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The conditions for the onset of thermal runaway in reactors with small non-
uniformities is investigated. The reaction is modelled by an Arrhenius heat generation
term with a finite activation energy and the dimensionless temperature, u,, is taken
to satisfy a nonlinear equation of the form

Auy+2A,F(u,) =0, zeD; 0,u,+bu,=0, zedD.

We investigate three classes of perturbations of this problem. First, we treat a small
temperature variation maintained on the boundary of the domain. Secondly, we
consider a small distortion of the boundary of a circular cylindrical domain, and
thirdly, we analyse the effect of a small hole in the domain. In each case we derive
asymptotic expansions for the critical Frank-Kamenetskii parameter, A.(€), where €
is a measure of the size of the perturbation. A numerical scheme is then used to
determine numerical values for the coefficients in the asymptotic expansion of A..
Finally, some of the asymptotic results are compared with corresponding numerical
results obtained from a full numerical solution of the perturbed problem.

1. Introduction

In steady-state thermal explosion theory the dimensionless temperature distribution,

u,, in an exothermically active material, is usually taken to satisfy a nonlinear
equation of the form

Aug+A F(uy) =0, xeD, 1

d,ug+bu, =0, zedD. |

Here, b> 0 is the dimensionless Biot number, A, is the Frank-Kamenetskii
parameter, and D is the two- or three-dimensional domain. In addition, 0,u, is the
derivative of u with respect to the outer normal to D. To model the reaction in D, an
Arrhenius heat generation term of the form F(u)=exp (u/(1+ pBu)) is usually
specified. Here, § > 0 is a dimensionless activation energy parameter with £ =0
corresponding to an infinite activation energy.

With F(u) as given above, it is well known that for some range of A, multiple
solutions to (1.1) can occur. The conditions on b and g for the occurrence of these
multiple solutions in slab, circular cylindrical and spherical domains is also well
established (see Boddington et al. 1983). We assume that when multiple solutions to
(1.1) occur, they can be parametrized in terms of a parameter a > 0 as uy(z, a), Agla).
The graph of « against A, is then multiple valued with a simple fold point at A, =

(1.1)
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A (o) where Aj(a,)=0. The determination of these critical values of the
Frank-Kamenetskii parameter is important in reactor design in that as A passes
through A, a dramatic increase in the maximum temperature of the reactor can occur
(i.e. a thermal explosion). -

Our goal is to determine the effect upon A, of three classes of perturbations of (1.1).
First, we treat a small temperature variation maintained on the boundary of D.
Secondly, we consider a small distortion of the boundary of a circular cylindrical
domain, and thirdly, we analyse the effect of a small hole in the domain. In each case
A, is expanded in terms of a small parameter, €, which is a measure of the size of the
perturbation. In the analysis we will emphasize the similarities in the methods used
to treat these classes of perturbations. An outline of this paper and a brief description
of some previous work in this area will now be given.

In §2 we determine the critical conditions for a reactor in which there is a small
temperature variation maintained on its boundary. The theory developed in §2 is
then applied in §3 to a circular cylindrical reactor. The method used to determine A,
uses a combination of asymptotic and numerical techniques. Therefore we can allow
for a small but arbitrary temperature variation and are not restricted to the case of
infinite activation energies in which an exact solution to (1.1) can be found. The
asymptotic results for A, derived in §§3.1 and 3.2 for the reactive circular cylinder are
compared in §3.3 with corresponding numerical results obtained from a full two-
dimensional finite difference solution of the perturbed problem.

In §4 we determine the critical conditions for a nearly circular cylindrical reactor
whose cross-section, in terms of the polar coordinates (r,), is given by r = 1+¢€h(0).
This problem was recently considered by Adler (1987) who determined A, in the limit
¢ — 0 for the case # = 0 and h(6) = cos 6. In §4 we extend this previous work to treat
the more general case of a finite activation energy (£ > 0) and a small, but otherwise
arbitrary, distortion of the nearly circular cylindrical domain.

In §5 we consider a different class of domain perturbation. Here we determine A,
when a small subdomain D, of ‘radius’ € is removed from D and a boundary condition
imposed on the resulting hole. The theory to determine A, in this case was initiated
in Ward & Keller (1991) and was extended and validated numerically in Ward & Van
de Velde (1991). In §5 we further extend the theory by deriving a two term expansion
for A, in the limit of small-hole radius. For some special geometries, we then describe
a scheme to determine numerical values for the coefficients in the asymptotic
expansion of A..

In §6 we give a new method for determining the maximum value of the activation
energy parameter 8 for which multiple solutions to (1.1) occur in slab, circular
cylindrical and spherical domains (the class A geometries). These transitional values
of B were first computed for the class A geometries by Kordylewski (1979) who
formulated and solved numerically a time dependent system of partial differential
equations. Minor modifications of this time dependent formulation have been made
by several investigators (see Boddington et al. (1983) and the references therein) to
compute the transitional parameters more accurately. Our method differs from these
previous methods in that we determine the transitional value of 8 by solving a set
of boundary-value problems for ordinary differential equations. Therefore, more
accurate solutions for the transitional quantities can be obtained by our method for
the class A geometries. Our results are found to agree to many significant digits with
those of Gustafson & Eaton (1982) where an alternative approach, also based on the
solution of a set of ordinary differential equations, was used.
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Criticality in reactors 343

Finally, in §7 we give a qualitative discussion on the effect of the three classes of
perturbations on the critical Frank-Kamenetskii parameter.

2. Small temperature variation on the reactor boundary
The perturbed problem in m = 2,3 dimensions is taken to be

Au+AF(u) =0, zeD, (2.1a)
0,u+b(u—eh(s)) =0, xedD, (2.1b)

where D is a bounded domain in #™. Here s parametrizes 0D and €h(s) is the small
external temperature variation. We now determine the critical value of A, labelled by
A (€), for e € 1.

We seek the solution to (2.1) in the parametric form wu(z,a,€), A(a,€) and we
expand

u = ug(x, )+ €uy (2, @) + €2uy(T, ) + ..., A = Ag(@) + €A () +€*Ay(a)..... (2.2)
Substituting this expansion into (2.1) and equating powers of € given

Au, + A Fou,=—A F°, xeD (2.3a)

0, u, +bu, = bh(s), redD (2.3b)

Au,+ A Fouy = — A, F'— A u, Fy — A, ui Fy,, z€D (2.4a)

o, u,+bu, =0, zeadD. (2.4b)

Here, F® = F(u,(z, 2)) and F2, F%, denote derivatives of F with respect to u evaluated
at the unperturbed solutions u,.

To determine the location of the fold point we expand o =a(e)=
@y +€a, +€¥a,+.... To the order of terms retained, a,, @, and a, are determined by
the condition that dA/da = 0 shall be independent of €. Then defining A.(€) = A(a(€),
€), we obtain

Ao = Aglag) + €Ay (o) + €[ Ay(ag) - (AL(@))?/225()] + - (2.5)

We now determine Aj(a,), A5(a,), A (@) and Aj(e,) from (1.1), (2.3) and (2.4).
To determine these quantities, we differentiate (1.1) with respect to « to obtain

Aug, + A FS ug, = — A, zeD, }

(2.6)
0, Ug, +buy, =0, ze€dD.

At the fold point a =a, we have Ag(a,) =0 by assumption, so (2.6) is the
homogeneous form of both (2.3) and (2.4). Since the operator in (2.3) and (2.4) has
a one-dimensional nullspace at a,, then the inhomogeneous terms in each of these
equations must satisfy one solvability condition. To derive the solvability condition

for (2.3) we apply Green’s theorem to u,, and u, in D to obtain
Ay (@) (ug,, F°) = f h(s)0,up, ds, at a=a,. (2.7)
eD

Here, the inner product (v,w) is defined by (v,w) = [pvwdz. By a similar procedure
we obtain the following solvability condition for (2.4):

Ag(atg) (Ugqs FO) = — A (Ug,, %, FO)—3A(ug,, u3FY,), 2t a=a,. (2.8)
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To determine Aj(a,) we differentiate (2.3a,b) with respect to a so that
Auy,+ A Fouy, = —AgFS ug, — A FY, uy g, — AL FO— A 3w, -xeD,, } 2.9)
0,uy,+bu,, =0, x€dD.
Applying Green’s theorem to u,, and u,, in D we find that
Af(og) (gqs FO) = — Ag(tdey Fyy y) — Ay (g, F3). (2.10)

Finally, to determine Aj(x,) we differentiate (2.6) with respect to « to obtain

Aty + Ao Fo gy, = — Ao FO ul, — 20, FS ue, — AT F°,  z€D, |

(2.11)
3, ug,, +btg,, = 0, zedD. |
Then applying Green’s theorem to u,, and u,,, in D we find that
A (0r) (tgqs F®) = = Ag(ud, ). (2.12)

Using (2.7), (2.8), (2.10), and (2.12) in (2.5) we have a two-term expansion for A,
when € < 1. We emphasize that all the quantities appearing in these equations are to
be evaluated at a = a,.

3. A circular cylindrical reactor: small temperature variation

Let D be a circular cylindrical reactor of radius one and assume that the nonlinear
heating term is F(u) = exp (u/(1+ fu)). We now briefly outline some well-known
results on the qualitative behaviour of solutions to the unperturbed problem (1.1)
with the Arrhenius heating term specified above (see Bebernes & Eberly (1989) and
the references therein for details).

All positive solutions to (1.1) in circular cylindrical domains are radially symmetric
and are monotone decreasing functions of r for r > 0. If # =0 and 0 < b < oo then
there exists a A, < o¢ such that there is no solution to (1.1) for all A > A,. In this case
if A < A, there are two solutions to (1.1). Now if #> 0 and 0 < b < o0 then solutions
to (1.1) exist for all A > 0 and furthermore, if > f,.(b), the solutions to (1.1) are
unique for all A > 0. However, when £ < f,.(b), multiple solutions to (1.1) occur for
some range of A. This transitional value of 4, labelled by B,.(b), has been computed
numerically in Fenaughty et al. (1982) and Boddington et al. (1983) for various values
of b. Finally, we mention that explicit formulas for the solutions to (1.1) in circular
cylindrical domains can only be found when g = 0.

We now present a method to obtain numerical values for the coefficients of order
¢ and €? in the expansion of A, given in (2.5) for the case 0 < £ < £,.(b). In (2.1b) we
take s = 6 and we assume that A(6) is a smooth 2n periodic function. Then we look
for a solution to (2.3a, b) in the form

uy(r,6) = $wo(r)+ T (wy(r) cosnb+v,(r) sin nb). (3.1)
n=1
Substituting (3.1) in (2.3a,b) we obtain, in 0 <r <1,
L, W, + A Fyu, = =21, F%,,, wy(1)+bw,(l) = bc,, n=0, (3.2a)
Lyv,+AFor, =0, vp(1)+bv,(1)=bd,, n>1. (3.2
Proc. R. Soc. Lond. A (1991)
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Here 8, is the Kronecker delta, L,v = r~Y(rv,), —r~*n*v, and the numbers ¢, and d,
are the Fourier coefficients of A(6):

2n 27 - ’
c =£J h(6) cosn6do, dn=%f h(8) sinn6 dé. (3.3)

n
0 0
At criticality, where a = o, it follows from (2.7) that there is no solution to (3.2a)
when n = 0 unless

Ay(a,) = Ugar(1) €0/ (2{Ug,, FO)), 8t a =, (3.4)

Here we have defined the angle brackets by {(u,v) = [Yuprdr. At criticality, the
solution to (3.2a), with » = 0 and A,(c,) as given above, can be made unique by
specifving {u,,, w,) = 0 at a = a,. -

By using (3.1) in (2.8) and (2.10) we obtain at a = a,,

Af(og) (uge, F> = — ot Fl Uaa wop — Ay {Uga Fo Uoa?» (3.5)

oC
Aglatg) (g, FO) = _%Al<u0a’w0F3>_%A0<uOJ’ng2u>_%AO T (oo Fhu wh+ 020
n=1
(3.6)

Thus using (2.12), (3.4), (3.5) and (3.6) in (2.5) gives a two term expansion for A, when
D is a circular cylindrical domain.

A special case of the above result occurs when the average temperature variation
on the boundary is zero so that ¢, = 0. Then from (3.4) we have that A,(a,) =0 and
from (3.2a), upon recalling ug,, w,) = 0, it follows that w, = 0 at &« = a,. Now from
(3.5) we find that Aj(e,) = 0 and so from (3.6) and (2.5) the correction to the fold
point becomes

/\ oC
Ao = Aolag) F 2 A5(ag) +oun Ag(atg) = —WOT% S (ug Foy  wi+v5>. (3.7)
0z

n=1

To compute the various quantities in (2.12), (3.4), (3.5), (3.6) and (3.7) we first
consider the extended system obtained from (1.1) and (2.6) which is written, in

0<r<l1,as

Lug+ A, Fluy) =0, F(u) = exp (w/(1+pu)). (3.8a)
Ltg, + Ao Fo(to) o, = — Ao F (o), (3.8d)
w,+buy =0, ug+bu, =0 on 7= 1, (3.8¢)
w)(0) =0, up(0) =0, u(0) =2, uu0) =L (3.84d)

Here « is chosen to be the maximum temperature for the unperturbed problem and
the operator L is defined by Lv = r~Y(re,),-

To determine the location of the ‘first’ fold point for the unperturbed problem
with g fixed, we solve (3.8) subject to the side condition Aj(a,) = 0 and Ag(a) > O for
0 < o < a,. For fixed a and f the boundary value problem (3.8) is solved for u,, %,
A,, and A, using the collocation package COLSYS developed by Ascher et al. (1979).
A continuation in d is used to detect the first sign change of A; and then a Newton
iteration scheme is used to locate the first fold point (Ay(,), @) accurately. Once this
fold point is located accurately the quantities uy(r), %y, (r) at @ = a,, which are needed
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in (2.12) and (3.4), are known. The integrals appearing in these expressions are
evaluated numerically using Simpson’s rule. In addition, with u,(r) known at a = «,
we solve (3.2a, b) numerically for w, and v,. Then a numerical quadrature in (3.5)
and (3.6) gives Aj(a,) and A,(a,). from which we determine A, from (2.5). Finally, a
continuation scheme in £ is used to locate the first fold point and to determine the
fold point correction A, as a function of . We now give some examples.

3.1. A circular cylindrical reactor: cy =0
Now we consider the special case ¢, =0 (e.g. the mean temperature variation
vanishes) and for positive integers n we take A(0) = ¢, cosnf. Then from (3.7) we find
that, at a = «,,

Ao = Aglag) +€2A,(ag) + ...y Ayley) = A >(u01F° wi). (3.9)

-0
4{u,,, F° uw
Here, w, for n > 1 is found from (3.2a) and F is given in (3.8a).

Infinite activation energy: f =0

With #=0 and F =e¢* then Ay (a,) can be found analytically and the fold
correction, A,(a,), can be determined up to a quadrature. When £ = 0 the solution to
the unperturbed problem (1.1) is well known (see Gray & Lee 1967). It is given by

1+a da 8z 4o
wo(r, ) = 21n(l+ar2)+b(l+a)’ Aol®) = (1 +a)2e'\p[_b(l +a)]’ (3.10)

“where o > 0. Criticality occurs when Aj(a,) = 0, which yvields a2— 1 +4a,/b = 0. The
positive root of this expression is

ag=—2/b+(1+4/b2)t (3.11)

Note that the definition of a taken here differs slightly from the one used in (3.8),
where a was the maximum temperature.
At a = a, the solution to (3.2a), which is regular at r = 0, is found to be

doyc,
n(l+a,)

W,(r) = [(1+ay)+n(1 —ano)]“r"(1 — %" +n> . (3.12)

14a,7°
In addition, by using (3.10) a simple calculation shows that

(1 — &, rz)
ao(l+a,r?)’

Uy, (1, ) _ (1 +ay)?
Ao(ag) Ag(exy) ’

Qthgy, €¥0) = — (3.13)

Ug, (T, ) =
at a = a,. Substituting (3.10), (3.12), and (3.13) in (3.9) we obtain

ad[(1+ay)+n(l—ay)] 2| G,(s,a,)e?néds, (3.14)

0

4c? Ay(a !
Agag) = _'—;(_0_)

where G, (s, a,) is defined by
GL(s,a0) = (1 +258) 71— 8) [n(1 +ay8)+ (1 —a,8)]% : (3.15)

Although it does not appear possible to evaluate the integral appearing in (3.14)
analytically for arbitrary n. we can casily determine A,(x,) for n = 1 and for n > 1.
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Table 1. A, () with B =0 and for various b, from (3.14)

n b=o0 b=5 b=3 b=1
1 —0.2500 —0.1616 —0.1177 —0.2749 x 107!
9 _0.6250x 10! —0.3806x 107! —0.2629 x 107! —0.5298 x 10~2
3 —02778x107' —0.1582x10"' —0.1045x 107t —0.1909 x 1072
4 —0.1563x10"' —0.8307x10"2 —0.5288x 102 —0.9017x 1073
5 —0.1000x10 —0.4971x102 —0.3069x107* —0.4971x 103
6 —0.6944x102 —0.3235x 10-2 —0.1947x10"2 —0.3031x1073
7 —05102x102 —0.2233x10"2 —0.1316 x 102 —0.1985x1073
8 —0.3906x10"2 —0.1611x107 —09322x10"* —0.1370x 1073
9 —0.3086x10"2 —0.1203x10"2 —0.6851 x 10~ —0.9857x 1074

10 —02500x10"2 —0.9229x10"* —0.5186x 102 —0.7328 x10¢

For n = 1, upon evaluating the integral in (3.14), (3.9) becomes
Ao = Ag(tg) +€*Ag(cg) + - Ay(ag) = —2A4(ax) agch/(1+a,)t, (3.16)

where a, is given in (3.11). If in addition b > oo, then A,— 2 and @, 1, so that (3.16)
reduces to A, = 2(1 —3e%c2 +...). This result is in agreement with Adler (1978) who,
for the case with ¢, = 1, estimated that A, = 2(1 +ke?)™" where & <k <} Thus we
predict that the correct value of k is §, which is the mean of % and §.

For the case n— 00, A,(®,) can be evaluated asymptotically using Laplace’s
method (see Bleistein & Handelsman 1975). A routine application of this method
provides

Gn(la ao)_(Gn(lvao)+aan(1va0))+
2

n n

as mn—> 0.

J1 G, (s, a,) e ds ~

0

Then from (3.15) we obtain

1
j G, (s, a5) e ds = n(1 +ay) (1 —a,) +(1 +a,)t(1+a})+0(n™!) as n—> .
0
(3.17)
Finally, using (3.17) in (3.14), the asymptotic behaviour of A,(a,) is

4A4(ap) e n(l—ad)+(1+ al)
n2(1+ag)t [n(l—ay)+(1 +a,)]?

Ay(ag) ~ — n-—> 0. (3.18)

From (3.18) we note that A,(xo) = O(n~?) when a, =1 (b = 00) and A,(a,) = omn3)
when a, # 1 (b < ©). Specifically, the leading order term as n— 00 in each case is

42,(a0) 22 Ch c?
~ — n A ~ ——r =
Az(ao) na(l +a0)3(1 _ao) “o # 1’ Z(aO) 4n2 ao 1- (3.19)

Now setting ¢, = 1 we compare the expression for A,(a,) given in (3.14) with the
asymptotic result (3.18) valid for n > 1. To evaluate the integral appearing in (3.14)
accurately we used Romberg’s method with a high-order extrapolation. Amazingly,
we find that for all » > 1 and a4 > 0, the asymptotic result (3.18) approximates the
exact result (3.14) to within four significant digits. In table 1 we give numerical
values for A,(a,) obtained from (3.14) for various n and b values. We note from this
table that A,(a,) <0 and that A,(a,) increases monotonically with n. Thus we
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conclude that small temperature variations on the boundary of mean zero make the
reactor less stable. However, the onset of thermal runaway is only marginally
hastened by a small but rapidly varying temperature profile on the reactor
boundary. -

Finite activation energy: 0 < f < f,.(b)

For the case of finite activation energies in which £ > 0 it is not possible to solve
(3.2a) explicitly for arbitrary n. However, in two special cases we can determine
Ay(a,) without having to solve (3.2a) numerically. These special cases provided a
partial check on the numerical computations that follow.

If n = 1 then, for any a > 0, the solution to (3.2a) is given by

w,(r) = Ac, uy,(r), where A4 =b/(ug,,(1)+buy(1)). (3.20)
Evaluating w, at @ = a, and substituting (3.20) in (3.9) we see that
A, 4%t

Ay(ag) = "I TS Oa’Fo>< oaFoy,ud,) at a=a, when n=1. (3.21)
The remaining quantities in (3.21) must be determined using the numerical solution
to (3.8) at a = a,,.

In the case where n - o0 the solution to (3.2a) can be constructed asymptotically
using the method of matched asymptotic expansions (see, for example, Kervorkian
& Cole 1981). For large n the solution to (3.2a) is of boundary layer type with a
_ boundary layer occurring near r = 1. Upon replacing w, in (3.9) by its leading order
- composite expansmn the inner product {u,,FJ,,w?) can be evaluated asymp-
totically using Laplace’s method.

By using the method of matched asymptotic expansions to solve (3.2a) for n > 1,
the leading order composite expansion for w, is found to be

w, ~ (bc,/n)e™ "V b<oo; w,~c,e" "V b=o0. (3.22)
Asymptotically, as n— 20, the inner product {u,, Fy,, w?) at a = «, is given by
Qo Flus wh) ~ — (Btgur(1,00) €5 /20°) Fuy(ug(1, ), b <0,  (3.230)
Cuge Fy wh) ~ = (Uoar(l, o) €5 /4n®) Fyy(uo(1, ap)), b = c0. (3.23b)
Substituting (3.23) in the expression for Ay(a,) given in (3.9) we find that
bAg(%g) Uoar(l, %) €5

Ag(aq) ~ 873 ug,, FO) 2Fyu(ug(l, @), b < oo, (3.244a)
1,
Mg ~ e R Fulla), b= oo (3.240)

By using (3.24) in (3.9) then determines A, for e <1 and n > 1 in terms of the
"- unperturbed solution at the fold point. As a remark, if # = 0 then substituting (3.10)
in (3.24) we can recover (3.19). In addition we also note that (3.24) is not uniform in
b when b becomes large. To obtain a uniform expansion in the Biot number for A,(a,)
as n —» o¢ one would have to separately analx se the case b = b,n with b, fixed. We do
not pursue this here.

In table 2 we give numerical values for A,(e,) for various # and n when b = oo and

= 1. From this table we observe that reactors with smaller activation energies are
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Table 2. A,(a,) with b = oo and for various B > 0, from (3.9)

n p=0.0444 B =0.1111 B =0.1556 B=0.1718
1 —0.2077 —0.1447 —0.1030 —0.8200 x 10~
2 —05337x10" —0.3920x 107" —0.2953x10"" —0.2445 x 10"!
3 —02411x107" —0.1835x107" —0.1425x 107! —0.1206 x 10!
4 —0.1371x1070 —0.1066x 10" —0.8450x 10 —0.7260 x 10-2
5 —0.8839x10"? —0.6975x10"2 —0.5611x10"2 —0.4869 x 10~
6 —06171x102 —0.4922x10"2 —0.4002x 1072 —0.3499 x 10~
7 —04552x107 —0.3661x10"2 —0.3001x10"2 —0.2638 x 10~
8 —0.3496x10"2 —0.2829x 10~ —0.2334x10"2 —0.2061 x 10-2
9 —0.2769x10? —02253x10"2 —0.1868x10"2 —0.1655x 10~

10 —02247x10? —0.1836x 1072 —0.1529x 102 —0.1359 x 102

less sensitive to temperature variations than reactors with larger activation energies.
For all # we also note that the onset of thermal runaway is only marginally hastened
by a rapidly varying temperature profile. In table 3 we give numerical values for
Ay(a,) for different Biot numbers but with 8> 0 fixed. If ¢, # 1 then the entries in
tables 2 and 3 should be multiplied by ¢2. In determining A,(a,) we solved both (3.8)
and (3.2a) numerically and then used a numerical quadrature to evaluate the
integrals appearing in (3.9). We claim that the results for A,(«,) are correct to at least
three significant digits. We also mention that the asymptotic result for A,(a,) as
n—> o0 given in (3.24a,d) is typically within 10% of the values shown in tables 2
and 3 when n > 7.

In figure | we let n = 1 and ¢, = 1 and we plot A,(a,) against g for different Biot
numbers. From this plot we observe that the dependence of A,(x,) on f is roughly
linear with a slope depending on the Biot number.

3.2. A circular cylindrical reactor: ¢, # 0

We first consider the case with infinite activation energy (8 = 0) and we take
h(6) = 3¢ +c, cosnf for positive integers n. By using (u,,, F°) = —2nu,(1)/A, at
criticality, then (3.4) yields A,(ag) = —cyAy(@,). Now noting that F = F, = F,,, the
solution to (3.2a) with n = 0 can be chosen as wy(r) = ¢, at a = a,. Substituting

w, = ¢, in (3.5) and (3.6) we find Aj(a,) = 0 and
Aglarg) = e Ag— Moty Fy w2/ Cutg, FO). (3.25)
Thus the two-term expansion to the location of the fold point, given in (2.5), becomes
A = Aglctg) — beo Ag(@g) €+ €2A5(g) + ..., when B =0. (3.26)

Here u,, A, are given in (3.10), w, is specified in (3.12), and a, is given in (3.11). In
addition, the term in (3.25) involving the ratio of two inner products is written
explicitly in (3.14) and is tabulated for various » and b in table 1. In particular, when
n = 1, this term was written explicitly in (3.16) and so (3.25) and (3.26) provide

2 A2
2aocn )€2+--°] when ﬂ = 0’ n=1. (327)

A= ’\o(ao)l:l —%Co€+(%cﬁ—m

To determine A,(a,) in (3.25) for arbitrary » we can replace the term involving the
ratio of two inner products by the highly accurate approximation (3.18).
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Figure 1. Small temperature variation of mean zero: A,(a,) against # for n = 1 and different
Biot numbers (values as indicated).

Table 3. A,(a,) with = 0.1111 and for various b, from (3.9)
b=5 b=3 b=1 b=10.25

n
I —09181x10" —0.6542x 107! —0.1425x 107! —0.5227 x 1073
2 —-0.2301x10' —0.1533x10"! —0.2802x10"2 —0.9123 x 10"
3 —09902x10% —0.6255x10"' —0.1022x10"2 —0.3115x 10"
4 —05315x10"* —-0.3220x10"2 —0.4863x10° —0.1423x10*
5 —0.3227x107* —0.1890x10"2 —0.2696x 10> —0.7663 x 10~5
6 —-0.2121x10"? —0.1209x10"2 —0.1650x10"* —0.4594 x 10~3
7 —0.1476x10"? —-0.8220x10"* —0.1084x 10"* —0.2969 x 10~*
8 —0.1071x10"? —0.5851x10"* —0.7500x10™* —0.2029 x 10-5
9 —-08031x10"* —0.4316x10"> —0.5406x10"* —0.1448x 105

10 —0.6185x10"* —0.3277x10™® —0.4026x10™* —0.1069 x 10~5

We also note that (3.26) can be derived in a simpler way by using the change of
variables: @ = u—3ec, and A = Ae<o?, Then i,A satisfy (2.1) and the average
temperature variation on the boundary vanishes. Thus (3.9) is applicable for A.
Finally, relating A to A and expanding for € < 1 we obtain (3.26).

For the case of finite activation energies £ > 0 we must use our numerical scheme.
described following (3.8), to compute the coefficients needed for the two term
expansion given in (2.5). The temperature variation is again taken to be k() =
Ico+c,cosnf for positive integers n. To display our results it is convenient to
decompose A,(,), given in (3.6), in terms of a component that depends on n and a
component that is independent of n. Thus we write A,(at,) = A,9(ag) + A, ,(a,). where

1
Agolag) = _<u0 ,F°>

Azn(ao) = _A0<an’F?tu w:>/4<uo¢’ FO) (328b)

[3A,{ % w0F°)+1,\0<u0a,woF0 >, (3.28a)

Then (2.5) can be written as

Ac = Ao(a,) +€A () +€2[Azn(ao)+izo(ao)] t..., /izo(ao) = Ayolay) — (/\i(ao))z/%({(lo(l-
(3.29)
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Table 4. Coefficients in the expansion of A (€) for a temperature fluctuation with non-zero mean
and with b = ©

B Alety) Agla) A () Azo(@,)
0 2.0000 —1.0000 —1.0000 0.2500
0.0222 2.0502 —0.8831 —0.9790 0.2449
0.0444 2.1044 —0.7707 —0.9562 0.2396
0.0667 2.1630 —0.6632 —0.9312 0.2341
0.0889 2.2270 —0.5606 —0.9036 0.2285
0.1111 2.2973 —0.4632 —0.8729 0.2228
0.1333 2.3753 —0.3712 —0.8380 0.2170
0.1556 2.4630 —0.2849 —0.7975 0.2113
0.1778 2.5634 —0.2046 —0.7491 0.2063
0.2000 2.6814 —0.1306 —0.6881 0.2037

where Aj(a,) and Ag(a,) are given in (3.5) and (2.12) respectively. With this
decomposition A,y(a,) is independent of n. In addition, it is easily verified that A,(a,)
does not depend upon how the solution, w,, to (3.2a) is normalized at a = «,.

For different # and with ¢, = 1 and b = o0, in table 4 we give numerical values for
Ao(@y): (@), A, (), and Agg(ay) found from (3.8), (2.12), (3.4) and (3.29) respectively.
If ¢, # 1 then the entries in columns four and five should be multiplied by ¢, and ¢}
respectively. In addition, we note that A,,(e,) in (3.28b) is precisely that quantity
-which was tabulated, when ¢, = 1, in table 2. If ¢, # 1 and n > 1, then the entries in
table 2 should be multiplied by ¢%. Thus, using the numerical values for the
coefficients from these tables, a two term expansion for A (€) from (3.29) is known.

As a partial check on the results we note that the first row of table 4 reproduces
the analytical results derived above when f=0. As a remark, our numerical
procedure is also capable of obtaining numerical values for the coefficients in the
expansion of A, when > 0 and for arbitrary Biot numbers. However, we do not
display these results.

3.3. A circular cylindrical reactor : numerical solution to (2.1)

In this section, we solve the two-dimensional problem (2.1) numerically and we
compare numerical and asymptotic predictions for the location of the fold point
when € < 1. We limit the discussion to the case b = 0, i.e. pure Dirichlet boundary
conditions. The general case, 0 < b < 00, could be included easily, however. The
numerical procedure is defined by two main elements: the discretization of the
problem for fixed parameters A, € and f, and the continuation procedure. We describe
the discretization in the next paragraph. To compute solution paths of (2.1) with
varying parameters we used a concurrent implementation of Keller’s pseudo-
arclength continuation procedure. We refer to Keller (1987) for details on pseudo-
arclength continuation and to Van de Velde & Lorenz (1990) for a description of the
concurrent implementation. Our computations were carried out on Caltech’s Symult
$2010, a multicomputer with up to 192 processors; see Seitz ef al. (1988) for more
details on the computer architecture.

We transform the original problem (2.1) with b= oo from the unit disc D to a
rectangular domain. The most obvious method to accomplish this is by a polar
coordinate transformation, which maps the unit disc into [0.2n] x [0, 1]. However,
some numerical difficulties are associated with the singularity of the polar coordinate
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Table 5. Comparison of asymptotic and numerical predictions for A, when € = 0.1
with h(B) = cos*() and h(6) = cos (20)

A(3.26)  AJ2.1) A,(3.9) A,(2.1)

-

p asy. num. asy. num.
0 1.9019 1.9020 1.9994 1.9990
0.0444 2.0110 2.0106 2.1039 2.1035
0.0889 2.1388 2.1384 2.2265 2.2266
0.1111 2.2121 2.2117 2.2969 2.2965

0.1333 2.2936 2.2933 2.3749 2.3746
0.1556 2.3853 2.3848 2.4627 2.4623
0.1778 2.4905 2.4920 2.5632 2.5627

transformation at the origin of the disc. Hence, we opted for another coordinate
transformation, one that is regular in the interior of D. The coordinate transformation
given by

x =sinp, y =sing, (3.30)

transforms the problem (2.1), with b = o0, to

d du 0 ou /
secp5;<secp@)+sec qéa(secqa)+/\F(u) =0, (p,gel, (3.31)
u = eh(6), (p,q)€dD’.

“Here, D’ is the image of D under the transformation. It is easily verified that the
domain D’ is the square with vertices (3m,0), (0,1rm), (—3n,0), and (O, —1n), (i.e. the
edges of the square make 45° angles with the coordinate axes). The vertices of this
square are images of (1,0), (0,1), (—1,0) and (0, —1) respectively. The edges are
images of the corresponding unit circle arcs.

We introduce a square grid on D’ with grid lines parallel to the coordinate axes and
grid spacing k = 1/N. The partial differential operator on this grid is discretized using
a five-point central differencing scheme. With p, = th and —N < i <.\, the part of
the partial differential operator along the p-direction is approximated at p; by

h? sec p; (SEC Py, 5(Upsy — Ug) —S€CPi_o5 (% — Uy_y))-

The other term in the partial differential operator is discretized in an analogous
fashion. The nonlinear heating term F(u) = exp (u/(1+ Bu)) is linearized, and the
solution to the full nonlinear problem is found by Newton iterations (in the pseudo-
archlength continuation method the Newton iteration must be adapted (see Keller
1987; Van de Velde & Lorenz 1989)).

Since b = o0, all boundary conditions are of Dirichlet-type, and thus are easily
imposed. For simplicity. the temperature profiles h(6) considered here are such that
the solution to (2.1) has a symmetry with respect to both the z and y axis. This
symmetry is exploited to reduce the number of unknowns by a factor of four.

To compare the asymptotic and numerical predictions for A, we have taken
h(f) = cos (26) and k() = cos? (6), and thus the second profile has a non-zero mean.
In table 5, we compare A, predicted by our asymptotic analysis with the
corresponding value of A, obtained from a full numerical solution to (2.1). The
comparisons are made at a fixed € = 0.1 but for various activation energy parameters
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Table 6. Comparison of asymptotic and numerical predictions for A, when =0
with h(6) = cos (26) and for different €

39  A(2.1)
€ asy. num.

0.10  1.9994 1.9990
0.15 1.9986 1.9983
0.20 1.9975 1.9972
0.25 1.9961 1.9958

B. The second and third columns of this table are the results for 2(6) = cos® (6) while
the fourth and fifth columns are the results for A(f) = cos(26). The numerical
computations were done using h = 1/64. We note that for most of the £ values given
in table 5 the asymptotic predictions for A (€) through terms of O(e?) are easily
obtained from the data in tables 1, 2 and 4. As seen from table 5 the asymptotic and
numerical predictions for A (€) agree to about four significant figures.

In table 6 we give the asymptotic and numerical predictions for A, when # = 0 and
h(6) = cos(26) but for various € values. From this table we anticipate that the
asymptotic prediction for A, will be close to the corresponding numerical values
even for moderate values of €.

4. A nearly circular cylindrical reactor
The perturbed problem in the nearly circular domain D, is
Au+AF(u) =0, zeD, (4.1a)

C,u+bu=0, zedD.. (4.1b)

The boundary of the domain is written as 0D, :r = 1+€k(6), where k(f) is a smooth
2n periodic function. In terms of polar coordinates (4.15) becomes

eh’ eX(k’)? )s
- = = . 4.2
(u, (1+eh)2ue)+b(l+(l+eh)2 u=0 on r=1+¢h(0) (4.2)
We now determine a two term expansion for A.(€) when € < 1.

We seek the solution to (4.1) in the form (2.2). Substituting this expansion into
(4.1a) and (4.2) and equating powers of € gives

Au,+ A Fou, =—AF° r<1, (4.3a)
U, +bu, = —bhuy, —hu,,, on r=1, (4.3b)
Auy+ A Fluy = — A, FO— A u, Fo—3A,udFy,, r<l1, (4.4q)
Uy, +bu, = —hu,,, — hPug,,, + P ug+ 2(R) Uy, — bhu,, —3bRh*u,,,, on r=1.
(4.1b)

To evaluate the coefficients in the expansion of A.(¢) in (2.5) we now proceed as in §2
to derive the solvability conditions for (4.3) and (4.4). These conditions will
determine A,(a,), Aj(2) and A,(x,). which are needed in (2.5). Numerical values for
Ao(ap) and Aj(c,), determined from the unperturbed problem, are given in table 4
when b = 00. We note that the extended system for uy(r, @) and uy,(r, &) is again given
in (3.8). '
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At a = a, the solvability condition for (4.3) provides
A(ag) = (hug,(1)/2nuy,. FO)) (bug, (1) + uo, (1)), at o= a,. (4.5a)

Here we have defined

1 n
{u,v)y = f urrdr and A= f h(6)dé.
0 0

Now using (3.8a). then (4.5a) can be alternatively written at criticality as
Ay(2g) = — (h/21 gy, FO)) [1g,(1) (Ugur(1) + %g(1)) + Ag ug, (1) Flug(1))].  (4.56)
A similar procedure is used to compute A,(a,) from (4.4). Writing u, = ,(r,6) and
invoking a solvability condition on (4.4) we find
Ag(@g) (g, FO) = — A (wg,. Fy ;) — 3Ag(gss Foy u3) + (1) Ry, (1, 6)
+ 570 (1) (torry (1) + bitorr (1)] — tgo(1) Rty (1. 6)
= $(R))2u,(1) g, (1) + buugy (1) bty (1, 6). (4.6)

Here (u,7) = [, uvdr.

Now to determine A 1(a,) we differentiate (4.3a,b) with respect to « so that
Aup + A Fu,, = —AgFS ug, — Ag Foy uyug, — AT FO— A Fug,, 7 < 1,1
Uy, +bu,, = —bhuy,, —huy,, on 7r=1. J (4.7)

Then invoking a solvability condition on (4.7), and using (3.8b), we derive
Al(eg) (wgy FO) = = Ag(tt,. Foy oy Uy) = Ay (2. F5 g,)
— Rl (1) (Ugap(1) + g, (1)) + A ud, (1) Fo(uy(1))],  (4.8)
at criticality. Finally, the remaining quantity Ag(a,) needed in (2.5) is given in (2.12).
Again we emphasize that all quantities appearing in (4.5), (4.6) and (4.8) are to be
evaluated at a = .
We now look for a solution to (4.3) in the form (3.1). Substituting (3.1) in (4.3) we
obtain
Lyw,+ A Fow, = —2AF%,,. w,(1)+bu,(1) = —[buy,(1)+uq,(1)]c,, (4.94a)
Lyv,+A,FSv, =0, v (1)+bv,(1) = —[bug,(1)+u,,(1)]d,. (4.9b)
Here §,,, L, were defined following (3.2) and c, and d,, are the Fourier coefficients of

h(6) given in (3.3).
From (4.5) we see that there is no solution to (4.9a) at criticality with n = 0 unless

Ay(@g) = (CoUga(1)/2{uq,. FOO) (bug, (1) +u,,,(1)), at a=a,. (4.10)
At a =a, and with n =0 the solution to (4.9a) is made unique b\ specifying
<u0:x 0> O

Now substituting (3.2) into the inner product terms appearing in (4.6) and (4.8) we
derive

(Ugy- FS 1y) = g, F wo). (4.11a)

(g FO o g, 1y) = T, Fy g, o). (4.11b)

(gy F& 13) = 3nutq, Fiy wd) +1 E CQuo, F o u? +023. (4.11¢)
ne=1
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In addition, the boundary terms appearing in (4.6) are evaluated, at a = a,, as
follows:

iy, (1,0) = incowy(l) + E [c, wi(1)+d,vi(1)], (4.12a)
n=1
RE=1lnci+m % (2 +d2), (K)=n ;: n?(ct +d2), (4.12b)
n=1 n=1
hu,,(1,6) = jncowy(l)+ 7 ;‘, [c, wr(1)+d, v (1)], (4.12¢)
n=1
T8 =1 £ nlc, wa(1)+d, (1) (4.124)
n=1

Therefore with u,, %,,, w, and v, known from the numerical solution to (3.8) and (4.9)
at & = a,, we can determine the quantities appearing in (4.11) and (4.12). The inner
product terms in (4.11) are evaluated by a numerical quadrature. Then using (4.11)
and (4.12) in (4.5), (4.6) and (4.8), a two term expansion for A,(€) can be found from
(2.5). We now consider in detail the special case where the mean radius is unchanged
so that ¢, = 0.

4.1. A nearly circular cylindrical reactor: ¢, =0

We now assume that & = ¢, = 0 and for positive integers n we take h(6) = c, cos
‘nf. Then from (4.5) we find that A,(«,) = 0. Now from (4.9a) and (Uggs Wy = 0 we
have w, = 0 and so (4.8) yields Aj(a,) = 0. Thus (2.5) becomes

Ae = Aglag) +€2A5(ag) + .- - (4.13a)
Now setting h(6) = c, cosnf in (4.11), (4.12) and substituting in (4.6) we derive, with
the aid of (3.8) and (4.9a).
Ay(atg) Cthoys FOY = =30, Fy wh> —3ug,(1) €4 [wi(1) + A Fy (ue(1)) w,(1)]
L (1) 2 [gppr(1) + bUgy (1) — nPUg, (1)] = §oar(1) € wh(1), (4.13b)

at a = a,. Here w, is to be found from (4.9a). We now consider the case b = oo for
which (4.13b) simplifies considerably.

Infinite Biot number: b = oC

Assuming that b = oo then (4.13b), with %y,(1) = 0 and %y, (1) = —buy,(1), reduces
to

AZ(aO) <u()a’ F0> = _% 0<an’F?4u wfl> _%cn anr(l) w;(l)_%ci uo;r(l) uorr(l)’ (414)
at a = a,. To determine numerical values for A,(c,) for arbitrary S and n we first solve
(3.8) numerically with b = o and locate the first fold point a,. Then solving (4.9a)
with b = 00 numerically at x = a,, we find w, and finally a numerical quadrature of
the inner product integral in (4.14) determines A,(a,). As a partial check on the
calculations we now note that when 8 = 0, A,(a,) can be found almost explicitly.

For the case # = 0 and b = o0 the solution to the unperturbed problem from (3.10)
can be written as
I+a
1+ar?

Uy(r.a) = 21n( ) Ao(a) = 8a/(1+a)? , (4.135)
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With this definition of «, criticality occurs at a = a, = 1. Now at criticality the

solution to (4.9a), with w,(1) = —c, uy, (1) = 2¢c,,, is
2, [1—1* - |
w,(r) =—n—rn|:1+7_2+n]. (4.16)

This special solution was derived in Adler (1987). Then with (u,,,F°) =1},
Ugrr(1) =0, ug, (1) = —1, and Ay(x,) = 2, (4.14) becomes

16cz2 P (1=r)[1=7 P .0y . 1
Ay(g) = — o J‘o(l+r2)3[1+r2+n r¥*tldr 4+ 2¢2 n——1|. (4.17)

If » = 1 then upon integrating (4.17) explicitly, (4.13a) reduces to
A, =2—-€et+..., f=0,b=00,n=1. (4.18a)

In this limiting case we recover the result of Adler (1987). For n > 1 we evaluate the
integral in (4.17) numerically, upon setting c, = 1, to obtain

Mlog) =—1.0, m=1; Ao =275, n=2; Ayep) =522, n=3;]

(4.18b)
Afog) = 744, n=4; Aya) =956, n=>5; Aya,)=1164, n=6.]

In particular we note that for n > 2 (n < 2) the reactor is more (less) stable than a
circular cylindrical reactor of the same radius. Another limiting case is when n tends
to infinity. In this limit the integral appearing in (4.17) is O(n™?) and so A,(e,) =
2c2(n—1/n)+O(n"?) for n > 1. Thus we notice that our expansion breaks down when
en = 0(1).

For arbitrary >0 and n > 1 it is not possible to solve (4.9a) analytically.
However, for the two special cases n =1 and » > 1 we can avoid having to solve
(4.9a) numerically. These special cases again provide a check on the numerical
computations that follow. If » =1 the solution to (4.9a) with b = o0 is w,(r) =
—¢, Uy, (). Then from (4.14) we obtain

Ag(atg) gy, FO) = —3Ag €F gy Fy s UG, +1367 toar(1) Ugrr(1)-

uu’
Then, upon using (3.8a), the previous expression becomes

Ag(0tg) = — € ugp(1) Ugap(1)/4<tgq, F). (4.19)

This expression can be simplified by noticing that (ug, Fu,, u2,) = —ug,. (1) FO(uy(1)).

Thus when n = 1, A,(a,) can be found only from the numerical solution to (3.8).
Now for #>0 and n > 1 we first solve (4.9a) with b = c0 by the method of
matched asymptotic expansions. A simple application of this method provides

w,(r) = —C, Uy, (1) eV [1—ln(r—1)2+...]. (4.20)

With w, given asymptotically in (4.20) we use Laplace’s method on the inner product
integral appearing in (4.14) to estimate {u,, F5,, %) = O(n7?). Then from (4.14) we
find

m?x uOr( l ) uO:r( 1) _ sz anr( 1) uOrr(l)
2{uy,, F°) 4<u01,F°>

Ag(aty) Cttg. FO ~ +o0(1), as n-—o0.(4.21)

Again we note that our expansions break down when €’z = O(1).
In figure 2 we take ¢, =1 and we plot A,(a,) against # for different n values.
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Figure 2. Nearly circular cylindrical reactor: A,(a,) against £ for b = co and different n
(values as indicated).

obtained from the numerical solution to (3.8) and (4.9a). Some of these results are
tabulated in table 7. Note that the second column of this table reproduces the results
obtained in (4.18a,b) for B =0. These results indicate that, except for the
n = 1 mode, A,(a,) > 0and isan increasing function of £. Although A,(,) < Owhenn =
1, a simple calculation shows that the data in the first row of table 7 does not
contradict the well known qualitative result (see Adler 1987) that for cylinders of the
same cross-sectional area the circular cylinder is the least stable. Finally, we remark
that the asymptotic result (4.21) for A,(e,) is found to be within 5% of the tabulated
values when n > 5.

Finite Biot number: b < «©

For the case of a finite Biot number and with # = 0, we can solve (4.9a) explicitly.
By using (3.10) in (4.9a) we solve the resulting equation at criticality to obtain

_ 2
= 2% s “°’2+n]. (4.22)
n(l+eay)+n*(1—a,) [1+a,r

Here «, is given in (3.11). Then using (4.22), (3.10) and (3.13) a lengthy but
straightforward calculation gives the following expressions for the various terms in
(4.13b) at a = a,:

W,(7)

Up,(1) =’\o(1-ao) )
4u,, ey 4(1+ag)?’”

[uOrrr( 1 ) + buOrr( 1 ) - nzuOr( 1 )]

Ug 2192 2.2
_’\0<u0aae wn> = _4/\0aocn(l+a )2 G,,(s,a )eslnn dS,
4{u,,, e) ny? 0 0
0 Y- ) | (4.23)
 (gal)  Ugap (1)) Wy(1) _ AgCal03+40—1) 4
2{uy,, €0 T 2ny_(1+a)? (1 +ag)y. ~ 4ol
_ ug,(1) Agetow, (1) _ A c (1 —2p) Ys
2{ug,, €40) n(l+ag)y. )

Here G, (s, a,) is defined in (3.15) and we have labelled y, = n*(1 + o) + 200 — 202,

and
Y. = n(l+oag)+ (1 —a), Y- =n(l—ag)+(1+ay). (4.24)
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Table 7. Ay(a,) with b = co and for various f > 0, from (4.14)

n f=0  f=00444 A=01111 F=01556 [=0.1778
I —1.000 —1.052 —1.149 —1.232 —1.282
2 2750 2.894 3.160 3.390 3.530
3 522 5.506 6.035 6.494 6.775
4 7438 7.845 8.603 9.262 9.666
5  9.560 10.083 11.057 11.903 12.421
6  11.639 12.274 13.456 14.483 15.111
7 13.694 14.439 15.825 17.028 17.763
8 15734 16.588 18.175 19.551 20.392
9 17.765 18.726 20.513 22.061 23.006

10 19.790 20.858 22.842 24.561 25.609

Table 8. Ay(a,) with g = 0.1111 and for various b, from (4.14)

n  b=5 b=3 b=1  6=025
I —06681 —04988 —0.2018 —0.0527
2 12054  0.873¢ 03417  0.0983
3 26944 20236 10275  0.3324
4 41077 33311 19370  0.6564
5 56556 48743  3.0861 1.0716
6 73853  6.6828  4.4802 1.5784
7 93215 87710 61218  2.1770
8 11479 11.147 80120  2.8674
9 13.867 13.817 10.152 3.6497

10 16.492 16.782 12.541 4.5239

By using a numerical quadrature to evaluate the integral in (4.23), A,(a,) can
easily be found for b < co and for positive integers n. We notice from this result
that Ay(a,) ~ §4,(1 —ag)n*% as n—oo. Thus our expansion breaks down when
e2n? = 0(1).

In the case n = 1, ¢, = 1 and § = 0 then we can recover the result of Adler (1987).
Setting n = 1 and ¢, = 1 in (4.23) and (4.24) and using

1
J G, (s,ay)8ds = 2(1 +a,) 74,

0

we find from (4.13b) that
Agag) = [Aglerg) (1 —atg)/4(1 + )] (o — 4ty — 1)=2A,a2/(1+a,).

Finally, using af —1+4a,/b = 0, we can rewrite this expression as

ag a,(1 +3ao)) (4.25)

’\2(‘10) = — A(2%) ((1 +a,) b1 +a0)2

which is Adler’s result.

In the case of finite activation energies (£ > 0)and n = 1 we again note that w,(r)
is proportional to u, so that A,(x,) can be written explicitly in terms of the
unperturbed solution. However, for n>1 we must use our full numerical scheme to
determine A,(a,). By using this scheme in table 8 we fix # and we give numerical
values for Ay(a,) for various n and b. From this table we observe that for n > 1, A,(a,)
is an increasing function of b. In figure 3 we have taken n = 1 and we plot A,(a,) as
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Figure 3. Nearly circular c¢vlindrical reactor: A,(a,) against # for » = 1 and different Biot
numbers (values as indicated).

a function of g for different Biot numbers. When n = 1 we note that A,(a,) < 0 and
is a decreasing function of #. Thus when n = 1 the reactor is more unstable than one
with an equivalent mean radius.

5. Strong localized perturbations: higher order theory

In this section we consider a different class of domain perturbation than that
considered;in §4. The perturbed problem is now taken to be

Au+AF(u) =0, zeD\D,, (5.1a)
O,u+bu=0, zecD, (5.1b)
e, u+«ku=0, zedD,, (5.1¢)

where F(u) is given in (3.8a) and « is a positive constant. Here D, is a domain of
‘radius’ € containing a point. z,. in the interior of D and 0, u is the derivative of u with
respect to the outer normal to D\D.,. In three (two) dimensions, D, can be interpreted
as a small cooling pellet (rod) located inside a reactive solid.

An asymptotic theory to determine A (¢) for (5.1), and for more general strong
localized perturbations. was initiated in Ward & Keller (1991) and was extended and
validated numerically in Ward & Van de Velde (1991). The asymptotic theory
presented there typically provided only the first correction to the location of the
unperturbed fold point. We now show how, in principle, a two term expansion for A,
when € < 1 can be obtained for (5.1) by using a method similar to that used in §2. We
first consider the three-dimensional case.

The three-dimensional case

The solution to (5.1) is constructed using the method of matched asymptotic
expansions. In the outer region away from D, we look for a solution to (5.1) in the
form (2.2). Substituting this expansion into (5.1a) and (5.1b) and, collecting powers
of €, we derive (2.3a,b) and (2.4a,b) with homogeneous boundary data (A =0 in
(2.3b)).

We now construct the inner expansion near the cooling pellet D,, which is centred
at some z, in D. For clarity, in the notation below we have suppressed the
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dependence of the inner and outer solution on a. In the inner region we define the
stretched variables y = €™ (x—x,) and w(y,€) = u(x,+ey,e) and we expand v =
vy +e€v, +€r,+.... Substituting this expansion into (5.1a) and (5.1¢), and_collecting
powers of ¢, we obtain

Ayv; =0, yéDy; O,v+«kv; =0, yedD,, (5.2)

forj =0.1. Here A, and ¢, denote derivatives with respect to y and D, is the domain
D, in the y variable. By expanding the outer solution as we approach z,, the far field
behaviour as y - 20 for (5.2), expressed in summation notation, is

Coly) ~ Ug(To) @S y—>00, ©y(y) ~ Y0 u(%) as y—co. (5.3)

In three dimensions the solution to (5.2), with far field behaviour (5.3), has the
asymptotic form

C  Cw )

voly) = uo(xo)[l—m+k;—lz+...] as y— 0, (5.4a)
P, . Pyy, -

t(y) = az,’“o(%)[i’/:*‘@"‘ lyﬁj +] as y-> 0. (5.4b)

Here C, C;, P,. P,; are constants which depend on both « and the domain D,. When
k = oo, then C is the capacitance of D,. Now writing the far field expansion of v =
" vy+er;+... in the x variable we have

v~ uy(z,) + az,- Uy(Ly) (T, — o) —

Cuo(xo)6+€2(az‘ uo(xo)Pi+uo(xo)Ci(xi"xoi))_ (5.5)

|z — z,| |z — 2,
Then matching (3.5) to the outer solution, whose form is given in (2.2), we require
u, ~ —Cuy(xy)/lx— zo| as z->x,, (5.6a)

3 P, (E—e,
U, ~ xiuo(xo) z+uo(xo)cz(xt To;) as -1, (5.60)

To determine u, and u, we now must solve (2.3) and (2.4) (with 2 = 0) subject to the
required singular behaviour (5.6a,b).

With the effective boundary condition for %, and u, given in (5.6a,b) we now
derive solvability conditions for (2.3) and (2.4), applicable at a = a;, to obtain
expressions for the coefficients in the asymptotic expansion of A, given in (2.5). To
incorporate the required singular behaviour of u, and u, as x - z, it is convenient to
write (2.3a) and (2.4a), in terms of the Dirac delta function d(x—zx,) as

Au, + A Fuy = — A FO+4nCuy(x,) 8(x — z,), (5.7a)
Auy+ A Fyuy = — A, F'— 2, u, Fy =3 ui Fy,
+ 4T (ug(To) Cy Oy, 8(x — o) — 83, () Py Sz —12,)).  (5.7D)
Furthermore. by differentiating (5.7a) with respect to @ we obtain

Auy, +AgFouy, = — A0 F uy, — A FS, uy g — AT F — A FY ug, + 4nCuy (20) 8(x — 2,)-
(3.7¢)
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We'now simply quote the results for A,(a,), Aa(a) and Aj(a,) obtained from
applying a solvability condition to each of (5.7a—c). The solvability conditions
provide

(@) (Ugnr FO) = 410U (%) Uoq(%o), (5.84a)

-

Al(a) (an’Fo) = —’\o(an’Fgu Uy ul)_Al(an’th an)+4“C(u0a(xo))2, (5.8b)
Ag(og) (Uoq F°) = —Al(an’ung)—%Ao(uo:sufF?m)
— 47 (u(xy) C; Cz, Uga(To) + 0z, Uo(%o) Py Uoa(%o)), (5.8¢)

where all quantities appearing above are to be evaluated at a = a,. Thus using
(5.8a—c) and (2.12) in (2.5) we have a two term expansion for A(e) for this class of
domain perturbation.

A spherical reactor

We now apply the theory presented above to determine the effect on A, of a small
cooling pellet located at the centre of a spherical reactor of radius one. Defining
r = |z| then the extended system obtained from (1.1) and (2.6) satisfies (3.8) where the
operator L is now defined by Lv = r2(r%,),. We then solve (3.8) numerically, by the
method described following (3.8), to locate the first fold point (Ay(,), &), and thus
determine both uy(r, ag) and ue,(r, &)-

With %, and u,, known at criticality, we now determine u, = u,(r) from (5.7a)
with u| +bu, = 0 on r = 1. Noting from (3.8d) that %o(0) = a,, the problem for u,, at
o= ay,, is

‘ Lu,+ A Fu, =—A, F% in r<l, }
, (5.9)
—ug(1)+buy(l) = 0, u, ~—Cay/r+o(l) as r—>0.
Here, A,(a,) is found from (5.8a) and (3.8d)
Ay(tg) = C?o/(“(n,Fo)- (5.10)
The angle brackets appearing in (5.10) are defined by (u,v) = [fuvr*dr.

To facilitate the numerical solution of (5.9) with A,(a,) given in (5.10), we define
v,(r) = ru,(r). Then from (5.9), v, satisfies

W4+ A FSv, =—A7F% in <1, }

w1+ (b—1)v,(1) =0, v,(0)=—a,C, v{(0)=0. (5.11)

The condition v}(0) = 0 ensures that the solution to (5.11) is unique at a = a, and
that u, ~ —a,C/r+0(r) as r>0.

With u, = v,/r known from the numerical solution to (5.11) at criticality, we now
compute Aj(a,) and A,(a,) from (5.8b) and (5.8¢). By using (3.8d) these expressions

become,
Xj(ato) Cthoq FO) = — AoCggs Fuu oa 1) — Ay  Uggs Fy ) +C,s (5.12a)

Ag(to) {Uoas F*> = — AU Uy F5) — I oCttoey w3 Fuu?, (5.12b)
at criticality. A numerical quadrature in (5.12a,b) is then used to determine Aj(a,)
and Ay(a,)

To display our results we write (2.5) as
R = Aglarg) +€CA at0) + €20 Ag(0t0) + - (5.13)

where /iz(ao) = A,(0g) — (A1(2))?/2A5(20)-
Here A, (), Aj(a,) and A,(2,) are found from (5.10), (5.12a) and (5.12b) respectively,
Proc. R. Soc. Lond. A (1991)
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Figure 4. Hole in three dimensions: A (¢) against ¢ for different # (values as indicated).
b= 00, k= o00.

Table 9. Coefficients in the expansion of A (€) from (5.13) for a pellet located at the centre of a
spherical reactor with b = o

B Ag(,) Agla) Ay(a,) Ag(ay)
0 3.3220 —1.0979 8.0787 —2.0749
0.0278 3.4313 —0.9363 8.2564 —-0.7710
0.0556 3.5519 —0.7830 8.4492 0.6252
0.0833 3.6860 —0.6382 8.6595 2.1338
0.1111 3.8370 —0.5025 8.8908 3.7828
0.1389 4.0097 -0.3763 9.1475 5.6154
0.1667 4.2117 —0.2599 9.4355 7.7034
0.1944 4.4563 —0.1545 9.7618 10.190
0.2222 4.7733 —0.0603 10.124 13.505

upon setting C =1 and Ag(a,) is found from (2.12). Numerical values for these
quantities for different activation energies, £, but with C = 1 and b = oo are given in
table 9.

In the case where x = c0, so that u = 0 on 0D,, then C is the capacitance of the
stretched domain D,. If in addition D, is a sphere of radius ¢, then C = 1. In this
special case, and with b = co, Ward & Van de Velde (1991) computed the numerical
solution to the perturbed problem given in (5.1) and located the first fold point for
various € and f. This computation was done by solving a stiff boundary-value
problem for ordinary differential equations. The also compared their numerical
results with the asymptotic expansion of A, through terms of order e.

By using the coefficients in table 9, in figure 4 we plot the two term expansion for
A.(€) given in (5.13) for different f. In this figure we also show the results obtained
from the numerical solution to the full problem (5.1) for different € and . The solid
lines in this figure are the asymptotic results and the labelled points are the numerical
results of Ward & Van de Velde (1991). The agreement between the two term
asymptotic expansion and the numerical results is seen to be rather good for € < 0.15.

The two-dimensional case

We now derive expressions for the coefficients in the asymptotic expansion of A,
in the two-dimensional case. The analysis is similar to that used in the three-
dimensional case except that here the expansion of A; and the outer solution proceed
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in powers of —1/Ine rather than powers of €. Thus in (2.2) we replace ¢ by —1/Ine
and we again derive (2.3) and (2.4) for the temperature corrections, u, and %, in the
_ outer region. The expansion of the fold point, A,, is again given in (2.5) upon
replacing € by —1/Ine. -

We now construct the inner expansion near the cooling rod. In the inner region we
let y =¢(x—x,) and we expand v = (—1/lne) [vo(y) +€%0,(y) +...], so that vy(y)
satisfies (5.2). A solution to (5.2), which matches to the unperturbed solution, u,, has
the asymptotic form

vo(y) ~ (%) [In |yl +d(x)] as y—o. (5.14)

Here, d(k) is related to the logarithmic capacitance of D,. Matching (5.14) to the
outer solution, we require

u, ~ Ug(xo) [In|z—xo| +d(x)] 8BS ZT>Zy, (5.15)

and that u, >0 as x> z,.

With the effective boundary conditions for «, and u, given above, we now invoke
solvability conditions on (2.3) and (2.4), which are applicable at a = a,. These
conditions will provide expressions for A,(a) and A,(x). In addition, Aj(x,) is
determined by differentiating (2.3) and (5.15) with respect to a and then invoking a
solvability condition on the resulting equation. Omitting the details of the calculation
we find

A, (@) (g, FO) = 2Tug(Zo) Ugq(Zo): (5.16a)
Ag(ctg) (toq, F®) = — Ay (Ugys FS) = g(von ui Fuu), (5.16b)
Al (ag) (U, FO) = — Ay (to F ) = Ag(Uoas Fuw Uos %) + 2 (Uga(%,))?,  (5-16¢)

at criticality. From (5.16a) we note that A,(a,) is independent of d(x). However,
since u, depends on d(x) then so do both A,(a,) and Aj(ay).

A circular cylindrical reactor

We now determine a two term expansion for A, corresponding to the first fold
point, when a small cooling rod is placed at the centre of a circular cylindrical reactor
of radius one. Defining r = ||, the extended system obtained from (1.1) and (2.6)
satisfies (3.8) where the operator, L, is given by Lv = r~}(rv,),. By using the numerical
procedure described following (3.8) we can locate the first fold point (Ag(c,), %) and
determine both u,(r) and u,(r). Then, in terms of u,(r), (5.16) can be written as

Ay(otg) {ttoqs FO) = o, (5.17a)
Aq(g) gz F*) = — Aty %y FY> — 3o tgq uiFyy)s (5.17b)
Aj(ao) oo FO = — A, s S 05D — Ao %oas Fy s, uy) + 1. (5.17¢)

Here, the angle brackets are defined by {u,v) = [juvrdr.

To determine u,(r) at criticality we must solve (2.3) (with & = 0), at @ = a,, subject
to the singular behaviour (5.15) as r 0. To clearly exhibit the dependence of A, on
d(k), it is convenient to decompose u, by

uy = g Inr+d(K) 2o Ugy(r) + 2wy (7). (5.18)
Then from (2.3) and (5.15) the bounded function w, satisfies
Lw,+ A Fw, = N FO =2 aFylnr, 0<r< 1,1
, _ (5.19)
w,(0) =0, wj(1)+bw,(1)=—a, J
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Figure 5. Hole in two dimensions: A (¢) against ¢ for different B (values as indicated).
b=c0, k= 00.

Table 10. Coefficients in the expansion of A () Sfrom (5.21) for a cooling rod located at the centre of
a circular cylindrical reactor with b = oo

£ Aolay) A(e) a,

0 2.0000 2.7726 2.9610
..0222 2.0502 2.8334 3.0335
0.0444 2.1044 2.8986 3.1113
0.0889 2.2270 3.0451 3.2856
0.1111 2.2973 3.1283 3.3844
0.1333 2.3753 3.2198 3.4931
0.1778 2.5634 3.4366 3.7503
0.2000 2.6814 3.5689 3.9076

With w, known from the numerical solution of (5.19) at & = a,, we now determine
the form of the two-term expansion for A,. By using (5.18) in (5.17b) and (5.17¢) and
upon recalling (2.12) it can be shown that

Az(ao)_(A;(ao))2/2Ag(ao) = @y — A, () d(x). (5-20)

Here, a, depends on w, and the unperturbed solution but is independent of d(k). The
explicit formula for a, is lengthy and so we omit writing it. Thus using (5.20) and
(5.17a) in (2.5), a two term expansion for A, is given by

Ae = Ag(ag) +(—1/In€) A () + (— 1/In€)? [ag—A () d(x)]+..., (6.21)

where A,(a,) is written in (5.17a). Numerical values for these quantities for different
activation energies and with b = oo are given in table 10.

In the special case when g = 0, Ward & Keller (1991) found u,(r) analytically and
thus obtained a two-term expansion for A, without recourse to numerical methods.
The numerical values for the coefficients obtained there agree with those shown in
the first row of table 10.

In the special case when k = o0 and D, is a circle of radius € centred at the origin,
then d(c0) = 0. For this geometry, we can compare the two term asymptotic result
for A, with the corresponding numerical results obtained from the numerical solution
to the full problem (5.1). The procedure used to determine A(€) from the full problem
(5.1) is described in Ward & Van de Velde (1991). The asymptotic and numerical
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results, assuming b = 0o, are compared in figure 5 where good agreement is obtained
for € < 0.10. In this figure the solid lines are the asymptotic results and the labelled
points are the numerical results. We remark that the one term expansion for A,
agrees rather poorly unless € is very small.

6. Transitional values for the activation energy

In this section we again take F(u) = exp (u/(1+ fu)) and we describe a simple
procedure to determine the transitional value, f£,.(b), of the activation energy
parameter for a slab, circular cylindrical or spherical domain (the class A geometries).
As mentioned in §3, this transitional value is characterized by the fact that for
B > B,(b) the solutions to (1.1) are unique. In terms of the maximum temperature
a = u(0), the transitional value f, is found from the conditions Ay (x) =0 and
Agaa(@) = 0.

There have been many studies devoted to computing S, (o) for the class A
geometries. A detailed summary and comparison of some previous work, as well as
an extensive list of references, is given in Boddington et al. (1983). In addition, the
dependence of g,, on the Biot number has been determined in Fenaughty et al. (1982)
and Boddington et al. (1983) for the class A geometries. In most of these studies the
procedure used to determine S, has been based on the numerical solution of a time
dependent system of partial differential equations originally formulated by
Kordylewski (1979) (see Kordylewski 1979; Boddington et al. 1983 for details). A
notable exception is the work of Gustafson & Eaton (1982) who determined f,, by a
shooting method.

We now give a simple procedure, which uses readily available software, to
determine B, for class A geometries. In contrast to Kordylewski (1979) and
Boddington et al. (1983), our procedure is based on the numerical solution of a system
of boundary-value problems. Thus our method is much less computer intensive and
can also be used to generate highly accurate results. For illustration purposes we
consider only the case b =

We begm by writing, on O <r<1,the augmented system formed from (1.1), (2.6)
and (2.11) in m dimensions:

Luy+ A F(u,) =0,
Lug, + Ao Fy (ug) Uy, = — Ao F(uy), (6.1)
Lug,, + Ao Fy(tg) Ugee = — AgFoy(%0)? — 200 FS gy — Aggn F°.-

Here, Lu is defined by Lu = v ™(r™ ') and the primes denote derivatives with
respect to . The boundary conditions for (6.1) are taken to be

(1) =0, (1) =0, (1) =0, u(0)=a, |

Upa(0) = 1, Ugea(0) = 0, %5(0) = ug,(0) = %, (0) = 0. |
The numerical solution of this system is accomplished using the readily available
collocation package COLSYS developed by Ascher et al. (1979). To fit (6.1) and
(6.2) into the format of the package we must write the trivial additional equations
Ay =0,1;, =0, and Ay, = 0. Then (6.1) can be written as a first-order svstem of nine
equations with the nine boundary conditions (6.2). Since the system is parametrized

by a, rather than A,. no sophisticated continuation procedure to compute past fold
points is necessary.

(6.2)
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Table 11. Transitional values of f, a = u(0), and A, for the slab, circular cylinder and sphere

m ao ’\o(ao) ﬂlr(w)

1 4.896548 1.307374  0.2457804
2 5.943243  3.006301  0.2421062
3 7.184944 5041112 0.2387971

To determine the transitional value of £ we solve (6.1) and (6.2) subject to the side
conditions Ag(x,) =0 and Ag,(x,) =0. A Newton iteration scheme, using a
numerically computed jacobian, is then used to determine a, and f,,. The results of
the computations are shown in table 11 for the slab, circular cylindrical and spherical
geometries. The tolerances in COLSYS and in our Newton iteration scheme were
adjusted to ensure that the results for the transitional parameters are correct to the
number of significant digits shown. These results agree with those of Gustafson &
Eaton (1982) for all the Class A geometries. However, our results tend to disagree in
the fourth decimal place with the computations of Boddington et al. (1983) who used
the time-dependent formulation of Kordylewski (1979). Similar computations, using
this method, can be done for the case of finite Biot number or for other nonlinear
heating terms F(u).

7. Discussion

We conclude by giving some possible directions for additional work in this area.
The analysis presented here to' treat the three classes of perturbations is not
restricted to the Arrhenius heat generation term. Similar computations can be done
to determine the change in A, under these classes of perturbations when the reaction
is modelled by the ‘bimolecular’ law F(u) = (1 +ﬂu)§exp (w/(1+ pu)).

A more significant extension would be to treat the three classes of perturbations
considered here for more general domains. In this case the extended system obtained
from (1.1) and (2.6) forms a coupled system of partial differential equations and a
continuation scheme in A, would then be needed. In addition, the theory presented
here can probably be modified to determine the changes in the transitional value of
B under various classes of perturbations and for different nonlinear heating terms.
Finally, it should also be possible to determine the corrections to the fold points for
systems of nonlinear elliptic equations under various classes of perturbations. In the
combustion context, such a system arises when modelling chemical reactors while
allowing for the effect of reactant consumption.
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