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ABSTRACT

We investigate the 2d O(3) model with the standard action by Monte Carlo simulation
at couplings # up to 2.05 . We measure the energy density, mass gap and susceptibility of
the model, and gather high statistics on lattices of size L < 1024 using the FPS T-series
vector hypercube. Asymptotic scaling does not appear to set in for this action, even at
B = 2.05, where the correlation length is 304. We observe a 20% difference between our
estimate m /A= = 3.52(6) at this B and the recent exact analytical result. We use the
overrelaxation algorithm interleaved with Metropolis updates and show that decorrelation
time scales with the correlation length and the number of overrelaxation steps per sweep.
We determine its effective dynamical critical exponent to be 2’ = 1.079(10); thus critical
slowing down is reduced significantly for this local algorithm that is vectorizable and
parallelizable.
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1. Introduction

Monte Carlo studies of the two-dimensional O(3) spin model, which is the discretized
1 + 1-dimensional O(3) non-linear sigma model, have been pursued extensively for about
ten years. An important reason for this is that in 141 dimensions O(N) models with N > 3
are asymptotically free [1] [2] , just as gauge theories like QCD are in 3 + 1 dimensions.
Thus by investigating the simpler O(3) model one hopes to understand critical behavior
similar to that of QCD. Moreover, the O(3) model also possesses instanton solutions —
another feature in common with QCD.

A consequence of asymptotic freedom is that, at weak enough coupling, all physical
quantities will scale according to the two-loop § function; this is called asymptotic scaling.
It is the main goal of the Monte Carlo simulations of the O(3) model to seek to test and
hopefully demonstrate asymptotic scaling. This however has proven to be an elusive goal.
Early studies of the standard, nearest neighbor, action (SA) [3] [4] [5] [6] [7] [8] using
standard Monte Carlo techniques on small lattices (L < 100), and Monte Carlo Renor-
malization Group (MCRG) methods, failed to demonstrate asymptotic scaling. Using a
tree-level improved action (TIA), which includes next-nearest neighbor interactions, and a
1-loop improved action Ref. [8] observed behavior closer to the asymptotic behavior, but
did not provide conclusive evidence.

Analysis of high temperature expansions [9] [10] have also addressed the problem.
Ref. [9] explains the lack of asymptotic scaling for the susceptibility in terms of a pair of
complex singularities in x(8) near the real axis. Knowledge of this behavior is used by [10]
to design a better fitting procedure. They used the 14 term high temperature series of [11]
to obtain an expansion for the susceptibility. The result is a good fit to Monte Carlo data
of [5] for B < 1.7, providing a better fit to the deviation from asymptotic scaling.

Recently, using his cluster algorithm, Wolff [12] has investigated the O(3) model up
to f = 1.9, where the large correlation length is 121. He finds that, even at this large
B, asymptotic scaling does not hold for the SA. Finally, Hasenfratz and Niedermayer [13]
using different MCRG methods in the region 1.9 < § < 2.26 see agreement in the discrete
B function AS with the 2-loop results at § = 2.26. They also show that asymptotic scaling
holds for the TIA starting at a correlation length of ~ 40 with m /A4 = 3.4(1), and the
value for m/As;z agrees with that for the SA : m/Agrz = 3.3(1) (at B = 2.26).

In a very exciting development a new analytical calculation [14] has determined the
exact value of m/Ayrz = 8/e ~ 2.943 for the O(3) non-linear c-model. Thus there exists a
significant gap between this prediction and the Monte Carlo results. In another comparison,
of the direct Monte Carlo results of [12] with the exact result, Ref. [15] shows that using
a redefined inverse temperature Bg, behavior much closer to asymptotic scaling is seen.

Another non-perturbative method that has been extensively developed recently is the
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1/N expansion [16] . The three leading orders of the expansion have been obtained and
evaluated for small lattices [17] . The comparison to the above Monte Carlo results shows
differences that are not more than those expected from the estimated size of neglected
terms. These results have been extended to infinite lattices by finite size scaling [18] giving
behavior that tends slowly towards the exact value for £ > 170 from about 10% away.

Our calculation was done using what was the best available alternative to the clus-
ter algorithms — the over-relaxed algorithm, which we had previously used to investigate
the XY model [19] . Combined with a fast parallel vector computer, the FPS T-series
hypercube, this algorithm allowed us to simulate lattices up to 10242 at § up to 2.05, cor-
responding to a correlation length of about 300. We attained performance of 1.5 MFlops
per node on the 128 node machine. This algorithm is optimal for this machine because it
vectorizes and parallelizes trivially and obtains very high efficiency. Although cluster algo-
rithms are intrinsically faster algorithms, they require significant effort to achieve adequate
efficiency on parallel machines [20] and do not vectorize well.

Our results are in good agreement with Refs. [12] and [13]. In fact they provide
one of only two known computationally feasible methods by which the cluster algorithm
results can be confirmed (in this region of large correlation lengths). The other method is
multigrid Monte Carlo, which has used for 8 < 1.7 [21] . We see that there is no dramatic
change in the behavior of the mass gap and susceptibility in the range 1.9 < g < 2.05.
We also see that the behavior in the rescaled temperature Sg remains closer to the exact
value, but the agreement does not get better with increasing correlation length. Finally we
show that overrelaxation can be used in a manner in which the effective dynamical critical
exponent is close to 1.

2. The Model

The classical Heisenberg model in two dimensions is described by the Hamiltonian
and partition function

=- 3 a5 (1)

2= [ [Jduse" 2)

where $; are unit 3-d vectors and < , > denotes the inclusion of nearest neighbor sites
only in the sum. du() denotes the measure on the sphere and 8 = 1/T where T is a
dimensionless temperature.

Its continuum limit is the O(3) non-linear sigma model in one space and one (imag-
inary) time dimension. Of interest is the behavior of this model in the low temperature,
weak coupling limit. This was shown [1] to be a continuation of the high temperature
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phase of exponential correlation functions. The model is asymptotically free, and a renor-
malization group calculation has given the beta function of the theory to two loops [2]:
dT 1

1
A = =Tty = " 2T~ @

T3 + O(T*) (3)

where a is the lattice spacing. These terms are universal - i.e. the same for any regulariza-
tion. Using this and the anomalous dimension we obtain the mass gap m and susceptibility
x of the theory:

m = C(27B) exp(—278) {1+ a1/8 + O(1/5*)} (4)
x =C'B~*exp(4nB) {1+b1/B+O(1/5%)} (5)

where C' and C' are constants that cannot be calculated in perturbation theory.

The terms with coefficients a; and b; are the first non-universal terms and arise for
three loop diagrams. Falcioni and Treves [22] calculated these by computing of the third
loop contribution to the beta and gamma functions for the standard action. Their values
are a; = 0.575/27 and b; = 0.0; these have been confirmed by independent calculation [23]

3. The Simulation.

To produce the sample configurations of our Monte Carlo simulation we use a hybrid
of microcanonical overrelaxation [24] , and the Metropolis algorithm. For an O(N) spin-
model, the rule used to obtain a new spin by microcanonical overrelaxation ( uOR ) is
to reflect the old spin 3,4 through the direction of the sum 3 of its neighboring spins. If
$ =|8|-1S, then

gnew = 2(2 . gold)i: - gold (6)

This provides the largest possible step while preserving the energy. To provide ergodicity
OR updates are interleaved with Metropolis updates. In a simulation of the XY model [19]
this combination drastically improved critical slowing down, giving z = 1.48 and 1.2 for
number of overrelaxation steps N, = 8 and 15 respectively. The number of Metropolis
steps was kept constant at Np,ee = 2.

In each Metropolis step we construct a new trial spin by adding to the old spin a
random vector of fixed length a. The resulting vector is normalized and then accepted or
rejected using the usual Metropolis criterion [25] . « is an adjustable parameter, chosen so
as to give acceptances between 50 and 55 per cent. The random vectors are constructed
to sample a uniform distribution on an S? sphere.

A ‘sweep’ is made up of a number of overrelaxation sweeps (N,,) , and a number
of Metropolis sweeps (Nmet). Measurements are made every ‘sweep’. The errors in all
quantities except the correlation length have been computed by binning the data in groups
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of 500 for 2562 lattices, 200 for 5122, and 100 for larger. We also calculate the ‘sweep’ to
‘sweep’ correlation by measuring the autocorrelation time of the magnetization TH=T.
Table 1 summarizes our results.

4. Results

A comparison with [12] of the energy per site E =< $i-(3i4+2 +3i+g) > , susceptibility
X and correlation length ¢ shows good agreement on nearly all the values. There are two
estimates which disagree to any significant degree, x at # = 1.6 by 2.60 and the energy
at 8 = 1.7 by 2.80. Our value for the latter is in good agreement with a the result of a
simulation using MultiGrid Monte Carlo [21]. Our results are consistent between a number
of independent runs in each case, 3 and 2 respectively . The agreement to the high accuracy
of these results, e.g. 6—;4 about 0.3% for most points, provides confirmation that all these
new methods work.

4.1. Mass-gap

To obtain the correlation length ¢ or mass-gap m = 1/£ we fit the zero-momentum
correlation function (CF) [6] to A - (e~™= + e~™(L=2)) A fit is done in the interval €
to 3¢, where £ is determined self-consistently. To estimate the statistical error of £ we
split the data into 10 parts and averaged the values obtained from the individual fits. For
B 2> 1.9 we have used the jacknife method to obtain estimates of the statistical error,
because the increasing autocorrelation times make the statistics gathered less significant.
The two error estimates agree for § = 1.9. ( In Table 1 we quote these values. )

To check the stability and significance of these fits, further fits were also done in
the intervals 3¢ to 3¢, ¢ to 2¢, 56 to 3¢, up to as large a distance as a fit as can be
obtained. In all cases we saw that the values obtained for all subintervals were consistent.
We note that the statistical errors increase in this progression. This was expected since
the relative error of the correlation function increases with distance - because the variance
of the measurements of the CF is roughly constant, while the CF itself falls exponentially.
Also for 8 < 1.9 the value of the effective mass log (C(n)/C(n + 1)) was plotted and in all
cases showed a plateau at least between 10 and 3£. This allows us to extract a mass-gap

with confidence that finite size effects are not significant for 8 < 1.9.

For our largest values of § the finite lattice size will affect our measurements. To
obtain an estimate of the effect on the mass-gap we used the results of [26] , which were
tested and used extensively in conjunction with Monte Carlo results in [27] . For all runs
with 8 < 1.95 except that at 8 = 1.90 with L = 512 and T = 1024, the ratio of the
lattice length and the correlation length, z = %, is larger than 6 . Thus the correction
to the correlation length is very small, i.e. 6(¢) < 2-10~2 where 6(¢) is defined from
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the ratio of masses measured on a lattice of finite length L to that on an infinite lattice:
m(L)/m(c0) = 1+6((), where { = L-m(co0). Only for the cases 8 > 2.0 and the one singled
out above is the correction appreciable. With 3.46 < z < 4.56 we use the result quoted
by [27] to obtain an estimate of the correction 6(z). This is a valid estimate only if the
length in one direction is very much larger than the correlation length, but the numerical
results of [27] lead us to believe that for all these cases they provide a good estimate of
the correction. The correction is only appreciable for 8 = 2.05, where 6,(z) = 2.9%; even
for B = 2.00 it is only 6o(2) = 0.77%. The corrected values are £(8 = 2.00) = 226.0 + 4.2
and {(f = 2.05) = 304.1+5.3 .

To compare the behavior of the correlation length with asymptotic scaling predictions
we use the correlation length defect 8¢. This is obtained by dividing the correlation length
by the 2-loop result, i.e. equation (4):

Se=PBe? ¢ (7)
Obviously asymptotic scaling is seen if §¢ goes to a constant as 8 — oo. Figure 1 shows

that asymptotic scaling does not set in for # < 2.00, but it is not possible to draw a clear

conclusion for # > 2.00. The trends of the last two points towards a constant behavior

1
4

correction affected our evaluation of é¢, so we must expect it to be important in the case

is only a %o effect, i.e. a %a fluctuation would change it. We note that the finite size
of the susceptibility.

In order to compare with the analytical result [14] we calculate the value of m /A3
In our case it is given by m/Ayz = 1/(276¢) (AL/Az;5)~" where ApL/Asrs = 2731 is
the ratio of the lattice and minimal subtraction scheme A parameters (28] . As figure 2
shows, using the 3-loop correction term moves our results towards the analytical result,
but by a small amount compared to the distance from it. Thus at B = 2.05 our estimate
m/Ags = 3.52(6) is 20% higher than the analytical result.

We can also compare with the results of Ref. [13] which uses Monte Carlo Renor-
malization Group methods to obtain estimates of the discrete beta function. The values
are consistent with asymptotic scaling for g > 2.14, giving m/ Azrz = 3.35(9). To com-
pare directly with our results we used their data and the 3 loop correction to obtain
m/A375(B = 2.02) = 3.47(8). An interpolation of our results at the two neighboring
points, yields m/Aq7s(8 = 2.02) = 3.55(5) ; we see that the two estimates differ by about
one standard deviation. Our results are thus consistent with those of Ref. [13] , although
they tend favor a slower fall of m/ Ag5 towards the exact result.

A comparison to the results of the third order 1/N expansion ( see the figure in [18] )
shows that for increasing 3 their estimate of m/ Az75 and our measurements are tending
closer.

Another approach to the problein of asymptotic scaling, proposed by [29] and tried
recently in [15], uses a redefined inverse temperature derived from the energy. This is an
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alternative bare coupling, and effectively performs an infinite order resummation; there
are arguments that asymptotic scaling in 8¢ should be observed earlier [29]. B is defined
from the O(1/8) perturbation expansion of the energy . For our definition of the energy
( Eours = 2Ewoiss ) it is fg = (2 — E)~!. As Figure 2 shows, our results agree with
[15] that asymptotic scaling in Bg (i.e. the 2-loop curve) is better and much closer to the
exact value predicted by Ref. [14]. However the effect of the 3rd loop correction (for which
a1 = 0.575/(27) 4+ 1/8 — 4997 /4000 ) moves the result away from the analytical result and
towards the results scaled by 3. We note that the statistical error of our estimates of the
energy are much smaller than those of [12], e.g. for # > 1.6 it is more than an order of
magnitude smaller. This makes the contribution of the statistical error of 85 to the error
of our estimates of m/A+;=(BE) negligible, which is not the case for [15].

4.2. Susceptibility

We measured the susceptibility on lattices of different size for # = 1.70 to 1.80 and
at 1.90. The agreement , within errors, seen for 1.70 < # < 1.80 shows that the finite
size effects are very small, so that, effectively, the infinite volume limit has been reached.
The disagreement at # = 1.90 shows that there is a finite size effect for this point on the
smaller lattice, but the data for the other s lead us to believe that the larger lattice gives
us an estimate with very small finite size error. We would expect that for 8 > 2.0 the
finite size effect would be significant ; a rough estimate would be something of the same
order as that for the mass gap, i.e. a fraction of a percentage point and a few percent for
B = 2.00 and S = 2.05 respectively.

To compare with the expected behavior, from equation 5, we divide this behavior out
and get a ‘scaled susceptibility’ or susceptibility defect 6, [5]:

6 =2-10° g% e x (8)

This should behave as a power series in T' = 719-, and approach a constant for T — 0. From
Figure 3 it is obvious that we have not reached the region of # where a constant can be
extracted, and that the susceptibility for 8 = 2.05 at least suffers from finite size effects.
We note that for the standard action the third loop term for the susceptibility is 0 to the
accuracy calculated [22], and thus doesn’t affect this result.

We also compare the behavior of the susceptibility with predictions based on the
assumption of complex singularities in (). Table 2 shows another susceptibility defect G3
for our data and the values obtained by a sophisticated Pade approximant of the 14 term
high temperature series. This shows that this approximant is unable to adequately describe
the defect in this region of 3, although it does a good job of coarsely describing the
significant deviations from asymptotic scaling at smaller values of £.






4.3. Dynamical Critical Exponent of Overrelaxation

The decorrelation time 7 is used to measure the speed with which new, i.e. statistically
independent, configurations are generated. Its dependence on the correlation length is
parametrized by the dynamical critical exponent z :

r=cog ®)

Most local algorithms, like Metropolis and heat-bath, have z > 2 . For a free field over-
relaxation gives z = 1 [30] . Neuberger [31] argues that for an interacting field, z should
not change substantially from this. Previous work with the same algorithm as we use for
the O(2) or XY model [19] measured Te;p (defined e.g. in [32] ) and gave z = 1.48 for
Nor =8 and 2z = 1.2 for N, = 15 where Ny, = 2 . For the O(4) model [33] used another
variation of overrelaxation and showed that in 1 dimension z = 1, but could not determine
it for 2 dimensions.

We obtain the decorrelation time by measuring the auto-correlation function of the
magnetization. We will use c(n) to denote this, where n is a distance in number of MC
sweeps. To obtain the integrated decorrelation time 7;p; [34] we use the definition of [34]
for its estimator T, :

= 3 A1) = 30 ) (10)
int = C(O) ) int ey C(O)

with M a multiple of 7, in our case M = 47, defined self-consistently. Using these mea-
surements and fitting to the equation (9) for N,, = 12 gives z = 1.33(1).

However we discovered that it is possible to improve on this substantially. We note
that when ¢ increases and more work is required to produce a decorrelated configuration, it
is natural to increase N,,. This allows us to perform measurements only on configurations
that are less correlated. What we observed was that the performance of the algorithm
improves. To compare the speed of decorrelation between runs with different N, we
define a new quantity which we call ‘effort’ e = N,, x . It is roughly proportional to the
computational effort expended to obtain a configuration 1 7 away.

We found that we can define a new exponent z' from e ~ €% when N,, is tuned to
keep 7 constant. This choice was made because we observed that the effort has a plateau at
almost the same value of 7 for every . We also found that the behavior of the decorrelation
time can be approximated over a good range by

T=C". £ N (11)

Afitto logr =c"+zlogé—ZlogN,, givesz' = 1.1(1), for 7 in the ranges 1.1 — 1.8,
2.1 — 2.4 and 3.0 — 3.6. This indicates we have achieved a considerable improvement .
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A fit to the set of points ( Nor, £, 7 > 1.0 ) gives z = 1.301 £ 0.012, 2’ = 1.0794+0.010
and has a x?/dof = 1.86 for 32 degrees of freedom. Of course, the values for z and 2’ we
measure are only effective values because in the limited range of 7 and ¢ we worked in,
logarithmic corrections can mask the true (limit) values. Figure 4 shows the decorrelation
time 7 vs. the number of overrelaxation sweeps for the different coupling constants. The
solid lines show the fit to the above equation. We note that the points for 7 < 1.0 were
not included in these fits because do not follow equation (11).

We also try to fit to a general scaling function by plotting 7/£% vs. N,./¢f [35] .
A plot for f = 1.0 and d = 0.0 shows that this is close to the correct behavior. Using
our knowledge from (11) we constrained the values of d and f to one free parameter with
d =133 — fz/z'. We saw that for 1.06 < f < 1.14 the plots are good, but the best fit is
for f = 1.1 . Figure 5 shows the data in this case. Only the points for 8 > 1.9 do not lie
on a universal curve; such a deviation is expected for those points with L/¢ that is small.
Another way of seeing this is shown in figure 6. This shows a scaled effort e/¢/*¢ (instead
of a scaled 7 ) versus N,,/¢f for all values of 3. The tightness of the points in these plots
around a single curve demonstrates conclusively that, for 7 roughly constant, the effort
e o 61'1-

We can attempt to understand the lower value of z' in the following way: the overre-
laxation algorithm has a tendency to decorrelate much faster than other local algorithms,
ie. with an exponent close to the free field value of 1 . The addition of the Metropolis
steps destructively interferes with it . The pOR algorithm moves on a deterministic path
through phase space. But when £ is increased the distance in phase space that a set num-
ber of overrelaxation steps travels decreases. Thus the addition of Metropolis steps can
cause a larger disruption.

This explanation indicates that the effort should flatten out for increasing N,r. Our
data clearly shows that after a broad plateau the effort slowly increases. This can be seen
in figure 6, which is a log-log plot. ( This effect is also the one that causes the deviation of
points with 7 < 1.0 from our fit to equation 11 . ) We can understand the minimum in e
vs. Ny if we assume that a certain set of (Nor, Nmet) corresponds to overrelaxation with
a parameter w # 2, a non-microcanonical variation [33] . It is obvious that as %!;ﬂ -0
that w — 2. What is seen in the case of O(4) in 1 dimension is that the function 7(w) has
a minimum close to w = 2.

5. Conclusions and discussion

Our results confirm those obtained using the Wolff cluster algorithm and extend them
to larger lattices and correlation lengths. However asymptotic scaling is not reached with
the standard action even at # = 2.05 and ¢ = 300 and our results give a value of m/Ayrs
that is 20% higher than the exact result. We also showed that overrelaxation can be
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used in a manner in which the effective decorrelation exponent is close to 1, confirming
the prediction of [31]. By comparison, cluster algorithms do require fewer arithmetic
operations at large correlation lengths because they have a smaller dynamical critical
exponent; however not all problems are suitable to their use, and vector and parallel
computers, which are necessary for large problems, are currently not used very efficiently
by cluster methods. Overrelaxation remains a simple, vectorizable and efficient algorithm
well suited to vector and parallel machines and competitive for many problems.

Since the perturbative 3-loop terms are small, it is likely that higher order terms are
small (the next term is of the order of 2%) and cannot provide an explanation for the
behavior of the mass-gap or susceptibility in the region 1.5 < f < 2.05. It seems that
deviations from the perturbative B-function are caused by non-perturbative effects, which
contribute significantly to the 8 function in this region. It is not clear what the effects
result from, if not the singularities in the complex 8 plane [9], which are hard to quantify.
One can speculate that another possibility is that they are connected to instantons, which
are a property of this model unique amongst O(N) models. A first calculation of the
effect of instantons [36] , however, does not provide an answer. The correction to the beta
function calculated has the wrong sign to explain the deviations from asymptotic scaling
observed by us. It would thus be very interesting to use the new efficient algorithms in a
large scale investigation of the effects of instantons in the O(3) model.
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Table Captions

1.

Data from Monte Carlo runs: A, lattice length in each direction , total number
of OR sweeps in thousands, number of OR steps per full sweep, average effort (i.e.
decorrelation time in terms of OR sweeps) , energy per lattice site, susceptibility and
correlation length.

Comparison of results for another susceptibility scaling defect G5 6,1(/ * . Our Monte
Carlo estimates are labeled MC, the Pade Approximant of [9] is Pade and the numbers
of [5] are BL.

Figure Captions

1.

Correlation length defect & , i.e. correlation length scaled by the 2-loop form. The
solid squares are corrected for the expected finite size effect. Note that the errors on
these are the same as those for the uncorrected points.

The estimates of the ratio m /A5 to 2- and 3-loops in terms of 8 and fg = 1/(2—E)
vs. the inverse temperature /.

Susceptibility defect é, , i.e. susceptibility scaled by the 2-loop form. Note that the
3-loop correction is zero.

Decorrelation time 7 vs. number of overrelaxation steps N,, for different values of B.
Solid lines are the fit to equation (11), i.e. T o £* i

Plot for test of scaling of decorrelation time 7, number of overrelaxation steps N,y
and correlation length £ according to 7/¢é¢ = f(N,,/¢f) including data from all the
different couplings 3. This plot is for the values f = 1.1 and d = —0.017.

Plot similar to fig. 5 for test of scaling of the effort e by e/¢%+f vs. N,./¢f | with
f=11and d = —0.017. The error in N,,/¢f is smaller than the width of the points.

The labels are the same as in figure 5.
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Table 1.

Beta LT #or(K) Eff. Noyr Energy X 13
1.50 256 12600 18 8,12 1.20324(7) 176.4+ 0.2 11.05(1)
1.60 256 12400 38 12,15 1.27141(7) 4484+ 0.7 19.00(2)
1.70 256 9100 85 12 1.32843(7) 1263.44+-2.9 34.39(6)
1.70 512 11400 85 20,30,35 1.32848(4) 1263.7+ 3.3 34.44(6)
1.75 512 7700 66 40,60,120 1.35329(5) 2208.1+6.8 47.4(2)
1.75 768 8000 98 50 1.35322(6) 2197+ 15 47.2(2)
1.80 512 10100 143 40,45 1.37599(4) 3845 + 11 64.7(3)
1.80 768 3100 141 40 1.37587(6) 3823 + 21 64.5(5)
1.85 768 11200 185 60,80 1.39667(3) 6732+ 25 88.7(5)
1.90 1024,512 6000 184 1.41583(4) 11602 £+ 59 121.5(1.1)
1.90 1024 5900 263 100,120 1.41582(2) 11867+62  122.7(1.1)
1.95 1024 700 330 200 1.43363(10) 20640 + 310 164.8(5.3)
2.00 1024 2700 420 250,300 1.45022(6) 35100+ 400 224.3(4.2)
2.05 1024 1800 510 300 1.46578(7) 56220 £ 550 295.6(5.2)

Table 2.

B G3

MC o Pade BL

1.50 1028.5 0.3 1015 1048
1.60 1011.8 0.4 983 962
1.70 1017.4 0.7 964 927
1.75 1027.8 1.8
1.80 1039.2 0.8
1.85 1050.0 1.0
1.90 1055.0 1.7
1.95 1069.6 4.0
2.00 1070.7 3.1
2.05 1055.0 2.6
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