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DIRECT SEARCH METHODS ON PARALLEL MACHINES *
J.E. DENNIS, JR. AND VIRGINIA TORCZON !

Abstract. This paper describes an approach to constructing derivative-free algorithms for
unconstrained optimization that are easy to implement on parallel machines. A special feature of
this approach is the ease with which algorithms can be generated to take advantage of any number
of processors and to adapt to any cost ratio of communication to function evaluation.

Numerical tests show speed-ups on two fronts. The cost of synchronization being minimal, the
speed-up is almost linear with the addition of more processors, i.e., given a problem and a search
strategy, the decrease in execution time is proportional to the number of processors added. Even
more encouraging, however, is that different search strategies, devised to take advantage of additional
(or more powerful) processors, may actually lead to dramatic improvements in the performance of
the basic algorithm. Thus search strategies intended for many processors actually may generate
algorithms that are better even when implemented sequentially. The key difference is that the
additional processors are not used simply to enhance the performance of an inherently sequential
algorithm; they are used to spur the design of ever more ambitious—and effective—search strategies.

The algorithms given here are supported by a strong convergence theorem, promising computa-
tional results on a variety of problems, and an intuitively appealing interpretation as multidirectional
line search methods.

Key words. unconstrained optimization, direct search methods, multidirectional search, parallel
optimization, Nelder-Mead simplex algorithm
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1. Introduction. We consider the nonlinear unconstrained optimization prob-
lem

o S0,
where f :IR® — IR. We do not use any derivatives or finite differences in our search
schemes. These schemes qualify as direct search methods since the search is driven
solely by function information. We require only that f be continuous on a compact
level set to prove convergence for these methods; however, to guarantee convergence
to a stationary point we require that f be also continuously differentiable. These
convergence results will be discussed further in §4.

Originally, our interest in direct search methods was based on the fact that there
had been only limited progress in designing effective parallel optimization algorithms
that could take advantage of a large number of processors over a fairly wide range
of problems. Meanwhile, current predictions suggest that to achieve teraflop perfor-
mance by the end of the century will require machines with 8000 to 32000 proces-
sors. Workstations with up to 1000 processors are on the drawing board. What is
needed is algorithms that can be easily scaled to accommodate ever larger number of
processors—as well as ever more powerful processors. We believe that the algorithms
we propose in this paper constitute progress in this direction.

The simplicity of direct search methods suggested to us that they might be easily
adapted to a parallel computing environment precisely because they would be more
amenable to scaling. A survey of the scientific literature also revealed that at least
one direct search method, the Nelder-Mead simplex algorithm [15], numbers among
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the more popular optimization methods in scientific computing. The simplicity of
the direct search methods certainly explains much of their popularity. It is also true
that a lack of derivatives, as well as “noise” in the function values, may preclude
the use of methods that require derivatives. Thus we believe that if we can use
parallelism to improve the performance of direct search methods, any improvement
will be of immediate interest and possible use. Recent experiments with problems
from cancer research [1], chemical engineering [8], and stability analysis for matrix
computations [9] have convinced us and our users that the approach given here is a
valuable addition to the optimizer’s toolkit.

The purpose of this paper is to describe these parallel direct search methods in
the context of our earlier work and then to give some preliminary numerical results
that indicate the potential for this approach. These results suggest the merit in
pursuing the further development of parallel direct search methods. One goal is
to demonstrate that, in the context of direct search methods, computing additional
function values at each iteration can reduce the elapsed time to completion of an
algorithm in a parallel computing environment and may actually reduce the total
number of function evaluations required to produce an acceptable solution since the
number of iterations required to reach a satisfactory solution may be significantly
reduced. Thus, even though we are doing more work at each iteration (by computing
more function values at each iteration), we learn so much more about the function
that we produce significantly better iterates and thus converge in far fewer iterations.
The net effect is that even with a more ambitious search strategy, we may actually
compute fewer total function values.

Our paper is organized as follows. Section 2 outlines the basic approach we have
taken to develop parallel direct search methods, as well as gives the assumptions we
have made about the general parallel computing environment. Section 3 contains a
brief description of direct search methods and the reason for our interest in them, as
well as a comparison of our approach with several parallel implementations of quasi-
Newton methods for solving the general unconstrained minimization problem. In §4
we review the multidirectional search algorithm, a direct search method that forms the
basis for our more general parallel schemes. We also state the applicable convergence
theorem from [21]. In §5, we show how to incorporate the basic multidirectional search
algorithm into a core step that can then be augmented to take better advantage of the
available computational resources while retaining the convergence properties of the
basic algorithm. In §6 we outline the new parallel multidirectional search algorithms
and discuss implementation details. In §7, we give some preliminary numerical results
that demonstrate speed-up on two fronts and report our experience with some “real”
problems. In §8, we close with some remarks concerning future directions for research.

2. Approach. The approach we take can be viewed as an extremely flexible
multidirectional line search method that can be easily scaled to fit the number of
processors available—regardless of the size of the problem to be solved. Complete
use of the available processors is accomplished in two ways. First, additional search
directions are introduced systematically in an order that in some sense reflects the
likelihood of producing descent. In addition, the simple line search conducted along
each direction is refined, with preference given to those directions that are deemed
more likely to produce descent. The work involved in determining the search direc-
tions and steps is minimal; we do not need to solve any linear systems of equations.
Furthermore, this approach involves a minimum of inter-processor communication
(i-e., synchronization) and places few restrictions on the function to be minimized. In
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particular, there is no need to assume that the function evaluations are expensive in
order to justify the overhead introduced by the parallelization. This added flexibility
is significant. If the function evaluations must be expensive to support the cost of the
synchronization, then as processors become ever faster, the range of problems that
can be solved efficiently on parallel machines becomes ever smaller. This limitation
will become even more of an issue as the number of processors grows since the cost of
access to remote memory will become even greater. As we shall see, one of the most
attractive features of the parallel direct. search methods is that these methods allow
us to stack function evaluations on each processor until the cost of the computation
balances the cost of the communication.

Throughout this paper we will assume that n < p, where n is the dimension of
the problem to be solved and p is the number of available processors. While it is
certainly possible to use these algorithms when p < n, the more interesting results
occur when, in fact, n <« p (or, more accurately, when the total number of function
values computed at each iteration of the algorithm is significantly larger than the
dimension of the problem to be solved).

The results we will report in §7 have been taken from an implementation on an
iPSC/860, but these algorithms can be adapted to any sort of parallel computing
environment. This certainly includes either distributed-memory or shared-memory
multiprocessors. However, since these algorithms are both small and flexible, they
also are amenable for use on transputers or even on a network of computers that may
or may not have different performance characteristics. There is only one point of syn-
chronization so that modifications to suit a particular parallel computing environment
are straightforward. Furthermore, the information we require for the synchronization
is so small, regardless of the search strategy we employ, that even when global com-
munication or some other form of access to remote memory is relatively expensive it
is still easy to choose a search strategy from among those we propose for which this
approach is viable. We have concentrated on MIMD machines only because we are
ultimately interested in solving problems where the function values are themselves
the result of another (expensive) process, for instance a simulation or the solution
of a differential equation. We choose to treat the function evaluation routine as a
“black box.” However, with the proper restrictions on the function evaluation rou-
tine, the ideas presented here could also be implemented on SIMD machines. Thus
we have an approach that is flexible enough to be of use in a wide range of computing
environments.

3. Background. The methods given here belong to the large and often-used
class called direct search methods. Direct search methods are characterized by the
fact that they do not use derivatives. Derivative-free schemes are more widely ap-
plicable than gradient or quasi-Newton methods. Of course, there is little doubt
that derivatives, when they are available, can be used to speed up the average-case
performance of nonlinear optimization algorithms, but sometimes derivative approxi-
mations are simply not practical. In some control problems the objective calculation
is so expensive that finite differences are undesirable and the code involves so much
branching that automatic differentiation is currently out of the question, while an
expert might require weeks, or even years, to find an alternative adjoint approach to
derivative approximation. Derivative-free methods are also quite robust in dealing
with objective functions that can be evaluated to only a few significant digits, which
precludes the use of finite-difference derivative approximations, regardless of expense.

As an indication of how popular direct search methods are with users, one need
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only consult the 1989 Science Citation Index [17] which lists more than 215 citations
for the classic Nelder-Mead paper. Both the number of citations and the range of
journals in which these citations occur has grown every year since the paper first ap-
peared in 1965. The most cited paper in the vast literature on quasi-Newton methods
appears to be the 1963 paper of Fletcher and Powell [7], which popularized what is
now known as the DFP variable metric secant update. In the 1989 Science Citation
Index the Fletcher-Powell paper has 114 citations. As a further indication of its
popularity, we note that the Nelder-Mead simplex algorithm also appears in most
commercially available software libraries. For instance, Nelder-Mead is a standard
feature of such packages as NAG, IMSL, and Matlab.

Given the popularity of the Nelder-Mead simplex algorithm, our first attempt
at a parallel direct search method consisted of a straightforward implementation of
the Nelder-Mead simplex algorithm on an iPSC hypercube (now referred to as an
iPSC/1). While we computed n + 4 function values simultaneously to complete all
the function evaluations that could possibly be required during the course of a single
iteration, the algorithm showed only a speed-up of order two, regardless of either the
size of the problem or the number of available processors. Careful examination of
the behavior of the sequential algorithm confirmed that, in fact, this was the best
we could expect to do with such a naive parallel implementation since the sequen-
tial algorithm typically required only two function values per iteration. Additional
experimentation led to two interesting results. The first was the development of a
new direct search method, which we call multidirectional search [20], that forms the
basis for the algorithms discussed here. The second was the unexpected discovery,
during our numerical testing, that the Nelder-Mead simplex algorithm can converge
to nonminimizers when the dimension of the problem becomes large enough [20]. This
behavior occurred for all the test problems we used from the Moré, Garbow, Hillstrom
problem set [12] where the dimension of the problem could be varied. In all cases, we
started with a regular simplex (i.e., a simplex with edges of equal length) from the
standard starting point given in [12]. This behavior occurred even on such a simple
problem as

: — T
g 1) = x"x

for n > 16. One of the advantages of the multidirectional search algorithm is that,

unlike the Nelder-Mead simplex algorithm, it is backed by convergence theorems that,

our numerical testing indicates, are borne out in practice.

Initially our implementation of the basic multidirectional search algorithm on a
shared-memory multiprocessor suffered from the fact that the number of processors
that could be used was tied to the dimension of the problem. The challenge, then,
was to find ways to effectively use all available processors.

Our approach consists of embedding the original multidirectional search algo-
rithm in a family of algorithms. These algorithms have a very appealing interpre-
tation as multidirectional line search methods. The original multidirectional search
algorithm [20] performs a rudimentary line search along n search directions, hence
the dependence of the use of processors on the dimension of the problem. Our new
approach expands upon this idea by systematically introducing line searches along
new search directions while further refining the line search along the existing set of
search directions. As we shall see, this approach is extremely flexible so that even for
a problem of a given dimension on a machine with a fixed number of processors there
is a family of closely related algorithms, any one of which could be implemented.
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The idea for using all available processors, or scaling the algorithm to fit the prop-
erties of a given machine, is an idea that we have seen in other parallel optimization
algorithms. The key difference is that we do not use additional processors simply to
enhance the performance of an inherently sequential algorithm.

A Newton or quasi-Newton method is essentially a sequential algorithm that con-
sists of two distinct phases. First, a single search direction is constructed and then
a step that satisfies some notion of sufficient decrease in the objective function value
is determined. These methods are inherently sequential since a step for the current
iteration cannot be determined until after the search direction has been constructed,
while the search direction for the next iteration cannot be ascertained until a successful
step has been found.! There can, however, be a significant amount of work associated
with each phase of the iteration. Thus, efforts to produce general, parallel Newton
or quasi-Newton methods have concentrated on parallelizing the work involved in
each phase [6, 3, 4, 13, 14]. These efforts have been successful at accelerating the
performance of Newton or quasi-Newton methods while preserving their convergence
properties. However, the inherently sequential nature of Newton’s method limits the
number of processors that can be successfully employed since the fundamental algo-
rithm remains essentially unchanged. These limitations arise in two ways. Either a
fairly small number of processors (i.e., no more than twenty) can be used to parallelize
the linear algebra involved at each iteration, but this requires the assumption that the
dimension of the problem is quite large so as to offset the cost of the synchronization.
Alternatively, the processors can be used to calculate finite-difference approximations
to the gradient and either part or all of the Hessian. Then, for a fixed number of pro-
cessors, the range of the problems that can be solved is limited, both by the dimension
of the problem (i.e., O(n) < p < O(n?), where p is the number of processors and n
is the dimension of the problem) and by the relative cost of the function evaluations,
again to offset the cost of the synchronization.

Our approach is quite different. Given the dimension of the problem to be solved,
the number of available processors and, ideally, some notion of the relative expense
of the function evaluations to communication (or synchronization) costs, we have a
simple initialization scheme that tailors the basic multidirectional search algorithm to
fit these specifications. The result is not just that we produce a different sequence of
iterates. We actually produce different algorithms with different performance char-
acteristics. The numerical results in §7 suggest that we often generate better direct
search algorithms. This improved performance is not accidental. We compute more
information about the function—more than we could easily justify in a sequential
computing environment—but we use all of the information we compute. Not too
surprisingly, we often construct a better sequence of iterates.

Before proceeding to a description of the multidirectional search algorithm, we
note that this is not the only direct search method we could use as a core step for our
more general parallel direct search schemes. Our investigation of the theoretical prop-
erties of the multidirectional search algorithm revealed that several well-established
sequential direct search methods, such as the original factorial design algorithm of
Box [2] or the pattern search algorithm of Hooke and Jeeves [10], also have the same

! Byrd, Schnabel and Shultz [3, 4] anticipate the search direction for the next iteration by cal-
culating, speculatively, the gradient associated with the trial step. The calculation is speculative in
the sense that the outcome of the trial step determines whether or not their guess was correct and
thus whether or not the information they have already computed can be used to calculate the new
search direction.
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essential characteristics and thus are amenable to both the convergence analysis given
in [21] and the general parallelization strategy given here in §5. The reason we have
chosen to use the multidirectional search algorithm as our basic algorithm is that it
requires only O(n) function evaluations per iteration to guarantee convergence. The
factorial design algorithm also falls under the same convergence analysis but requires
O(n?) function evaluations per iteration. Thus, when there is a limited number of
processors available (relative to the size of the problem), the multidirectional search
algorithm is more effective. Conversely, when the number of processors is quite large,
it is easy to construct examples for which the multidirectional search algorithm and
the factorial design algorithm of Box generate the same generalized direct search algo-
rithm. The similarities between these and other direct search algorithms are discussed
briefly in [21]; a more detailed discussion is being prepared for publication.
We now proceed with a description of our core algorithm.

4. The Basic Multidirectional Search Algorithm. An iteration of the ba-
sic multidirectional search algorithm begins with a simplex S in IR", with vertices
V0, V1, - Vn. The best vertex vy is designated to be a vertex for which f(vo) < f(v;)
for j =1,--.,n. We now describe a complete iteration to arrive at a new simplex S,..

The first move of the iteration is to reflect vy, - - -, v, through the best vertex vyp.
Figure 1 shows an example for n = 2. The reflected vertices are labeled r; and rs.

r
el/T
V r2
€2

F1G. 1. The three possible steps given the simplez S with vertices (vo,v1,V2)

V2

C2
Vi

c
Vo 1

If a reflected vertex gives a better function value than the best vertex, then the
reflection step is called successful and the algorithm tries an ezpansion step. The
expansion step consists of expanding each reflected edge (r; — vo) to twice its length
to give a new expansion vertex e;. In Fig. 1 the expansion vertices are labeled e; and
€e2.

In an iteration of this basic algorithm, the expansion step would be tried only
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if the reflection step was successful, and it would be taken only if some expansion
vertex was better than all the reflection vertices. Thus, if we try the expansion step,
then the new simplex S, is either the expansion simplex ({vo, €1, €2) in Fig. 1) or the
reflection simplex ({vo,ry,r2) in Fig. 1).

The other branch of the basic algorithm is the case where the reflection step was
unsuccessful, i.e., no reflection vertex has a better function value than f(vp). In this
case, we take Sy to be the contraction simplex formed by replacing each vertex of the
worst n-face in the original simplex by the point midway from it to the best vertex.
Thus, in Fig. 1, the contraction step takes S} to be (vo,cy,c2).

To complete one iteration of the basic algorithm, we take v§ to be the best vertex
of S+ .

Before giving the convergence result, we point out the line search flavor of the
algorithm. In the case n = 1, we first try a step of a given length away from the
vertex with the larger function value (the reflection step). If that is successful, then
we try a longer step (the expansion step), but if it is not, then we try a step only
half as long in the other orientation (the contraction step). If none of the steps give
decrease, then the next iteration begins with a step in the same direction as the
previous iteration began with, but only half as long. Thus, an unsuccessful sequence
of iterations generates a backtracking line search with alternating orientations. (See
Fig. 2.) This simple observation forms an important part of the convergence proof.

ry r} rft c]

Vo vi

F1G. 2. A simple backtracking line search

The following notation will be used in the statement of the convergence result.
Let {vk} be the sequence of best vertices. Let vJ be the best vertex of the simplex
So used to start the algorithm. Define the level set of f at vJ to be

L(vg) = {x: f(x) < f(v])} -
Given y € R", let the contour C(y) be
C(y) = {x: f(x) = f(y)}-

Let X. be the set of stationary points of the function f in L(vJ).

THEOREM 4.1. Assume that L(v]) is compact and that f is continuously differ-
entiable on L(v). Then some subsequence of {vk} converges to a point x. € X..
Thus, {v§} converges to C. = C(x.) in the sense that

Jim, Lot I8 =] =o.

The assumption that f is continuously differentiable on L(v3) can be reduced
to the assumption that f is continuous on L(vJ); however, the set X, must then
be expanded to include all points where the function f is nondifferentiable on L(vJ)
and where the gradient of f exists but is not continuous. The proof for both results
is given in [21]. Before we go on to extend the multidirectional search algorithm to
generate a family of parallel algorithms, let us discuss the proof in a form that extends
to the algorithms of the next section.
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First, we see why the algorithm cannot stall at a vy with a nonzero gradient.
Notice that the edges of S adjacent to vo form a basis for IR” and so at least one
edge is not orthogonal to V f(vq). Thus, either that edge or its reflection is a descent
direction from vg. Let us call this a descent edge. Now, the only way the algorithm
can stay at vg is to take an infinite sequence of successive contraction steps. However,
at the next iteration, the contraction simplex flips to the opposite orientation to form
the reflection simplex and so, along any descent edge from vy, we are generating a
pair of sequences of points, one from each orientation, halving the distance from v, at
each term of the sequence, as seen in Fig. 2. Therefore, we will eventually get either
a successful reflection step or a contraction step that replaces vy. ’

Thus, the algorithm can be viewed as a backtracking line search method where at
least one of the n search directions is guaranteed to produce descent if V f(vo) # 0.
Convergence would be clear if some principle of sufficient decrease on f were required.
However, we accept a new best vertex based only on simple decrease. The remainder
of the proof consists of an unusual argument by contradiction. We assume that the
sequence of best vertices stays uniformly bounded away from the set of stationary
points. Using this assumption, along with the compactness of the level sets, the
uniform linear independence of the search directions, and the continuity of Vf, we
can show that all but a finite number of vertices generated by the algorithm must be
contained in a compact set and lie on a lattice. Now, the first part of the proof showed
that if the best vertex is not a stationary point of the function, then the algorithm will
produce a strictly monotonically decreasing sequence of function values. The second
part of the proof demonstrates that under the hypothesis that the sequence of best
vertices stays uniformly bounded away from the the set of stationary points there is
only a finite number of function values. Therein lies the contradiction. Thus, our
hypothesis cannot hold and we have convergence to the set of stationary points.

We close by noting that as long as we preserve the backtracking line search fla-
vor of the algorithm, the proof for the basic algorithm will extend to the parallel
multidirectional search algorithms we propose.

5. The Parallel Multidirectional Search Algorithms. The strategy we will
employ to define a family of direct search algorithms is very simple. We will look
ahead to subsequent iterations of the algorithm until we generate a sufficient number
of vertices to keep all available processors busy.

We begin by removing all the branching from the basic algorithm to obtain a
core step. Thus, the core step consists of the union of the reflection, expansion, and
contraction steps from the basic algorithm. This core step will require 3n independent
function values at each iteration.? Thus, in the two-dimensional example given in
Fig. 1, the core algorithm computes the function values at the six new vertices r;, rs,
e, €z, €1, and ¢, simultaneously. We then choose as vg' the vertex that produces the
best function value while Sy is taken to be the simplex that produced vg. If f(vo)
is still the least function value, then S; must be the contraction simplex.

There are two points to be made. First, with the stipulation that the contraction
simplex must be accepted when the core step does not produce a new best vertex, the
convergence theorem still holds. Second, without the branching present in the basic
algorithm, we may actually produce a different sequence of iterates. For example, our
choice of S; might now be the expansion simplex even if it would never have been

2 We will assume for now that the number of processors, p, is greater than 3n. As we shall
demonstrate in §6.3, it is possible to remove this restriction on the minimum number of processors
required. In fact, as we shall see in §7 this approach may generate better sequential algorithms.
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constructed in the basic algorithm. This could happen if min{f(e1),- -, f(es)} <
f(vo) < min{f(ry),- -+, f(ra)}. Thus we have a different algorithm that may actually
produce a different sequence of iterates.

We have now used 3n processors to compute the 3n new vertices and their asso-
ciated function values. To take advantage of more processors, we simply continue the
look-ahead to subsequent iterations. For instance, we could assume that the reflec-
tion step is accepted at the current iteration, in which case one of the n new vertices

associated with the reflection simplex will become vg. Thus, we can consider the new
reflection vertices that might be constructed at the next iteration if each of ry,---,ry

were given the role of v . (See Fig. 3.) We can continue this look-ahead to construct
all the reflection simplices that could be considered at the next iteration if any of ry,
~+, Tn, €1, -** €n, C1, -+, Cn, OF Vo Were to become vg', as shown in Fig. 4. There
is also nothing to prevent us from including all possible expansion and contraction

vertices as well, as seen in Fig. 5.

V2

v
C1 1
Vo

€

€2

FIG. 3. The core step with reflection steps from ry and rz

If we were to construct all the new vertices shown in Fig. 5 and compute their
associated function values in parallel, then we would have effectively completed two
iterations of the basic multidirectional search algorithm. However, the numerical
results we will show in §7 suggest that in fact we typically do much better, for reasons
we will now explain.

If we return to the core step, we see that all the vertices we constructed lie along
n directions determined by the n edges adjacent to v, as seen in Fig. 6. We can view
the core step as a rudimentary line search consisting of three steps along each of n
directions. When we proceed to the next iteration and consider all possible reflection
simplices, we introduce new line searches but we also further refine the search along the
original n directions, as can be seen in Fig. 7. When we complete the full look-ahead,
Fig. 8 shows that for the example we have constructed we have introduced five new
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F1G. 4. The core step with all the reflection steps for the nezxt iteration

line searches, each consisting of three steps, while simultaneously adding additional
steps along the two original search directions to refine the line search. If we were
to continue this process into the next iteration we would find that we would again
introduce new line searches, we would begin to refine the search along the directions
introduced in the previous iteration, and we would further refine the searches along
the original n directions.

Figure 8 suggests that we have a true multidirectional line search method that
scales the algorithm by introducing new line searches in a systematic way. The original
n search directions are deemed most likely to produce descent since we search along
edges from vertices with higher function values towards a vertex with a lower function
value. In fact, the convergence theorem guarantees that if vq is not a stationary point,
then one of these n edges will produce descent. However, we hedge our bets by also
adding new less likely search directions. Throughout this process we continue to refine
the line search along each of the directions we have introduced with priority going to
the more likely directions.

We prefer to interpret our direct search methods as multidirectional line search
algorithms. The simplex interpretation is useful for generating and programming these
algorithms, as we shall see in the next section; however, the line search interpretation
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1G. 5. The core step with one complete look-ahead
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V2

Vi
Vo

F1G. 6. The n original search directions

allows us to pose these algorithms as gradient-related methods, which helps explain
both the convergence theory and the performance characteristics of these algorithms.

We also note that we have introduced a family of algorithms, not a single method.
We have specified a scheme for introducing search directions and refining line searches,
but there is tremendous flexibility within this scheme. In the example we have shown
in Fig. 8, we have introduced 33 new vertices. On a 32 processor machine we can
choose almost any subset consisting of 32 of these 33 vertices to define a multi-
directional search algorithm. While each of these subsets was generated using the
same look-ahead scheme, each subset produces a distinct algorithm that may generate
a different sequence of iterates when applied to identical problems. This observation
suggests the need for defining strategies to specify the order in which to introduce
search directions and refine line searches. The only limitation we impose arises from
the convergence theorem: we must ensure that the backtracking line search, which
constructs steps along both orientations of the search edge, is preserved.

Defining a strategy is not difficult. We used the following principles to design our
current implementation of the parallel multidirectional search algorithms:

e We construct a list of vertices until we have enough vertices to assign to all
the processors.

o We start this list with v as the seed. We consider each vertex in the order in
which it was added to the list and generate the complete core step associated
with that vertex. The 3n vertices associated with a complete core step are
then added to the bottom of the list of vertices.

e We give precedence to the reflection step, then the contraction step, and then
finally the expansion step when adding vertices to the list.

e We include the current best vertex, with reduced edge lengths, only as part
of the contraction step since in the basic algorithm there would be a new best
vertex if we accepted either the reflection or expansion steps.

The actual algorithm we use to implement this strategy is discussed in more detail in
the next section.

There are certainly other, possibly better, strategies for generating parallel multi-
directional search algorithms. For instance, we could first construct all the reflection
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V2

Vi
Yo

Fi1G. 7. The n original searches with new steps and additional search directions

vertices associated with a single iteration as in Fig. 4 and then all the contraction
vertices, etc. We could also have mixed strategies that allow for different choices de-
pending on the type of step that produced decrease in the previous iteration. These
ideas are the subject of future research and will be discussed further in §8.

Another important point to note is that once we have specified a strategy for
generating both the search directions and the steps, every vertex can be represented
as a fized linear combination of v and the edges adjacent to vo. There is no need
to regenerate the necessary coefficients at every iteration. To see this, consider our
example in Fig. 7. Since (v; —vo) and (V3 — Vo) span IR?, each of the new vertices can
be defined as the sum of v¢ and a linear combination of (v —vg) and (v2 —vo). If we
fix these coefficients, and then vary S, computing the new vertices at each iteration
of the search reduces to computing a linear combination of the edges adjacent to the
new best vertex. Thus we have a template for the search that is defined by our choice
of strategies before the actual search procedure begins. Again, we will defer further
discussion of this point to the next section.

Another advantage of the static initialization scheme is that it allows us to elimi-
nate duplicate vertices in the template. The reader has probably already noticed that
once we begin to look ahead to subsequent iterations some vertices may be multiply
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V2

Vi

FI1G. 8. A different interpretation of the core step with one complete look-ahead
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defined. For example, in Fig. 3, e; and e; are redefined by the new reflection simplices.
However, the coefficients necessary to construct these vertices from (vi — vo) and
(V2 — vp) are identical, so such duplication is easy to detect and eliminate during the
initialization. The only other issue to be decided is which simplex will be associated
with a multiply defined vertex, information that is needed to avoid ambiguity when
defining S in the event that this vertex becomes v . We resolve this issue by breaking
ties in favor of the first simplex to define the vertex.

Having anticipated some of the major points to be addressed in any implementa-
tion of the parallel multidirectional search algorithms, we are now ready to turn to a
more detailed discussion of our current implementation.

6. A Distributed Memory Implementation. We begin with a statement of
the basic algorithm, shown in Table 1. Each of the p processors® constructs one vertex
v; and its function value fv;. The scalars a;,- - -, z; required to construct the vertex
are local to the processor. We assume that the bulk of the computation occurs in
the evaluation of f(v;). Note that we have a single program running on each of the
processors. The data, in the form of the scalars required to compute the vertex v;,
varies on each processor. Thus we have a single program/multiple data model. With
the appropriate restrictions on the function evaluation routine, which we choose to
treat as a “black box,” these methods could also be extended to SIMD machines.

Given an initial simplex So with vertices (vo, vy, -, Vyn),
initialize template
while (stopping criterion is not satisfied) do
fori=1,---,pdo
Vi — Vo +ai(vi — Vo) + - + zi(Vn — Vo)
foi — f(vi)
end
fve — min; { fv;} /* communication */
update simplex
end

TaBLE 1
The Parallel Multidirectional Search Algorithm

When each of the processors has completed its function evaluation, there is a single
global exchange to determine the least function value. On the iPSC/860 we can exploit
the hypercube connectivity by using a global handshake algorithm in which each
processor exchanges the least function value it has seen with its nearest neighbor. If
we assume a hypercube of dimension d, once each processor has exchanged information
with its d nearest neighbors, every processor has fv.. Notice that this eliminates the
need for a single controlling process since each processor can also test for convergence.
To adapt this algorithm to a different parallel computing environment, one need only
make the appropriate modifications at this single point of synchronization to introduce
the appropriate form of remote memory access.

3 We assume, for now, enough processors to compute the 3n vertices associated with a core
step. As we shall see in §6.3, satisfying this requirement—even when we are working on a single
processor—is straightforward.
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6.1. Update. During the course of the global exchange, we pass three additional
pieces of information: the vertex v. that produced fv., the pointer source that corre-
sponds to the vertex in S that produced v,, and a scalar a, that, in conjunction with
v. and source, allows us to construct the simplex S, associated with v.. (The pointer
source and the scalar o; associated with the vertex v; are local to each processor and
are assigned during the initialization of the template.) With this additional infor-
mation, updating S to produce S, is straightforward, as seen in Table 2. Note that
before we update S, we check to see if fv. produced the strict decrease we require. If
not, then vg is still the best vertex; to ensure convergence, we reduce the lengths of
the edges in the simplex S by the contraction factor 8 € (0, 1).

if (fv. < fvo) then
vi —v.
Qy — Q.
else
vi —vo
ay «— 0
source — 0
endif
for j=0,---,ndo

V;- — V[)" + a+(vj = Vsource)
end

swap(0,source)

TaBLE 2
Updating the simplez

6.2. Initialization. The real effort in defining a parallel multidirectional search
algorithm lies in the initialization. The key point to emphasize is that this initializa-
tion is static. A strategy is defined before the search actually begins. The strategy can
be specified as a template that is fized; it is the simplex, and not the template, that
varies from iteration to iteration. The template is possible because each vertex in the
search scheme can be represented as a sum of vo and a unique linear combination of
the edges adjacent to vo, as demonstrated in Fig. 9. Furthermore, once we have vy,
it is possible to construct S; from S with just two additional pieces of information,
a4 and source, as shown in Fig. 10.

To generate the coefficients a;, - - -, z; we need to construct the vertex v;, and the
associated a; and source needed to construct the simplex S should v; produce the
least function value, we use the simple algorithm shown in Table 3. To see why this
algorithm works, we begin by noting that each of the core reflection, contraction, and
expansion vertices are defined as follows:

Tj = Vo <+ (—1)(\’1 - Vo) ,
c; =vo+ (-;—) (vj —vo), and
e; = vo +(=2)(vj — vo),

for j = 1,---,n. Note that these definitions vary only in the choice of the scalars -1,

%, and —2 associated with each step. We also know that we can construct S, from
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— Vg — 4(V1 - Vo) + Q(Vg - Vo)

Vi

. —vo+ 1(vi = vo) = 3(v2 — Vo)
vo + 0(v1 — vo) — 3(v2 — vo) —

— Vo + 1(V1 - Vo) - 2(V2 - Vo)

F1G. 9. Defining the template

FI1G. 10. Constructing Sy from vg' and S with a4 =1 and source =1
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Given the reflection factor A = —1, the contraction factor 6 = %,
and the expansion factor u = -2, _
/* initialize the root of the tree by adding the current simplex */
root — 0
SOUTCEroot — O
Qroot — 1
coefficients, ., — O
i—1
repeat
/* generate all possible new best vertices given the current simplex */
/* first consider all the new reflection vertices */
for j =0, ---,n, j # sourceroo
source; — j
a; — A * Qroot
coefficients; — coefficients,,,,
coefficients;(source;) — coefficients;(source;) + a;
coefficients;(sourceroor) — coefficients;(sourceroor) — @i
t—i+1
end
/* next consider all the new contraction vertices */
for j=0,---,n
source; — j
aj — 0 % aroot
coefficients; — coefficients_,,,
coefficients;(source;) «— coefficients;(source;) + o;
coefficients;(sourceroot) — coefficients;(sourceroor) — i
ie—i+1
end
/* finally consider all the new expansion vertices */
for j=0,---,n, j # sourceqoot
source; — j
Qf — [ * Qroot
coefficients; — coefficients,
coefficients;(source;) — coefficients;(source;) + a;
coefficients;(sourceroor) — coefficients;(sourceroor) — @
i—1+41
end
root — root + 1
until enough points have been generated

TABLE 3
Initializing the template
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S, v§, ay, and source as
V;' = vE," + a4 (Vj - Vaource) ,

for j = 0,---,n. Thus, given v{," , a4, and source we can construct the core step
associated with vg. For instance, the reflection vertices would be

i = vi+ (=) (v} - vd)
= v;’ +(-1) ((Vg’ +ay (vji- Vaource)) - Vg.)
= vg + (=1)(a4) (V; = Vsource)
= vi + (=1)(a4) (Vi = Y0) = (Viouree — Vo))

for j = 0,---,n, j # source—which is exactly the representation we are using to
construct the template.

We also note that there is additional work to be done once the list of coefficients
has been generated since there are duplicate coefficient vectors. We simply sort the
list and then eliminate duplicates. (We also include the n + 1 vertices in the original
simplex when we check for duplicates so that they are not redefined.) Preference, in
terms of the a and source associated with each coefficient vector, goes to the first
definition. Note also that if we use § = 1 and p = —2 (standard choices for algorithms
of this sort), then we can scale the entire procedure by an appropriately large multiple
of 2 and generate the template using integer arithmetic, which is faster, halves the
required storage, and eliminates round-off error.

6.3. Stacking Computation. The last claim we must substantiate is that it is
easy to balance the cost of the computation versus the cost of the communication,
or some other form of remote memory access. When we first began testing the basic
multidirectional search algorithm on a shared memory multiprocessor, memory access
completely swamped any gains to be seen from computing function values—at least
those from the standard test set—in parallel. One way to overcome this imbalance
would be to assume that the function evaluations are expensive enough to justify
the use of a parallel machine. However, this imbalance is even more acute on the
iPSC/860. If we had to assume the function evaluations are expensive to justify using
a parallel machine, then as processors become ever faster, the class of problems we
would be able to consider solving on a parallel machine would become ever smaller.

The advantage of the modification we now introduce to the parallel direct search
schemes is that while it introduces more computation on the individual processors,
this additional computation need not have an appreciable effect on the execution
time of the algorithm. We are simply trying to balance the cost incurred due to
the global communication calls. Our modification is simple. Rather than assuming
that the function evaluations are expensive, we simply construct more vertices on
each processor and compute their associated function values before we synchronize
the search. This simple modification is given in Table 4. As we shall see in the next
section, this “extra” work is not wasted; in fact, it may actually lead to a significant
decrease in the total execution time of the algorithm since the more ambitious search
strategy that results may lead to significantly fewer iterations.

We now have all the ingredients we need to claim that given the number of
processors, the dimension of the problem, and some ratio of the cost of communication
to the cost of computing the function value, we can tailor a parallel multidirectional
search scheme to solve the particular problem in the given computing environment.
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Given an initial simplex Sp with vertices (vo,vy,---,Vn),
initialize template
while (stopping criterion is not satisfied) do
fori=1,---,pdo
forj=1,---,kdo ‘
v;: — Vo +.a;-(v1 —vo)+ -+ zj(Va = Vo)
foj — f(v)
end
fvi — min; {fv;}
end
fv. — min; {fv;} /* communication */
update simplex
end

TABLE 4
The Stacked Parallel Multidirectional Search Algorithm

Thus we effectively remove two issues that have plagued the parallelization of other
optimization algorithms: the dimension of the problem, n, and the relative expensive
of function evaluations.

The remaining question is then: How well do these algorithms perform? We turn
to the next section for some preliminary numerical results.

7. Numerical Results. We wish to demonstrate two important features of the
parallel direct search methods. First, these algorithms scale almost perfectly in the
sense in which “scale” is usually applied to parallel computation: if we double the
number of processors we use, we essentially halve the execution time of the algorithm.
In other words, we have almost perfect linear speed-up in the performance of the
algorithm.

However, our parallel direct search algorithms also scale in a way that is not so
usual: not only can we increase the number of processors, we can also increase the
number of points we compute on each processor before we synchronize the search
by making a global communication call. This is the stacked parallel multidirectional
search algorithm given in Table 4. When we fix the number of processors and increase
the number of points we compute on each processor we are defining a new search
strategy; we have a search pattern where the number of points in the search pattern
is equal to the number of processors times the number of points computed on each
processor before each global communication call. When we double the number of
points in the search strategy, the decrease in execution time can be dramatic. This
effect on the execution time, as we shall see, is highly nonlinear; with the right choice
of strategies one may even have a better sequential algorithm since the total number
of function evaluations required to converge to a solution will be less, even if one were
computing more function evaluations at each iteration.

To demonstrate these two points, we will “borrow” the level curves of a classic
test problem, Rosenbrock’s function [16]:

f(l‘],,.‘tg) = 100(z2 — 1:%)2 +(1- 21)2 )

We have borrowed the level curves because Rosenbrock’s function is a function that
causes most optimization problems some difficulty when the search begins at the
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standard starting point (—1.2,1) in the sense that fifty iterations is fairly typical of
better methods.

" To make the computation more realistic, particularly given the speed of the pro-
cessors on the iPSC/860, we have added 10,000 extra floating point operations to
each function evaluation. This is why we say we have “borrowed” the level sets of
Rosenbrock’s function. It is worth noting is that when we added 100,000 extra float-
ing point operations to each function evaluation the execution times did increase but
the observations we now report were qualitatively the same. We chose the lesser num-
ber of extra floating point operations to demonstrate that the relative expense of the
function evaluation does have an effect on the efficiency of a parallel implementation.

We tested our parallel direct search method using most of the minimization prob-
lems found in Moré, Garbow, and Hillstrom [12]. We have singled out Rosenbrock’s
function because it gives fairly typical results; we observed similar behavior when we
experimented with other problems in the Moré, Garbow, and Hillstrom test set. Later
we will discuss our experience with some “real” problems.

We started each search at the classic starting point (—1.2,1). Since we require
a simplex to start the search, we used a straightforward procedure found in [11] to
generate a regular simplex with edges of length one. We stopped the search when the
absolute value of the function (at the best vertex vq) fell below 10~7, a decrease of
eight orders of magnitude. There is nothing special about this choice; the algorithm
ran equally well for choices between 10! to 10-!°. (Note that the stopping test we
usually employ is a little more sophisticated [20]; we resorted to this naive choice for
simplicity in discussing the efficiency of the algorithm in achieving some meaningful,
well-defined goal.)

We then solved the problem varying two parameters: the number of processors
and the number of points in the search pattern. The results can be seen in Figs. 11
and 12.

In Fig. 11, the linear speed-up in the execution time is apparent. There are plots
for six different search strategies involving search patterns of 32, 64, 128, 256, 512,
and 1024 points. We have plotted the log, of the execution time in milliseconds as a
function of the number of processors we have used. If we have linear speed-up, then as
we double the number of processors, the execution time should be halved. The solid
lines that bracket our plots in Fig. 11 demonstrate the slope we should see for perfect
linear speed-up. And, in fact, we see essentially linear speed-up for all but two of the
plots. The plots for the 32 point search pattern and the 64 point search pattern do
show some degradation in the speed-up when we use all 32 processors, but this is easily
explained. Even with over 10,000 floating point operations per function evaluation,
we are not doing enough floating point operations to offset the overhead incurred
due to the communication if we are only doing one or two function evaluations per
processor before each global communication call.

In Fig. 12, the nonlinear behavior associated with the algorithmic changes is
apparent. Here there are plots for six different choices in the number of nodes used to
solve the problem. We have plotted the log, of the execution time in milliseconds as
a function of the number of points in the search pattern. For this particular example
the best choice is 256 points. Note, however, that a 64 point search strategy is better
than a 128 point search strategy and a 512 point search strategy is better than a 1024
point search strategy. But any of the more ambitious strategies takes less time to
execute than the conservative 32 point strategy—even on a single processor.

The “best” choice of search strategies will vary depending on the test problem,
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FIG. 11. Linear speed-up obtained by doubling the number of processors.
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the starting point, the size and orientation of the initial simplex, etc. It is clear that
there is a certain art involved in choosing the “optimal” number of points to be used
in the search pattern. However, it is also true that in general the more points used
in the search strategy, the better the information obtained at each iteration and thus
the better the choice of new best vertices is likely to be. Again we stress that this
improvement was seen across all the problems we tested.

Furthermore, even if we do not know a priori which search strategy is “best”
we can still decrease the total execution time simply by adding more processors.
Returning to Fig. 12, we see that a 256 point search strategy is optimal, regardless of
the number of processors we use. However, any of the search strategies, if implemented
on at least eight processors, will execute at least as quickly as the 256 point search
strategy on a single processor. Thus, even if we do not know the “optimal” search
strategy, we can still expect to see a decrease in the execution time simply by increasing
the number of processors we use. If we wish to solve a problem repeatedly, it may be
worthwhile to spend some time identifying an “optimal” search strategy. Otherwise,
we might simply use as many processors as we can find (or afford).

Given the speed of the processors on the iPSC/860 we do not even require very
many processors to undertake a more ambitious strategy. We solved a parameter
identification problem in three unknowns that models catalytic cracking of gasoil to
gasoline [8] in just over two seconds using a 32 point search strategy on eight proces-
sors. Each function evaluation required the numerical solution of a system of ordinary
differential equations. Using four processors with the same 32 point search strat-
egy took over four seconds; two processors required between eight and nine seconds.
Again, we observed the linear behavior with respect to the number of processors.

Our tests of the parallel direct search methods lead us to two conclusions. First,
these algorithms do scale almost perfectly in the usual sense: as long as we require
a reasonable amount of computation on each processor, the communication require-
ments are so minimal that we see almost perfect linear speed-up in the performance
of the algorithm, regardless of the problem we solve. If we double the number of
processors we halve the execution time of the algorithm.

Another result is, at present, less well-understood and less predictable. If we
increase the number of points in the search strategy, which often involves a significant
increase in the number of function values we compute (stack) on each node before we
attempt to synchronize, we may actually see a marked decrease in the total execution
time of the algorithm. These improvements have been dramatic for the more difficult
problems.

It is important to understand that our parallel direct search methods do not
place an upper bound on the number of processors that can be used. Given ever more
processors we expect to be able to solve ever larger problems. We also note that much
of the algorithmic improvement depends on the proper choice of a search pattern and
there are many different ways to generate search patterns, even for a fixed number
of points. As we gain more experience with these methods it is possible that if we
can define better search strategies then we can further increase the range of problems
that can be solved efficiently.

Finally, we note that the simplicity of the parallel direct search schemes suggests
that they are very useful as experimental tools. All that is needed is a function eval-
uation subroutine. While one is calculating the derivatives, coding a subroutine, and
then debugging the code to use a more sophisticated optimization method on a “real”
problem where the solution is not known, it is possible to be running experiments
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using the parallel direct search methods to determine reasonable starting points for
the more sophisticated optimization method, as well as getting a feel for the general
behavior of the function.*

The simplicity of the parallel direct search methods also means that they are
less likely to fall prey to the pathologies, such as noise or the lack of continuity, that
can plague more sophisticated optimization methods. As further evidence of this, we
point to the success reported by Higham [9] using a sequential implementation, in
Matlab, of the basic multidirectional search algorithm to investigate the stability and
accuracy of algorithms in matrix computations. Higham observes that many of the
questions of interest can be expressed in terms of some easily computable function
f. The catch is that the function f is usually not smooth and derivatives, when
they exist, are difficult to obtain. Thus, quasi-Newton or conjugate gradient methods
are not applicable. Direct search methods, on the other hand, prove to be useful
experimental tools.

We also have had experience experimenting with a data set provided by re-
searchers at the University of Texas at Houston, M. D. Anderson Cancer Center
and the University of Texas Medical Branch at Galveston who are trying to derive
mathematical models for the predictive value of early CA125 serum levels in epithelial
ovarian carcinoma [1]. They have a model with five parameters that they originally
fitted using NL2SOL [5]. They were concerned that NL2SOL required almost 900
function evaluations to return a solution. Experimenting with our parallel direct
search methods, by successively restarting the optimization procedure, we were able
to uncover that one of the parameters, which is required to be strictly greater than
zero, was tending toward zero while another parameter, which is unbounded, was
marching steadily towards —oo—information that was not obvious from the solution
returned by NL2SOL. They are now interested in further experiments to try to learn
more about the behavior of their model.

The point here is not that the parallel multidirectional search algorithms produce
optimal schemes for all problems on today’s machines. Rather, when the problem
to be solved is small, but difficult, and only a few significant digits in the solution
are either required or expected, then the parallel direct search methods provide to be
simple and surprisingly effective approach. Furthermore, these methods may prove
to be even more useful as experimental tools.

8. Future Work. The next step is to try the parallel multidirectional search
schemes on an inverse problem in multidimensional wave propagation. This problem
can be formulated via coherency optimization as a low- (e.g., three-) dimensional
minimization problem [18, 19]. Currently, an implementation of the objective function
on a Stardent Titan takes, on average, several hours to return a function value. There
is a tremendous amount of noise in the data so that the function values cannot be
trusted to more than two digits. This means that finite-difference approximations to
the gradient are really not feasible—and that an answer is expected to be accurate to
only one or two digits. Thus, a quasi-Newton method seems out of the question and
a direct search method seems to be in order.

Tackling this problem, however, means that we will need to rethink the original

4 We had an answer for the paramieter identification problem less than fifteen minutes after
receiving the code for the objective function. We spent most of that time reading the accompanying
instructions, compiling the code, and then entering the appropriate data. It took the iPSC/860 just
over two seconds to return a solution on our first try. Writing a routine to evaluate the derivatives
using finite-differences took thirty minutes and required some finesse. The solutions were equivalent.
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implementation of our parallel multidirectional search schemes. To begin with, our
current implementation is best suited for the case when all the function evaluations
require approximately the same time to complete. Thus, there is a natural synchro-
nization that allows us to implement the algorithm without either a controlling process
or any concerns for load balancing. This will not always be the case when dealing
with more difficult problems. Hence, we will need an asynchronous, task-queue based
implementation, with a single controlling process.

Another direction of research would be to extend the parallel multidirectional
search algorithm to problems with constraints. We believe it is possible to extend
the parallel algorithms, with only minor modifications, to problems with bounded
variables. We are also interested in handling linear constraints. If we can handle
bounded variables, it should be possible to transfer many of the ideas learned during
the development of interior point methods to our simplex-based method for handling
problems with linear constraints.

There are several other ideas we would like also to pursue. Although we have a
simple, fast algorithm to generate templates for the parallel multidirectional search
schemes, it is possible that there are other, perhaps better, initialization schemes we
could implement.

One of the few pieces of information that the basic multidirectional search algo-
rithm carries from iteration to iteration is the size of the step taken in the previous
iteration—which determines the size of the step taken in the current iteration. If an
expansion step was accepted, this would indicate that the simplex is still far from a
solution. If the contraction step was accepted, then either the simplex is near a solu-
tion or it is trapped in a difficult region. If we allowed mixed strategies, i.e., different
templates depending on the type of step accepted in the previous iteration, then it
seems possible that we could further accelerate the search. This is an idea we plan to
pursue further.

Currently we place no restrictions on the simplex used to start the procedure.
The default option generates a regular simplex (i.e., a simplex with edges of equal
length). Another standard option would be to start with a right-angle simplex: given
a starting vertex vo, the remaining n vertices in the simplex are generated using the
following simple formula

Vj — Vo + oje;,

for j = 1,---,n, where c; is a nonzero scalar and e; is the standard unit coordi-
nate vector. If we were to restrict our attention to right-angle simplices, then we
would only require two n vectors to store the entire simplex. Furthermore, produc-
ing the trial vertices for the search and updating the simplex would be reduced from
O(n?) operations to O(n). We plan to adopt this restriction when we implement the
asynchronous version of our algorithm.

There is also the possibility that if the function values are not very expensive to
calculate, and the processors are very fast, then the number of function evaluations
we would need to stack on each processor, k, could also become quite large. However,
as we noted during our discussion of the initialization, the template is generated
using integer arithmetic. The information is then rescaled before being sent out to
each processor. We could, instead, store the template in its integer form, which would
halve the storage requirements, and simply perform the scaling required each time the
information is used. A choice then has to be made as to which is the most efficient
option.
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