-19893 and CCR.
87-06229, Control Data Corporation and IBM Corporation.

1 Introduction

While using many short procedures is generally accepted as a preferred programming
style, procedure calls may greatly impair the ability of the compiler to perform op-
timizations on the program. Because the compiler lacks knowledge about the effects
of the procedure calls, it is forced to make worst-case assumptions about the vari-
ables used and modified in the called procedure. Procedure calls pose an even greater
problem to parallelizing compilers since the inability to optimize around procedure
calls can result in a significant loss in potential run-time performance improvements.

By performing inline substitution, first introduced as open procedure linkage in
[ACT72], the compiler is able to see the effects of the procedure call directly. A pro-
cedure call is substituted inline by replacing the call with the body of the called
procedure, with the actual parameters of the call replacing the procedure’s formal
parameters.

' Although inline substitution can produce substantial improvements in paralleliz-
ing modular programs, often in scientific programs, even after inlining procedure calls
appearing in loops, too many dependences remain to gain improvement in parallelism
[CHT90]. By examining such loops and the nature of the remaining dependences,
some qualities of loops containing inlined call sites become apparent. Loops with in-
lined call sites exhibit properties unlike human-generated code, and so, optimizations
that may not be profitable on code written by humans may be useful in improving
the quality of code after inlining.

This paper presents observations about some unique properties of loops with in-
lined procedure calls. Based on these observations, we describe optimizations that
promote parallelism in loops with such properties. This work suggests that a compiler
that supports automatic or programmer-specified inline substitution can more effec-
tively parallelize a program by performing these optimizations either before analyzing
dependences between variables or, in cases where the optimizations can possibly cause

execution-time performance degradation, during dependence analysis.

2

The organization of the paper is as follows: the next section discusses related
work; section 3 presents the observed properties of loops with inlined calls and the
optimizations exploiting these properties; section 4 demonstrates the value of these

optimizations with experimental results; and section 5 concludes the paper.

2 Related Work

Inline substitution was first suggested as an optimization in [AC72]. It is most com-
monly used to reduce the overhead of saving and restoring state at procedure calls,
and for this purpose, is often applied in compilers for Lisp and other languages where
procedures are very short and call sites are prevalent. Several studies have tried to
assess the value of inlining for this purpose, most notably Scheifler’s, where significant
improvements were observed [Sch77].

In addition to eliminating the overhead of procedure calls, a more interesting
goal of inline substitution is to improve the compiler’s ability to perform optimiza-
tion. To this end, the Experimental Compiling System project used inlining as a key
component of an optimizing compiler, expressing source-level operations as defining
procedures in some intermediate representation and replacing the source with the
body of the defining procedures as needed [ACF+80]. Hecht’s design of a compiler
for a restricted language is another example of inlining used to promote optimization
[HecT7].

Studies to assess the value of inlining for enhancing optimization include Richard-
son and Ganapathi’s study of inlining in a Pascal optimizing compiler [RG89], Hu-
son’s study of inlining to promote parallelism in Fortran for Parafrase [Hus82], and
the study at Rice examining the benefits of inlining for both scalar and parallel op-
timizations in Fortran [CHT90]. In particular, our study showed that while inlining

could provide substantial improvements in some cases, in others it was actually the

cause of performance degradation. In terms of enhancing parallelism, the improve-
ments were only significant in a few cases.

A final class of related work describes the types of optimizations most often en-
abled by inlining. Ball proposed a model for predicting the benefits of inlining a
particular call site, considering only improvements arising from substituting constant
actual parameters — constant propagation, elimination of unnecessary tests and un-
reachable code [Bal79]. Wegman and Zadeck also considered a major benefit of inlin-
ing to be the combination of constant propagation and eliminating unreachable code
[WZ89]. Finally, the extended algorithms for loop-invariant code motion described
in the next section were due to the observation that certain control structures occur

frequently in loops after inlining is applied [CLZ86].

3 Properties of Inlined Programs

After inlining, some loops exhibited properties inhibiting optimization that would not
likely appear in human-generated code. These properties can be categorized in the

following way:
1. Unreachable code.
2. Loop-invariant code.
3. Bounds checking.

4. Partial parallelism.

This section describes how these properties arise from inlining and suggests op-
timizations to enhance parallelism by taking these properties into account. Most of

the examples used in this section are taken from our sample programs.

3.1 Unreachable code.

Unreachable code can result from inline substitution when constant actual parameters
appear at the inlined procedure call. As a result of replacing constant parameters in
the procedure body, tests based on the value of these parameters can be evaluated at
compile time. Thus, the tests themselves can be eliminated, and if they evaluate to
false, code conditionally executed based on such tests can also be eliminated.

One obvious benefit of eliminating unreachable code is that less of the program
needs to be examined for dependence analysis and other optimizations. However, a
more important reason to eliminate unreachable code is because it can contribute

control dependences that inhibit parallelism. Consider the following example:

doi=1,10
if(1#1)j5=1
y(i) = y(i) +j
enddo
With the conditional statement appearing in the loop, on any iteration of the loop
it is unclear to the dependence analyzer whether j is receiving a new value or using
the previous value. Thus, the assignment to y(i) may not be run in parallel. After
eliminating the conditional statement, it becomes obvious that j receives its value
from outside the loop, and the assignment to y(i) can then be parallelized. Note
that if the condition instead evaluated to true, eliminating the test and leaving the
assignment to j would also allow us to run the loop in parallel.

Unreachable code elimination occurs before dependence analysis in many com-
pilers; however, by discussing it here, we emphasize its importance after inlining.
Additionally, since the optimizations in this paper were applied by hand in order to
gather the experimental results, eliminating unreachable code was essential to make

the program understandable when applying the remaining optimizations.

3.2 Loop-invariant code

Because our goal is to be able to parallelize more loops after inlining, the call sites
usually selected for inlining are those that appear within loops. When a procedure is
called repeatedly within a loop, it is often the case that there is some initialization
code appearing at the beginning of the procedure body that only needs to be executed
once within the loop. Inlining exposes the opportunity to move this code outside of
the loop body.

Moving loop-invariant code out of loops is profitable even within a scalar op-
timizing compiler because doing so can greatly reduce the amount of computation
performed at run-time, especially when the loop executes a large number of itera-
tions. However, there is an additional reason why it is profitable in a parallelizing
compiler. Just like unreachable code, loop-invariant code can contribute dependences

that inhibit parallelization. Consider the following variation of the previous example:

do:i=1,10
if(z#1)j=1
y(i) = y() +j
enddo
A typical dependence analyzer would detect the dependence of the assignment to
y(¢) upon the conditional assignment to j in the previous statement. However, the
value of the condition (z # 1) is loop-invariant, so j will have the same value on each
iteration of the loop. Thus, the conditional assignment to j can be moved outside
the loop, and the loop can then be parallelized.

The traditional loop-invariant code motion algorithm is used to eliminate a single
expression at a time. To eliminate control dependences and improve parallelism,
compound statements such as loops and conditionals must be located and moved
outside of the loop. The algorithms in [CLZ86] extend the traditional code motion
algorithm to handle control structures within loops. We motivate the need for their

extended algorithms in the paragraphs that follow.

Extended algorithms. A loop-invariant statement is one that only uses variables
defined outside of the loop. However, by the traditional algorithm for loop-invariant
code motion, in order to safely move a loop-invariant expression outside of the loop,

three conditions must hold:
1. the statement must be executed whenever the loop is entered,

2. any variables defined by the statement must not be defined in any other state-

ments within the loop, and

3. all uses within the loop of a variable defined by a loop-invariant statement must

not have any other definitions of the variable that reach them. [ASUS6]

One deficiency with this technique is illustrated in the following example:

do:=1,100
if loop-invariant condition then
z = loop-invariant ezxpression

else
z = different loop-invariant expression

endif
y==z
enddo
Since the conditions for execution of the assignments to z are loop-invariant, as is
the value assigned to z, we know that = will have the same value on each iteration of
the loop. Therefore, we can move the assignments to z, along with the conditionals
guarding their execution, outside of the loop.

However, by considering each statement individually to determine if 4it is loop-
invariant, we observe that a single assignment to z cannot be moved out of the loop
since the use of z in the assignment y = = can be reached by two different definitions
(by rules 2 and 3 above). Also, if the assignments to z remain in the loop, the

assignment to y must also remain in the loop. The problem is that the traditional

7

algorithm does not take into account the independence of the code in the two halves
of an if when the condition is loop-invariant.

In the above example, we can move the if-then-else statement out of the loop if
all statements following each guard are loop-invariant. If only some of them are loop-
invariant, instead of moving the conditions out of the loop, we copy them outside of
the loop and move only the loop-invariant statements with the copies. The conditions
also remain within the loop guarding the statements that are not loop-invariant.

Another motivation for the extended algorithm is to permit moving code in groups
of statements if the group of statements is interdependent but not dependent on the
rest of the loop. For example, an entire inner loop may be loop-invariant within an
outer loop, but without moving the loop control structure and the statements as a

group, no single statement can be moved out of the outer loop.

Loop unswitching. A similar technique, loop unswitching [AC72], can be applied
when a condition is loop-invariant, but the code guarded by the condition is not. An

example using unswitching is given below.

do:=1,10
if loop-invariant condition then
z = f(2)
else
z = g(1)
endif
enddo

Before unswitching.

if loop-invariant condition then

doi:=1,10
z = f(1)
enddo
else
do:=1,10
z = g(7)
enddo
endif

After unswitching.

For an if-then-else clause within a loop, we make two copies of a loop, one guarded
by the if condition with the condition and the code guarded by the else clause all
removed. Similarly, the second copy of the loop is guarded by the else condition, and

the if condition and the code guarded by the condition are removed from the loop.

3.3 Bounds checking

When call sites are inlined within a loop, a lot of optimization opportunities involving
loop induction variables can arise. When calls appear in loops, the current problem
size, a function of the loop induction variable, may be passed as a parameter. Then,
using this information we can eliminate unnecessary conditionals to reduce control
dependences and improve parallelism in the loop, as was our goal when eliminating
unreachable and loop-invariant code.

In a loop with a call site where some function of the loop induction variable is
passed as an actual parameter, there may be a test within the called procedure of
the value of the parameter to insure that it is within the range of the array bounds
or within some other suitable bounds (e.g., greater than 0). Because the bounds of
the induction variable and variables whose values are based on the induction variable
can be determined directly from the bounds of the condition for loop execution, tests

involving such variables can often be eliminated, as in the following example:

dok=1,n-1
/* before inlining, call p(n — k,...) appeared here */
t=n-—k

if (t < 0) then

endif
enddo

Because the loop induction variable k ranges from 1 to n — 1, the value of ¢ ranges

from n — 1 on the first iteration, to n — (n — 1) = 1 on its final iteration. Thus, the

test for ¢ < 0 will always evaluate to false. So, the test and the code guarded by the
test can be eliminated.

A similar opportunity arises when the test only evaluates to true on the first
or last iteration of the loop (or the first few or the last few). By peeling off the
first or last iteration and removing the test and its accompanying code within the
loop, control flow is simpler, possibly exposing parallelism within the loop. However,
peeling iterations is not as valuable as removing the test completely, particularly when
the number of iterations is small. In this case, the increased loop overhead associated

with loop peeling may offset the improvement in parallelism.

Improving Dependence Analysis. Considering the range of the loop induction
variable and alternate induction variables can also be useful in determining the inde-
pendence of two array subscript expressions. The following example illustrates this

idea:
dok=1n-1
doj=k+1,n
t(j) = a(k,J)
doi=1,n—-k
a(i + k,7) = a(i + k,j) + £(j) * as + k, k)
enddo
enddo
enddo

Knowing that j is always greater than k in an iteration of the outermost loop, we
can determine that a(i + k, k) will never reference the same location as a(i + k, j) in
any iteration of the j loop. Also, since i > 1, we can determine that a(i + k,) and
a(k, 5) will never reference the same location on any iteration of the 7 loop. Thus, the
J loop can be run in parallel.

Note that the triangular version of Banerjee’s dependence test would also prove
the independence of these subscript expressions [Ken86] [Ban88]. However, this test

is not commonly performed in commercial compilers. !

1The only systems we know about that perform this test are PFC and the IBM VS Fortran 2.4
compiler.

10

Locating variables whose values are based on the induction variable. Be-
cause variables that are functions of the induction variable may themselves be induc-
tion variables, we can locate them using a variant of induction variable elimination
[ASU86]. The algorithm requires that a particular induction variable’s only definition
within the loop be of the form ¢; = +i; + ¢, where ¢, is some predetermined induction
variable, and c is some expression that is constant within the loop. With our example,
this expression contains numerical constants and the loop upper bound.

Once these variables are located, we must determine their possible ranges. If we
know that ¢ is a loop induction variable ranging from b to ub, and j is an induction
variable expressed in terms of 7, we can substitute [b for ¢ in the expression for j’s
value to determine the lower bound of j. Similarly, we can substitute ub for 7 to
get the upper bound of j. Note that if —i appears in the expression for j’s value,
substituting Ib for ¢ instead gives the upper bound of j, and substituting ub gives the
lower bound of j.

~'This is a simplification of the techniques range analysis and range propagation
[Har77]. These techniques track the range of values for all variables in a program.
Although much more precise, tracking ranges of all variables is too expensive for
most practical compilers. Here, we have limited ourselves to only tracking ranges of
induction variables because often their ranges are explicitly declared in the loop body.
This knowledge has proven to be especially useful in the context of optimization after

inline substitution.

11

A different optimization dealing with induction variable ranges. A further
potential optimization involving the loop induction variable appeared in the inlined

version of linpackd. Here is an excerpt of code:

dok=1n-1
t=n—-k+1
r=1
do:=2,t
if condition then
r=1
endif
enddo
l=r+k-1
enddo

Because r is either 1 or some possible value of the induction variable i, the value of
r lies somewhere between 1 and n — k + 1. Thus, the value of [is at least k, and in
fact, no greater than n. This knowledge was useful in parallelizing a loop in which /
apbea.red in a subscript expression. However, it is not clear that this optimization is

generally applicable.

3.4 Partial parallelism

A final property of loops after inlining is that they are sometimes very complex. With
long, complex loops it is difficult to avoid dependences and other structures in the code
that the dependence analyzer cannot handle. Even after applying the optimizations
described above, a loop may contain dependences that make it inherently sequential.
To parallelize such loops, it is necessary to locate parallel portions of the loop and
distribute the loop among the parallel and sequential portions of the loop.A

Loop distribution separates a loop into groups of statements, forming a distinct
loop with a copy of the loop header for each group of statements. It may be performed
as long as all statements involved in a cycle of dependences remain in the same loop

[KKL*81].

12

Many of the dependences remaining in the loop after inlining are on scalar vari-
ables. The technique commonly used to eliminate dependences on scalar variables is
scalar ezpansion [KKL*81]. A scalar r is expanded in a loop with induction variable
¢ by replacing accesses to r with accesses to an array element r(¢), where the new
array r has length at least as great as the number of iterations of the loop. This
optimization is always safe, but the compiler must insure that uses of the expanded
scalar are translated to correspond to either the previous or the current iteration,
whichever is appropriate. However, scalar expansion is not usually performed unless
doing so allows the loop to be parallelized.

We suggest scalar expansion even when it does not automatically allow the loop
to be parallelized. Then, the combination of scalar expansion and loop distribution
may allow portions of the loop to run in parallel. Two such opportunities arose in
our sample programs.

First of all, it may be possible to expand a scalar and calculate its value for all
iterations in parallel, even if the rest of the loop is sequential. Calculating the scalar
values sequentially and expanding them into array values for every iteration so that
the rest of the loop can be run in parallel is another possibility. Both of these cases

are illustrated in this example:

do:=2,ny
yn = (i1 —1.5) * hy
do j = lb,ub
r=0.
if (yn = y(5)) r = dy(j)
if (yn > y(j — 1) and yn < y(j)) then
r = (dy(j) — dy(j — 1)) * (yn — y(j))

yG+1)=yn
endif
enddo
d=d+r=*hy

enddo

For the variable yn, scalar expansion permits calculating all of the values for yn in

parallel. However, the inner loop is inherently sequential. Thus, yn is an example of

13

scalar expansion to permit the scalar to be calculated in parallel. Now, since the inner
loop is sequential, we must calculate values for the variable r sequentially. However,
scalar expansion of r using an array element for each outer loop iteration allows the
value of d to be calculated in parallel using a sum reduction.? Thus, expansion of r
is an example of scalar expansion to permit use of the scalar in a parallel loop. Here

is the parallelized version of the above loop:

doall : =2,ny
yn(z) = (¢ — 1.5) * hy
enddo
do : =2,ny
do j = lb,ub
r(i) = 0.
if (yn(s) = y(5)) r(i) = dy(j)
if (yn(z) > y(j — 1) and yn(é) < y(j)) then
(i) = (dy(3) — dy(ij — 1)) * (yn(3) - y())
y(j +1) = yn()

endif
enddo
enddo
doall : =2, ny
d = d + sum_reduction(r(z) * hy)
enddo

This particular pair of optimizations should be applied with great care since they may
carry with them a substantial overhead. The overhead of loop distribution arises from
the cost of duplicating loop control structures combined with the overhead of paral-
lelizing a loop. Thus, the number of loop iterations and the number of statements
appearing in the distributed loops must be sufficiently large to justify the increased
overhead. We also observed poor cache performance after scalar expansion because
calculating all values for a scalar in parallel greatly separated definitions of the vari-
able from its uses. We give examples of slowdown after loop distribution and scalar

expansion in the next section.

2 A reduction operation uses special hardware to accumulate the results of certain operations applied
across an array of values, even though there is a dependence. To compute the same result as if run
in scalar, reduction operations should be commutative and associative.

14

4 Experimental Results

The optimizations discussed in this paper came directly from a study of inline sub-
stitution [CHT90]. After observing that increased parallelism after inlining was not
as great as expected, examination of loops in the inlined code revealed the properties
explained in this paper.

The optimizations were applied by hand to the 8 programs from the inlining
study. On 4 of the programs, these optimizations yielded improvements in parallelism.
After optimization, we executed versions of the inlined program with and without
optimization on the Stardent Titan. The code was instrumented to measure the time
spent in the optimized portions of the programs. The results are summarized in

Figure 1 and discussed in the remainder of this section.

4.1 Explanation of Results.

- In Figure 1, line 1 displays the number of loops where inlining may be applied
to improve parallelism. Since we used a heuristic to determine when to inline a
call site, not every call site appearing in a loop was inlined. In particular, calls to
large procedures (> 175 lines) were not inlined, and calls where the types of actual

parameters did not match the types of the called procedure’s formals. Line 2 gives

efie304 | wave | dogleg | linpackd
1. DO loops with procedure calls 15 20 23 10
2. loops with no calls after inlining 14 15 22 8
3. loops improved after inlining 1 1 1 1
4. additional loops improved by opts 4 10 1 1*
5. execution time improvement _
in optimized loops 51% | 7% | 18% -2%
6. execution time improvement
for program 6% | 4% 4% -2%

* The loop from line 4 for linpackd is the same loop as in line 3.

FIGURE 1: Results of applying optimizations to inlined programs.

15

the number of loops from line 1 in which all calls were inlined. The calls remaining in
loops in wave and dogleg either are to large procedures, or are calls where the types of
parameters do not match. In linpackd, the 2 loops contain calls to a built-in timing
routine, so they cannot be eliminated.

Line 3 shows the number of loops from line 2 that are fully or partially parallelized
after inlining. This represents the improvement in optimization gained from inlining.
Line 4 gives the number of additional loops from line 2 with partial parallelism after
application of the optimizations described in this paper. In the case of linpackd, the
loop from line 4 is the same loop as the one from line 3. That is, the loop partially
parallelized by inlining is further parallelized by applying these optimizations.

Lines 5 and 6 represent the percentage decreases in execution time for the op-
timized portion of the code, and for the entire program, respectively. While the
number of loops improved and execution time improvements within the optimized
loops are significant, the overall execution time improvements are not as impressive.
Comparing the inlined versions of these 3 programs before and after optimization,
the overall execution time improvements have been no greater than 6%. With the
exception of linpackd, this is because the time spent in the optimized loops is a very
small percentage of the program execution time. This is probably because the Fortran
programmers are concerned about the inefficiency of procedure calls, and therefore,

avoid placement of calls in frequently executed parts of their programs.

4.2 Problems

Throughout these experiments, there were two problems that interfered with program
performance after optimization. The first was the effect of scalar expansion on cache
performance, and the second was the extensive use of loop distribution by the Titan
compiler. We present these two problems, along with a detailed explanation of the

results for linpackd, in the paragraphs that follow.

16

Cache performance after scalar expansion. After the combination of scalar
expansion and loop distribution, executing a certain optimized loop in wave increased
the execution time in the optimized portion of the code by a factor of 3. However,
it was clear from previous experiments that the size of the loop and the number of
iterations indicated that loop distribution and parallelization would be profitable.
The next most obvious possibility for the dramatic increase in execution time was
poor memory performance. We observed that the number of page faults did not
change between the optimized and unoptimized versions of the program, so we then
considered that cache performance might have been affected by our optimizations.
Apparently, the size of the expanded scalars combined with the distance between
definition and use of the variables caused some or all of the variables to not be available
in the cache at their uses. By rearranging statements so that definitions and uses were
as close together as possible, we were able to achieve the 77% improvement presented

in Figure 1.

Loop distribution. In section 3.4, we suggest loop distribution as a means of
partially parallelizing a loop when full parallelism is not possible. Unfortunately,
loop distribution may slow down the execution of the loop, particularly if the number
of loop iterations is small or the loop bodies have few statements.

This problem is exacerbated by the code generation phase of the Titan compiler.
During code generation, loops are distributed around the smallest number of state-
ments that preserve all of the variable dependences. Then, after parallelization, these
loops are fused back together whenever possible. However, loops containing condition-
als are not fused with any other loops, even if fusing preserves all of the dependences
[A1190].

As we discuss in the next paragraph, unnecessary loop distribution combined
with the loop distribution introduced by our optimizations resulted in performance

degradation in linpackd. The same thing happened on dogleg, making execution time

17

in the optimized portion of the code 25% greater than before optimization. The
optimized loop was distributed into 4 separate loops, 2 of which consisted of only
a single statement. By making these 2 short loops run in vector mode rather than
combined parallel and vector execution, we obtained the 18% improvement shown in

Figure 1.

More on linpackd. First attempts to optimize linpackd resulted in performance
degradations greater than 20%. During our optimization, we applied loop unswitching
breaking the optimized loop into 2 loops. One of the loops was completely parallel,
while the other was parallel if distributed into 2 loops. However, both loops contained
a conditional, so both loops were distributed into 2 loops.

We then focused on preventing the parallel loop from being distributed. We
observed that eliminating the conditional did not change the result calculated in the
loop, it only potentially increased the amount of computation. By eliminating the
conditional, the compiler no longer distributed the parallel loop, and from this change
came the 2% performance degradation reported in Figure 1. Either the increased
overhead associated with distributing the partially parallel loop or the increase in

computation in the parallel loop caused the execution time increase.

5 Conclusion

This paper has presented optimizations that can be incorporated into a compiler sup-
porting automatic or programmer-specified inline substitution. Because the optimiza-
tions are motivated by properties of inlined programs, they can enhance parallelism
beyond what is possible with inlining alone. |

The optimizations were validated with experimentation. We applied the opti-
mizations by hand to 8 programs, and observed improvements in parallelism in 4
of these. However, the effects of loop distribution overhead and cache performance

caused performance degradation in 3 of the programs. For the most part, we corrected

18

these problems, and the programs exhibited execution time improvements. However,
a compiler that performs these optimizations should anticipate such problems and
avoid them.

The experiments measured execution time improvements in the optimized por-
tions of the programs, as well as in overall program execution time. The execution
time improvements within the optimized portions of the programs were significant.
However, the improvements in the overall program execution times were only moder-
ate since time spent in optimized portions of most of the programs was only a small
percentage of program execution time. This is perhaps due to a perception by the
programmers that procedure calls are expensive.

Thus, while these optimizations were not as successful at improving program ex-
ecution time as we might have liked, the improvements on just the optimized loops
are an indication that significant execution time improvements may be possible on
code written in a more modular style (i.e., making use of more procedures and pro-
cedure calls). Accordingly, if their compilers support optimizations across procedures
such as inline substitution combined with the optimizations presented in this paper,
programmers may feel more comfortable about using procedure calls in frequently

executed portions of their programs.

References

[AC72] F.E. Allen and J. Cocke. A catalogue of optimizing transformations. In
R. Rustin, editor, Design and Optimization of Compilers. Prentice-Hall,
Englewood Cliffs, N.J., 1972.

[ACF*80] F.E. Allen, J.L. Carter, J. Fabri, J. Ferrante, W.H. Harrison, P.G.
Loewner, and L.H. Trevillyan. The experimental compiling system. IBM
Journal of Research and Development, 24(6), November 1980.

[AlI90] R. Allen. Private communication, March 1990.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques
and Tools. Addison-Wesley, Reading, Mass., 1986.

19

[Bal79]

[Ban8]
[CHT90]

[CLZ86]

[Har77]
[Hec77]
[Hus82]
[Ken86]

[KKL+81)

[RG89]
[Sch77]

[WZ89]

J.E. Ball. Predicting the effects of optimization on a procedure body. In
Proceedings of the SIGPLAN °79 Symposium on Compiler Construction.
ACM, August 1979.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, Boston, 1988.

K.D. Cooper, M.W. Hall, and L. Torczon. An experiment with inline
substitution. Technical Report TR90-128, Rice University, 1990.

R. Cytron, A. Lowry, and K. Zadeck. Code motion of control structures
in high-level languages. In Proceedings of the 19th Annual Symposium on
Principles of Programming Languages. ACM, January 1986.

W. Harrison. Compiler analysis for the value ranges of variables. IEEE
Transactions on Software Engineering, SE-3(5), May 1977.

M. Hecht. Flow Analysis of Computer Programs. American Elsevier, North
Holland, 1977.

C.A. Huson. An inline subroutine expander for parafrase. Technical Report
UIUCDCS-R-82-1118, University of Illinois, Urbana-Champaign, 1982.

K. Kennedy. Triangular banerjee inequality. Supercomputer Software
Newsletter 8, Rice University, October 1986.

D.J. Kuck, R. Kuhn, B. Leasure, D. Padua, and M. Wolfe. Dependence
graphs and compiler optimizations. In Proceedings of the 8th Annual Sym-
posium on Principles of Programming Languages. ACM, January 1981.

S. Richardson and M. Ganapathi. Interprocedural analysis versus proce-
dure integraton. Information Processing Letters, 32(3), August 1989.

R. Scheifler. An analysis of inline substitution for a structured program-
ming language. CACM, 20(9), September 1977.

M. Wegman and K. Zadeck. Constant propagation with conditional
branches. Technical Report CS-89-36, IBM T.J. Watson Research Center,
May 1989.

20

