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1. Introduction. In this paper, we discuss a domain decomposition algorithm, first presented
in [1], for solving equations of the form

(1) u—V-(DVu)=f, (z,y) €R2=(0, 1), te (0,7,
(2) u(z,9,0) = u’(z,), (z,9) €9,
(3) u(l',y,t) = g(zvyat)’ (:z:,y) € aQs te (Oaﬂv

on parallel processing computers. We assume D = (D;j(z,y)) is a smooth, symmetric, two-by-two
matrix, satisfying

(4) D.I<D< DI,

for positive constants D, and D*. We restrict attention to two space dimensions; however, the
procedure is generalizable to higher dimensions.

Our method is based on a finite element discretization of (1), using continuous, piecewise bilinear,
approximating functions. The scheme represents an extension of work discussed in [2], where L*®
estimates were derived for a finite difference domain decomposition method for solving the heat
equation in one and two space dimensions.

The rest of the paper is organized as follows. First, we present the basic algorithm for two
subdomains, and state an error estimate. The extension to a multiple strip decomposition or a
patch decomposition is discussed in Section 3. In Section 4, numerical results for a variety of two-
dimensional problems with strip and box decompositions are presented, and timings for runs made
on a parallel processing machine with eight processors are given.

2. The basic method. Denote by (-,-) the L? inner product on Q. Let At = T/M for some
positive integer M, t" = nAt, n=0,..., M, and g" = g(t"). Also, let g™ = (¢" —g"~!)/At.

In order to present the main ideas of the method, we take a simple decomposition. Consider
dividing the domain 2 into two subdomains, (0, %) x (0,1) and (Z,1) x (0,1). Denote by

6,:0=30<131<...<2N:+1=1

a partition of (0,1) into intervals of length h¥ = z;41 — z;, i = 0,..., N,. Similarly, denote by é, a
partition of (0,1) into intervals of length h;! =Yji+1— Y, J=0,...,Ny, and let 6 =6, ® 6, define a
partition of Q into rectangles. Related to Z we define a parameter H > 0 satisfying H < min(Z, 1-%),
and we assume #, Z — H, and Z + H are all points of §,, with Z = z; for some k. Let h* = max; h?,
hY = max; h}, and h = max(h®, h?).

Denote by M C H}(2) the space of continuous functions on £, bilinear on each rectangle defined
by 6, and zero on 9, and note that a basis for M is the tensor product {vs_,1(z),...,vs, N, (2)} ®
{vs,1(¥)s---,vs,,N,(y)} of “hat functions;” e.g., vs,,i(z) is given by

(z —zi-1)/(zi —2zi-1), zi-i <z <,

v5,i(2) = (zis1 = 2)/(zis1 — 2i), 2 Sz < Tigy
0, otherwise.
Define spaces M, Mg, and M; C M by

(5) M ={veM| vz,y) =0for z >z =z},
(6) Mp = {v € M| v(z,y) =0for z < T =x:},
) M ={ve M| v(z,y) =0for z < zx_1 and z > z3 41},
and decompose W € M as

Ny k-1 Ny N,

W) = 33 Wiivsi(@)vs, i)+ D Wijvs.i(2)vs,,; (V)
Jj=1i=1 J=li=k+1

N,
+§: Wijvs, .k (2)vs,(v)
j=1

WL(z) <+ WR(I) + W](.‘L‘).
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Hence, W € My, Wr € Mg, and W € My, and M = M| @M[@MR.
Define interface functions wr j(z,y) by

(9) wl,j(l',y) = wl(z)vavyj(y)’ ] = 1""’Ny9
where wy(z) is given by

(z—-z+H)/H, t-H<z<i%i,
wi(z)=¢ (E+H-2z)/H, z2<z<Z+H,

0, otherwise,
and set
(10) ¢ =span {wr1,...,wr,N, }.
For g defined at (Z,y), y € (0,1), let
(11) g(z,y) = 9(2,y)wr(z)-

Hence, for W € M, W = E;V:’I Wijwr(z)vs,,j(y) € M§. Also note that M7 C M.
Our domain decomposition approximation U™ € M to u® is given by the following procedure.
Approximate u® by U? € M, where U? is given by the elliptic projection,

(12) (DVU°,Vv) = (DVu®,Vv), veE M.

Then, given U™, n = 0,...,M — 1, first calculate “interface values” along the line z x (0,1) by
solving

(13) (8T, w) + (DVU™,Vw) + At(Dy2 8, U7+, wy) = (f*,w), w € M,

where (-, -) is an approximation to (-,-) using the trapezoidal rule in z; that is,
1
(19) @™, w) =7 [ 0™ (2, s)u(z, iy
0

Thus, (13) determines UF*! (see (8)); UZ*! and Up*! are then determined by
(8UL*,v) + (DVULH, Vo)
(15) = (f**,v) = (BUF*,v) = (DVUT*, Vo), v e My,
and
(8. Up*',v) + (DVUR, Vo)
(16) = (f**1,v) — (B UP*!,v) — (DVUF¥, V), v € Mp.

Note that these two equations decouple, and can be solved in parallel.

Since (13) is partially implicit in y, but fully explicit in z, the interface values U,:'J.'*'l, Jj =
1,...,N,, are found by solving a tridiagonal system of equations. One would expect that a relation-
ship involving At and H is needed to insure stability; in fact, a sufficient condition is that

At 5
— <A< —.
(17) H2“Dll”oo <A<

However, no relationship between At and h® need be assumed. With a more restrictive constraint
than (17), the algorithm satisfies the following a priori error estimate, which is proven in [1]:

THEOREM 2.1. Assume A = 1/6 in (17), and assume the true solution u to (1)-(3) is smooth
such that ||ue|lL20,7;w2), |lulle(o,r;wz,) and ||uel|L2(0,1;) are bounded. Assume H satisfies
H < C|ln h|™!, as h — 0. Then U given by (13)-(16) satisfies

(18) max ||u” — U"|| < C(At + h? + H3),
where C depends on the smoothness of u, D., and D*, but not on h, H, or At.

Remark: The upper bound of 1/6 on ) used to prove Theorem 1 can be increased to “almost”
5/12, but the constant on the right side of (18) blows up as A — 5/12.
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8. Extensions. The extension of the scheme to strip subdomains is detailed in [1]. We will
only outline it here.
- Suppose a decomposition of Q into strips [Z;, Zi141] x [0,1], I = 0,..., K, is constructed, where
o =0, Zx = 1, and each Z; is in the partition é,. Associated with each interface define a parameter
H; > 0, and assume Z; & H; are in the partition §,. We also enforce the condition (on the H;’s) that

(19) Tip1— Hi 2 3,
(20) H+H <%y, 1=0,...,K-1.

Thus, interfaces | and I+ 1 must be at least a distance max(H;, H;4+,) apart. We define spaces Mi,
associated with each interface, similar to M§ above, by

M?,l = span{wﬂ,j},

with w',,j the analogue of the function wy,; given above. Note that, by (19)-(20),

(21) wh ;(1-1) = v ;(2141) = 0,
and, by definition,

At each interior interface, we solve explicit/implicit equations of the form (13) to determine
solution values along the interface. These values then serve as boundary data for fully implicit
interior equations.

In this case, the algorithm satisfies the following a priori error estimate:

THEOREM 3.1. Assume the true solution u to (1)-(3) satisfies the smoothness assumptions of
Theorem 1. Let H = min; H;, and assume

At 1
23 =||Di1llec <AL <.
(23) ZlIDulle <A< 3

Assume H = max; H; satisfies H < C|ln h|~!, as h — 0. Let U™ be the domain decomposition
solution computed on a strip decomposition with K + 1 subdomains. Then

(24) max |[u® — U"|| < C(At + h? + KH(At + h? + H?)).

where C depends on the smoothness of u, D., and D*, but not on h, H, or At.

When considering only stability, an upper bound of 5/24 can be used in (23). In practice, we
have used an upper bound of 5/12 without loss of stability. So the constraint does not seem to be
tight.

The extension of the algorithm to a patch decomposition is straightforward. We now solve
implicit/explicit equations of the form (13) along z interfaces, and solve equations analogous to (13)
along y interfaces. At a point where an z and a y interface intersect, we have two point values (one
from the z interface calculation, one from the y) representing the value of the approximate solution
at the point. In our current implementation, we have taken the value computed by the y interface
calculation as the value of the solution at an intersection point. This choice was made arbitrarily.

Denoting by H? the minimum of the interface parameters H; associated with z—interfaces
(z = const.), and denoting by HY the minimum of the y—interface parameters, we enforce the
constraints

FepliPulle <3

GagDnlle <A< T
If D is strongly anisotropic, then one of these constraints is overshadowed by the other. In this
case, one is tempted to decompose Q2 into strip subdomains in the direction with minimal diagonal
entry in D; for example, if D;; >> Dj;, one is tempted to use a multi-strip decomposition in the
y—direction. Numerically, however, this can have adverse effects on the approximation properties of
the scheme. We will examine these effects for test problems in the next section.
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4. Numerical results. We now present some numerical results for the scheme described in
Sections 2 and 3.

First, we verify numerically the rate of convergence of the scheme. We consider test problems
of the form (1)-(3), with two coefficient matrices D,

(25) D=D1=[(1) ‘1’]

which reduces (1) to Poisson’s equation, and
o 14z 5
(26) D-Dz_[.5 1+y]'

With these choices of D we consider three test problems with known exact solutions. In Test
Problem 1, we choose u°, g, and f so that, independent of the choice of D, the true solution
u(z,y,t) = ui(z,y,t) = t+ 16z(1 — z)y(1 — y). In Test Problem 2, we choose u°, g, and f so
that u(z,y,t) = uz(z,t,y) = 10t sin(wz)sin(ry). In Test Problem 3, we modify the data in Test
Problem 1 slightly so that u(z,y,t) = us(z,y,t) = 10t> + 16z(1 — z)y(1 — y). Note that these
test problems have solutions which are symmetric about z = .5 and y = .5. However, depending
on the type of decomposition, our approach does not always preserve this symmetry; thus, we will
investigate the effects of nonsymmetry on the approximate solution. In all of the runs below, the
final time T = .1. We compare solutions using a 2x1 strip decomposition (Z = .5), and a 2x2 box
decomposition (£ = .5, § = .5), with the solution obtained using a fully implicit scheme; that is, no
domain decomposition.

Examining the error estimate given in Theorem 1, it would appear that, asymptotically, At
should be on the order of h> and H should be O(h*/3), assuming the constants in front of these
terms are roughly of the same magnitude. Hence, in these simulations, we set At = 4h? and
H = 2h?*/3. With these choices, the constraints given by (17), (23), and (25) are automatically
satisfied for small h.

Convergence results for Test Problem 1, with D = D, and D = D,, are given in Tables 1
and 2, respectively. Examining these results, we see that the error for the domain decomposition
solutions is of the same magnitude, and even slightly smaller, than the fully implicit error. Moreover,
the convergence rate in h is clearly approaching 2 as h goes to zero in all cases. In Figure 1, the
2x1 domain decomposition solution for D = D, (at T=.1 with h~! = 20), along the lines y = .5
and z = .5, is compared with the exact solution along z = .5. Note that u;(.5,y,t) = u;(z,.5,t)
when z = y, however, the 2x1 domain decomposition solution U does not necessarily satisfy this
relationship. Figure 1 demonstrates that even though the domain decomposition procedure is not
symmetry-preserving in this case, the solution is virtually symmetric even on a coarse mesh.

Convergence results for Test Problem 2, with D = D, and D = D,, are given in Tables
3 and 4, respectively. In these cases, the fully implicit solution on each mesh is more accurate
than the domain decomposition solutions by roughly an order of magnitude; however, the domain
decomposition errors are decreasing at a rate slightly higher than predicted by Theorem 1. In Figure
2, we plot the 2x1 domain decomposition solutions for Test Problem 2, with D = D,, along the line
y = .5, for h~! = 20 and h~! = 40, and compare these solutions with the true solution. As the
figure and Table 4 demonstrate, the solution generated on the coarser mesh has substantial error,
but is improved greatly by one mesh refinement. Moreover, the h~! = 40 solution is symmetric to
three significant digits.

Convergence results for Test Problem 3 with D = D, are given in Table 5. In this case the fully
implicit solution again gives smaller error, especially on the coarser grids. However, the domain
decomposition solution improves greatly as the grid is refined. For h~! = 160, the errors for domain
decomposition and fully implicit are roughly the same.

One reason the domain decomposition error is substantially larger than the fully implicit error
in Test Problem 2 is because the truncation error associated with the interface calculation depends

“on the second partial derivatives of the solution in a neighborhood of the interface. In Test Problem
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TABLE 1
L2 errors for Test Problem 1, D = D, .

Decomposition | A~ | ||U — u|| * 10° | Rate
2x1 20 2.67 -
- 40 .704 -
- 80 181 -

- 160 0461 1.95
2x2 20 2.46 -
- 40 .662 -
- 80 173 -

- 160 .0448 1.93
1x1 20 3.05 -
- 40 761 -

- 80 .190 2.00

TABLE 2

L? errors for Test Problem 1, D = D,.

Decomposition | A=" | ||[U — u]| « 10° | Rate
2x1 20 2.57 -
- 40 .684 -
- 80 A77 -

- 160 .0452 1.95
2x2 20 2.34 5
- 40 .639 -
- 80 .168 -

- 160 .0438 1.92
1x1 20 3.00 -
- 20 748 -

n 80 187 2.00

TABLE 3

L? errors for Test Problem 2, D = D,.

Decomposition | A=! | ||[U — u|| ¥ 10° | Rate
2x1 20 20.0 n
- 40 3.8 -
- 80 .887 -
- 160 .190 2.23
2x2 20 27.6 -
- 40 5.85 -
- 80 1.43 -
- 160 318 2.14
1x1 20 2.65 n
- 40 .660 -
- 80 .165 2.00







TABLE 4
L2 errors for Test Problem 2, D = D,.

Decomposition | h=" | ||[U — ul| » 10° | Rate
2x1 20 19.3 -
- 40 3.53 -
- 80 .788 -

- 160 .166 2.27
2x2 20 25.9 -
- 40 5.30 -
- 80 1.24 -

: 160 270 2.18
Ix1 20 2.75 B
- 40 .687 -

- 80 172 2.00

TABLE 5

L? errors for Test Problem 3, D = D,.

Decomposition | h=! | ||U — u|| * 10° | Rate
2x1 20 2.34 -
- 40 .399 -
- 80 .080 -
- 160 017 2.36
2x2 20 3.30 -
- 40 578 -
- 80 .108 -
- 160 021 2.43
1x1 20 997 -
- 40 .248 -
- 80 .062 -
- 160 .015 2.00







TABLE 6
L? errors as I is varied

| AT |U = uf| % 10°
S| 20 11.8
- | 40 2.95
- 80 .74
4| 20 26.2
- 40 5.27
- 80 1.25
3] 20 - 29.9
- 40 7.47
- | 80 1.76

2, the second partials in space of u are maximized along the interfaces £ = .5 and y = .5, in fact,
the maximum occurs at the point (.5,.5). This suggests that, for a given mesh, the positions of the
subdomain interfaces can effect the error in a substantial way. We examine this effect by considering
a test problem with the same initial and boundary data as Test Problem 2, with f modified so
that the true solution u(z,y,t) = us(z,y,t) = 10t sin(2wz)sin(27y). In this case, the second order
spatial derivatives of u are zero along £ = .5, and are maximized at z = .25, y = .25. We consider
a 2x1 domain decomposition, and vary the position of the interface . In Table 6, we examine the
error for different mesh spacings and different values of £. As expected, for a given mesh spacing, the
error grows as £ approaches .25, and is smallest at £ = .5. The differences in errors are substantial;
the errors for Z = .3 are almost three times larger than the errors for Z = .5. For this test problem,
the errors for the fully implicit solution were almost identical to the domain decomposition errors
for the case = .5.

Next, we examine the effects of anisotropy in the matrix D on the domain decomposition algo-
rithm. We consider Test Problems 1 and 3, and take

. [50(142z) 5
(27) D—Da—[.s ey |
Hence, ||D11}lec = 100, || Ds2|lc = 2, and we enforce the stability constraints
At 5
100 —— < —
(H=)? = 12’
At 5
— < .
(Hv)? — 12

Based on these constraints, it would seem advantageous from an efficiency viewpoint to decompose
Q into strips along the y—direction, or to use rectangular subdomains, with fewer interfaces along
the z-axis than the y—axis. Thus, larger time steps can be taken, without having to take large
values of H*. However, the truncation error associated with each y interface involves Dy, while the
truncation error associated with each z interface involves Dj3, which is a much smaller term. Thus, it
is not clear how the overall error will be affected. To examine the effect on overall error, we generate
solutions using 2x1 (Z = .5), 1x2 (§ = .5), and 1x4 (% = I * .25, | =1,2,3) domain decompositions.
We have chosen a “reasonable” time step, and chosen H* and HY so that the inequalities above
are satisfied. The errors for the different domain decompositions are given in Table 7. In these
runs, h~1 = 80, and At = 6.25 * 10~%. For both test problems, the 2x1 decomposition gives slightly
smaller error than the 1x2 decomposition, even though H? is four times larger than HY. Moreover,
the error for the 1x4 decomposition is substantially increased. These results suggest that some care
should be taken in choosing a decomposition when the coefficient matrix is highly anisotropic.
Finally, we present timings of runs made on an Alliant FX/8 computer, which demonstrate the
parallelism of the scheme. Here we compare a fully implicit solution generated on a single processor,
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TABLE 7
L? errors for highly anisotropic D

Test Problem | Decomposition | H* | HY | ||U — ul| * 10
1 2x1 36h | - 1.37
- 1x2 - 9h 1.75
- 1x4 - 9h 7.69
3 2x1 36h | - 1.39
- 1x2 - | % 1.69
n x4 [ on 12.80
TABLE 8

Timings for Test Problem 1, D = D,.

Decomposition | CPU | Speed-up factor
1x1 491.2 -
2x1 245.5 2.0
2x2 122.2 4.0
4x1 124.2 3.96

with domain decomposition solutions where the number of processors used equals the number of
subdomains. In these runs, A~! = 80, and At = .001. The timings for Test Problem 1 with D = D,
and D = D are given in Tables 8 and 9, respectively. The times reported were averaged over several
runs. As these tables indicate, essentially perfect speed-ups are obtained for two and four processors.
When using all eight processors, we have not obtained a factor of eight in speed-up (closer to a factor
of seven); however, this seems partly due to the configuration of the computer.

5. Conclusions. In conclusion, we have presented a numerical study of a domain decomposi-
tion algorithm for solving parabolic equations. We have demonstrated the convergence of the scheme,
and studied the effects of interface position and anisotropy on the error. We have also shown that
the scheme can be implemented successfully on a parallel computer.

One drawback of the method presented here which we haven’t discussed is that it is not globally
conservative. By “not globally conservative” we mean that, in the case of homogeneous Neumann
boundary conditions, with f = 0, the domain decomposition solution U does not necessarily satisfy

fvo=[vo,

which the true solution does satisfy. The method presented here also seems constrained by geometry
and approximating space, and is only first order in time. We are currently in the process of studying
these issues, and in fact, an algorithm has been derived [3] which improves upon this scheme in
some areas. This new approach computes flux boundary data on the interfaces, instead of Dirichlet
boundary data, as presented here. This scheme is conservative and can also be modified so that it is
second order in At. Determining the pros and cons of these various approaches will be the subject
of future work.
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TABLE 9

Timings for Test Problem 1, D = D,.

Decomposition | CPU | Speed-up factor
1x1 709.5 -
2x1 353.8 2.0
2x2 176.8 4.0
4x1 179.2 3.96
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F1G. 1. True solution vs. approrimate solution for Test Problem 1
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