Loop Distribution with
Arbitrary Control Flow

Ken Kennedy
Kathryn S. McKinley

CRPC-TR90064
August, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892












Loop Distribution with Arbitrary Control Flow *

Ken Kennedy

Kathryn S. McKinley

Rice University
Department of Computer Science
P.O. Box 1892
Houston, TX 77251

Abstract

Loop distribution is an integral part of transforming a
sequential program into a parallel one. It is used ex-
tensively in parallelization, vectorization, and memory
management. For loops with control flow, previous
methods for loop distribution have significant draw-
backs. We present a new algorithm for loop distribu-
tion in the presence of control flow modeled by a con-
trol dependence graph. This algorithm is shown opti-
mal in that it generates the minimum number of new
arrays and tests possible. We also present a code gen-
eration algorithm that produces code for the resulting
program without replicating statements or conditions.
Although these algorithms are being developed for use
in an interactive parallel programming environment
for Fortran, they are very general and can be used in
automatic parallelization and vectorization systems.
Keywords: parallelization, vectorization, transfor-
mation, control dependence, data dependence, loop
distribution

1 Introduction

Loop distribution is a fundamental transformation in
program restructuring systems designed to support
vector and parallel machines. In its simplest form,
loop distribution consists of breaking up a single loop
into two or more loops, each of which iterates over a
distinct subset of the statements in the body of the
original loop. The usefulness of this transformation

*This research is supported by the National Science Foundation
under grants ASC8518578 and CDA8619893, and by the IBM
Corporation.

derives from its ability to convert a large loop whose
iterations cannot be run in parallel into multiple loops,
many of which can be parallelized. Consider the fol-
lowing code.
DOI=2,N
A()=B() + C
D(I) = A(I-1)*E
ENDDO

If we wish to retain the original meaning of this code
fragment, the iterations cannot be run in parallel with-
out explicit synchronization lest a value of A(I-1) is
fetched before the previous iteration has a chance to
store it. However, if the loop is distributed, each of
the resulting loops can be run in parallel.
DOALLI=2,N
A(I) =B(I) + C
ENDDO
DOALLI=2,N
D(I) = A(I-1)*E
ENDDO

In the presence of conditionals, distribution is com-
plicated. Consider, for example the following loop.
DOI=2,N
IF (A(I).EQ.0) THEN
AQ)=B() +C
D(I) = A(I-1)*E
ENDIF
ENDDO

In order to place the first assignment in the first loop
and the second assignment in the second loop, the re-
sult of the IF statement must be known in both loops.
The IF cannot be replicated in both loops, because
the first assignment changes the value of A. One solu-
tion to this problem is to convert all IF statements to
conditional assignment statements, as follows:
DOI=2,N

P(I) = A(I).EQ.0

IF (P(I)) AQ)=B(I) + C

IF (P(I)) D(I) = A(I-1)*E

DDO

The resulting loop can be distributed by considering
only data dependence, because the control dependence
has been converted to a data dependence involving
the logical array P. This approach, called if-conversion






[AKPW83, All83], has been used successfully in a vari-
ety of vectorization systems [AK87, SK86, KKLW84].
However, it has several drawbacks. If vectorization
fails, it is not easy to reconstruct efficient branching
code. In addition, if-conversion may cause significant
increases in the code space to hold conditionals.

For these reasons, research in automatic paral-
lelization has concentrated on an alternative approach
that uses control dependences [FOWS87, ABCt87,
ABC*88] to model control flow. Reconstructing se-
quential code from a control dependence graph is not
trivial, but it is easier than reconstructing from code
that has been subject to if-conversion [FM85, FMS88,
CFS89].

Unfortunately, the control dependence representa-
tion complicates loop distribution. Although control
dependences can be used like data dependences for
determining the placement of statements in loops, a
problem arises in generating code for a distribution:
“How does one generate two loops that have a con-
trol dependence between statements in their respec-
tive bodies?” The only way to accomplish this is to
record the results of evaluating the predicate in a logi-
cal array and test the logical array in the second loop.

This paper presents a method for performing loop
distribution in the presence of control flow based on
control dependences. The approach is optimal in the
sense that it introduces the fewest possible new logical
arrays and tests. In particular, it introduces one ar-
ray for each conditional node upon which some node in
another loop in the distribution depends. In addition,
we show an algorithm for generating code for the body
of a loop after distribution. This algorithm, which is
intended for use in an interactive program transfor-
mation system called ParaScope, generates code that
is very close to the original. Although this approach
was inspired by the ParaScope transformation system
[BKK*89], it is also suitable for use in automatic par-
allelization and vectorization systems. The algorithms
are very fast, both asymptotically and practically.

2 Loop Distribution

Distribution is a program transformation, introduced
by Muraoka [Mur71], that converts a single loop into
multiple loops. The placement of statements into
loops must preserve the data'and control dependences
of the original loop. We use the following definitions
of postdominance and control dependence, which are
taken from the literature [FOW87, CFS89).

1A data dependence exists between two statements if they ref-
erence the same memory location and at least one of them is a
write [Ber66, Ban88, AK84, Wol82].

Def: z is postdominated by y in the control
flow graph G/ if every path from z to the exit
node of G, contains y.

Def: Given two statements z, y € Gy, y is
control dependent on z if and only if:

1. 3 a non-null path p, z — y, such
that y postdominates every node
between z and y on p, and

2. y does not postdominate z.

Based on these definitions, a control dependence graph
Gedq can be built with the control dependence edges
(z, y)i1 where I is the label of the first edge on path
z — y. Intuitively, control dependence between two
statements, z and y, indicates that the source of the
control dependence z directly determines whether the
sink y will execute.

For our purposes, a node in G, usually represents a
single statement. Exceptions to the single statement
per node rule are inner loops and irreducible regions;
all of their statements are represented with a single
node. If G; is structured, rooted and acyclic, the re-
sulting G4 is a tree, where structured is as defined
by Bohm and Jacopini [BJ66]. Also, if G, is unstruc-
tured, rooted and acyclic, the resulting G4 is a DAG
[CFS89].

For the purposes of this paper, loop distribution is
separated into a three-stage process: (1) the state-
ments in the loop body are partitioned into groups
to be placed in different output loops; (2) the control
and data dependence graphs are restructured to effect
the new loop organization and (3) an equivalent pro-
gram is generated from the dependence graphs. The
method we present is designed to work on any parti-
tion that is legal, i.e., any partition that preserves the
control and data dependences of the original program.
A partition can preserve all dependences if and only if
there exists no dependence cycle spanning more than
one output loop [KKL*81, AK87). If there is a cycle
involving control and/or data dependences, it must
be contained entirely within a single partition (there
are a few additional considerations for loops with exit
branches, which are discussed in Section 3.4).

This condition is necessary and sufficient. Consider
what must be done to generate code given a partition-
ing into loops: some linear order for the loops must be
chosen. If we treat each output loop as a single node
and define dependence between loops to be inherited
in the natural way from dependences between state-
ments, then the resulting graphs will be acyclic if and
only if each original recurrence is confined to a single
loop. Since an acyclic graph can always be ordered
using topological sort and a cyclic graph can never be
ordered, the condition is established.

Because our algorithm accepts any legal partition
as input, it is as general as possible. It can be used for






vectorization, which seeks a partition of the finest pos-
sible granularity, or for MIMD parallelization, which
seeks the coarsest possible granularity without sacri-
ficing parallelism.

3 Restructuring for Loop Distribution

In the original program, control decisions are made
and used in the same loop on the same iteration, but
a partition may specify that decisions that are made
in one loop be used in another. This problem is il-
lustrated below by Example 1. Its corresponding G.q4
and data dependence graph are shown in Figure 1.

Example 1
DOI=1,N
5 IF (A(I) .GT. T) THEN
S A =1
ELSE
S3 T=T+1
S F(I) = A(])
Sy IF (B(I) .NE. 0) THEN
Se U = A(I) / B(I)
ELSE
Sy U=A()-U
Ss ¢ = B(I) + ¢(I)
ENDIF
ENDIF
S D(I) = D(I) + C(I)
ENDDO

The data dependence graph in Figure 1(b) shows
true dependences with solid lines and anti depen-
dences with dashed lines. Loop carried edges are la-
beled with lc. In this example, output dependences
are redundant and are not included. Given the data
and control dependences in Figure 1, the statements
may be placed in four partitions: (S;, S2, S3), (Ss,
Ss), (Se, S7), and (Ss, Sg). This particular partition
is chosen solely for exposition of the algorithm, and in
Figure 1(a) it is superimposed on G.q4 such that each
partition is enclosed by dashed lines.

Given this partition, some statements are no longer
in the same loop with statements upon which they
are control dependent. For example, S, is control de-
pendent on S;, but S; and S; are not in the same
partition. In Figure 1 the G.4 edges that cross parti-
tions represent decisions made in one loop, and used
in a later loop. There may be a chain of decisions on
which a node n is control dependent, but given a legal
partition, all of n’s predecessors and ancestors in G4
are guaranteed either to be in n’s partition, or in an
earlier one. Therefore the execution of n may be de-
termined solely from the execution of n’s predecessors.
We introduce ezecution variables to compute and store
decisions that cross partitions in G.q4 for both struc-
tured and unstructured code.

FIGURE 1:

3.1 Execution Variables

Execution variables are only needed for branch nodes,
because they correspond to control decisions in the
original program. Any node in G.4 that has a suc-
cessor must be a branch node, but only branch nodes
with at least one successor in a different partition are
of interest here. For each branch in this restricted set,
a unique execution variable is created. Only one ex-
ecution variable is created, regardless of the number
of successors or the number of different partitions to
which the successors belong. The execution variable
is assigned the value of the test at the branch, cap-
turing the branch decision. Later this variable will
be tested to determine control flow in a subsequent
partition. Hence, the creation of an execution vari-
able will replace control dependences between parti-
tions with data dependences. Execution variables are
arrays, with one value for each iteration of the loop,
because each iteration can give rise to a different con-
trol decision. If desired, loop invariant decisions can
be detected [AC72] and represented with scalar exe-
cution variables.

All other known techniques, whether they are G 4
based or not, use boolean logic when introducing ar-
rays to record branch decisions. This requires either
testing and recording the path taken in previous loops
or introducing additional arrays. In Example 1 in the






loop with statements (Se, S7), either Sg, or Sy, or nei-
ther may execute on a given iteration. Because there
are three possibilities, the correct decision cannot be
made with a single boolean variable. For example,
if S) takes the true branch, then neither Sg nor S,
should execute. If just Ss’s decision is stored, then
one of S¢ or S7 will mistakenly be executed, because
the branch recording array for S5 must either be true
or false, regardless of S;’s decision.

Given this drawback, we have formulated execu-
tion variables to have three possible values: true, false
and T, which represents “undefined”. Every execu-
tion variable is initialized to T at the beginning of the
loop in which it will be assigned, indicating that the
branch has not yet been executed. Because of the ex-
istence of a “not executed” value, the control depen-
dent successors in different partitions need only test
the value of the execution variables for their predeces-
sors; they do not need to test the entire path of their
control dependence ancestors. This is true whether
the control flow is unstructured or structured. Execu-
tion variables completely capture the control decision
at a node, making them extremely powerful.

3.2 Restructuring

The restructuring algorithm in Figure 2 creates and in-
serts execution variables and guards, given a distribu-
tion partition. It also updates the control and data de-
pendence graphs to reflect the changes it makes. The
algorithm is applied in partition order and, within a
partition, in statement order over G.4 (statement or-
der can be the original lexical order or interval or-
der). The algorithm can be subdivided into three
parts. First, execution variables for a branch node
n are created where needed. Next, guard expressions
are inserted for any nodes control dependent on n.
Then the control and data dependences are updated,
reflecting the new guards and execution variables.

The need for an execution variable for n is deter-
mined by considering n’s successors. If there is an
outgoing edge from n to a node that is not in n’s par-
tition, an execution variable is created. In Example
1, execution variables are needed for S; and Ss. The
initialization of the execution variable is inserted at
the beginning of n’s partition, ensuring it will always
be executed. Next, an assignment of the execution
variable to n’s test is inserted in node n. If n has
successors in its partition, its branch is changed to
test the execution variable. Otherwise, its branch is
deleted.

For each partition P; that contains a successor of
n, a guard on n’s execution variable is built. Here the
successors of n are also considered in statement order.
A guard is built for every distinct label from n into P;.
Each guard compares n’s execution variable, EV,(I),
to the distinct label I. All of n’s successors in G¢g

Execution Variable and Guard Creation

INPUT: partitions, G.4, statement order
OUTPUT: modified G.4 with execution variables

for each partition, P
for each n € P, in order
if (3 an edge (n, 0); € G4, where o ¢ P)
insert “EV,(I) = T” into P at top
let test be n’s branch condition
if (3 (n, m); where m € P)
: “EVa(I) = test”
replace n with “IF (EVp(I) .EQ. true)”
else
replace n with “EV,,(I) = test”
for each P, # P containing a successor of n
{* Build guards, and modify G.q *}
for each [ where 3 (n, p); with p € P
create new statement N:
“IF (EVa(]) .EQ. I)",
add N to P, {* Nis new and unique *}
insert data dependences for EV,,
for each (n, q); where ¢ € P;
{* Update control dependences *}
delete (n, ¢); from G 4
add (N) Q)true to Geq
endfor
endfor
endfor
endfor
endfor

FIGURE 2: Restructuring for Distribution

in Py on label [ are severed from n, and connected to
the newly created corresponding guard. OQur examples
have only two labels, true and false, but any number
of branch targets can be handled.

Consider Example 1. S5 has successors in two parti-
tions, (Se, S7) and (Ss, Ss). The successors in (S, S7)
are on different branches. Sg is on the true branch, so
the guard expression created is “EV5(I) .EQ. true.”
S7 is on the false branch, so its guard expression is
“EVs(I) .EQ. false.” The old edges (5, 6) and (5, 7)
are deleted from G.q4, and new edges attaching 6 and
7 to their corresponding guards are created. Similarly
a guard is created for and connected to Ss.

The following simple optimization is included in the
algorithm and examples but, for clarity, does not ap-
pear in the statement of the algorithm. Determin-
ing whether the initialization of an execution variable
is necessary, can be accomplished when an execution
variable is created for a node n. If n is not control
dependent on any other node, that is, a root in the
control dependence graph, then there is no need for
initialization to be inserted. During guard creation
for the successors of this node, the execution variable
is known to have a value other than T. Therefore, if






control flow is structured, only one guard is needed for
each successor partition, instead of for each label.

After restructuring is applied, each partition has a
correct Geq, a correct data dependence graph, and
possibly some new statements (execution variable as-
signments and guards). At this point the code for
the distribution partition can be generated. We use a
simple code generation algorithm, which is described
in Section 4. Given the distribution in Figure 1 for
Example 1, restructuring and code generation results
in the following code.

DOI=1,N
EVi(I) = A(I) .GT. T
5 IF (EVi(I) .EQ true) THEN
S A(D) =1
ELSE
Ss3 T=T+1
ENDIF
ENDDO
DOI=1,N
EVi()=T
IF (EVi(I) .EQ. false) THEN
S, F(I) = A(l)
Ss EV(I) = B(I) .EQ. 0
NDIF
ENDDO
DOI=1,N
Se IF (EVs(I) .EQ. true) U = A(T) / B(I)
S ELSE IF (EVs(I) .EQ. false) U = A(I) - U
ENDDO
DOI=1,N
Se IF (EVs(I) .EQ. false) C(I) = B(I) + C(I)
S D(I) = D(I) + C(I)
ENDDO’

The advantages of three-valued logic are illustrated
by the concise guards for S¢ and S7. As shown in
Section 3.1, EV5(I) must be explicitly tested for true
or false, because if S; evaluated to true, then EV5(D)
will be T and neither Ss nor S; should execute. Not
only do we avoid testing EV;(I) here, if Sy and Ss
were in Sy ’s partition, there would be no need to store
S1’s decision at all, even though Ss are S; indirectly
dependent on S; and S; remains in a different loop.

3.3 Optimality

Given a distribution, this section proves that our algo-
rithm creates the minimal number of execution vari-
ables needed to track control decisions affecting state-
ment execution in other loops. It also establishes that
the algorithm produces the minimal number of guards
on the values of an execution variable required to cor-
rectly execute the distributed code. Therefore, our
algorithm is optimal for a given distribution partition.

Lemma 1: Each execution variable represents a
unique decision that must be communicated between
two loops.

Proof: An execution variable is only created when a
decision in one partition directly affects the execution
of a statement in another partition, as specified by

Ged. The definition of G.4 guarantees that no decision
node subsumes another, and therefore any decisions
represented by execution variables are unique. O

The restructuring algorithm creates the minimal
number of guards on the values of an execution vari-
able required to correctly determine execution. Let

p = the number of distinct partitions, P, and

m = the number of distinct branch labels, I,
that contain successors of node n. There are at most k
tests on the value of an execution variable EV;,, where

k= zP:f:(lj € })t)

i=1j=1

k is the sum of distinct labels into every distinct par-
tition, and is bounded by the number of n’s successors
that are in separate partitions P;.

Theorem 1: The number of guards that test an ex-
ecution variable is the minimal required to preserve
correctness for the given distribution.

Proof by contradiction. If there exists a version of
the distribution with fewer guards, then guards would
be produced that were either unnecessary or redun-
dant. If there were unnecessary guards, then Lemma
1 would be violated. If there were redundant guards,
then there would be multiple guards for nodes in the
same partition with the same label. However the al-
gorithm produces at most one guard per label used in
a partition. O

3.4 Exit Branches

Because exit branches determine the number of iter-
ations that are executed for an entire loop, they are
somewhat sequential in nature. It is possible to per-
form distribution on such loops in a limited form by
placing all exit branches in the first partition. Of
course any other statements involved in recurrences
with these statements must also be in the first parti-
tion. This forces the number of iterations to be com-
pletely determined by the first loop. If there are any
statements left, any legal partitioning of them may be
performed. The control dependences for each of the
subsequent partitions can be satisfied with execution
variables as described above. However, during code
generation their loop bounds must be adjusted. If an
exit branch was taken, any statements preceding it in
the original loop must execute the same number of
times as the first loop, later statements must execute
one less time than the first loop. Otherwise, when no
exit branch is taken, all loops must execute the same
number of times as the first loop.

4 Code Generation

To review, there are three phases to distribution in the
presence of control flow. The first step determines a






partitioning based on data and control dependences.
The second step inserts execution variables and guards
to effect the partition and updates the control and
data dependences. The third step is code generation.

In step two the only changes to the data dependence
graph are the addition of edges that connect the def-
initions of execution variables to their uses. A G.q4 is
built for each new loop during this phase. In each new
loop’s G4 there are no control dependences between
guards. However, there may be relationships between
execution variables that may be exploited and inserted
during code generation.

Now we consider code generation for unstructured
or structured control flow without exit branches (Sec-
tion 3.4 contains the extensions necessary for exit
branches). Because the data and control dependence
graphs, as well as the program statements are cor-
rect on entry to the code generation phase, a variety
of code generation algorithms could be used. For ex-
ample, any of the code generation algorithms based on
the program dependence graph [FM85, FMS88, CFS89,
BB89] could be used in conjunction with the above
algorithm. A very simple code generation scheme is
described here. It is designed to be used in ParaScope,
an interactive parallelizing environment.

When transformations are applied in an interactive
environment it is important to retain as much similar-
ity to the original program as possible. The program-
mer can more easily recognize and understand trans-
formed code when it resembles the original. For this
reason, although partitioning may cause statements
to change order, the original statement order and con-
trol structure within a partition is maintained. If the
original loop is structured, the resulting code will be
structured. If the original loop was unstructured and
difficult to understand, so most likely will be the dis-
tributed loop.

To maintain the original statement ordering, an or-
dering number is computed and stored in order{n]. All
the nodes in G4 are numbered relative to their origi-
nal lexical order, from one to the number of nodes. All
of the execution variable initialization nodes are num-
bered zero, so they will always be generated before
any other node in their partition. The newly created
guard nodes have an order number and a relative num-
ber, rel[n]. Their order numbers are the number of the
node whose execution variable appears in the guard
expression. Their relative numbers rel[n] are the num-
ber of the guard’s lowest numbered successor. Both
of these numbers can be computed when the guard is
created. To simplify the discussion, branches are as-
sumed to have only two label values, true and false,
but the algorithm may be easily extended for multi-
valued branches.

The rest of this section is divided into three parts.
First relabeling, which corrects and renames state-

ment labels, is described. Then the code generation
discussion is separated into sections for structured and
unstructured code.

4.1 Label Renaming

A distribution partition may specify that the destina-
tion of a GOTO, that is, a labeled statement, be in a
different loop from the GoTo. Replication and label
renaming of GOTOs of this type must be performed
to compensate for this after restructuring and before
code generation. Renaming is easily accomplished by
replacing the destination of a GoTo that is no longer
in the same loop with an existing label or a new la-
bel, Ip;, which may require a CONTINUE. The new
destination has the same relative ordering as the orig-
inal label. Often this will be the last statement in the
partition. Reuse of labels is done whenever possible.

Example 2
DOI=1,N
S IF (p1) GOTO 4
2
Sa GOTO 5
4 IF (p4) GOTO 6
5
6
E

Consider Example 2 with a distribution partition
(S1, Sz, S3, Se) and (S, Ss). The destination of S;’s
GOTO, S, is not in the same partition as S;, there-
fore the GOTO’s label must be renamed. In this case,
the new destination of S;’s jump must not interfere
with the execution of Sg. To determine the destina-
tion and new label, the statement number of the orig-
inal labeled statement (in this case 4) is compared to
each statement in the partition following S; in order.
When a statement number greater than the original is
found (Se in our example), its label is used or a new
one is created for it. Any empty jumps are deleted.
A straightforward relabeling of the first partition in
Example 2 after restructuring results in the following.

DOI=1,N
EVi[l] = p1
S IF (EV1[I] .EQ. true) GOTO 6
S2

6 Se
ENDDO
4.2 Structured Code Generation

Because code generation based on G.q when it is a
tree, is relatively simple [FM85, FMS88, BB89)], this
discussion emphasizes properly selecting and inserting






the appropriate control structures for newly created
guards. Other G.4 code generation algorithms must
select and create control structures for all branches.
Because we use the original control structures for all
but the newly created guards, only they are of in-
terest here. When the guards are created they are
identified by setting guard[n] to true. For all other

nodes, guard(n] evaluates to false. With structured

control flow the only two control structures that need
be inserted when generating guards are IF-THEN and
IF-THEN-ELSE.

Our algorithm for code generation given structured
or unstructured code appears in Figure 3. It considers
each partition and its nodes based on their order num-
ber, from lowest to highest. If a node n is not a guard
node, it is generated with its original control structure
followed by any descendents using depth-first recur-

FIGURE 3:

Code Generation after Distribution
INPUT: G4, ordered partitions, order([n], rel[n],
guard[n], goto[n]

OuTPUT: The distributed loops
for each partition, P
gen (DO) {* The original loop header *}
while (3 ne P)
choose, n with smallest order[n] and
if goto[n] and not only predecessor,
with greatest rel[n], otherwise smallest rel[n]
done = false
delete n from P
if (guard(n])
genguard (n)
else
gen (n) {* all matches any branch label *}
gensuccessors (n, all)
endwhile
endfor

procedure gensuccessors (n, )
while (done = false and 3 (n, m); € G.q and P)
choose m with smallest order[m]
if (3 (p, m) where p # n)
{* In structured code m has one predecessor *}
{* so this will never occur *}
done = true
else
delete (m) from P
gen (m)
gensuccessors (m, all)
endwhile
end

sion on G.4. Given a tree G4, and that all control
dependences are satisfied, the ancestors of a node n
in G.q must be generated before n is. If the node is
a guard node, the control structure for it must be se-
lected and created. This work is done in the procedure
genguard.

If the guard node has true and false branches, an
IF-THEN-ELSE is generated, where the conditional is
the guard expression. For each successor on the true
branch, it and its descendents are generated recur-
sively, in order. The false successors are generated
similarly under the ELSE. If there are two guards with
the same order number, they are ordered by their rel-
ative number, and an IF-THEN-ELSE-IF-THEN is gen-
erated. The first guard expression becomes the first
conditional, and its successors and their descendents
are generated in the corresponding THEN. The second

FIGURE 3: (continued)

procedure genguard (n)
if (3 (p, rel[n]) p # n and p still € P)
{* Generate unstructured code *}
let L be the statement label of node rel[n]
gen (IF n GOTO I)
{* Generate structured constructs *}
else i-f(3 (n, @true and (”» r)!alce
where order[g] < order[r])
{* The original conditional was structured *}
gen (IF n THEN)
gensuccessors (n, true)
gen (ELSE)
gensuccessors (n, false)
gen (ENDIF)
else if (3 o where order[o] = order[n])
{* n chosen s.t. rel[n] < rel[o] *}
{* The original conditional was structured *}
gen (IF n THEN)
gensuccessors (n, true)
delete o from P
gen (ELSE IF o THEN)
. gensuccessors (o, true)
gen (ENDIF)
else
{* Unstructured or structured *}
{* original conditional *}
gen (IF n THEN)
gensuccessors (n, true)
gen (ENDIF)
end






guard expression conditions the ELSE-IF-THEN, and is
followed by its descendents. Otherwise the guard is
the only node with this order number, and an IF-THEN
is generated for the guard and its descendents.

In Example 3 the control dependence graph is a long
narrow tree.

Example 3
DOI=1,N

51 IF (p1) THEN

S2

ELSE
Ss IF (p3) THEN
Sy

ELSE

Ss IF (p5) THEN -

- e e - - - - — - -

d
O

\

~

- . -

After performing the above algorithms, the code below
results.

DOI=1,N

EVill=T

EVs[=T
S EVi[l] = p1

IF (EV4[I] .EQ. false) THEN
S3 EV3[I} = p3

IF (EV3[I] .EQ. false) THEN
Ss EVs[l] = p5
IF (EVs[I] .EQ. false) THEN
S

7
ENDIF
ENDIF
ENDIF
ENDDO
DOI=1,N
IF (EVi[I] .EQ. true) S;
IF (EV3(I] .EQ. true) S,
IF (EV:,[I] EQ. true) Se
ENDDO

The first loop shows the dead branch optimization.
The second loop illustrates that it is possible to gener-
ate correct code without adding control dependences
between guards. More efficient code could be gener-
ated by noticing in the second loop nest if EVi[I] is
true then neither EV3[I] or EV;[I] can be true, and
similarly if EV3[I] is true then EVs[I] cannot be true.
This code would not have fewer tests, but would be
more efficient and have a different structure.

4.3 Unstructured Code Generation

We can avoid the usual problems when generating
code with a DAG G4 for unstructured control flow by
using the original structure and computing some addi-
tional information about the origin of the new guards.
This information can be computed during code gener-
ation, or when the guards are created. If a guard is
the only predecessor of its successors, the ordering and
structure selection for structured control flow can be
used. For guards that have successors with multiple
predecessors, GOTO’s are generated.

The key insight is that, although a node can be
control dependent on many nodes, only one of these
dependences may be from a structured construct. Ob-
serve that in a connected subpart of G.4, when guards
are created from GOTOs outside the partition into the
subpart, the guards with the highest order numbers
will be generated first. One or two GOTOs may re-
sult. When a GoTO will result in a guarded GoTo and
a structured construct, care is taken to generate the
GOTo first. In this case the node with larger relative
number between the two guards will be selected, and
a GOTo for it is generated.

The recursive generation of successors and their de-
scendents must choose the lowest numbered successor
to generate first. In structured code this is guaranteed
to be the true branch, but with an IF-GOTO the false
branch is lower. In structured code, the generation of
successors is immediately preceded by their one and
only predecessor. In unstructured code, to ensure all
control dependences are satisfied, the recursion must
cease if a node has other predecessors that have not
yet been generated. When there are multiple GoTo’s
this situation may arise. '

Now returning to Example 2, and applying code
generation results in the code below.

DOI=1,N
EVi[l] = p1
S, IF (EVi[I] .EQ. true) GOTO 6
A
6 Se
ENDDO
DOI=1,N
IF (EVi[1] .EQ. false) GOTO 5
IF (EV; .EQ true) THEN
Sa IF (p4) GOTO P,
5 S

s
P, CONTINUE
ENDDO

Notice that when the second partition is generated
the GOTO is generated first. The guards for S4 and
Ss have the same order number, i.e. 1, but because
S1 was a GOTO, the jump to Ss is generated first.
Then S4’s guard, S4, and S5 are generated. Here and
in Example 4 there are jumps into structured con-
structs. Although these jumps are non-standard For-
tran, many compilers accept them, and regardless can






be implemented with coTo’s.
Finally, consider Example 4 with a distribution par-
tition (51, S2) and (Ss, Ss, Ss, Ss).

Example 4
DOI=1,N
5 IF (p1) GOTO 5
S IF (p2) THEN PiingN
ELSE
5
ENDIF
ENDDO

Distribution restructuring, label renaming, and code
generation performed on the above results in the fol-
lowing code.

DOI=1,N
EV,I]=T
51 EVl[I] = pl
IF (EV1{I] .EQ. true) GOTO P,
Sy EV;[]] = p2
P; CONTINUE
ENDDO
DOI=1,N

IF (EV1[T) .EQ. true) GOTO 5
IF (EV2[T) .EQ. true) THEN
Ss
S
ELSE IF (EV4[] .EQ. false) THEN
5 Sy

Se
ENDIF
ENDDO

5 Related Work

Callahan and Kalem present two methods for gener-
ating loop distributions in the presence of control flow
[CK87]. The first, which works for structured or un-
structured control flow, replicates the control flow of
the original loop in each of the new loops by using G;.
Branch variables are inserted to record decisions made
in one loop and used in other loops. An additional
pass then trims the new loops of any empty control
flow. Dietz uses a very similar approach [Die88]. It
has some of the same drawbacks of if-conversion.
Callahan and Kalem’s second method, which works
only for structured control flow, uses Gy, G.q4, and
boolean execution variables. Their execution vari-
ables indicate if a particular node in G; is reached
and are created for edges in G.4 that cross between
partitions. Their execution variables are assigned true

at the successor indicating the successor will execute,
rather than assigning the decision made at the prede-
cessor. Also, one execution variables may be needed
for every successor in the descendent partition. Be-
cause their code generation algorithm is based on G 1)
rather than G.4, the proof of how an execution vari-
able is used is much more difficult and is not given.
Towle [Tow76] and Baxter and Bauer [BB89] use sim-
ilar approaches for inserting conditional arrays.

Ferrante, Mace, and Simons present related algo-
rithms whose goals are to avoid replication and branch
variables when possible [FM85, FMS88]. Their code
generation algorithms convert parallel programs into
sequential ones, and like ours, are based on G.4. They
discuss three transformations that restructure control
flow: loop fusion, dead code elimination, and branch
deletion.

Other research concerned with the definition and
use of the program dependence graph does not address
distribution [FOW87, FM85, FMS88]. The papers de-
scribing the PTRAN project [CFS89, ABC+87), which
also performs code generation based on G.4, do not
address distribution. Work in memory management
and name space adjustment [KKL+*81, Por89] uses dis-
tribution, but only when no control dependences are
present.

The Stardent compiler [A1190] distributes loops with
structured control flow by keeping groups of state-
ments with the same control flow constraints together.
For example, all the statements in the true branch of
a block IF must stay together, so only the outer level
of IF nests can be considered. This limits effectiveness
of distribution because partitions are artificially made
larger, possibly by grouping parallel statements with
sequential ones.

6 Conclusions and Future Work

We have presented a very general and optimal al-
gorithm for loop distribution when control flow is
present. The algorithm can be used to enhance the
effectiveness of vectorizers, parallelizers and program-
ming environments, alike. The generality of our sys-
tem will allow future research to focus on discovering
partitioning algorithms that are effective in deciding
if and when a distribution can be profitably used.

This work was motivated by the desire to han-
dle loops with control flow in the ParaScope
Editor[BKK*89], which supports a variety of transfor-
mations, including loop distribution. An implementa-
tion of this work is in progress.

7 Acknowledgments

We would like to thank the reviewers for their valu-
able suggestions and comments, all of which were in-






corporated. We are also grateful to Marina Kalem and
Chau-Wen Tseng for their significant contributions to

this work.

References

[ABC*87)

[ABC*88]

[ACT2]

[AK84]

[AK87]

[AKPWS83]

[All83]

[All90]

[Ban8s]

[BB89)

[Ber66]

[BI66]

[BKK*89]

F. Allen, M. Burke, P. Charles, R. Cytron,
and J. Ferrante. An overview of the PTRAN
analysis system for multiprocessing. In Pro-
ceedings of the First International Conference
on Supercomputing. Springer-Verlag, Athens,
Greece, 1987.

F. Allen, M. Burke, P. Charles, J. Ferrante,
W. Hsieh, and V. Sarkar. A framework
for detecting useful parallelism. In Inter-
national Conference on Supercomputing, St.
Malo, France, 1988.

F. Allen and J. Cocke. A catalogue of opti-
mizing transformations. In J. Rustin, editor,
Design and Optimization of Compilers. Pren-
tice Hall, 1972.

J.R. Allen and K. Kennedy. PFC: A program
to convert Fortran to parallel form. In Su-
percomputers: Design and Applications, pages
186-205. IEEE Computer Society Press, Silver
Spring, MD., 1984.

J.R. Allen and K. Kennedy. Automatic
translation of Fortran programs to vector
form. ACM Transactions on Programming
Languages and Systems, 9(4):491-542, Octo-
ber 1987.

J.R. Allen, K. Kennedy, C. Porterfield, and
J. Warren. Conversion of control dependence
to data dependence. In Conference Record of
the Tenth ACM Symposium on the Principles
of Programming Languages, Austin, Texas,
January 1983.

J.R. Allen. Dependence Analysis for Sub-
scripted Variables and Its Application to Pro-
gram Transformations. PhD thesis, Rice Uni-
versity, April 1983.

J. R. Allen. Private communication, February
1990.

U. Banerjee. Dependence Analysis for Su-
percomputing. Kluwer Academic Publishers,
Boston, 1988.

W. Baxter and H. R. Bauer, III. The program
dependence graph and vectorization. In Con-
ference Record of the Sizteenth ACM Sympo-
sium on the Principles of Programming Lan-
guages, pages 1-10, January 1989.

A.J. Bernstein. Analysis of programs for par-
allel processing. IEEE Transactions on Com-
puters, 15(5), October 1966.

C. Bohm and G. Jacopini. Flow diagrams, tur-
ing machines, and languages with only two for-
mation rules. In Communications of the ACM,
19:5, May 1966.

V. Balasundaram, K. Kennedy, U. Kremer,
K.S. McKinley, and J. Subhlok. The ParaS-
cope Editor: An interactive parallel program-

[CFS89]

[CKs87]

[Die88]

[FMs5]

[FMS88]

[FOWs7]

[KKL*81]

[KKLWS84]

[Mur71]

[Por89]
[SKs86]

[Tow76]

[Wol82]

ming tool. In Supercomputing ’89, November
1989.

R. Cytron, J. Ferrante, and V. Sarkar. Experi-
ence using control dependence in PTRAN. In
Proceedings of the Second Workshop on Lan-
guages and Compilers for Parallel Computing,
August 1989.

D. Callahan and M. Kalem. Control de-
pendences. Supercomputer Software Newslet-
ter 15, Dept. of Computer Science, Rice Uni-
versity, October 1987.

H. G. Dietz. Finding large-grain parallelism
in loops with serial control dependences. Pro-
ceedings of the 1988 International Conference
on Parallel Processing, January 1988.

J. Ferrante and M. Mace. On linearizing par-
allel code. In Conference Record of the Twelfth
ACM Symposium on the Principles of Pro-
gramming Languages, January 1985.

J. Ferrante, M. Mace, and B. Simons. Gen-
erating sequential code from parallel code. In
International Conference on Supercomputing,
St. Malo, France, 1988.

J. Ferrante, K. J. Ottenstein, and J. D.
Warren. The program dependence graph
and its use in optimization. ACM Trans-
actions on Programming Languages and Sys-
tems, 9(3):319-349, July 1987.

D. J. Kuck, R.H. Kuhn, B. Leasure, D. A.
Padua, and M. Wolfe. Dependence graphs and
compiler optimizations. Conference Record of
the Eighth ACM Symposium on Principles of
Programming Languages, January 1981.

D. Kuck, R. Kuhn, B. Leasure, and M. Wolfe.
The structure of an advanced retargetable vec-
torizer. In Supercomputers: Design and Appli-
cations, pages 163-178. IEEE Computer Soci-
ety Press, Silver Spring, MD., 1984.

Y. Muraoka. Parallelism Ezposure and Ez-
ploitation in Programs. PhD thesis, Dept.
of Computer Science, University of Ilinois at
Urbana-Champaign, February 1971. Report
No. 71-424.

A. K. Porterfield. Software Methods for Im-
provement of Cache Performance. PhD thesis,
Rice University, May 1989.

R.G. Scarborough and H.G. Kolsky. A vector-
izing Fortran compiler. IBM Journal of Re-
search and Development, 30(2), March 1986.
R. A. Towle. Control and Data Dependence for
Program Transformation. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, March
1976.

M.J. Wolfe. Optimizing Supercompilers for Su-
percomputers. PhD thesis, University of Illi-
nois, October 1982.






