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1 Introduction

In steady state thermal explosion theory the dimensionless temperature distribution,
up, in an exothermically active material is usually taken to satisfy a nonlinear elliptic

equation of the form
AUO+/\0F(:E,uo)=0, €D

(1.1)
Onug +bug =0, z€0D.

Here the Biot number, b, and the two or three dimensional domain D are given and g is the
Frank-Kamenetskii parameter. To model the reaction an Arrhenius heat generation term
F = exp(u/(1+ Bu)) is usually specified. The constant 3 is a dimensionless activation
energy parameter with 8 = 0 corresponding to an infinite activation energy.

When F is taken to be the Arrhenius heating term, it is well known that, for some
range of Ao, multiple solutions can exist for (1.1). The conditions on b and 3 for the oc-
currence of these multiple solutions is also well established in some special geometries, (see
Boddington et al. (1984) and the references therein for details). We now assume that, when
multiple solutions to (1.1) occur, these solutions can be parameterized in terms of some
parameter a > 0, possibly the maximum temperature of the reactor, as uo(z,a), Ao(a).
The graph of a versus )¢ is then multiple valued and has fold points at A\, = Ao(ap)
where Ag(ag) = 0 (see Fig. 2). The determination of these critical values of the Frank-
Kamenetskii parameter is important in characterizing the thermal stability properties of
the reactor. In particular, as A¢ passes through A a dramatic increase in the maximum
temperature of the reactor can occur (see Fig. 2).

Of interest is to determine the effect upon A, of strong localized perturbations of (1.1).
The first perturbation we treat is a deletion of a small subdomain D, from D with the

imposition of a condition on the boundary of the resulting hole. The perturbed problem is

Au+ AF(z,u)=0, z € D\D, (1.2a)
Opu+bu=0, z € 0D (1.2b)
€0pu+rku=0, z €0D,. (1.2¢)
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Here D, is a cooling rod or pellet of ‘radius’ €, which is centered at some zo in D. The
constant k is the Biot number for the cooling rod or pellet and 8, denotes the outer normal
to D\D,.

The second class of perturbations we examine is a large change in the constant b over

a small part of the boundary. In this case the perturbed problem is

Au+ AF(z,u)=0, z€D (1.3a)
Opu+bu=0, z € 0Dy (1.3d)
€eOpu+ku=0, r € 0D, (1.3¢)

where 0D = 0D.|J8D,. A schematic plot illustrating both classes of perturbations is
shown in Fig 1 a,b.

Our goal here is to extend the asymptotic theory, initiated in Ward and Keller (1990),
that was used to treat these two classes of strong localized perturbations of (1.1). We now
give an outline of the present paper, highlighting our additional results for (1.2) and (1.3).

In §2 and §3 we review the theory presented in Ward and Keller (1990) for the deter-
mination of A;(€), when € < 1, for both (1.2) and (1.3). These asymptotic results for A.(e)
are extended in §2 and §3 to ranges of b and « not considered previously. In particular the
case of almost total insulation, with b = 0 and « # 0, is treated. The theory is presented
allowing for an arbitrary heat generation term F(z,u) > 0 whereas for the examples in §4
and §5 we take F' to be the Arrhenius heating term specified above.

In §4 we apply the asymptotic results of §2 to circular cylindrical and spherical reactors
containing small cooling rods and pellets. The previous results of Ward and Keller (1990)
are extended to the case of finite activation energies (8 > 0) by using a numerical scheme
to evaluate the coefficients in the asymptotic expansions of A.(€). Additional results for
the case of an almost totally insulated reactor are presented. The asymptotic results are
compared with numerical solutions to (1.2) for special geometries, and clear agreement is
obtained.

In §5 we apply the results of §3 to a slab reactor, in two dimensions, which has a small

insulating segment of length 2¢ on one side. This problem, with f§ = 0 was previously

considered in Adler (1983), Greenway and Spence (1985), Herbert (1986), and Ward and
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Keller (1990), where contradictory results for Ac(e) when € < 1 were obtained. To resolve
this discrepancy, we first solve the two dimensional perturbed problem (1.3) numerically,
using a high order difference method, on a finer mesh than that used in Greenway and
Spence (1985). The numerical results for A (¢) are then seen to strongly support the
analytical predictions of Ward and Keller (1990). We also extend the results of Ward and
Keller, for the slab reactor, to treat the case of finite activation energies where 8 > 0.
These analytical predictions for Ac(€), for # > 0 and € < 1, are again seen to be in close
agreement with numerical results for A.(€) obtained from the numerical solution to (1.3).

Finally in §5 we also extend the analytical results of Ward and Keller (1990) to
determine A;(€), when § > 0 and € < 1, for other reactors with cooling or insulating

patches on their boundaries.

2 Interior Perturbations: Theory
To solve (1.2) we write the solution in the parametric form u(z, a, €), A(a, €), and we

expand A in terms of the unknown gauge functions v;(e€) as
A, €) = do(a) + v1(e)M(@) + va(e)Az(a) + -, (2.1)

with v;(€) < 1 and vi41(€) = o[vi(e)].

In the outer region away from D, we expand the solution as
u(z, a, €) = up(z, a) + v1(e)ui(z, a) + vo(e)uz(z,a) + - - -. (2.2)

Then substituting (2.1) and (2.2) in (1.2a, ) and collecting terms of order v, (€) we obtain

Aul + /\oFu(m,uo)ul = —/\1F($,UQ), S D\De ( )
2.3
anul +bU1 =O, z €0D.

Equations for higher order corrections can be obtained in a similar manner.

In the inner region near D, we introduce the stretched variables y = e™!(z — z¢) and

v(y, a,€) = u(zo + €y, a, €). Then from (1.2a,c) we obtain
Ayv + E AF(zo + ey,v) =0, y ¢ D,
(2.4)
Onv+ kv =0, y € 0D, .
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Here, 0,, A, denote derivatives with respect to y, and D; is the domain D, in the y

variable. Now we expand v in terms of the unknown gauge functions p;(e) as

v(y, a,€) = po(€)vo(y, @) + p1(e)vi(y, @) + pa(e)va(y,a) +---. (2.5)

Using (2.1) and (2.5) in (2.4), we obtain to leading order

Ayvo =0, ) ¢ D,
(2.6)
Onvo + kv = 0, y € 0D, .

Here we assumed that e?)\g F[zo + €y, po(€)v] = o[uo(€)]. Equations for v;, v,, etc. can be
obtained in the same way.

The two expansions (2.2) and (2.5) must be asymptotically equal to one another in
an overlap domain where z — z¢ is small and y = €~!(z — z¢) is large. Upon expanding u,

in powers of ¢ — z¢ we can write this matching condition as

uo(zo)+(zi — zoi) Oz;uo(z0) + %(ws — ;) 0z, 0z; uo(zo)(z; — Toj) + v1(€e)ur(z) + ---

~ po(€)vo(y) + pa(€)va(y) + pa(e)va(y) +--- .
(2.7)

To continue further we must determine the asymptotic behavior of u;, us, etc. for z near
zo and of vy, v; for |y| — oo, which we do in §2.1 and §2.2 .

To determine the perturbation in the location of the fold point we solve A\, (a,€) =0
for a(e), which is expanded as a(€) = ag + v1(€)as + - - -. Using this expansion and (2.1)
in Ay = 0 we find a3 = —A;(a0)/ A (o) so that

Ac = /\[ao + 1/1(6)(11 +--- ,6] = /\o(ao) + Vl(é)Al(ao) +--- ) (28)

which to this order is independent of a;.

To determine Aq(ayg) we first differentiate (1.1) with respect to a to obtain

Aan + /\OFu(m, uO)“Oa = _’\:] F(.'ZJ,'U.Q), reD ( )
2.9
OnUoa + buge =0, z€0D.

At the fold point a = ay we have \y(ag) = 0 by assumption, so (2.9) is the homogeneous

form of (2.3). Assuming that the operator in (2.3) has a one-dimensional nullspace at aq
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then the inhomogeneous term in (2.3) must satisfy one solvability condition. To derive
that condition we apply Green'’s theorem to ug, and u; in the domain D\D, where D, is

a small sphere or circle of radius p centered at zo. Then we let p — 0 to obtain at a = a,

lim,_.o faD,, (UpaOnuy — u10,Ugq) ds
Jp woaF(z,uo) dz

A1(ao) = — (2.10)

This equation determines A (ay) in terms of the behavior of u; near z¢, which is determined

below. Thus the leading order perturbation in A, is just v;(€)A;(ao) where A;(ap) is given

by (2.10).

2.1 The Three Dimensional Case
In three dimensions (2.6) has a unique solution, which tends to ug(z¢) at infinity. Its

asymptotic form is

vo(y) ~ o(z0) 1 - C|§|) R (2.11)

With po(€) = 1 the leading terms in (2.7) match, and the v (€)u; (z) term must then match
the singular term —uo(z9)C(x)/|y|. Thus we must have that

C(k)

|z — zo]

v1(€) = ¢, uy () ~ —uo(xo) as T —zo. (2.12)

Using this asymptotic behavior for u; in (2.10) we find

an) = 4 C(K)UO(mOaaO)uoa(zo,ao)
/\1( 0) fD uoa(l‘, aO)F[l‘,uo(III,OIo)] dz ’

(2.13a)
and from (2.8) we have
Ac = Ao(ao) + éAl(ao) +---, b # 0. (213b)

In the case where k = 0o, then C(00) is the capacitance of D;. Alternatively when « =0
then C(0) = 0 so (2.13a, b) gives no correction at this order.
To determine the first nonvanishing correction to the fold point when k = 0 we must

retain higher order correction terms in the inner region. Noting that vy = ug(z¢) in this
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case, we choose p1(€) = € and pa(€) = €? in (2.5) to match to the second and third terms

on the left side of (2.7). Then from (2.4) we obtain, for y ¢ D;,
Ayvy; =0; Opvy =0, y € 0D, v1(y) ~ yi Oz, uo(z0) as y — oo,

1
Dyvy = =X F(20,v0); Onvz =0, y € D1 wy(y) ~ ¥ ¥j Or,0z;uo(20) as y — .
2

(2.14)
The asymptotic behavior of v; and v, is given by (see Ward and Keller (1990))
o1(0) ~ Bugua(eo) [y + T 4] o) ~ 503 0 volazn) - T2, (219)
as y — oo. Here P;; is the polarizability tensor of D; and
B(a) = 222y, Fiag, ug(ao, )], (216)

where V; is the volume of D;. Rewriting (2.15) in outer variables and matching to the

fourth term on the left side of (2.7) we have that

Pij(zj — xoj) __B(a)
|z — o |z — o

vi(e) = €, uy ~ Oy, uo(zo, @) as T — Ig.

From (2.10) we find at a@ = a, that

B(a)uoa(To, @) — Oz, u0a(Z0, a0) Pij Oz; uo(o, ao)

(@) = 4r fD woulz, 20 )F[z, to(z, a0)| dz , (2.17a)
where B(a) is given in (2.16). Finally (2.8) yields
Ae = doao) + €Xi(ap) + -+ when k=0, b#0. (2.17b)

Now we extend the results of Ward and Keller (1990) to treat the case where k = ek,
with kg = O(1), so that 0,u+ kou = 0 on the boundary of the hole. In this case we expand
v = ug(zo) + €v1 + - - - so that from (2.4), v; satisfies

Ayvl =0, an’Ul = —ﬂoUo(zo), Yy E oD, vl(y) ~ Y; le.uo(xo) as y — oo.
(2.184q)
The asymptotic behavior of v; now includes a monopole term, and using the divergence

theorem we ﬁnd
S] Uo\To ) Ko 2

'Ul(y) ~ al'i Uo(.To )yl - 4T |yl






Here, S, is the surface area of dD;. Matching to the fourth term on the left side of (2.7)

we have that
S1 uo(zo) Ko

— 2 ~ —
v1(€) = €, Uy ypy as T — g .
From (2.10) we find at a = oy that |
Ac = /\o(ao) + 62/\1(00) + - Al (ao) = Sl fo U()(.'Eo, ao) an(a:OyaO) (2.186)

Jp woa(z, a0)Flz,uo(z, ap)] dz ’
when k = exo and b # 0.

We also extend the results of Ward and Keller (1990) to treat the case where the outer
boundary is perfectly insulating, b = 0, and on the inner boundary « # 0 and k = O(1).
For simplicity, we assume below that F' is independent of z so that F(z,u) = F(u) > 0.

When b = 0, solutions to (1.1) exist only if A\ = 0. If Ag = 0, the solutions to (1.1)
are arbitrary constants, and we label u¢(z,a) = a. Since the inhomogeneous term in (2.3)
must satisfy one solvability condition at each a, (2.10) still holds with ag replaced by a.
Setting uo(r, @) = a in (2.13a) and assuming that F is uniform in z, we derive that

47 C(K)a
V F(a)

Here, V is the volume of D. The location of the fold points are given by A(ag) where
/\,1(010) =0.

Ma)=€eli(a)+---, with A(a) = (2.19)

2.2 The Two Dimensional Case

In two dimensions (2.6) has a solution which has the asymptotic form
vo(y) = uo(zo) (logly| + d(k) +---) as |y| > o0, k#0. (2.20)

If k # 0 the constant d(x) is uniquely determined, whereas if £ = 0 then d(0) is arbitrary.
We first consider the case k # 0. To match the leading terms in (2.7), we must take
po(€) = —1/loge. Then, to match the fourth term on the left side of (2.7) we require that

v1(e) = —1/loge, uy ~ up(zo)[log |z — zo| + d(x)] as ¢ — zo. (2.21)

Using (2.21) in (2.10) we obtain that

27 uo(Zo, @) Uoa(o, o)
uga(Z, ag)Flz,up(z, )] dz’

M) = T (2.22a)
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and from (2.8) we have that
1
Ac =Ao(ao)—i;g-;/\1(ao)+"' when « 960, b;éO (222b)

In the special case k = 0, we take vo(y) = uo(20), p1(€) = €, and pa(e) = € in (2.5),
and derive (2.14). The asymptotic behavior of v; and v, as y — oo, analogous to (2.15),
is given by

Pijy; 1
n(y) ~ esuo(ea) [yt T+ ] way) ~ 5ui5 8e,8s;uo(zo)+ Bl log ], (229)

where

B(a) = 204

F[a)o, UQ(zo, a)] . (224)
Here A, is the area of D;. From the matching condition (2.7) we require that

Pij(z; — 2oj)

1z — 20 + B(a)log|z — zo| as z — zo.

v1(€) = €2, uy ~ Oz, up(z0, a)

Using the solvability condition (2.10) we obtain that

B(ag)uoa(Zo, @) — Oz, u0a(0, o) Pij Oz; uo(zo, ao)

A1(ag) =27 fD w0, 20 ) Pz, uo(z, ag)] dz , (2.25q)
and the correction to the fold point from (2.8) is
Ae = do(ao) + €A1 () + - when k=0, b#0. (2.25b)

We now treat the case where k = exg with kg = O(1). In the inner region we expand
v = ug(Zo) + €v; + - - - to derive (2.18a). Then, using the divergence theorem, the far field

behavior of the inner solution is

L, Uo(mo) Ko

5 log |ly| +--- . (2.26a)

v1(y) ~ Oz;uo(zo)yi +

Here, L, is the length of 0D;. Matching to the fourth term on the left side of (2.7) we

find that
~ L, Uo(fco) Ko

™ log |z — 0| as T — .

vi(e) = e, uy



LA



From (2.10) we find at a = g that

Ar(ao) = Ly ko uo(z0, ap) uoa(zo, o)

Ac = do(ao) + ehy(a0) + - Jp %0a(z, @) Flz, uo(z, a0)] dz

(2.26b)

when k = exg and b # 0. We remark that in the matching we had to insert a term (elog €)d
in the inner expansion. Since ¢ satisfies Laplace’s equation with 8,9 = 0 on D;, we take
¥ = Ko Ly uo(z0)/(27) to cancel the unmatched term from the inner expansion.

Finally, we treat the case where the outer boundary is perfectly insulating, b = 0, and
we proceed as in §2.1. Assuming F(z,u) = F(u) > 0 and labeling uo(z,a) = a, we derive,
analogous to (2.19), that

2T«

/\(a)=(Ic—:glg)/\1(a)+---, with  hi(e) = hos

(2.27)

Here, A is the area of D. The location of the fold point is again found by setting ), (a) = 0.

3 Boundary Perturbations: Theory

To treat (1.3) we proceed by the method of §2. The equations of §2 still apply with
two modifications. First, the domain within which the inner problems are to be solved is
the half-space bounded by the tangent plane (3-D) or tangent line (2-D) to 8D at z,. In
addition, in (2.10) 0D, denotes only that part of D, lying in D and that part tends to

a hemisphere (3-D) or a semi-circle (2-D) as p tends to zero.

3.1 The Two Dimensional Case
In the neighborhood of z(, we introduce orthogonal curvilinear coordinates (s, n) with

origin at zo, where s measures arclength along D and —n is the distance from z to dD.

From (1.3) we find that

1 1
unn+p+nun+(1+p_1n)2uaa+)‘F(xau)=0, ZED
Opu+bu=0, onn=0, |s] > e, (3.1)
edhu+ku=0, onn=0, |s] < e,

where p is the radius of curvature of 4D.
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In the inner region we introduce £ = ¢!

s, n =¢€"'n and v(¢,n,€) = u(s,n,€) and we
expand v = pg(€)vo + p1(€)vy + - - -. From (3.1), we obtain to leading order
voge +vogn =0, 7 <0
Opvo=0 (b<oo) or vp=0 (b=o0), =0, [£>1 (3.2)
Ogvo + kvo =0, =0, [£<1.
To determine A;(ag) we use the matching condition (2.7) where the left side of (2.7) is
replaced by

u(s,n,€) ~ ug(0,0) + 1 0ruo(0,0) + 39,ue(0,0) + v1(e)us(s,n) +--- . (3.3)

We now determine the correction to the fold point for four different ranges of b and «.
If 0 < b < o0 and & # 0 then in general u((0,0) # 0. In this case (3.2) has a solution

which has the asymptotic form
vo(y) = uo(0,0) (logly| +d(k) +---) as |yl = (€ +7*)'/? = co.

The leading terms in (2.7) are matched with po(e) = —1/loge, and to match the fourth
term on the left side of (3.3) we require that

v1(e) = —1/loge, u1(s,n) ~ ue(0,0) (% log (n? + s?) + d(k)) (3.4)

as (n? + s%)1/2 - 0. Using (3.4) in (2.10) and (2.8) we obtain that

7ruo(iL‘o, Oto) UOa(-’Bo, ao)
Uga(Z, o) Fz,uo(z, )] dz’

/\c = /\o(ao) - I-olg-e-/\l(ao) +--- ; Al(ao) = f (35)
D

when 0 < b < 00 and « # 0.

If b = o0 and kK # oo then uo(0,0) = 0 and O,ue(0,0) = 0. In this case, we take
po(€) = € and require that vo(€,n) ~ 70,ue(0,0) as n — —oo. Then there is a solution to
(3.2) which has the asymptotic form given by

v9(&, 1) = Onuo(0,0) [77 + ;2(:_):772 +-- ] ’ 62 + 772 >1,

for some e(«k). Thus matching v to the term 14(€)u; in (3.3), we obtain that

e(k)n
() = as n’+s° >0, (3.6)

V](e) = ¢2 , ul(s,n) ~ an’u,o(0,0) 2 45
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Using (3.6) in (2.10) and (2.8) the correction to the fold point is

/\1(010) — We(ﬁ)anUOQ(wo, ao)anuo(mo,ao)

— 2 LRI —
)\c - A0(‘10) + € /\l(ao) + b fD UOa(m’ ao)F[x, u0($, ao)] dm

, (3.7)

when b = 0o and k # co. When « = 0 then an explicit solution to (3.2) can be found and
we obtain e(0) = 1/2.

We now analyze two additional cases not considered in Ward and Keller (1990). First,
we assume that the Biot number changes by an O(1) amount near the cooling segment so
that b < oo and k = €xg. Then it is shown below that the correction to the fold point
is proportional to b — ko. Secondly, we will treat the case of an almost totally insulated
boundary so that b =0 and « # 0.

If 0 < b < oo and k = €Ky then in general ug(0,0) # 0. In this case we take po(e) =1
and p(€) = € and we expand v = uo(0,0) + evy + - --. Then from (3.1), v, solves

vige + V197 =0, 7 <0
(3.8)
Opv1 = —bue(0,0) €>1, Opv1 = —Kouo(0,0) €<1, on n=0.

Using the divergence theorem it can easily be shown that there is a solution to (3.8) with

the following asymptotic form
2
v1(§,m) ~ —bnuo(0,0) — —(b — ko) ue(0,0) log((£” + *)1/?) + € 0,u0(0,0) +--- . (3.9)

Writing (3.9) in outer variables and noting that 8,u0(0,0) + bu(0,0) = 0, then the far

field behavior of the inner solution v = u¢(0,0) + ev; + - - - is given by

2
v ~ ug(0,0)+n nuo(0,0) + 5 dsuo(0, 0)+—7r—6(b-fco)uo(0, 0)(log e —log[(€2 + n?)*/2]) +- - -.
(3.10)

Comparing (3.10) with (3.3) we must take

Vl(e) =€, ul(s,n) ~ _.;2;((,_ Ko)uo(0,0) log((n2 + 32)1/2) as (n2 + 32)1/2 0.
(3.11)
The term of order elog € in (3.10) is unmatched thus far, which shows that we must include

a term (elog €)9(y) in the inner expansion. Since © satisfies Laplace’s equation with 8,5 = 0
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on 1 = 0, we can take & = —2(b — K¢ )uo(0,0)/7 to cancel exactly the unmatched term in

(3.10). Finally, using (3.11) in (2.10) and (2.8) the correction to the fold point is

)\1(010) = 2("0 — b)UO(zo,ao)UOa(a’:o,ao)

Ac =)\ cee ’
o(@o) + eAr(ao) + Jp toa(z, a0)Flz, uo(z, a0)] dz

(3.12)

when b < 0o and & = ekp.

When b = 0 and k # 0, the boundary is almost totally insulated. Assuming F is
uniform in z so that F(z,u) = F(u) > 0, we proceed as in §2.2 to derive (2.27) with 27
replaced by 7. Thus

TX

AMa) =(-1/log€e)A;(a) + -+ with M) = AR

(3.13)

Here, A is the area of D and the location of the possible fold points are at A(ag) where

Ay (ap) = 0.

3.2 The Three Dimensional Case

The procedure followed in the two-dimensional case can be adapted to treat the three-
dimensional case. Since the analysis is similar to that in §3.1 we shall omit the details.
Below we give expressions for the fold point corrections for the four ranges of b and « that
were considered in §3.1.

If 0 < b < oo and k # 0, the correction to the fold point is given by

A (ao) = 27 C(x) uo(Z0, @0) Uoa(Zo, ¥0)

Ae = Ao(ao) + €Xi(ag) +---, . 3.14
¢ o(eo) 1(ao) Jp toa(2,0)Fz, uo(z, o)) dz (3.14)
The constant C(«) is determined from the following canonical problem:
Ver&y Vet TV =0, 7<0
3,7’0 = 0 (61,62) ¢ 8D1 , 6,,'0 + Kv = 0 ({1,&2) € 6D1 y on n = 0, (315)

v~ 1=CK)/lyl+-  as |yl =(E+€&+7)/? 5 0.

Here &D; denotes the perturbing patch 8D, magnified by ¢~!. If D, is a circular patch
of radius one and k = co then C(c0) = 2/7 is the well-known result for the capacitance of

a charged circular disk.
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If b = 0o and & # o0, the correction to the fold point is given by

2me(K) Ontoa(To, @) Onuo(zo, ao)
Ip toa(z, a0)Flz, uo(z, ag)] dz

Ae = /\o(ao)+63/\1(ao)+--- R /\1((10) = — . (316)

Here, the constant e(x), representing one element of the polarizability tensor, is determined

from the following canonical problem:
Vg6 + Vg6 + U =0, 7<0

v=0 (,6)¢ 0D, Opw+rv=0 (,6)€D;, onn=0, (3.17)
e(k)n
|ly[?

If 8D, is a circular patch of radius one and k = 0, then an explicit solution to (3.17)

provides e(0) = 2/3.

vt ==t as yl= (6 +& +0) - 0.

If 0 < b < 00 and k = ek, the correction to the fold point is given by

Ai(ko — b)uo(zo, ag) uoa(zo, o)
Jp voa(z, @0)Flz, uo(z, a0)] dz ’

Ae = Ao(ao) + €A (ap) + -+, A(ag) = (3.18)

where A, is the area of the scaled patch 0D;.
Finally, when the boundary is almost totally insulated with b = 0 and x # 0 then,
upon assuming F(z,u) = F(u) > 0, we find that

21 a C(k)

AMa) = edi(a)+ -+ with A(a) = V)

(3.19)

Here V is the volume of D and C(k) is determined from (3.15). The possible fold points
are again found by setting \;(a) = 0.

4 Interior Perturbations: Comparison of Asymptotics and Numerics

We now apply the results of §2 to determine the effect of a small cooling pellet or rod
on a model chemical reactor. To model our reactor, we take the Arrhenius heat generation
term with finite activation energy so that F(z,u) = F(u,) = exp(u/(1 + fu)), where
B > 0. We now briefly review some well-known results on the qualitative behavior of
solutions to the unperturbed problem (1.1), with the Arrhenius heating term specified
above, in circular or spherical domains. A detailed discussion and proof of some of these

results can be found in Bebernes and Eberly (1989) and the references therein.
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All positive solutions to (1.1) in circular or spherical domains are radially symmetric
and are monotone decreasing functions of r = |z| for r > 0. If 8 = 0 and 0 < b < o0,
there exists some )\, < oo such that there is no solution to (1.1) for all A > A.. If A < ),
and 0 < b < oo, there are two solutions to (1.1) in the two-dimensional case. In three
dimensions, the case f = 0 is somewhat more complicated. In this case, if b = oo there
exists a A, such that (1.1) has a countable infinity of solutions if A = \,,. In addition, if
A € (0,Ac) and A # Ap, then there is a finite number of solutions to (1.1).

If 3> 0and 0 < b < oo, then solutions to (1.1) exist for all A > 0 in both the two
and three dimensional cases. Furthermore, if 8 > B.(b), the solutions to (1.1) are unique
for all A > 0. However, when S < f.(b), multiple steady state solutions occur for some
range of A. This critical value of 3, labeled by S.(b), has been computed numerically in
Boddington et al. (1983) for various values of b in both the two and three dimensional
cases. A schematic plot of the maximum temperature versus A, which illustrates the
possible solution multiplicity in the two dimensional case for 8 = 0 and S # 0, is shown
in Fig. 2. Finally, we mention that explicit formulas for the solutions to (1.1) can only be
found in the two dimensional case when 8 = 0.

We now describe our computational schemes to treat cylindrical and spherical reactors
with small cooling rods or pellets when 8 > 0. For simplicity we assume that the reactor
has radius one, and for the moment we take the location of the cooling rod or pellet to be

at To € [0,1).

The Computational Schemes

To determine the asymptotic results for the fold corrections in various cases, a com-
putational scheme to evaluate A;(aq), given in (2.13a), (2.17a), (2.22a) and (2.25a), is
needed. We now present such a scheme for spherical and circular cylindrical domains in
which the unperturbed solution uo(r) satisfies a boundary value problem for ordinary dif-
ferential equations. We begin by considering the extended system obtained from (1.1) and

(2.9) in the domain r = |z| < 1, which is written as,

u+(m—1)

ug ug + AoF(uo,8) =0,  F(u,B) =exp(u/(1+Bu)), (4.1a)
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" m—1 ' '
Uga t+ ( - ) Uga + Ao Fu(uo, B) = Ao F(uo, B), (4.1b)
ug +bug =0, Uge + DUge =0 on r=1, b#0 (4.1¢)
ug(0) =0, uge(0)=0, u(0)=0, ua(0)=1. (4.1d)

Here a is chosen to be the maximum temperature for the unperturbed problem, and m is
the number of spatial dimensions.

To determine the location of the ‘first’ fold point (see Fig. 2) for the unperturbed
problem for fixed 3, we solve (4.1) subject to the side condition Ag(ao) = 0 and Ay(a) >0
for 0 < a < ap. For fixed a and f the boundary value problem (4.1) is solved for ug, ugq,
o, and ), using the collocation package COLSYS developed by Ascher et al. (1979). A
simple continuation in «, starting from a = .05, is used to determine the first sign change of
/\;,. Then, a Newton iteration scheme is employed to locate the first fold point (Ag(av), @)
accurately. Once this fold point is located accurately the quantities ug(ro), uoa(ro) etc...,
which are needed for the computation of the fold point correction A;(ap) in (2.13a), (2.17a)
and (2.22a), (2.25a), are available. The integral appearing in these expressions for the fold
point correction is evaluated at a = aq using Simpson’s rule. In the special case f = 0 this
integral can be evaluated analytically using (2.9) and the divergence theorem. Finally, a
sirﬁple continuation scheme in B3, using the previous solution as an initial guess, is used to
locate the first fold point, and hence determine the fold point correction, as a function of
B.

In the special case where the cooling pellet or rod is concentric with the outer bound-
ary, the asymptotic results for the fold corrections in various cases can be compared with
the numerical solution of the full problem (1.2a, b, ¢). To determine the location of the fold
point as a function of € from the full problem, in the case of concentric spheres or circles,

we write (1.2a,b,c) as

BN L FwA) =0, Fwp)=ep(u/(1+w),  (42)
u +bu=0, on r=1, (4.2b)

—eu +ku=0, on r=e, (4.2¢)

u'=--'y on r=1, v>0. (4.2d)
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In (4.2¢) we have assumed that D, has radius e.

For fixed B and ¢, the boundary value problem (4.2) is solved numerically for u(r,v)
and A(vy) using COLSYS and a simple continuation scheme in 7. To determine the location
of the first fold point accurately, we solve (4.2) subject to the side condition A'(y) = 0 and
X'(7) > 0 for ¥ < 7. The value of A at the first fold point is then labeled by Ac = A(y0)-
Finally, a simple continuation scheme in both € and 8 is then used to determine the first
fold point as a function of these two parameters.

We now compare our asymptotic predictions for the location of the first fold point,
obtained using (4.1) and the results of §2.1 and §2.2, with the corresponding numerical
values found from the full problem (4.2).

Spherical and Circular Cylindrical Reactors: Results

Using the numerical procedures outlined above, we now determine both asymptoti-
cally and numerically the correction to the fold point for a spherical reactor of radius one
containing a concentric cooling or insulating pellet. In the calculations below, we take D,
to be a sphere of radius € located at the origin so that ro = |zo| = 0.

For a perfect cooling pellet, where kK = co and C(o0) = 1, the asymptotic result for
the fold point correction is given in (2.13a,b). Noting from (4.1d) that u,(0, @) = a, then
(2.13a, b) becomes

Qo

c = A A T A = .
A o(ao) + € 1(ao) + 1(ao) fol 72 uga(r, ag) Fluo(r, ao), 8] dr

(4-3a)

Here, the Arrhenius heating term, F), is specified in (4.1a).

Alternatively, if the spherical pellet of radius € is insulating so that k = 0, then the
asymptotic result for the fold point correction is found from (2.16) and (2.17a, b). Assuming
again that the pellet is located at the origin, from (2.16) and (2.17a, b) we obtain that

Ao(ao) F(ay,B)

3 fol 2 upo(r, ao) Fluo(r, ao), B] dr .
(4.3b)

Since A1(ap) > 0 in (4.3a) and (4.3b), the effect of such cooling and insulating pellets is to

Ae = do(o) + €2 A1(ap) + -+, M) =

delay the onset of thermal runaway.
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Numerical results for Ao(ao) and A;(ap) for different B values in the case of cooling
and insulating pellets, obtained from (4.1) and (4.3a, b), are shown in Table 1 for the case
b = oo. For this problem, the critical value of 8 for which multiple steady state solutions of
(1.1) exist is roughly B.(c0) ~ .2388 (see Boddington et al. (1983)). In Table 3 we compare,
at a fixed B value, the asymptotic and numerical values for A;(¢) obtained from (4.3a,b)
and (4.2), respectively. The agreement between the asymptotic and numerical results is
seen to be rather good even for only moderately small values of €. In Fig. 3 we display our
results of A.(€) versus ¢, for a cooling pellet, at different 8 values. The solid lines in the
figure are the asymptotic results and the labeled points are the corresponding numerical
values obtained from (4.2). The agreement between the asymptotic and numerical values
for A, is seen from this figure to be uniform in 3.

We now consider the two dimensional case of a circular cylindrical reactor of radius one
containing a concentric cooling or insulating rod located at the origin. For the comparison
of our asymptotic and numerical results for )., in the calculations below we take D, to be
a circular region of radius € and we specify b = oo in (4.1) and (4.2).

For a cooling rod, the leading order asymptotic correction to the fold point is given
by (2.22a, b) and is independent of . Noting from (4.1d) that uo(0, a) = a, then (2.22a, b)
becomes

Qo

fol ’I"U,()a(r, ao)F[uo(T, aO)aﬂ] dr .
(4.4a)

e = o) + (—o) Ma(a0) ++++, Aafao) =

Alternatively, for an insulating rod (k = 0) the leading order asymptotic result for the
correction to the fold point is found from (2.24) and (2.25a,b). For an insulating rod of
area me? centered at the origin, (2.25a,b) becomes

Ao(ao) F(a,B)

2 fol r toa(r, o) Fluo(r, ao), 8] dr
(4.4b)

Numerical results for Ag(ap) and A;(ap) for different B values in the case of cooling

Ac = do(ao) + € Ay(ao) +--+ A1) =

and insulating rods, obtained from (4.1) and (4.4a,b), are shown in Table 2. The critical

value of S in this case is roughly 8, ~ .2421, (see Boddington et al. (1983)). In Table 4 we
compare, at a fixed S value, the asymptotic and numerical values for A(¢) obtained from
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(4.3a,b) and (4.2), respectively. The agreement between the asymptotic and numerical
results is seen to be rather good for insulating rods but is only fair for cooling rods.
This rather poor agreement, with moderate values of ¢, for cooling rods is a result of the
expansion of A in powers of (—1/loge) in this case. In Fig. 4 we display our results of
Ac(€) versus e, for an insulating rod, at different B values. The agreement between the
asymptotic and numerical values for A, is again uniform in 3.

For pellets and rods that are not concentric with D, a similar procedure using (4.1)
and the asymptotic results of §2.1 and §2.2 can be used to determine the leading order fold
correction. As an interesting application, consider the case of a small insulating spherical
pellet or circular rod of radius e placed inside a spherical or circular cylindrical reactor
of radius one at some radius ro € [0,1). From (2.17a,b) and (2.25a,b), it follows that
Ae = Ao(ag) + €™ Ay () + - - -, where |

Ar(ao) = 2m(1 — 1 )UOa(TO,QO)/\O(OIO)F[UO(TO,CYO) , 8] = m Bytga(ro, @) Bruo(ro, @)

fo r™=1 ugo(r, ag) Flue(r, ap), B] dr
(4.5a)

Here, m = 2,3 is the number of dimensions. Viewing (4.5a) as a function of ro, then

A1(ap) = 0 if rgy is a root of
’u,oo,(ro, ao) /\o(ao) F[UQ(’I‘o, 010), ,3] —-m aran(’I‘o, ao) a,-’u.o(’ro, ao) =0. (45b)

If up = 0 on r = 1, there exists a unique solution r§ to (4.5b), depending on § and m, such
that A;(ag) = 0. By solving (4.1) and (4.5b) numerically with 8 = 0, we find rj = .4472
for m = 2 and r§ = .4035 for m = 3.

This result is interpreted as follows. If placed in a region where heat production is
large, the small insulating body will delay marginally the onset of thermal runaway by an
amount proportional to the size of the region removed. However, as the insulating body is
moved closer to the outer boundary, its main effect is to prevent some heat from escaping

out of the reactor surface, and the reactor becomes less stable.

Almost Total Insulation
We now consider the case in both two and three dimensions where the outer boundary

of the reactor is perfectly insulated (b = 0). We first consider the three dimensional case
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where we assume that a cooling pellet with k # 0 is located at the center of a reactive
sphere of radius one. We now show, in this special case, how to extend the leading order
result (2.19) for A(a) to one higher order.

To determine the next term in the expansion of A, in the outer region away from 8D,
we write

u=oa+eu +euy -, A=€el+€Ex 4,

so that from (1.2a,b), u; and u; solve

Auy =-\ F(a,8) in 0<r<1, u;,=0 onr=1. (4.6a)
Aug = =X F(a,B) = M u1Fy(e,f) in 0<r<1, uyp=0 onr=1. (4.6b)

In the inner region we write y = z/¢, v(y) = u(er) and expand v = vy + €vy + - - -.
Substituting this expansion in (2.4) we find that vy satisfies (2.6) and that v; satisfies the
first equation of (2.14). The solution to (2.6) with vy — a as y — oo has the asymptotic

form
C(k) |, Pi(x)y:
|yl ly[®

Furthermore, since 0,,a = 0, we can choose v; = 0.

vo(y)~a[1— + +] as |y| — oo. (4.7)

Writing (4.7) in outer variables z = ey, then from the matching condition (2.7) we

require that

u1~—°‘—C;(—'“—), uzNO,% as r=|z|—0. (4.8)

A solution to (4.6a) subject to (4.8) exists only when ), is given by (2.19). With \; given
in (2.19) we solve (4.6a) and (4.8) explicitly for u; to obtain

_C(K)a _ C(x) ar?
r 2 )

In deriving (4.9) we have made u; unique by specifying u; + aC(k)/r — 0 as r — 0.
With A; and u; known, we now determine A; from (4.6b) and (4.8). To incorporate

the required singular behavior for u; we write (4.6b) as

Aus = -\ F(a,B) — M uiFu(a,f)—4ra P;0,,6(z) in0<r<1,
(4.10)
ur =0 onr=1,
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where 6(z) is the Dirac delta function. Invoking a solvability condition on (4.10) and using
(2.19) and (4.9) for A\; and u,, respectively, we readily derive an equation for Az(a). To
two terms, with F(u, 8) = exp (u/(1 + Bu)), we have A\(a) = eA;(a) + €2 Az(a)+ - -, where

_27(C(x)a)?

= S T+ afy exp (—a/(1 + Ba)).

(4.11)

M(e) =3C(k)aexp(—a/(1+Ba)), ()

Setting A;(ao) = 0 and choosing the smallest such root to obtain the first fold point, we

find that
1

= -272-
It follows that for 8 > .25 the graph of a versus ) is monotone for € < 1. For 8 < .25,

[(1-28) - (1-48)'7]. (4.12)

(a7}

however, we have that A\, = M(ap) with A(a) given above specifies the location of the first

fold point. As a special case, when § — 0 then ag — 1 and so from (4.11) we obtain that

27¢2

Ae=3eC(k)e™ ! + = (C(k))er +---, B=0. (4.13)

We now choose D, to be a sphere of radius € centered at the origin and in (2.6) we
specify kK = 1 so that C(1) = .50. In this special case, the one and two term asymptotic
results from (4.13) are compared with numerical values for A.(€) obtained from the full
problem (4.2). As seen in Table 5, where these results are shown, the agreement between
the two term asymptotic result and the numerical result is good even for moderately small
values of e.

Similar results can be obtained in the two-dimensional case when the outer boundary
is perfectly insulating. We now take D to be a circular cylindrical reactor of radius one
containing a concentric cooling rod of arbitrary cross section. In this case, it is again
possible to extend the leading order result (2.27) to one higher order by a procedure similar
to that used above in the three dimensional case. Omitting the details of the calculation,

we find that

_ 1
loge

\@) = (~pr2) 20 exp (=0 /(1 + B) (1= (~ o) e (AR =3/4) 4+ - (419

Here, d(«) is found from (2.20).
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If B < .25 then the first fold point is located at Ac = A(ao) where ay is given in (4.12).
If 3 — 0 then ap — 1 and so from (4.14) we have that

de = (-Ié—e 2e1 — (_l_olg—e) 2(d(x) — 3/4) e~ 4 - . (4.15)

Taking D, to be a circle of radius € with k = 1, so that d(1) = 1, in Table 6 the one
and two term asymptotic results from (4.15) are compared with numerical values for Ac(€)

obtained from (4.2), with clear agreement.

5 Boundary Perturbations: Comparison of Asymptotics and Numerics
We now apply the results of §3 to determine the effect of small cooling and insulating
segments (2-D) and patches (3-D) on a model chemical reactor with a nonlinear heat

generation term given by (4.1a).

A Slab Reactor: =0
For our first problem we consider a slab reactor in the rectangle —L < z < L, 0 <
y < 1, with a small insulating segment on one side. The temperature, u, for the perturbed
problem is taken to satisfy
Au+ AF(u,f)=0, -L<z<L,0<y<l1
u; =0 on z=-L, L; uy=0 ony=0 (5.1)

u=0 ony=1, |z|>¢ uy=0 ony=1, |[z|<e.

For =0 and L = oo, (5.1) was previously considered by Adler (1983) and Herbert
(1986), who produce contradictory analytical expressions for A.(¢) when ¢ <« 1. For
these parameter values, Adler derived A, = .87846(1 — € + ---) while Herbert derived
A = .87846(1 — .0549 € + - - -), both results predicting a nonvanishing correction to the
unperturbed fold point when L = oco. The slab reactor (5.1) was also treated numerically
by Greenway and Spence (1985) for L = 10 and for various values of e. They concluded
that their results for A\;(e) and L = 10 also apply to the case L = oo, and so they also
predicted a nonvanishing correction to the fold point for an infinite slab. Their numerical
results for A.(¢€) disagreed substantially from Adler’s prediction and were inconclusive with

regards to Herbert’s result.

22






More recently Ward and Keller (1990), using the analytical theory presented in §3,
have conjectured that A\, = .87846(1 — 1.571€e?>/L + ---) for the case 8 = 0. This result
disagrees qualitatively with that of Herbert and Adler in that the correction to the fold
point of order O(€?) vanishes as L — co. When L = 10 this result was also only in fair
agreement with the numerical results of Greenway and Spence, but did agree more closely
than Herbert’s result.

We now give some numerical evidence to support the conjecture of Ward and Keller
by solving (5.1) numerically for various values of € and L on a finer mesh than that used
in Greenway and Spence. In addition, we also extend the analytical results of Ward and
Keller to treat the case B > 0. The asymptotic predictions for A.(€) when B > 0 are then
compared to numerical results obtained from (5.1) for the finite slab, and clear agreement

is found. We first outline our numerical method to treat (5.1).

Numerical Solution of the Slab Reactor

For our numerical computations, we chose methods that were readily available to
us; efficient hardware use was not a primary objective. Computation times were kept
reasonable through concurrent computing: all computations were done on Caltech’s Symult
Series 2010 multicomputer, which has 192 processors. Path following was done with the
concurrent continuation method of Van de Velde and Lorenz (1989), which implements
Keller’s (1987) arclength-continuation method and is based on direct solvers. More efficient
procedures are possible if one exploits the elliptic nature of the underlying problem and/or
if one uses specialized procedures to follow folds (see Fier (1985), e.g.). We assessed the
accuracy of our discretizations and their computed solutions by varying the grid size and
the order of discretization.

We impose the symmetry of problem (5.1) with respect to the y-axis. This reduces
our computational domain to the rectangle [0, L] x [0,1]. Along the edge z = 0 a homoge-
neous Neumann boundary condition is imposed to enforce the symmetry. A regular grid
consisting of h X h square grid cells covers the domain. We used two different discretiza-

tions of the interior operator: the standard second order five point difference scheme and

Collatz’s fourth order Mehrstellenverfahren (see Collatz (1966)). The Dirichlet boundary
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conditions are naturally imposed at the boundary points. The Neumann boundary condi-
tions are discretized to second order accuracy by the standard procedure of introducing an
artificial boundary, imposing the interior operator on the real boundary, and subsequently
eliminating the artificial boundary with the Neumann boundary condition.

The resulting discrete problem has the form G(u, u) = 0, where G is a mapping from
RM x R — R,u€ RM, € R, and the dimension M is the number of unknowns in the
problem. In our case, the parameter u could be A, B, or ¢, although we only performed
continuations in A. The concurrent continuation program is used to compute solution
paths (u(s),u(s)), where s is a pseudo-arclength. When continuing in A, we stop the
continuation after detection of the first fold.

To do meaningful continuations in €, the number of unknowns must be independent
of e. To achieve this, Greenway and Spence (1985) use a staggered grid without any
grid points on the domain boundary. As a result, however, an O(h) discretization error
is introduced on the Dirichlet boundary conditions. We chose, instead, not to eliminate
those (trivial) equations that correspond to Dirichlet boundary points. In this way, the
same goal (a number of unknowns independent of €) is achieved, without incurring a
larger discretization error. We point out that Greenway and Spence alleviate the problem
somewhat by using a locally graded mesh. Hence, their local discretization step h; ; in
the neighborhood of the Dirichlet boundary is less than our discretization step h (here, we
compare grids with the same number of points).

There is one O(h) discretization error remaining in our and Greenway and Spence’s
scheme, however, because the length € is approximated by a multiple of the grid size h.
When € is not an exact multiple of h, an O(h) error in approximating € is made. To
minimize this error, we restrict values of € to multiples of A.

To asses the accuracy of the discretization, we performed several tests. First, we tested
for convergence under grid refinement. In Fig. 5, projections of solution paths (u, ) of
fourth order discretizations of (5.1) are plotted. (Note: L = 2.0, e = 0.1, and 8 = 0. The
maximum norm of u is plotted along the y-axis.) Solution paths were computed for the
discrete systems approximating (5.1) with discretization steps A = 1/10,1/20,1/30, and

1/40, respectively. The paths of the discrete systems were computed to an accuracy of
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10~%. The plot in Fig. 5 is a blow-up of the neighborhood of the fold, which is the part
of the solution path that is most sensitive with respect to changes in h. Away from the
fold, all solution paths, except for the one corresponding to h = 1/10, collapse into one
curve (not shown). Since the computed ). increases with decreasing A, it is a reasonable
assumption that, through discretization, the location of the fold of the continuous system is
underestimated. As a trade-off between accuracy and computing time, we chose h = 1/20
for most of our computations. With this grid, we expect that \; is computed with an
accuracy of at least two significant digits.

As a further test, we compared computations with a different order of approximation
of the interior operator. Fig. 6 shows only marginal influence on the computed solution
path for all values of A\. This indicates that errors other than the discretization error of
the interior operator are dominant. We note that it is difficult to compare the results on
a more quantitative basis, e.g., by considering the relative difference between solutions,
because different points along the path are computed with each discretization.

A contour plot of the solution in the neighborhood of the fold with L = 10, e = 0.1
and B8 = 0, is shown in Fig. 7. This figure gives a visual and qualitative indication that
sufficient resolution is obtained with h = 1/20. We note that this figure is scaled differently
in the z and y directions. The square plot is actually a representation of a 10 x 1 rectangle.

In Fig. 8 we plot the solution paths in the neighborhood of the fold point when 8 = 0,
e=0.1and L =1,2,3,5,10. The solid line connects the computed fold points. In Table
Ta we compare the location of the fold points as predicted by the asymptotic analysis
with those computed numerically for different L values, obtaining clear agreement. In
Table 7b we compare the asymptotic and numerical results for A.(¢€) for different € values
with # = 0 and L = 5. To keep € an exact multiple of h, the computations for ¢ = 0.1
were done with h = 1/20, while for ¢ = 0.08 and € = 0.12 we used h = 1/25. Although
the changes in A. occur in the third digit, which may be beyond the accuracy of the
numerical computations, it is clear that the discrete system behaves qualitatively like the
asymptotically approximated continuous system.

Our numerical evidence obtained by solving (5.1) numerically for different L and e

values, strongly supports the conjecture that A.(e) = .87846(1 — 1.571€?/L + - --) for the
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case 8 = 0 and finite L. However, since it is not possible to compute the solution to (5.1)
for arbitrarily large L values or arbitrarily small € values, we cannot conclusively rule out
the predictions of Adler or Herbert. The support for our conjecture rests mainly on the
comparisons of the asymptotic and numerical values of Ac(€) for the finite slab. Additional
support is derived from our extensive testing of the general theory for the determination

of \. performed in §4 in the case of an interior perturbation.

A Slab Reactor: >0

We now extend our analytical results by determining the correction to the first fold
point of (5.1) for the case # > 0. Since the unperturbed solution, uo(y), for (5.1) is
independent of z, the extended system obtained from (1.1) and (2.9) is chosen as

u:-}-/\oF(Uo,ﬂ):O, O<y<l1

u:)’a"‘AoFu(Uo,,B)an:—/\;F(uo,ﬂ), O<y<l1 (52)
ug(0)=0, u(1)=0, u(0)=a, '

Uga(0) =0,  uoa(1)=0, ua(0)=1.

Only when 8 = 0 can a closed form analytical solution to (5.2) be found. Otherwise the
unperturbed problem (5.2) must be solved numerically to locate the first fold point, by a
method similar to that described in §4. Then the expansion of the fold point for € < 1,

given in (3.7), can be written as

i)

T , Xl(ao) - m u0a(1aao)“o(1"10) (53)

Ae = A + .
o(ao) 4 fol uoa(Yy, a0) Fluo(y, ao), Bl dy

Numerical values for \g(ap) and X1 (ap) at different B values are given in Table 8. In
Fig. 9 and Table 9 we compare the values of A. as predicted by the asymptotic analysis
with those computed numerically, for L = 5.0, ¢ = 0.1, and a range of values for 8. The
numerical computations were performed with A = 1/20. The numerically computed values
of A, slightly underestimate the values obtained by the asymptotic analysis. This is in line
with our earlier observation that solution paths of coarser discretizations become critical

sooner than those of finer grids. The rather good agreement between the asymptotic

26






and numerical results for A.(e) further supports our conjecture that for 0 < 8 < 3. we
have Ac(€) — Ao(ao) = o(€?) for an infinite slab with L = co. An unsolved problem is to
determine whether \.(€) — Ao(ao) = o(eP) for any power p > 0 for the infinite slab.

The results of §3 can be used to treat other reactors. In particular, let D be a

rectangular box reactor with a circular insulating patch on one face so that

Au+AF(u,)=0 m0<z<L,, 0<y<1l, 0<z<L,,
O, u=0o0n 2z=0,L,; ,u=0o0onz=0,L;; Gyu=0o0ny=0,
u=0 ony=1, (z,2)¢0D.; Gu=0 ony=1, (z,2)€dD,.

Here, 0D, is a circular patch of radius e centered at (zo,1,2¢) and F(u,f) is given in
(4.1a). When § = 0 this problem was considered by Zaturska (1984), who used Adler’s
method to produce an O(e) correction to the location of the fold point. Our result below,
however, predicts an O(e?) correction to the fold point.

Since the solution, ug(y), to the unperturbed problem is the same as for the two-

dimensional slab considered in (5.1), we find from (3.16) and (3.17) that

_ 16 Xl(ao) 3
/\c—/\o(ao)'l'?m .1, e€+---.

Here Ao(ao) and A;(ap), defined in (5.3), are tabulated for different B values in Table 8.

A Spherical Reactor

We now determine numerical values for the asymptotic results of §3.2 for a spherical
reactor of radius one that has either an insulating or cooling patch on its boundary. In
(1.3) we assume that the projection of the cooling or insulating patch onto the tangent
plane at zq is a circle of radius e.

For the case of a circular insulating patch, with b = co and « = 0, we find from (3.16)

and (3.17) that

l u;)a(laQO)u;)(l,ao)
3n fD 2 uga(r, @) Fluo(r, @), Bl dr
(5.4a)

Ac = /\o(ao)+€3A1(ao)+"' y /\l(ao)= -
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For the case of a circular cooling patch, with b = 1 and k¥ = 0o, we find from (3.14) and
(3.15) that

1 uoa(1, @) uo(1, o)
™ Jp 2 uoa(r, @) Fluo(r, ao), B] dr

As an illustration, the unknown quantities appearing in (5.4a) and (5.4b) are found from

Ac = Ao(ao) + €A1(a0) + -, Al(ao) = . (54b)

the numerical solution to the extended system (4.1) with b = oo and b = 1, respectively,
and with m = 3. The resulting numerical values for Ag(ao) and A;(ao) are given in Table
10.

We have not solved the fully three-dimensional perturbed problem (1.3) numerically
in the case of insulating or cooling patches on the boundary. However, we anticipate that
the agreement between the numerical and asymptotic results would be similar to the case

of a concentric insulating or cooling pellet, which was examined in §4.

A Circular Cylindrical Reactor

We now determine numerical values for the asymptotic results of §3.1 for a circular
cylindrical reactor of radius one that has either an insulating or cooling segment, of length
2¢ on its boundary.

For the case of an insulating segment, with b = oo and £ = 0, we find from (3.7) that

1 u;)a(l’ao)u:)(l’ao)
4 [, ruoa(r, ao) Fluo(r, ao), B dr

Alternatively for the case of a cooling segment, with ¥ = 1 and «k = oo, we find from (3.5)

that

’\c = /\o(ao) + éAl(ao) +---, /\1(010) = - . (55(1)

uoa(1, o) uo(1, o)
r toa(r, o) Fluo(r, ao), Bl dr
(5.5b)

As an example, the unknown quantities appearing in (5.5a) and (5.5b) are found from the

Ae = Ao(ao) + ("E;';)Al(ao) +--, A1(ag) = % fD

numerical solution to the extended system (4.1) with b = oo and b = 1, respectively, and
with m = 2. Numerical values for A\¢(ag) and A;(ap) are given in Table 11.

Although we have not compared (5.5a,b) with the numerical solution to (1.3), we
anticipate a similar agreement between the numerical and asymptotic results for A;(e) as

was obtained in §4 for concentric cooling or insulating rods.
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Discussion

We close with two remarks. Since the theory to treat boundary perturbations is only
a slight modification of that used to examine interior domain perturbations, the rather
extensive validation of the asymptotic theory in §4 for various ranges of b and « provides
a partial check on the results in §5. Therefore, although we compared our asymptotic and
numerical results in §5 only for a finite slab reactor, for reactors of other geometries and
other ranges of b and «, we anticipate a similar agreement as was obtained in §4.

For each of the examples presented in §4 and §5 the unperturbed solution can be found
from a boundary value problem for ordinary differential equations. This restriction is not
necessary in that for fully two or three dimensional problems a numerical solution to (1.1)
can be used together with the asymptotic results of §2 and §3 to give the correction to the
location of the fold point. In this way, we can treat reactors with arbitrary geometries and
boundary conditions, while avoiding to solve numerically any highly stiff problems. The
accuracy of the resulting expressions for A.(¢) for ¢ < 1 would probably be similar to that

found for the special cases considered in §4 and §5.
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ﬂ Ao(ao) Al(ao) (43(1) Al(ao) (4.3b)
0.0000 3.322 8.079 27.77
0.0556 3.552 8.449 28.93
0.1111 3.837 8.891 30.29
0.1389 4.010 9.148 31.07
0.1667 4.212 9.437 31.92
0.1944 4.456 9.762 32.86
0.2222 4.773 10.12 33.82

Table 1: Spherical reactor containing a concentric cooling
or insulating pellet: Asymptotic results

,3 /\o(ao) Al(ao) (44(1) Al(ao) (446)
0.0000 2.000 2.773 8.000
0.0444 2.104 2.899 8.368
0.0889 2.227 3.045 8.796
0.1111 2.297 2.877 9.038
0.1333 2.375 2.962 9.305
0.1556 2.463 3.056 9.602
0.1778 2.563 3.163 9.937

Table 2: Circular cylindrical reactor with a concentric cooling

or insulating rod: Asymptotic results

€ Ae (4.2) | A (4.30) € Ao (4.2) | A (4.3b) |
0.050 4.303 4.282 0.050 3.841 3.838
0.075 4.558 4.504 0.100 3.865 3.846
0.100 4.831 4.726 0.125 3.891 3.854
0.125 5.127 4.948 0.150 3.927 3.867
0.150 5.447 5.171 0.200 4.037 3.908

Table 3: Spherical reactor containing a concentric cooling or insulating pellet:
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€ Ac (42) | A (4.4a) € Ac (42) | Ac(440) |
0.010 3.066 2.888 .050 2.249 2.249
0.025 3.336 3.053 .075 2.275 2.276
0.050 3.684 3.244 .100 2.312 2.315
0.075 4.002 3.403 125 2.359 2.364
0.100 4.317 3.550 .150 2417 2.429

Table 4: Circular cylindrical reactor with a concentric cooling or insulating rod:

Comparison of asymptotic and numerical results, 8 = .08889

€ Ac(€) (4.2) Ac (4.11) (1 term) Ac (4.11) (2 terms)
.010 .00557 .00552 .00557
.050 .02888 .02759 .02888
.100 .06052 .05518 .06015
.150 .09528 .08277 .09395
.200 .13359 .11036 .13023

Table 5: Spherical reactor with almost total insulation, b=0, =0, k=1

€ Ac(€) (4.2) Ac (4.13) (1 term) A¢ (4.13) (2 terms)
.010 .1503 .1598 1511
.050 2227 .2456 2251
.100 .2805 3195 .2848
.150 .3308 .3878 .3367
.200 3790 4572 .3861

Table 6: Circular cylindrical reactor with almost total insulation, b=0, =0, k=1

32






L Ac (asymptotics) Ac (numerics) relative error
1.0 8647 .8548 1.16 %
2.0 8716 .8662 0.62 %
3.0 8739 .8695 0.51 %
5.0 8757 8717 0.46 %
10.0 8771 8725 0.53 %

Table 7a: Slab Reactor with an insulating segment: Asymtptotic and

numerical results for A, at different L values with 8 =0,e=0.1.

Ac (asymptotics)

A¢ (numerics)

relative error

0.08
0.10
0.12

8767
8757
8739

8748 0.22 %
8717 0.46 %
.8703 0.42 %

Table 7b: Slab Reactor with an insulating segment: Asymptotic and

numerical results for A, at different € values with 3 =0, L =5.

B Ao(ao) A1(ao) (5.3)
0.0000 .87846 -1.3799
0.0244 .90184 -1.4166
0.0489 92720 -1.4564
0.0733 .95486 -1.4999
0.0978 .98529 -1.5477
0.1222 1.0191 -1.6008
0.1467 1.0571 -1.6605

Asymptotic results with g > 0
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Table 8: Slab Reactor with an insulating segment:







3 X (5:3) | X (5.1)
0.00000 | .87570 87173
0.02444 .89901 .89539
0.04889 | .92428 92061
0.07333 95186 94815
0.09778 | .98219 97844
0.12222 1.01590 1.01209
0.14667 1.05378 1.04994
017111 | 1.09714 | 1.09347
0.19556 | 1.14798 | 1.14431

Table 9: Slab Reactor with an insulating segment: Asymptotic and

numerical results with e =.10, L=5

ﬁ /\0(010) (b = OO) /\1(0{0) (54(1) Ao(ao) (b = 1) Al(ao) (54b) |
0.0000 3.322 -1.661 901 .360
0.0556 3.552 -1.776 957 .383
0.1111 3.837 -1.919 1.024 412
0.1389 4.010 -2.005 1.065 428
0.1667 4.212 -2.106 1.111 448
0.1944 4.456 -2.228 1.167 471
0.2222 4.773 -2.387 1.236 .500

Table 10: Spherical reactor with a circular cooling or insulating patch:

Asymptotic results
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,3 /\0(010) (b = OO) /\l(ao) (55(1) /\o(ao) (b = 1) /\1(0(0) (55b) I
0.0000 2.000 -1.000 576 220
0.0444 2.104 -1.052 .604 231
0.0889 2.227 -1.114 .636 244
0.1111 2.297 -1.149 .655 .252
0.1333 2.375 -1.188 675 .260
0.1556 2.463 -1.232 .698 .269
0.1778 2.563 -1.282 124 279

Table 11: Circular cylindrical reactor with an insulating or cooling segment:

Asymptotic results
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Figure Captions

Fig. 1 a:

Fig. 1 b:

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2:
3:

A schematic plot illustrating an interior domain perturbation.
A schematic plot illustrating a strong localized boundary perturbation.
A schematic plot of solution multiplicity for cylindrical reactors.
Comparison of asymptotic and numerical values of A.(¢) for a
spherical reactor.
Comparison of asymptotic and numerical values of A (¢) for a
cylindrical reactor.
Solution paths for fourth order discretizations of (5.1) with
L=20, e=0.1, =0 computed with h =1/10,1/20,1/30,1/40.
Solution paths for (5.1) with L =5.0, e =0.1, § = 0.02444
computed with A = 1/20 using second and fourth order discretizations.
Contour plot of the solution to (5.1) with L =10, e=0.1, 8 =0,
and A = )., computed with A = 1/20 and a fourth order discretization.
Solution paths in the neighborhood of the fold point for different L values
with =0, e=0.1, h =1/20.
Asymptotic and numerical predictions for A, for different 8 values
with L =5.0, e=0.1, h =1/20.

36






8D,

€, u+Ku=0

Figure la

Ohu+bu=0

aD,

Figure 1b






0y

7 2an814

g<dg

s wmf s e mep n GB on cmd ous =y o=

0o






YA

GT°

€ 2an314g

S0°0

ceeeo=¢ ¢ --—-
L9T0=¢
1110 =¢
9650°0 = ¢

00=¢

0'¢

0L






Ge-

GT°

 2an3TJg

S0°0

00o=v

v
“‘

-

T 8LLT0=¢

eeeT'0=¢
68800 = ¢
W00 =¢

00=¢

0°¢

1°¢

¢

£€°¢

Ve

G*Z

8°¢

6°¢

0¢






68"

88° L8" 98"

G 2an31jg

syutod proq pejynduro))

PU3 0F X 08
PL3 0g X 09
P13 0g X OF
PLS3 0T X 0%

—— e e vm - —-—

-

°1






68°

88"

L8"

98"

G8°

9 2an81J3

v8- £8° ¢c8”

18°

19PI0 Y3moy 07 X 00T -—— — — —

I9pI0 puodas (g X 001

0z/1 =

4 1

0=2 ¥%200=¢ 0g=17

S°T

9°1



.

u



.100 .100 .100
.200 200 200
\30@'— . 3008 .300

Figure 7



v,

w

.



g8 2a1n31yg

°T

G°1



-

e



1. Nw 1 | . 1 I
”_. . N — -
1.15 F -

L=50 €e=01 h=1/20
1.1 | -
Asymptotics
Ac
1.05 Numerics 4
H -
.95 .
.9 7
$
.85 _ : : :

0 0.05 .1 .15 .2 .25

Figure 9

e



LK}



