ADOL-C, A Package for the
Automatic Differentiation of
Algorithms Written in C/C++

A. Griewank
D. Juedes
J. Srinivasan

CRPC-TR90073
December, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892






ADOL-C

A package for the automatic differentiation
of algorithms written in C/C++ !

Version 1.1, December 1990

Andreas Griewank?
David Juedes?®
Jay Srinivasan*

Abstract

The C++ package ADOL-C described here facilitates the evaluation of first and
higher derivative vectors of functions that are defined by computer programs in C. Under
certain restrictions ADOL-C can be applied to C codes obtained from Fortran programs
by the translator f2¢ distributed by AT&T Bell Laboratories. The resulting derivative
evaluation routines may be called from C/C++, Fortran, or any other language that
can be linked with C++. The use of the package requires the availability of the GNU
compiler g++, the AT&T preprocessor cfront2.0., or one of its ports.

The numerical values of derivative vectors are obtained free of truncation errors at
a small multiple of the run time and RAM requirement of the given function evalu-
ation program. Derivative matrices can be computed column by column or row by
row through repeated calls of the vector routines. Typically, the derivative calculations
involve a substantial amount of data that are accessed strictly sequentially and are
therefore automatically paged out to files on external mass storage devices.

Keywords: Automatic Differentiation, Chain Rule, Overloading, Taylor Coeffi-
cients, Gradients, Hessians, Reverse Propagation '

Abbreviated title: Automatic differentiation by ADOL-C

1 Introduction: Differentiation of Algorithms

Most nonlinear computations require the evaluation of first and higher derivatives of vector
functions with m components in n real or complex variables. This requirement arises
particularly in the areas of optimization, nonlinear equation solving, numerical bifurcation,
and the solution of nonlinear differential or integral equations. Often these functions are
defined by sequential evaluation procedures involving many intermediate variables. By
eliminating the intermediate variables symbolically, it is theoretically always possible to
express the m dependent variables directly in terms of the n independent variables. However,
the attempt typically results in unwieldy algebraic formulae, if it can be completed at all.

1This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38 and the NSF cooperative agreement
No. CCR-8809615. ‘

2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

3Department of Computer Science, Iowa State University, Ames, IA 50010

*Department of Computer Engineering, University of lllinois, Urbana, IL 61820



Symbolic differentiation of the resulting formulae will usually exacerbate this problem of
ezpression swell and often entails the repeated evaluation of common expressions.

An obvious way to avoid such redundant calculations is to apply an optimizing compiler
to the source code that can be generated from the symbolic representation of the derivatives
in question. Exactly this approach was investigated by Bert Speelpenning, a student of
Bill Gear, during his Ph.D. research [12] at the University of Illinois from 1977 to 1980.
Eventually he realized that the most efficient code for the evaluation of derivatives can be
obtained directly from that for the evaluation of the underlying vector function. In other
words, he advocated the differentiation of evaluation algorithms rather than formulae. In
his thesis he made the particularly striking observation that the gradient of a scalar function
(i.e., m = 1) can always be obtained for no more than five times the cost of evaluating the
function itself. This bound is completely independent of n, the number of variables, and
allows the row-wise computation of Jacobians for at most 5 m times the effort of evaluating
the underlying vector function.

When m, the number of component functions, is larger than n, Jacobians can be ob-
tained more cheaply column by column through propagating gradients forward. This clas-
sical technique of automatic differentiation goes back at least to Beda [1] and was later
popularized by Rall [10]. It was noted in [5] that in general neither the row-by-row nor
the column-by-column method is optimal for the calculation of Jacobians. However, the
potentially more efficient alternatives require some combinatorial optimization and involve
large data structures that are not necessarily accessed sequentially. Therefore, ADOL-C was
written solely for the evaluation of derivative vectors (e.g., rows or columns of Jacobians).
This restriction also simplifies parameter passing between subroutines and calls in different
computer languages.

As it turns out, the reverse propagation of gradients employed by Speelpenning is closely
related to the adjoint sensitivity analysis for differential equations, which has been used at
least since the late sixties, especially in nuclear engineering [2],(3], weather forecasting [13]
and neural networks [14] . The discrete analog used here was apparently first discovered in
the early seventies by Linnainmaa [9] in the context of rounding error estimates. Since then,
there have been numerous rediscoveries and various software implementations. Speelpenning
himself wrote a Fortran precompiler called JAKE, which was upgraded at Argonne National
Laboratory to JAKEF. Currently, there exist at least two other precompilers for automatic
differentiation, namely GRESS/ADGEN [6]° and PADRE2 [8] € .

Following the work of Kedem (7] with the Fortran extension AUGMENT, Rall [11]
implemented in 1985 the forward propagation of gradients by overloading in PASCAL-SC.
In contrast to precompilation, overloading requires only minor modifications of the user’s
evaluation program and does not generate intermediate source code. Our package ADOL-C
utilizes overloading in C++ but the user only has to know C or Fortran. In the latter case the
evaluation program must first be translated into C, which can be done with the converter
f2¢ distributed by AT&T. ADOL-C facilitates the simultaneous evaluation of arbitrarily
high directional derivatives and the gradients of these Taylor coefficients with respect to all
independent variables. Relative to the cost of evaluating the underlying function, the cost

*Contact: Jim Horwedel, ORNL, P.O. Box X, Oak Ridge, TN 37831, e-mail: jqgh%ornlstc.bitnet
®Contact: K. Kubota, Keio Univ., 3-14-1 Hiyoshi, Yokohama 223, e-mail: kubota@ae.keio.ac.jp



for evaluating any such scalar-vector pair grows as the square of the degree of the derivative
but is still completely independent of the numbers m and n.

For the reverse propagation of derivatives it is necessary that the whole execution trace
of the original evaluation program be recorded. In ADOL-C this potentially very large data
set is written first into a buffer array and later onto a file if the buffer is full or the user
wants a permanent record of the execution trace. In either case we will only refer to the
recorded data as the tape. The user may create several tapes on several named files. During
subsequent derivative evaluations, tapes are always accessed strictly sequentially, so that
they can be paged in and out to disk without execessive run time penalties. However, the
execution is usually significantly faster, if the core memory is large enough to accommodate
the whole tape as an array. Therefore, the user may cause the tape to be read back into
memory if it can actually be accommodated in core after the function evaluation itself
is completed. This device may speed the execution significantly when several sweeps are
performed (e.g., for the evaluation of a Hessian). If written onto a file the tapes are self
contained and can be utilized by other C or C++ programs.

2 Preparing a Section of C or C++4 Code for Differentiation

ADOL-C was designed so that the user only has to make minimal changes to his undif-
ferentiated code. The main modifications concern variable declarations and input/output
operations.

2.1 Declaring Active Variables

The key ingredient of automatic differentiation by overloading is the concept of an active
variable. All variables that may at some time during the program execution be considered
differentiable quantities must be declared to be of an active type. Currently ADOL-C uses
only one active type, called adouble, whose real part is of the standard type double.
Typically, one will declare the independent variables and all quantities that directly or
indirectly depend on them as active. Other variables that do not depend on the independent
variables but enter, for example, as parameters, may remain of the passive types double,
float, or int. There is no implicit type conversion from adouble to either of these passive
types so that the failure to declare variables as active when they depend on other active
variables will result in a compile-time error message. (Actually, this is not true for g++
version 1.37.1, which apparently initializes to zero all doubles that are illegally assigned
adouble values . This bug may lead to normally terminating ezecutions with reasonbably
looking, but numerically incorrect results. It has been fized in version 1.37.2.) The real
component of an adouble x can be extracted as value(x). In particular, such explicit
conversions are needed for the standard output procedure printf. The output stream
operator << is overloaded such that first the string "ad:” and then the real part of an
adouble is added to the stream. Naturally, adoubles may be components of vectors,
matrices, and other arrays, as well as members of structures or classes.

Since the type adouble has a nontrivial constructor the mere declaration of large adou-



ble arrays may take up considerable run time. In particular the user should be warned
against the usual Fortran practice of declaring fixed size arrays that can accommodate the
largest possible case of an evaluation program with variable dimensions. If such programs
are converted to or written in C, the overloading in combination with ADOL-C will lead
to very large run-time increases for comparatively small values of the problem dimension,
because the actual computation is completely swamped by the construction of the large
adouble arrays. It is hoped that this undesirable effect will eventually be eliminated by
the inclusion of active vector and matrix types in ADOL-C. For the time being the user
is advised to create dynamic arrays of adoubles by using the C++ operator new[] and
to destroy them using delete[]. The remainder of this section can be skipped, unless the
reader wishes to obtain some basic understanding of how the package works internally and
tailor it according to his needs.

Whenever an adouble is declared the constructor for the type adouble assigns it a
nominal address, which we will refer to as its location. The location is of the type locint
defined in the header file userparms.h. As long as the program execution never involves
more than 64k active variables the type locint may be defined as unsigned short int.
Otherwise, the range may be extended by defining locint as (unsigned) int or (unsigned)
long, which may nearly double the overall mass storage requirement. Sometimes one can
avoid exceeding the range of unsigned shorts by using more local variables and deleting
adoubles created by malloc or the C++ operator new in a last-in-first-out fashion. When
an adouble goes out of scope or is explicitly deleted the destructor notices that its location
may be freed for subsequent (nominal) reallocation. In general this is not done immediately,
but is delayed until the locations to be deallocated form a contiguous tail of all locations
currently used and this tail is at least mindeath=50 elements long.

As a consequence of this allocation scheme, the currently alive adouble locations always
form a contiguous range of integers that grows and shrinks like a stack. Newly declared
adoubles are placed on the top so that vectors of adoubles obtain a contiguous range of
locations. While the C++ compiler can be expected to construct and destruct automatic
variables in a last-in-first-out fashion, the user may upset this desirable pattern by deleting
free-store adoubles too early or too late. Then the adouble stack may grow unnecessarily,
but the numerical results will still be correct, unless an exception occurs because the range
of locint is exceed. In general, free-store adoubles should be deleted in a last-in-first-out
fashion towards the end of the program block in which they were created. If this rule is
obeyed, the maximal number of adoubles alive (and, as a consequence the core storage
requirement of the derivative evaluation routines) is bounded by a small multiple of the
core memory used in the relevant section of the original program. The C++ class adouble,
its member functions and the overloaded versions of all arithmetic operations, comparison
operators, and ANSI C functions are contained in the file adouble.c and its header adou-
ble.h. The latter must be included for compilation of all program files containing adoubles
and corresponding operations. ‘



2.2 Marking Active Sections
All calculations involving active variables that occur between the void function calls
trace_on(rev) and trace_off(pages)

are recorded on a sequential data set called tape. Pairs of these function calls can appear any-
where in a C or C++ program, but they may not overlap. The optional integer arguments
rev and pages will be discussed in Section 3. We will refer to the sequence of statements
executed between a particular call to trace_on and the following call to trace_off as an
active section of the code. The same active section may be entered repeatedly, and one can
successively generate several traces on distinct files.

Active sections may contain nested or even recursive calls to functions provided by the
user. Naturally, their formal and actual parameters must have matching types. In particular
the functions must be (pre-)compiled with their active variables declared as adoubles and
with the header file adouble.h included. Adoubles may be declared outside an active
section and need not go out of scope before the end of an active section. It is not necessary
that free store adoubles allocated within an active section be deleted before its completion.
The values of all adoubles that exist at the beginning and end of an active section are
recorded by trace_on and trace_off, respectively.

2.3 Selecting Independent and Dependent Variables

One or more active variables that are read in or initialized to the values of constants or

- passive variables must be distinguished as independent variables. Other active variables that
are similarly initialized may be considered as temporaries ( e.g., a variable that accumulates
the partial sums of a scalar product after being initialized to zero). In order to distinguish
an active variable z as independent, ADOL-C requires an assignment of the form

x €= px // px of any passive numeric type.

This special initialization ensures that value(z) = pz and it must precede any other assign-
ment to z. However, z may be reassigned other values subsequently. Similarly, one or more
active variables y must be distinguished as dependent by an assignment of the form

y >=py // py of any passive type ,

which ensures that py = value(y) and may not be succeeded by any other assignment to
y. However, a dependent y may have been assigned other real values previously, and it
could even be independent as well. The derivative values calculated after the completion
of an active section always represent derivatives of the final values of the dependent
variables with respect to the initial values of the independent variables. '

The order in which the independent and dependent variables are marked by the <=
and >»>= statements does matter for the subsequent derivative evaluations. However, these



variables do not have to be combined into continuous vectors. ADOL-C counts the number
of independent and dependent variable specifications within each active section and records
them in the header of the tape.

2.4 A Subprogram as an Active Section

As a typical example let us consider a C function of the form

void eval(n,mx,y,k,z)

int n,m; // number of independents and dependents
double x[]; // independent variable vector

double y{]; // dependent variable vector

int k[5]; // integer parameters

double z[]; // parameter vector

{ // beginning of function body

double t; // local variable declaration

t = z[0]*x[0];

............

// begin crunch
// continue crunch
// continue crunch
// end crunch

} // end of function

If eval is to be called from within an active C section with z and y as vectors of adoubles
but the other parameters passive, then one merely has to change the type declarations
of all variables that depend on z from double or float to adouble. Subsequently, the
subprogram must be compiled with the header files adouble.h and adutils.h included as
described in Section 4. Now let us consider the situation when eval is still to be called
with integer and real arguments, possibly from a program written in Fortran77, which does
not allow overloading.

To automatically compute derivatives of the dependent variables y with respect to the
independent variables z we can make the body of the function into an active section. For
example, we may create the following modified program:

void eval(n,m,px,py,z) _

int n,m; // number of independents and dependents
double px]] ; // independent passive variable vector
double py(] ; // dependent passive variable vector
double z[] ; // parameter vector

{ // beginning of function body

trace_on(); // start tracing

adouble *x, *y; // declare active variable pointers

x=new adouble[n] ; // declare active independent variables

6



y=new adouble[m] ; // declare active dependent variables
for( int i=0; i < n; i++)

x[i] <= px[i] ; // select independent variables
adouble t; // local variable declaration
t = z[0]*x[0]; // begin crunch as before

............ // continue crunch
............ // continue crunch

y[m-1] = t/m // end crunch as before

for( int j=0; j<m;j++)

vyl >= ypli] ; // select dependent variables

delete[n] x; // destruct independent active variables
delete[m] y; // destruct dependent active variables
trace_off(); // complete tape on adoltape

} // end of function

The renaming and doubling up of the original independent and dependent variable vectors
by active counterparts may seem at first a bit clumsy. However, this transformation has
the advantage that the calling sequence and the “crunchy” part of eval remain completely
unaltered. If the temporary variable t had remained a double, the code would not compile,
because of a type conflict in the assignment following the declaration.

2.5 Overloaded Operators and Functions

As in the subprogram discussed above, the actual computational statements of a C code
need not be altered for the purposes of automatic differentiation. All arithmetic operations
as well as the comparison and assignment operators are overloaded if at least one of their
arguments is an active variable. An adouble z occurring in a comparison operator is
effectively replaced by its real value val(z). Most functions contained in the ANSI C
standard for the math library are overloaded for active arguments. The only exceptions are
the nondifferentiable functions atan2, fmod, and modf. Otherwise, legal C code in active
sections can remain completed unchanged, provided the direct output of active variables is
avoided. Whenever derivatives are undefined or discontinuous, the limit of the derivative
values at arguments is to the right of the exceptional point. For example, at z = 0 the first
derivatives of the square root function sqrt(x) and the absolute value function fabs(x)
are set to +1.0/0.0 and +1.0 respectively. The general power function pow(z,y) = zV is
computed as ezp[y(logz)] and thus undefined when z is nonpositive. The derivatives of the
step functions floor, ceil, frexp, and ldexp are set to zero at all a.rgiments z. Some C
implementations supply other special functions, in particular the error function erf(x). For
the latter we have included an adouble version in adouble.c, which has been commented
off for systems on which the double valued version is not available.

As we have indicated above, all subroutines called with active arguments must be mod-
ified or suitably overloaded. The simplest procedure is to declare the local variables of
the function as active so that their internal calculations are also recorded on the tape.
Unfortunately, this approach is likely to be unnecessarily inefficient and inaccurate if the



original subroutine evaluates a special function that is defined as the solution of a par-
ticular mathematical problem. The most important examples here are implicit functions
and quadratures, or, more generally, solutions of ordinary differential equations. Often
the numerical methods for evaluating such special functions are elaborate, and their inter-
nal workings are not at all differentiable in the data. Rather than differentiating through
such an adaptive procedure, one can obtain first and higher derivatives directly from the
mathematical definition of the special function. Currently this direct approach has been
implemented only for user-supplied quadratures as described in Subsection 5.2.

2.6 Step by Step Modification Procedure

To prepare a section of given C or C++ code for automatic differentiation as described
above one may apply the following step by step procedure.

1. Use the statements trace_on() [or trace_on(rev)] and trace_off() [or trace_off(pages)]
to mark the beginning and end of the active section.

2. Select the set of active variables, and change their type from double or float to
adouble.

3. Select a set of independent variables, and initialize them with <= assignments from
passive variables.

4. Select a set of dependent variables a.moﬁg the active variables, and pass their final
values to passive variable by >»>= assignments.

5. Compile the codes after including the header files adouble.h and adutils.h.

Typically the first compilation will detect several type conflicts — usually attempts to con-
vert from adoubles to passive variables or to perform standard I/O of active variables. Some
C++ compiler may also disallow certain gotos, which are legal in ANSI C, but this problem
is unrelated to ADOL-C. A minor nuisance is that older compilers and preprocessors require
functions to be declared as overloaded ( e.g., by the statement overload sin) before they
are defined for the first time. The current versions of g+ and cfront2.0 automatically
regard all functions as overloaded and on some systems the header file math.h declares
the standard math functions as overloaded. Whatever the case may be, the use may have
to add overload statements in the file adouble.h if they are missing or ignore compiler
warnings if they are repeated in one of the header files.

3 Naming the Tapefile and Controlling the Buffer

The trace generated by the execution of an active section may stay within an internal tape
array or be written out to a named tape file. Either may subsequently be used to evaluate
the underlying function and its derivatives at the original point or alternative arguments.
If the active section involves user-defined quadratures or branches conditioned on adouble



comparisons, it must be executed and retaped at each new argument. Otherwise, direct
evaluation from the tape by the routine func_eval (Section 4.2) may be faster, but this is
not certain.

While several tape files may be generated and kept simultaneously, the current imple-
mentation utilizes only one tape array, which is hidden from the user. The tape array is
used as a buffer for the tape file if the length of the tape exceeds the array length of bufsize
bytes. Since operations on the tape array avoid any costly disk I/O, tape files that contain
no more than maxbuf bytes are automatically read back into core when they are needed.
The parameter maxbuf and the smaller parameter bufsize are defined in the header file
adouble.h and may be adjusted by the user. For simple usage, trace_on and trace_off
may be called without argument, and the special file adolbox need not be initialized. In
that case, the user may skip the remainder of this subsection.

The optional integer argument rev of tape_on determines whether the numerical values
of all adoubles are recorded on an unnamed temporary file when they are overwritten
or go out of scope. This option takes effect if rev =1 and prepares the scene for an
immediately following gradient evaluation by a call to the routine reverse (see Section
3.2). Alternatively, gradients may be evaluated by a call to grad_eval, which includes a
preparatory forward sweep for the creation of the temporary file. If omitted, the argument
rev defaults internally to 0, so that no temporary file is generated.

By setting the optional integer argument pages of trace_off to 1, the user may force a
named tape file to be written even if the tape array (buffer) does not overflow. On return
from trace_off, its argument represents the number of times the buffer array has been
emptied onto the tape file. If the argument pages is omitted, it is internally set to its
default value zero, so that the buffer is written onto a file only if the total length of the
tape exceeds bufsize bytes.

After the execution of an active section, the name of the corresponding tape file can
always be found in the file adolbox. If this fixed file exists and contains a nonempty
string of no more that 20 characters upon entry into an active section, then trace-on will
create a tape file of that name. Otherwise trace_on will use the default name adoltape
and place it into adolbox, after creating a file with that name if necessary. Later, the
problem independent routines forward, reverse, func_eval, grad_eval, hess_eval, and
deriv_eval always look in adolbox for the tape on which their respective computational
task is to be performed. By placing different file names into adolbox one can create several
tapes for various function evaluations and subsequently perform function and derivative
evaluations on one or more of them.

For example, suppose one wishes to calculate for two smooth functions f1(z) and f2(z)

f(z) = max{fi(z), fo(x)} , Vf(z) ,

and possible higher derivatives where the two functions do not tie. Provided f; and f; are
evaluated in two separate active sections, one can generate two different tapes by calling
trace_on with the strings tapel and tape2 placed into adolbox at the beginning of
the respective active sections and calling trace_off each time with a positive argument.
Subsequently, one can decide whether f(z) = fi(z) or f(z) = f2(z) at the current argument



and then evaluate the gradient V f(z) by calling grad_eval with the appropriate name
tapel or tape2 placed into adolbox.

When a tape file of the name specified in adolbox does already exist upon entry of
trace_on, it is at first merely flagged as disabled and actually overwritten only when the
buffer must be emptied. Similarly, the tape file is disabled when it has been read back into
core because its length is less than maxbuf. Messages announcing these and some other
events are printed provided the integer parameter npr is defined positive in the header
file usrparms.h. The status of a tape file is encoded in the sign of the integer pages
represented by the first ten characters. If this number is zero, nothing has been written
onto the tape file. If pages is positive, it represents the number of times the buffer was
emptied onto the file. To disable the tape file, ADOL-C makes the sign of pages negative
without altering its magnitude. To reactivate the tape file the user may simply edit it to
make page positive again. Whenever the tape file pointed to by adolbox is found to have
a nonpositive page value, the derivative evaluation routines assume that the relevant trace
can be found in the internal tape array.

3.1 Examining the Tape and Predicting Storage Requirements.

At any point in the program one may call the routine
void tapestats(pages,length,oper,indep,depend,bufsiz,maxlive,deaths)

all of whose arguments are integer references and can therefore be called from Fortran. The
routine tapestats looks in adolbox for the name of a tape file and interprets the first ten
characters in the tape file as an integer. If this number is positive, it is assumed that the
tape file does indeed contain the execution trace of interest, and its relevant characteristics
are read from its first 80 characters. Pages represents the number of times the buffer of
size bufsiz was emptied. Length represents the total length of the tape in bytes. Oper
represents the number of arithmetic operations, assignments and elementary function calls
recorded (including some death notices). Indep, depend represent the number of inde-
pendent and dependent variables. Maxlive represents the largest number of live variables
alive at any one time, and deaths represents the total number of overwrites and deaths
occurring within the active section.

The last two numbers determine the temporary storage requirements during calls to the
work horses forward and reverse. For a certain degree deg >= 0 the routine forward
involves (apart from the tape) an array of (degree+1)*maxlive doubles in core and, in
addition, a sequential data set of deaths*(degree+1) revreals if called with the option
rev='1. Here the type revreal is defined as double or float in the header file usrparms.h.
The latter choice halves the storage requirement for the sequential data set, which stays in
core if its length is less than bufsize bytes and is otherwise written out to a temporary file.
The drawback of the economical revreal=float choice is that subsequent calls to reverse
will yield gradients and -other adjoint vectors only in single-precision accuracy. This may
well be acceptable if the adjoint vectors represent rows of a Jacobian that is used for the
calculation of Newton steps. The routine reverse involves the same number of doubles
and twice as many revreals as forward.

10



3.2 Customizing ADOL-C

Based on the information provided by tapestats, the user may alter the following types and
constant dimensions set in usrparms.h and adouble.c to suit his problem and environ-
ment.

bufsize (default: 1024) This integer determines the length of internal buffers. If the buffers
are large enough to accommodate all required data, any disk access is avoided unless
trace_on is called with a positive argument. This desirable situation can be achieved
for many problem functions with an execution trace of moderate size. Primarily buf-
size occurs as an argument to malloc so that setting it unnecessarily large may have
no ill-effects, unless the operating system prohibits or penalizes large array allocations.

maxbuf (default: 1048576) This integer must be greater or equal to bufsize and represents
an upper bound on the size of temporary arrays actually used during forward and
reverse sweeps. If the tape length is greater than bufsize but smaller than maxbuf, it
will be read back into core by forward for subsequent sweeps. The same mechanism
applies to the temporary file of death values and its buffer. It may make sense to
make maxbuf much larger than bufsize if the program containing the active section
involves much core memory that is not needed during subsequent calls to the derivative
evaluation routines.

NaN (default: 0.0/0.0) This double value is used as default initialization for all adoubles
as well as their derivatives. On machines without IEEE arithmetic, NalN must be
reset to a some number that does not cause an arithmetic exception. If final results
contain NaNs or are in any way dependent on an alternative value chosen for NalN,
the calculation is of course incorrect.

locint (defaults: int) The range of the integer type locint determines how many adouble
s can be simultaneously alive. Only in extreme cases should it be necessary to keep
locint as long int, because there are more than 65,535 adoubles alive at any one
time. Otherwise the length of the tape can be almost halved by redefining locint as
unsigned short, unless doubles must be alligned on quadruple bytes.

revreal (default: double) The choice of this floating-point type trades accuracy with stor-
age during reverse sweeps. While functions and their derivatives are always evaluated
in double precision during forward sweeps, gradients and other adjoint vectors are ob-
tained with the precision determined by the type revreal. The more accurate choice
revreal = double virtually doubles the storage requirement during reverse sweeps.

skip2 (default: see in usrparms.h ) This macro is needed only when the machine requires
the alignment of doubles and ints on quadruple bytes in character arrays. Otherwise
the padding macro skip2 can be redefined as the empty string to save some storage.

npr (default: 1) If this integer is positive, ADOL-C prints out some basic fnessages about
its progress. '

tape (default: thisuglymessthatcantbused) This is the name of the tape array, which may
not be used for other purposes.

11



store (default: dontusethisuglymessplease) This is the name of another internal array,
which may not be reused. '

The only other protected names are those of the external functions listed in the header
files adutils.h, taputil.h, and tayutils.h as well as the pair of functions take_stock and
keep_stock declared in adouble.h.

4 Evaluating Derivatives from a Tape

4.1 Mathematical Description

After the execution of an active section, the corresponding tape contains a detailed record
of the computational process by which the final values y of the dependent variables were
obtained from the initial values z of the independent variables. Provided no arithmetic
exceptions occurred and all special functions were evaluated in the interior of their domains,
the relation y = F(z) is in fact analytic. In other words, we can compute arbitrarily high
derivatives of the vector function F(z). More specifically, the ADOL-C functions forward
and reverse yield derivative vectors of the form

a° m
FOz)vv...v = WF(z+tv) €ER (1)
d times t=0
and
WITFE) () v ...y = V. uTFO(z)? eR", (2)

d times

where v € R™ and u € R™ represent weight vectors that are held constant with respect to
differentiation. By choosing a suitable tangent vector v and a Lagrange vector u, one may
compute any derivative of f. In particular, (1) represents the th column of the Jacobian
F'(z)if d = 1 and v is the th Cartesian basis vector in R"™. Similarly (2) yields the i-th row
of the Jacobian F'(z) if d = 0 and u is the i-th Cartesian basis vector in R™. When d = 0
the tangent v is redundant, and (1) reduces simply to the original vector function.

For a scalar function F (i.e., m=1), one finds that with « = 1 € R the second form
(2) represents the gradient VF(z) if d = 0 and the th column of the Hessian V2f(z) if
d =1 and v is the th Cartesian basis vector. More generally, let us consider the case where
FT(z) = [f(z),cT(z)] consists of a scalar objective function f(z) and an m — 1 vector ¢(z)
of constraint functions. Here one may choose u as a vector of Lagrange multiplier estimates
such that approximately uTF’(z) = 0 with the first component normalized to 1. Then
the second vector (2) represents for d = 1 the Hessian of the Lagrangian function uT F(z)
multiplied by some vector v.

In general, one may use the first form (1) to calculate the d-th derivative of u7 F(z) in
the direction v and then obtain the gradient of that quantity with respect to all independent
variables in the form (2). Mixed partial derivatives (e.g., 4T F"v;v;) and their gradients,
can be obtained by interpolating the corresponding pure values for v = v; and v = v,.

12



Since the package works in terms of Taylor coefficients, the vectors (1) and (2) are for d > 1
scaled by 1/d! so that the actual output vectors are

r= HZF@(z)v? e R™ and g= HuTl FH)(z)v? e R . (3)

This scaling simplifies the internal calculations slightly and reduces the danger of overflow,
while increasing the likelihood of underflow.

4.2 Forward and Reverse Calls

Given any correct tape, one may call from within the generating program, or subsequently
during another run, the C function

void forward(y,rev,deg,x,v)

double y(]; // results as in (3) for d up to deg
int rev ; /| flag for reverse sweep

int deg ; // highest derivative degree
double x[] ; // independent variable values
double v[] ; // tangent vector in domain

The components of the vectors z and v must correspond to the independent variables in
the order of their initialization by the <= operator. If deg= 0, forward merely evaluates
y = F(z), and the last argument v may be omitted or set to the null pointer in the call. If
deg> 0 and there is only one independent variable, then the argument v may also be omitted
as it defaults internally to the unit vector with one component. The one-dimensional array
y contains the m vectors r defined in (3) for d =deg,deg-1,...,1,0 (i.e., in reverse order).
Thus the first n components of y contain the deg-th Taylor coefficient vector of F' in the
direction v, the next n components represent the deg-1st Taylor coefficient, and the last
n components the function value F(z) itself. Overall bf y has n - (deg + 1) components.
The integer flag rev plays a similar role as in the call to trace_on, namely it determines
whether forward writes the Taylor coefficients of all intermediate quantities onto a buffered
temporary file in preparation for a subsequent reverse sweep.

Forward always looks in adolbox for the name of the file on which the tape was written.
If the tape file is found empty or disabled, forward assumes that the relevant tape is still
in core and reads from the buffer. Forward can be used to evaluate the vector-function F’
at arguments z other than the point at which the tape was created, provided the original
code involves neither user-defined quadratures nor conditional branches. If these conditions
are not met, forward and subsequently reverse may appear to function properly, but the
numerical values will be incorrect.

13



After the execution of an active section or a call to forward with rev = 1 in either
case, one may call the C function

void reverse(xbar,deg,u)

double g[] ; //results as in (3) for d up to deg
int deg ; // highest derivative degree
double u[] ; // domain weight vector

The degree deg must agree with the corresponding parameter of the most recent call to
forward or must be equal to zero if reverse directly follows the taping of an active section.
Otherwise, reverse will return control with a suitable error message. Except when d = 0,
the value of v used in the last forward call will enter into the value of g. If there is only
one dependent variable, the weight vector « may be omitted and defaults internally to 1.
Similarly to y the one-dimensional array xbar contains the vectors g defined in (3) for
d = deg,deg — 1,...,0 with the last n components representing the generalized gradient
Vf(z)Tu. Thus the first n components of both one-dimensional arrays contain the Taylor
coefficient vectors of highest degree.

With ej and ei arrays containing the j-th and i-th Cartesian basis vector in R™ and
R™, respectively, one may use in particular the calls

1. forward(r,0,1,x,ej) // Compute j-th column of Jacobian
2. reverse(g,0,ei) // Compute i-th row of Jacobian

3. forward(r,1,1,x,ej)
reverse(g,1) // Yields j-th column of Hessian when m=1

Calls of the second form 2. must be preceded by the call forward(r,1,0,x) or a taping
with rev 1 equal to 1, but may then be repeated for several vectors ei. In contrast, the two
calls in 3. must follow each other for every j.

For convenience one may use instead of forward and reverse the driver routines

void func_eval(r,x)
double rf]; // result as in (3) for d=0
double x[]; // independent vector value

void grad_eval(r,g,x,u)

double r{]; // result as in 1 for d=0
double gJ; // result as in 3 for d=0
double x[]; // independent vector value
double uf] ; // range weight vector for m>1

14



void ‘hess_eval(g,x,v,u)

double g[; '/ [result as in (3) for d=1,0
double x[] ; // independent variable values
double v[] ; // tangent vector in domain
double u[] ; // range weight vector for m>1

In the last call, the one-dimensional array g must have at least 2n components. For
higher derivatives, one may use the driver

void deriv_eval(y,xbar,deg,x,v,u)

double y[]; //result as in (1) for d< deg
double xbar(]; // result as in (1) for d up to deg
int deg ; // highest derivative degree
double x[] ; : // independent variable values
double v[] ; // tangent vector in domain
double uf] ; // range weight vector for m>1

The components of the arrays y and xbar in the call to deriv_eval contain each deg+1
Taylor coefficient vectors exactly in the same way as in the corresponding calls to forward
and reverse. The last three drivers create a temporary file, initialize it with an appropriate
call to forward, and then call reverse with the corresponding argument. In particular, when
called repeatedly for different weights u but at the same point z, the routine grad_eval is
less efficient than a direct call to reverse. Again, the vectors v and u may be omitted and
default to 1 if n or m equal one, respectively. When m = 1 and the original evaluation code
contains neither quadratures nor branches, then grad_eval can be used to simultaneously
evaluate the scalar function and its gradient at any argument in its domain.

All routines described above have only integer and real scalar or vector arguments.
Therefore they are callable from Fortran and other languages for most linkers.

5 Installing and Using ADOL-C

The ADOL-C package consists of the following six C++ modules and six header files.

adouble.c ‘forward.c adouble.h templates.h
taputil.c reverse.c adutils.h taputil.h
tayutil.c drivers.c usrparms.h opcodes.h

The six modules have basically the following functions: adouble.c controls the nominal
allocation and elementary operations for variables of the class adouble defined in adou-
ble.h. The file taputil.c contains all functions and variables needed for the taping of
arithmetic operations and function evaluations in an active section. The module tayutil.c

15



controls the storage and retrieval of Taylor series coefficients during forward and reverse
sweeps, respectively. The files forward.c and reverse.c consist of the core procedures for-
ward and reverse as well as their auxiliary routines. The file drivers.c contains various
drivers that call forward and reverse; it is the natural place for additional user-defined
drivers and utilities. The user may modify the header file usrparms.h in order to tailor
the package to his needs in the particular system environment das discussed in Section 3.2.
On a UNIX system one may use the following makefile to generate the library libad.a using
the GNU compiler g++.

CFLAGS = -g

LIB =

CC = S++

cC = g++

1ib: adouble.o taputil.o forward.o reverse.o tayutil.o drivers.o
ranlib libad.a ’

Qecho ’Library created’

adouble.o: adouble.c adouble.h opcode.h taputil.h usrparms.h
$(CC) -c $(CFLAGS) $(LIB) adouble.c

ar rcv libad.a adouble.o

taputil.o: taputil.c opcode.h template.h taputil.h usrparms.h
$(CC) -c $(CFLAGS) $(LIB) taputil.c

ar rcv libad.a taputil.o

forward.o: forward.c adutils.h template.h usrparms.h

$(cc) -c $(CFLAGS) $(LIB) forward.c

ar rcv libad.a forward.o

reverse.o: reverse.c adutils.h template.h usrparms.h

$(cc) -c $(CFLAGS) $(LIB) reverse.c

ar rcv libad.a reverse.o

tayutil.o: tayutil.c usrparms.h

$(CC) -c $(CFLAGS) $(LIB) tayutil.c

ar rcv libad.a tayutil.o

drivers.o: drivers.c adutils.h

$(CC) -c $(CFLAGS) $(LIB) drivers.c

ar rcv libad.a drivers.o

The user has to ensure that a suitable compiler and its corresponding libraries are in the
path.

5.1 Compiling and Linking C++ Programs with Active Sections

To compile a C++ program that involves variables of type adouble one must add the di-
rective #include <adouble.h> at the beginning of the program file. Programs that mark
an active section with trace_on and trace_off or call on the various derivative evaluation

16



routines must also include the header adutils.h. For linking the resulting object codes, the
options pointing to the header files and the library libad.a must be used. For example,
the scalar problem discussed in the following section was compiled and linked by the UNIX
makefile

AD = /Net/albireo/albireol/griewank/adolcil

CFLAG = -g -I\$(AD)

LFLAG = -L\$(AD)

scalexam : scalexam.o \$(AD)/libad.a

g++ -o scalexam scalexam.o \$(LFLAG) -lad -1lm -1lg++

scalexam.o : scalexam.c \$(AD)/usrparms.h \$(AD)/adouble.h \$(AD)/adutils.h
g++ -c \$(CFLAG) scalexam.c

Please note that the directory that contains the ADOL-C include files adouble.h and
adutils.h as well as libad.a will vary from system to system. The user should replace AD
with the corresponding directory name in the above commands.

5.2 Interfacing ADOL-C with Fortran programs

Since many applications codes and numerical software packages are written in Fortran77
the question arises how ADOL-C can be used in connection with such codes. We consider
two aspects of this problem: first the translation of subprograms that contain an active
Section into C, and second the calling of the ADOL-C routines forward, reverse etc.
from Fortran. This two-pronged approach is preferable to a translation of complete Fortran
programs into C, which is usually not very practical and and makes the use of precompiled
numerical packages more difficult. Since ADOL-C utilizes global structures of a nonstandard
type, the main program must be written in C++ and the object files should be linked by the
C or C++ loader. If the original main program is written in Fortran it may be transformed
into a subroutine, say fort_main.(), which is called by a new main() program in C or
C++. This can be achieved by adding the two lines

extern "C" void fort_main_();
main() { fort_main_(); };

to any one of the C++ files in use. Our own experiments were conducted using the Fortran
to C converter f2c, which is distributed by AT&T Bell Laboratories over netlib?. This
public domain software comes without any guarantees, but seems to be reasonably reliable.
However, the generated C code may be hard to read and understand, especially if it involves
significant I/O. Therefore, the authors of f2c recommend to maintain the Fortran code and
to convert it repeatedly. For the purposes of ADOL-C this approach is not very convenient,
because the retyping of variables, marking of active sections, etc. must be performed on the
C code, and would have to be repeated after each new version. Therefore, we recommend
to translate only the program parts that need to be turned into active sections, and then

" For information on f2¢ send the electronic mail message Send indez from f2c to : netlib@research.att.com

17



to maintain them as C++ codes. Provided, I/O is largely avoided in these routines, the
corresponding f2c generated procedures may be quite readable and easy to maintain. The
resulting object codes can than be linked with the remaining Fortran programs, which must
be called from a C++ main as we already mentioned. In our experience the linker correctly
identified common blocks in remaining Fortran routines with the corresponding structures
generated by f2c in the converted part of the program.

Regarding the use of f2¢ generated code in connection with ADOL-C we offer the follow-
ing definitely incomplete list of hints. Unless f2c¢ is used with the -C++- option, function
declarations in the resulting C code will not conform with the more stringent prototype
consistency requirement of recent C++ compilers. If used with this option however, f2c
encloses the whole file of generated C code in a conditional extern ”C” declaration, which
means that C+< compilers treat it as plain C code. Therefore , the extern ”C” declara-
tion needs to be removed as active sections in the file require overloading. As a consequence
of this removal, all functions defined in the file can no longer be called from C or Fortran
programs as their names are embellished with the types of their arguments. If a complete
program is converted this applies in particular to the function MAIN_, which is generated
by f2c and called by a standard main routine in its library libF77. To avoid this difficuly one
may simply define main() { MAIN_(); }; in some C++ file. The same difficulty arises
with the functions from libm.a and the two libraries libF77 and libI77, which contain in
particular the I/O routines used by f2¢c. As explained in the f2c documentation the source
code for these libraries may be obtained from netlib and then compiled into a single library
libf2c. Alternatively, one may sanitize the converted code from all f2¢ specific trappings
and turn it into a standard C or C++ file. This requires in particular the expansion of
macros and type definitions from the header file f2c.h and the rewriting of I/O operations
in terms of C++ procedures. One may also take the opportunity to avoid fixed size arrays
by dynamic storage allocation using new[] and delete[], which may substantially reduce
overhead in the case of active variables, as we mentioned in Subsection 2.1. Because adou-
bles have a nonstandard constructor delete[] must be supplied with an index giving the
number of array elements to be destroyed. It should also be noted that f2c decrements some
array pointers by one (e.g., by the statement —x) and then uses integer subscripts starting
from 1 (rather than 0), exactly as in the original Fortran. In those cases the pointer must be
readjusted by the statement +-+x before the dynamically allocated array can be deleted.

In order to make a procedure callable from Fortran one has to ensure that all param-
eters are references to variables of a standard type. In particular this condition is met
by our various utilities, e.g., forward, reverse, grad_eval, whose prototypes are listed
in adutils.h. In order to allow their call from Fortran the source file driver.c contains
externalized interface routines, whose names end in an extra underscore as expected by the
f77 compiler.

Suppose all Fortran routines including are contained in a file ff.f and all C++ functions
including the main() program are contained in a file fc.c. Some of the C++ functions may
have been obtained from Fortran sources by the converter f2c and subsequently modified
for automatic differentiation with ADOL-C. After the ff.f has been compiled to ff.o by 77
and fc.c to fc.o as described above, the two object files may be linked by the command

g++ -o foo ff.o fc.o -L$(AD) -lad -1F77 -1I77 -lm -lg++

18



The software package includes an example, where the Helmholtz energy function [4] coded
in Fortran was converted to C using f2¢, then simplified and overloaded with ADOL-C,
and finally called from a Fortran test program. Subsequently, the test program directly
calls on reverse to accumulate the gradient using the tapefile. Unfortunately, this route
is somewhat circuitous, and it is hoped that a rewrite of ADOL-C into Fortran90 will
eventually provide a more convenient access to derivatives of Fortran programs.

5.3 Adding Quadratures as Special Functions

Suppose an integral .
f@) = [ g(@)

is evaluated numerically by a user-supplied function
double integral(double& x)

Similarly, let us suppose that the integrand itself is evaluated by a user-supplied block of
C-code integrand, that computes a variable with the fixed name val from a variable with
the fixed name arg. In many cases of interest, integrand will simply be of the form

{ val = expression(arg) }

In general, the final assignment to val may be preceded by several intermediate calculations,
possibly involving local automatic variables of type adouble, but no external or static
variables of that type. However, integrand may involve local or global variables of type
double or int, provided they do not depend on the value of arg. The variables arg and
val are declared automatically; and as integrand is a block rather than-a function, integrand
should have no header line.

Now the function integral can be overloaded for adouble arguments and thus included
in the library of elementary functions by the following modifications.

1. At the end of the file adouble.c include the full code defining double integral(double&
x), and add the line

extend_quad(integral, integrand);

a macro that is extended to the full definition of adouble integral(adouble& arg).
Then remake the library libad.a.

2. In the file adouble.h add the statements overload integral; (if needed) near the
top and then in the definition of the class adouble

friend adouble integral(adouble&).

19



In the first modification integral represents the name of the double function, whereas
integrand represents the actual block of C code.

For example, in case of the arcus of the hyperbolic cosine we have integral=acosh, and
integrand could be written as

{ val = sqrt(arg*arg-1) }
so that the line
extend_quad(acosh,val = sqrt(arg*arg-1))

can be added to the file adouble.c. A mathematically equivalent but longer representation
of the integrand is

{adouble temp = arg;

I

temp temp * temp,

val sqrt(temp); }

The integrands may call on any elementary function that has already been defined in
adouble.c, so that one may also introduce iterated integrals.

6 Three Examples Codes

The first example evaluates the n-th power of a real variable z in logon multiplications
by recursive halving of the exponent. Since there is only one independent variable, the
scalar derivatives can be computed using either forward or reverse, and the results are
subsequently compared. Note the scaling of the derivatives in agreement with (3).

\#include "adouble.h"

\#include "adutils.h"

\#include <stream.h>

adouble power(adouble x, int n) {
adouble z=1;

if (n>0) { // Recursion and branches
int nh =n/2; // that do not depend on
z = power(x,nh); // adoubles are fine !!!!
Z &= Z;
if (2*nh != n) z *= x;
return z; }

else {

if (n==0) return z; // The local adouble z dies

20



else return i/power(x,-n);} } // as it goes out of scope.

main() {
int n;
cout << "degree of monomial =? \n";
cin >> n;
double xp =0.5; double yp = NaN;
adouble y,x; // Adoubles may be declared
int rev=1; // before the beginning of
trace_on(rev); // the active section !!!!!
x <<= xp; // Only one independent var.
y = power(x,n);
y >>= yp; // Only one dependent adouble.
trace_off(); // No global adouble has died.

double *res, *ypp;

res = new double[n+2];

ypp = new double[n+2];

for( i=0; i < n+2; i++) {
forward(res,rev,i,&xp);
cout << yp << "=?" << *res << " should be the same \n";
reverse(ypp,i);
yp = *ypp/(i+1); }

delete ypp; delete res; : }

In the scalar case above, the reverse mode has no advantage in terms of complexity
or accuracy, and both modes yield exactly the same numerical results. In contrast, the
reverse mode comes into its own by calculating derivative vectors for the following product
example.

\#include "adouble.h"
\#include "adutils.h"
\#include <stream.h>
\#define abs(x) ((x >= 0) ? (x) : -(x))
\#define maxabs(x,y) (((x)>abs(y)) ? (x) : abs(y))
main() {
int n,i,pager,length,oper,indep,depen,buf_size,maxlive,deaths;
cout << "number of independent variables = ? \n";
cin >> n; .
double yp ; // Undifferentiated double code
double* xp; :
xp = new double(n];
yp =1;
for(i=0;i<n;i++) {
xp[i] = (i+1.0)/(2.0+i);
yp *= xplil;};
int rev=1; // Overloaded adouble version
trace_on(rev); '

21



adouble y ;
adouble* x;
x = new adouble[n] ;

y =1;

for(i=0;i<n;i++) {
x[i] <<= xp[i];
y *= x[i]; }

double yout;

y >>= yout;

cout<< yout <<" =7 "<<yp<<" function values should be the same \n";
delete[n] x;

cout <<"hello \n";

trace_off(); // Now read tape statistics
tapestats(pager,length,oper,indep,depen,buf_size,maxlive,deaths);
cout<<'"pages "<<pager<<"\n"; \\........ print others

double err; int degree; double r = yp;

double* z = new double(n];

double* g = new double(n];

double* h = new double[2*n];

for(int it=0; it <2; it++) //To come back later with perturbed xp

{deg =0;
if(it>0) ' // Forward sweep only at new argument
{ forward(&r,rev,deg,xp); // (Lagrange multipliers) could be omitted

cout<<r<<" = function value at perturbed point xp \n";}
// Reverse sweep to evaluate gradient

reverse(g,deg) ; // Omitted last argument defaults to 1;
err=0; // Compare with deleted product
for(i =0;i<n;i++) err = maxabs(err,xplil=*glil/r - 1.0);
cout<< err <<" = maximum relative errors in gradient \n";
// Combine previous two sweeps in gradient evaluation
grad_eval(&r,z,xp); // Last argument lagrange is omitted
err = 0; // Compare with previous numerical result
for( i=0; i<n; i++) err = maxabs(err,glil/z[i] - 1.0);

cout << err <<" = gradient error should be exactly zero \n";
for(i=0;i<n;i++) z[i] = 0.0 ; // Compute first row of Hessian
z[0]=1.0;
hess_eval(h,xp,2z); // Computes Hessian times direction z
err = abs(h[0]); // Compare with doubly deleted product
for(i=1;i<n;i++) err = maxabs(err,xp[0]l*h([i]l/g[il-1.0);
" cout<< err <<" = maximum relative error in Hessian column \n";

double hin = h[n-1]; // Check for symmetry

z[0]=0; z[n-1]=1;

hess_eval(h,xp,z); // Compute Hessian times alternate z
cout<<hin<<" =? "<<h[0]<<" (1,n) and (n,1) entry should be the same\n";
z[0]=1.0; // Evaluate third directional derivatives

deg = 2; double rv[3]; doublex* t;

22



t = new double[3*n];
deriv_eval(rv,t,deg,xp,2);
cout<<r<<" =? "<<hin<<" second partials should be the same \n";
err = abs(t[0])+abs(t[n-1]);

// Compare with triply deleted product
for(i=1;i<n-1;i++) err = maxabs(err,xp[0]*t[i]l/h[i]-1.0);
cout<<err<<" =maximum relative error in tensor times vector~2 \n";
for(i=1; i<n; i++) xp[i] =sqrt(xp[il);} // Change argument and repeat
delete h; delete g; delete z; delete t; delete xp;}

By comparing the results of this program when the library is made with revreal set
to double and float, one can verify the loss of derivative accuracy caused by the second
choice. It should be noticed that the run time for all routines called in the program above
is proportional to n and thus of the same order as the time for evaluating the product itself.

Finally, let us consider an exponentially expensive calculation, namely, the evaluation
of a determinant by recursive expansion along rows. The gradient of the determinant with
respect to the matrix elements is simply the adjoint, i.e., the matrix of cofactors. Hence the
correctness of the numerical result is easily checked by matrix vector multiplication. The
example illustrates the use of adouble arrays and pointers.

\#include "adouble.h"
\#include "adutils.h"
\#include <stream.h>
adouble** 4A;

int n; \\ A is an n x n matrix.
adouble det(int k, int m) { \\ k <= n is the order
if(m == 0 ) return 1.0 ; \\ of the submatrix,
else { \\ its column indices
adouble* pt = A[k-1]; \\ are encoded in m.
adouble t =0 ;
int p =1;
int s;

if (ki2) s = 1;
else 8 = -1;
for(int i=0;i<n;i++) {
int p1 = 2%p; .
if ( mipt >=p ) {
t += »pt*s*det(k-1, m-p);
8 = -8; }
++pt;
P = pi; } )
return t; } }
main() ' {
cout << "order of matrix = ? \n"; \\ Select matrix size
cin >> n;

23



A = new adoublex[n];
double diag;
diag = 0;
int rev=1;
trace_on(rev);
for (int i=0; i<n; i++) {
m *.—.2;
A[i] = new adouble[n];
adouble* pt = A[i];
for (int j=0;j<n; j++) *pt++ <<= j/(1.0+i);
diag += val(A[i]l[i]);
A[i][i] += 1.0; }
diag += 1;
adouble deter;
deter = det(n,m-1);
double detout;
deter >>= detout;
printf("\n %f =? %f should be the same \n",detout,diag);

trace_off(); // because the matrix is a rank one
int n2 =n*n; // perturbation of the identity matrix.
doublex* B;

B = new double[n2];
int deg = 0;
reverse(B,deg);
cout <<" \n first base? : ";
for (i=0;i<n;i++) {
adouble sum = 0;
adouble* pt;
pt = A[i];
for (int j=0;j<n;j++)
sum += (*pt++)*B[j];
cout << val(sum) <<" "; } }

The storage requirement of this code indeed grows very rapidly as can be seen from the

following table.

n 1 2 3 4 5 6 7
tape | 172 | 444 | 1320 | 4936 | 23948 | 141928 | 990736
taylor | 128 | 352 | 1008 | 3600 | 16848 | 98784 | 687504

The entries represent the length of the tape and the auxiliary numerical file in bytes. The
run time is proportional to the length of these sequentially accessed data sets. The run for

the 7 x 7 case took 4.5 seconds CPU time on a Sun4 Sparc Station.

24



Acknowledgments

The authors are indebted to Brad Karp, Koichi Kubota, Bob Olson, and Marcela Rosemblun
for helping in various ways with the development of the code.

References

[1] L. M. Beda et al (1959). Programs for Automatic Differentiation for the Machine
BESM, Inst. Precise Mechanics and Computation Techniques, Academy of Science,
Moscow.

[2] D. G. Cacuci (1981). Sensitivity Theory for Nonlinear Systems. I. Nonlinear Functional
Analysis Approach, Journal of Mathematical Physics, Vol. 22, No. 12, pp. 2794-2802.

[3] D. G. Cacuci (1981). Sensitivity Theory for Nonlinear Systems. II. Eztension to Ad-
ditional Classes of Responses, Journal of Mathematical Physics, Vol.22, No.12, pp.
2803-2812.

[4] A. Griewank (1989). “On Automatic Differentiation,” in Mathematical Programming:
Recent Developments and Applications, ed. M. Iri and K. Tanabe, Kluwer Academic
Publishers, pp. 83-108.

[5] A. Griewank (1990). Direct Calculation of Newton Steps without Accumulating Jaco-
bians. Preprint MCS-P132-0290 Mathematics and Computer Science Division, Argonne
National Laboratory.

[6] J. E. Horwedel, B. A. Worley, E. M. Oblow, and F. G. Pin (1988). GRESS Version 0.0
Users Manual, ORNL/TM 10835 , Oak Ridge National Laboratory, Oak Ridge, Tenn.

[7] G. Kedem (1980). Automatic Differentiation of Computer Programs, ACM TOMS, Vol.
6, No. 2, pp. 150-165.

[8] K. Kubota and M. Iri (1990). Padre 2, version 1— User’s Manual, Research Memoran-
dum RMI 90-01, Faculty of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku,
Tokyo.

[9] S. Linnainmaa (1976). Taylor ezpansion of the accumulated rounding error. BIT, Vol.
16, pp. 146-160.

(10] L. B. Rall (1981). Automatic Differentiation - Techniques and Applications, Springer
Lecture Notes in Computer Science, Vol. 120 , Springer Verlag, Berlin.

[11] L.B. Rall (1984). " Differentiation in PASCAL-SC: Type GRADIENT”, ACM TOMS
Vol.10,pp.161-184.

[12] B. Speelpenning (1980). Compiling Fast Partial Derivatives of Functions Given by

Algorithms, Ph.D. dissertation, Department of Computer Science, University of Illinois
at Urbana.

25



[13] O. Talagrand and P. Courtier (1987). Variational assimilation of meteorological obser-

vations with the adjoint vorticity equation. I: Theory Q.J.R. Meteorological Society,
Vol. 113, pp. 1311-1328.

[14] P. Werbos (1982). Applications of Advances in Nonlinear Sensitivity Analysis In R.
Drenick and F. Kozin (eds). Systems Modeling and Optimization, Proceedings of the
10th IFIP Conference, Springer Verlag, New York, pp. 762-777.

26



