Fortran D Language Specification

Geoffrey Foz
Seema Hiranandani
Ken Kennedy
Charles Koelbel
Uli Kremer
Chau-Wen Tseng
Min-You Wu

CRPC-TR90079
December, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Revised April, 1991.

FORTRAN D Language Specification

Geoffrey Fox*
Seema Hiranandani?
Ken Kennedy'
Charles Koelbel'
Uli Kremer!
Chau-Wen Tseng'
Min-You Wu"

April 15, 1991

Abstract

This paper presents FORTRAN D, a version of FORTRAN enhanced with data decomposition spec-
ifications. It is designed to support two fundamental stages of writing a data-parallel program:
problem mapping using sophisticated array alignments, and machine mapping through a rich set of
data distribution functions. We believe that FORTRAN D provides a simple machine-independent
programming model for most numerical computations. We intend to evaluate its usefulness for
both programmers and advanced compilers on a variety of parallel architectures.

1 Introduction

Recent advances in large-scale parallel processing technology has made much computing power
available for today’s computation scientists and engineers. However, the usefulness of parallel pro-
cessing has been limited by the difficulty of programming the great variety of rapid evolving parallel
architectures. A major goal for the Center for Research on Parallel Computation (CRPC) is to
develop a machine-independent parallel programming model usable for both shared and distributed-
memory SIMD/MIMD architectures.

High-level parallel languages such as Linda [CG89], Strand [FT90, FO90], and Delirium (LS91]
are valuable when used to coordinate coarse-grained functional parallelism. However, these lan-
guages do not meet the needs of computational scientists because they are inefficient for capturing
fine-grain data parallelism (of the type described by Hillis and Steele [HS86] and Karp [Kar87]).
This is mainly due to the fact that existing parallel languages lack both language and compiler
support to assist in efficient data placement [PB90]. Parallelism must also be explicitly speci-
fied because these languages do not provide compilers that can automatically detect and exploit
parallelism.

*NPAC, Syracuse University, Syracuse NY 13244

'Department of Computer Science, Rice University, Houston TX 77251

!This research was supported by the Center for Research on Parallel Computation, a National Science Foundation
Science and Technology Center.

To overcome this deficiency, we have designed FORTRAN D, a version of FORTRAN enhanced with
a rich set of data decomposition specifications. FORTRAN D is targeted at data-parallel numeric
applications that are not supported by existing parallel languages. The extensions proposed in
FORTRAN D are compatible with both FORTRAN 77 and FORTRAN 90, a version of FORTRAN with
explicit manipulation of high-level array structures. FORTRAN 90D can be viewed as a refinement
of CM FoRTRAN [TMC89)] consistent with a parallel FORTRAN 77.

We believe that FORTRAN D is powerful enough to express most fine-grain parallel compu-
tations, but also simple enough that a sophisticated compiler can produce efficient programs for
different parallel architectures. In particular, FORTRAN D is well suited for supporting compiler
techniques for automatic data decomposition and communication generation, two crucial problems
in programming distributed-memory machines. FORTRAN D programs also have the advantage of
being deterministic, unlike programs written in most explicitly parallel languages.

We are in the process of implementing a FORTRAN 77D compiler (HKT91b] in the context of the
ParaScope programming environment [CCH*88, BKK+89]. We chose as our first target the Intel
iPSC/860, a MIMD distributed-memory machine. A later project will produce a FORTRAN 77D
compiler for a SIMD distributed-memory machine. We have also started a FORTRAN 90D compiler
aimed at the iPSC/860 and NCUBE-2 hypercube [WF91]. We plan to compare how closely FOR-
TRAN D compilers can approach the performance of hand-coded programs, and use our experiences
to evaluate the usefulness of FORTRAN D for data-parallel programming.

The rest of this paper presents the design of FORTRAN D, especially its strategy for expressing
data parallelism and mapping it to the underlying parallel architecture. We also compare FoOR-
TRAN D with related research in parallel languages, data decompositions, and compiler techniques.
We start by describing our view of data parallelism.

2 Data Parallelism

The data decomposition problem can be approached by noting that there are two levels of paral-
lelism in data-parallel applications. First, there is the question of how arrays should be aligned with
respect to one another, both within and across array dimensions. We call this the problem mapping
induced by the structure of the underlying computation. It represents the minimal requirements
for reducing data movement for the program, and is largely independent of any machine considera-
tions. The alignment of arrays in the program depends on the natural fine-grain parallelism defined
by individual members of data arrays

Second, there is the question of how arrays should be distributed onto the actual parallel machine.
We call this the machine mapping caused by translating the problem onto the finite resources of
the machine. It is dependent on the topology, communication mechanisms, size of local memory,
and number of processors in the underlying machine. Data distribution provides opportunities to
reduce data movement, but must also maintain load balance. The distribution of arrays in the
program depends on the coarse-grain parallelism defined by the physical parallel machine.

FORTRAN D requires the user to specify data decompositions in terms of these two levels of
data parallelism. First, the ALIGN statement is used to describe a problem mapping. Second,
the DISTRIBUTE statement is used to map the problem and its associated arrays to the physical
machine. We believe that our two phase strategy for specifying data decomposition is natural for
the computational scientist, and is also conducive to modular, portable code. Previous projects also
include a third intermediate level of parallelism representing a coarse-grain “virtual machine”. We
do not think this is necessary for our work, although it may be helpful for explicit message-passing
programs.

3 Problem Mapping

In FORTRAN D, the DECOMPOSITION statement is used to declare a name for each problem mapping.
Arrays in the program are mapped to the decomposition with the ALIGN statement. The result
represents an abstract high level specification of the fine-grain parallelism of a problem. There may
be multiple decompositions representing different problem mappings, but an array may be mapped
to only one decomposition at a time. All scalars and arrays not mapped to a decomposition are
allocated locally.

3.1 DECOMPOSITION Statement

Declaring a Decomposition

The decomposition statement declares the name, dimensionality, and size of a decomposition for
later use. A decomposition is simply an abstract problem or index domain. No storage is allocated
for a decomposition.

DECOMPOSITION A(N)
DECOMPQSITION B(N,N)

In this example, A is declared as an one-dimensional decomposition of size N, with elements indexed
from 1 to N. B is a two-dimensional N by N decomposition.

3.2 ALIGN Statement

The ALIGN statement is used to map arrays with respect to a decomposition. Arrays mapped to the
same decomposition are automatically aligned with each other. Alignment can take place either
within or between dimensions. ’

The alignment of arrays to decompositions is specified by placeholders in the subscript expres-
sions of both the array and decomposition. I, J, K, etc. .. are canonical placeholders indicating the
location of dimensions in a decomposition. Array subscripts are fixed; they always consist of the
placeholders in alphabetical order beginning with I. The decomposition subscripts can be functions
of the placeholders; they specify the alignment of the array with respect to the decomposition.

Exact Match

The simplest alignment occurs when the array is exactly mapped onto the decomposition. In the
following example, the arrays X1 and X2 are mapped exactly onto the equivalent dimensions in the
decompositions A and B.

REAL X1(N), X2(N,N), X3(N,N)
DECOMPOSITION A(N), B(N,N)
ALIGN X1(I) with A(I)

ALIGN X2(I,J) with B(I,J)
ALIGN X3(I,J) with B(I,J)

For convenience, placeholders are not required where the mapping is exact. Multiple arrays may
also be aligned with the same statement. For instance, the alignments in the previous example
could also have been specified with the following syntax.

DECOMPOSITION A(I)

ALIGN X1(I) with A(I+1)

ALIGN X2(I) with A(I-1)

ee@ccesssosccssctssscccttccccecsscsttcnan

1 I+1
I

FIGURE 1: 1-D Alignment Offsets

REAL X1(N), X2(X,N), X3(N,N)
DECOMPOSITION A(N), B(N,N)
ALIGN X1 with A

ALIGN X2, X3 with B

3.2.1 Intra-dimension Alignment

Intra-dimension alignment determines the data decomposition within each dimension. This section
describes how offset and stride may be specified.

Alignment Offsets

In FORTRAN D, the user can specify an alignment offset for any dimension of an array. The simplest
case occurs when the array and decomposition have the same number of dimensions. Constants
are added to the placeholders in the decomposition to indicate the offset in that dimension.

REAL X1i(N), X2(N)
DECOMPOSITION A(N)
ALIGN X1(I) with A(I+1)
ALIGN X2(I) with A(I-1)

In this example, X1 and X2 are aligned with respect to decomposition A by 1 and —1. X1(I) is
thus always mapped to the same element of the decomposition as X2(I+2); e.g., X1(1) is mapped
together with X2(3). '

REAL X3(N,N), X4(N,N)
DECOMPOSITION B:",N)

ALIGN X3(I,J) wz=:h B(I,J-1)
ALIGN X4(I,J) with B(I-1,J+2)

..................

ceeeed cebeeees

ssseced SesceesSesses

T T T T T e e . . S e]

feserecasccccemenscscmmocccsasscsccsscanans

Gescscceccsaccmcssccmmecccemmcccccoacacccse

DECOMPOSITION B(I,J) ALIGN X3(I,J) ALIGN X4(I,J)
with B(I,J-1) with B(I-1,J+2)

FIGURE 2: 2-D Alignment Offsets

Similarly, in this example the alignment of X3 and X4 with respect to decomposition B means that
X3(1,]) is mapped to the same element of B as X4(I+1, J-3).

Alignment Strides

ForTRAN D also allows a stride to be specified when performing intra-dimensional alignment.
Alignment strides are used to determine the demsity of an array mapped to a dimension. They
are introduced as coefficients of placeholders in the subscript expressions of decompositions in an
ALIGN statement. Strides may be also used in combination with offsets.

REAL X1(N), X2(N)

DECOMPOSITION A(N)

ALIGN X1(I) with A(2+I)

ALIGN X2(I) with A(2*I-1) ‘ i o

In this example, array X1 has a stride of 2 with respect to decomposition A. It is thus mapped
to the even elements of A. Array X2 also has a stride of 2, but the alignment offset of —1 causes
it to be mapped to every odd element of A. Alignment strides are easily extended to higher order
arrays and decompositions, as in the following example. '

REAL X1(N,N), X2(N,N+N)
DECOMPOSITION B(N,N)

ALIGN X1(I,J) with B(2+I,2%J)
ALIGN X2(I,J) with B(2*I-1,J)

Alignment strides with negative values are also allowed; they correspond mapping the reflection of
the array dimension onto the decomposition.

eseccceteccccmrscssmmescocnacecesnscccans

DECOMPOSITION A(I)

........................

ALIGN X1(I) with A(2+I)

........................

ALIGN X2(I) with A(2*I-1)

........................

:Illf
) G

sesssccccesestmecaccmmesccaneccsecascstane

...........

DECOMPOSITION B(I,J) ALIGN X1(I,J) ALIGN X2(I,J)
with B(2%I,2%J) with B(2*I-1,J)

FIGURE 3: Alignment Stride

[N PR P — -

S R — -

ALIGN X(I,J) with B(J,I)

FIGURE 4: Alignment Permutation

3.2.2 Inter-dimension Alignment

Inter-dimension alignment determines the data decomposition between dimensions. This section
describes how permutation, collapse, and embedding may be specified.

Permutation

In FORTRAN D, the user can arbitrarily permute the dimensional alignment between arrays and
decompositions. A common application would be to perform array transpositions. Canonical
placeholders must be used to mark the aligned dimensions.

REAL X1(N,N), X2(N,N,N)
DECOMPOSITION B(N,N), C(N,N,N)
ALIGN X1(I,J), with B(@J,I)
ALIGN X2(I,J],K), with C(K,I,J)

In this example, the transpose of X1 is mapped to the decomposition B, as indicated by the reversed
placeholders I and J. Similarly, the third and first dimensions of X2 are mapped to the first and
second dimensions of decomposition B.

Collapse

It is sometimes convenient to ignore certain dimensions of the array when mapping an array to a
decomposition. All data elements in the unassigned dimensions are collapsed and mapped to the
same location in the decomposition. An array dimension may be collapsed in the ALIGN statement
simply by excluding its placeholder from the decomposition subscripts, as this demonstrates that

the dimension has no effect on the actual alignment.

REAL X1(N,N), X2(N,N), X3(N,N,N), X4(N,N,4)
ALIGN X1(I,J) with A(I)

ALIGN X2(I,J), X3(I,J,K) with AQJ)

ALIGN X4(I,J,K) with B(I,J)

In this example, the first dimension of array X1 is mapped onto the decomposition A. The second
dimension of X1 is collapsed and stored on the same processor. In other words, each row of X1

1
! I
X1(1,1) : : X2(1,J) SR X3CLILK)| V]]
oy ' I B [I B
T + N 1] ! 1 |
1 . | . Vo 1 1 1 1]
| 1 1] | 1 1 [{] 1
1) 1) 1 1 1 1 i 1 1 1
)) 1) 1 1 1 1 ! 1 1 1
VoV VYoV VoV v VoV oV
ALIGN X1(I,J) with A(I). ALIGN X2(I,J) with A(T) ALIGN X3(I,J,K) with A(J)
FIGURE 5: Array Collapse
J —
e e S e S
\L [Mescessecssne dessece ¢ N S . lesaces ; Sesesad Seceee Seeseane deccace H
DECOMPOSITION B(I,J) ALIGN X1(I) with B(I,2) ALIGN X2(I) with B(1,I)
¢ f) 4

tececccaccccemeccscascacces

cceccaman

ALIGN Xi(I) with B(I-1,2) ALIGN X4(I) with B(1,I+2)

FIGURE 6: Array Embedding

is mapped to an individual element in decomposition A. Similarly, each column of array X2 is
mapped to A. For array X3, the second dimension is mapped onto the decomposition A, with the
first and third dimensions local. Array collapse frequently occurs when an array dimension is used
to store multiple data fields per problem element, such as for array X4 in the example.

Embedding

Conversely, it may be necessary to map arrays with fewer dimensions onto the decomposition. In
these cases it is necessary to specify both the mapping for each dimension of the array and the
actual position of the array in the unmapped dimensions of the decomposition. This determines
the embedding of the array in the decomposition.

REAL X1(N), X2(N), X3(N), X4(N)
ALIGN X1(I) with B(I,2)

ALIGN X2(I) with B(1,I)

ALIGN X3(I) with B(I-1,2)
ALIGN X4(I) with B(1,I+2)

In this example, array X1 is mapped to the first dimension of decomposition B, a column. It is
necessary to specify the actual column position with a constant remaining unmapped dimension. In
this case the constant “2” in the second dimension indicates that X1 should be mapped to the second
column of decomposition B. Similarly, array X2 is mapped to the first row of decomposition B. In
a more complex example, arrays X3 and X4 are both aligned and mapped to decomposition B.

This scheme can be extended to higher order arrays and decompositions. Note that when arrays
are mapped only to part of a decomposition, the array may not be mapped to all the processors in
the machine, depending on the actual distribution.

Combinations

The user can apply any combination of intra-dimensional and inter-dimensional alignments when
mapping arrays to decompositions.

REAL X1(N,N), X2(N,N)
ALIGN X1(I,J) with B(J+2,I-1)
ALIGN X2(I,*) with B(4,I-2)

In this example, array X1 is both aligned and transposed with respect to decomposition B. Array
X2 is collapsed into its first dimension (forming a single column), mapped to the fourth row of
decomposition B, and aligned by —2.

3.2.3 Alignment Options

The ALIGN statement also supports options to specify actions for overflows, mapping parts of arrays
to a decomposition, and either totally or partially replicating arrays. These options are discussed
in this section.

Array Overflow

It is possible that the array to be aligned does not fit completely within the decomposition, causing
an overflow. In these cases, an optional overflow clause may be used to select one of three options,
ERROR, TRUNC, and WRAP, described below.

DECOMPOSITION A(N) 1 {213 N-2|N-1| N
- ——

ALIGN X(I) with A(I-1) 'Err | 2 |3 |4 | N-1| N

ALIGN X(I) with A(I-1) overflow (TRUNC) 1,21 3 4 | N-1| N

ALIGN X(I) with A(I-1) overflow (WRAP) 2 3 4 | N-1| N 1

FIGURE T: Array Overflow

The default choice, ERROR, considers elements overflowing the decomposition to be unmapped.
Any attempt to access such elements will be considered to be an error. Alternatively, the user may
choose to truncate the array with the TRUNC option. All elements overflowing the decomposition
are then mapped to the element on the edge of the decomposition in that dimension. WRAP, the last
choice, wraps overflowing array elements back to the opposite end of the decomposition. Systolic
algorithms in particular may benefit from this feature.

REAL X1(N), X2(N), X3(N), X4(N,N,N)

DECOMPOSITION A(N), C(N,N,N)

ALIGN X1(I) with A(I-1)

ALIGN X2(I) with A(I-1) overflow (TRUNC)

ALIGN X3(I) with A(I-1) overflow (WRAP)

ALIGN X4(I,J,K) with C(I-1,J-1,K-1) overflow (ERROR,TRUNC,WRAP)

In the previous example, attempting to reference X1(1) would be illegal since it maps to the
undeclared decomposition element A(0), which by default is defined as type ERROR. Because X2
is truncated, the array elements X2(1) and X2(2) map to the same decomposition element A(1).
Wrapping X3 causes the array element X3(1) to map to the decomposition element A(N). The
alignment statement for X4 shows how overflow options may be specified for multidimensional
decompositions.

Array Range

By default, the ALIGN statement maps the entire array to the decomposition. However, FORTRAN D
also allows just part of an array to be mapped onto a decomposition. This may be done by specifying
a section of the array to be mapped using the range clause. The range clause specifies a range for
each dimension of the form <from>:<to>. The * symbol indicates that the entire array dimension
should be mapped. A subarray can thus be selected and aligned with a decomposition. This
partial alignment feature is useful when one large work array is subdivided into several smaller
logical arrays at run-time.

10

XIQN+N) | X2 (N+N) e e
Vv ovy ez
AN A(N)
ALIGN X1(I) with A(I) range (1:N) ALIGN X2(I) with A(I-N) range (N+1:N+N)

FIGURE 8: Array Range

REAL X1(N+N), X2(N+N), X3(N+N,N+N), X4(N,N+N)
DECOMPOSITION A(N), B(N,N)

ALIGN X1(I) with A(I) range (1:N)

ALIGN X2(I) with A(I-N) range (N+1:N+N)

ALIGN X3(I,J) with B(I-N,J-N) range (N+1:N+N,N+1:N+N)
ALIGN X4(I,J) with B(I,J-N) range (*,N+1:N+N)

In the previous example, the range clause is used to map elements 1 to N of array X1 to decom-
position A and elements N+1 to 2N of array X2 to decomposition A, starting at decomposition
element 1. Similarly, the subarray of X3 beginning at (N+1,N+1) is aligned with decomposition
B. Finally, half of array X4 is aligned with decomposition B, with the * symbol indicating that the
entire first dimension of X4 is mapped to the decomposition.

Replication

The ALIGN statement may also be used a means to replicate distributed variables in FORTRAN D.
This can be done by assigning a range for a dimension rather than a position or placeholder.
Ranges may be specified as <from>:<to>, or simply as =* if the entire dimension is desired. If an
assignment is made to a replicated value, all replicated values would be updated. Note that all
variables not aligned to a decomposition are considered to be totally replicated on all processors.
The compiler will label scalar and array variables as local, distributed, or replicated.

REAL X1(N), X2(N), X3(N)
DECOMPOSITION B(N,N)

ALIGN X1(I) with B(I,1:2)
ALIGN X2(I) with B(I,*)
ALIGN X3(I) with B(I-1:I,%)

In the first ALIGN statement in this example, a range from 1 to 2 is specified in the second dimension
of B. This causes each of the first two columns of decomposition B to each get a copy of array X1,
in effect replicating every element of X1 among the first five elements of each row of B. In the
second ALIGN statement, the * symbol in the second dimension of decomposition B specifies that
each element of array X2 is replicated across all elements of B in the same row. The two modes
may also be combined, as in the third statement, where each row of B gets a copy of the element
of array X3 in that row, as well the element of X3 from the previous row.

11

I N1 | [Jd
—
N L~
—
N
N
ALIGN X1(I) with B(I,1:2) ALIGN X4(I,J) with B(I,*)
NN N
NS N
N S O~ R
d Z
NN /
ALIGN X2(I) with B(I,*) ALIGN X5(I,J) with B(*,J)

FIGURE 9: Array Replication

REAL X4(N,N), X5(N,N), X6(N,N)
DECOMPOSITION B(N,N)

ALIGN X4(I,J) with B(I,*)
ALIGN X5(I,J) with B(*,J)
ALIGN X6(I,J) with B(*,*)

Replication can also be extended to higher dimension arrays. In this example, the first ALIGN
statement causes each row of array X4 to be mapped to each element in the corresponding row of
decomposition B. Similarly, the second ALIGN statement causes each column of X5 to be mapped
to each element in the corresponding column of B. Finally, each element of X6 is totally replicated
for each element of decomposition B; i.e., each processor is guaranteed to have a copy of X6. This
is exactly the default case for unaligned arrays.

12

4 Machine Mapping

In FORTRAN D, we use the DISTRIBUTE statement to specify the mapping of the decomposition to
the physical parallel machine. The distribution selected will affect the ability of the compiler to
minimize communications and load imbalance for the resulting program. Physical machine charac-
teristics such as the number of processors, amount of memory per processor, and communication
costs between processors must all be taken into account since they affect which distributions are fea-
sible and efficient. Program characteristics such as the size of distributed arrays and computation
structure may also be crucial in determining a good distribution.

In addition, data parallelism may either be regular or irregular. Regular parallelism can be
effectively exploited through relatively simple data distributions. Irregular data parallelism, on the
other hand, may require irregular data distributions and run-time preprocessing-to manage the
parallelism.

In ForTRAN D, a distribution specifies the machine mapping for exactly one decomposition.
The compiler then applies the distribution to all .the arrays mapped to the decomposition. The
user does not need to specify a distribution for each array. It is illegal to access any element of a
distributed array before it has been mapped to the machine with a DISTRIBUTE statement.

4.1 n$proc

FORTRAN D reserves the variable n$proc to indicate the number of processors available. It may be
evaluated at run-time or passed as a compile-time option to the compiler.

4.2 DISTRIBUTE Statement

The DISTRIBUTE statement takes the name of a decomposition and assigns an attribute to each
dimension of the decomposition. Each attribute describes the mapping of the data in that dimension
of the decomposition. Attributes in each dimension are independent, and may specify regular or
irregular distributions, as described in later sections. The symbol * is used to denote dimensions
which are assigned locally; i.e., these dimensions are not distributed.

DISTRIBUTE A(attribute)
DISTRIBUTE B(attribute, attribute)

In this example, the decompositions A and B are assigned an attribute for each dimension of the
decomposition. Distributions in effect describe the assignment of data to an underlying processor
array.

4.3 Regular Distributions

The three types of attributes for regular distributions in FORTRAN D are BLOCK, CYCLIC, and
BLOCK_CYCLIC. Suppose there are P processors and [V elements in a decomposition. We assume for
simplicity that P divides N evenly. If this is not the case, the resulting distribution will be slightly
unbalanced. The FORTRAN D distributions can then be described as follows:

13

2! D2 p3 y2

(BLOCK)

P1|D2|P3|Ps|P1|DP2(P3|Pa|P1|P2|P3|P4|P1|P2|P3|P4|P1]|P2| P3| P4

(CYCLIC)

n P2 p3 P4 n P2 D3 P4 41 P2

(BLOCK_CYCLIC(2))

Ficure 10: 1-D Distributions

e BLOCK divides. the decomposition into contiguous chunks of size N/ P, assigning one block to
each processor.

e CYCLIC specifies a round-robin division of the decomposition, assigning every P** element to
the same processor. CYCLIC distributions are useful for load balancing.

e BLOCK_CYCLIC is similar to CYCLIC but takes a parameter M. It first divides the dimension
into contiguous chunks of size M, then assigns these chunks in the same fashion as CYCLIC.

Only one attribute may be assigned for each dimension of the decomposition. However, multi-
dimensional decompositions may have different combinations of distribution patterns. For these
decompositions, processors are allocated as evenly as possible to each distributed dimension. This
creates an implicit processor array. The following examples show some common FORTRAN D dis-

tributions.

DISTRIBUTE A(BLOCK), B(CYCLIC), C(BLOCK.CYCLIC(2))

DISTRIBUTE A(BLOCK,*), B(*,BLOCK), C(BLOCK,BLOCK)

DISTRIBUTE A(CYCLIC,*), B(*,CYCLIC), C(CYCLIC,CYCLIC)

DISTRIBUTE A(BLOCK.CYCLIC(2),*), B(*,BLOCK_CYCLIC(3))

DISTRIBUTE C(BLOCK_CYCLIC(2),BLOCK_CYCLIC(4))

DISTRIBUTE A(CYCLIC,BLOCK), B(BLOCK,CYCLIC), C(BLOCK,BLOCK.CYCLIC(2))

14

y2t
24! p3
D2
"N 2] P3 P4
P3
D2 P4
D4
(BLOCK, *) (*,BLOCK) (BLOCK,BLOCK)
Ficure 11: 2-D Block Distributions
41 P1|P3|P1|P3|P1|P3|P1|P3
P2 D2| Pa| P2| P4a|P2| P4a|P2| P4
P3 D3| |P3|{P1|P3|P1|Ps
y 2! Py
P4 P2|Pa|P2|Pa|P2|P4a|P2| P4
D3 p3
n D4 DPs p1|P3||P3|P1|P3|P1|P3
D2 p2|Pa| P2| Pa|P2|P4a|P2|Pa
p3 pi|p3|P|P3|PL|P3|P1| D3
D4 p2| Pa| D2| Pa| P2| Pa| P2 | P4
(*,CYCLIC) (CYCLIC,CYCLIC)

(CYCLIC,*)

FIGURE 12: 2-D Cyclic Distributions

15

4! 4! p3 y 4!
P2 P1 P2 Y41 P2 P4 2
2! 41 D3 !
D2 P2 P4 D2
(BLOCK_CYCLIC(2),=*) (*,BLOCK_CYCLIC(3)) (BLOCK_CYCLIC(2),
n$proc = 4

FIGURE 13: 2-D BLOCK_CYCLIC Distributions

N P3
D2 D4
P1ps|P1{py(P1|ps| P2 pg n P3 P P3
D D3
P2 D4
4! D3
D2 D4
P2| p, | P2| py(P2| py| P2| p, P2 P4 P2 P4
Dh D3
D2 Da
(CYCLIC,BLOCK) (BLOCK,CYCLIC) (BLOCK,BLOCK_CYCLIC(2))

FIGURE 14: 2-D Combination Distributions

16

4! Ds
y41 P3 Ps b7

P2 Ps

D3 p7
D2 y2 Ps Ds

P4 Ps
(BLOCK(4),BLOCK(2)) (BLOCK(2),BLOCK(4))

FIGURE 15: 2-D Uneven Block Distributions

4.4 Processor Allocation

FoRTRAN D also provides the capability of specifying processor allocations, where the allocation
specifies the number of processors assigned to each dimension of the decomposition. Users can thus
define their own uneven processor allocation, instead of using the even processor allocations the
compiler generates by default.

Processor allocations are specified by adding an additional parameter indicating the number
of processors for each dimension of the distribution. The multiplicand of the processors in each
dimension must be less than or equal to the total number of processors defined by n$proc, since
FORTRAN D does not support virtual processors. If BLOCK_CYCLIC is passed two parameters, the
first parameter specifies the block size and the second specifies the number of processors. The
following are some examples of uneven distributions:

DISTRIBUTE A(BLOCK(4),BLOCK(2)), B(BLOCK(2),BLOCK(4))
DISTRIBUTE A(BLOCK(4),CYCLIC(2)), B(BLOCK(2),CYCLIC(4))
DISTRIBUTE C(CYCLIC(4),BLOCK(2)), D(BLOCK.CYCLIC(2,2),BLOCK(4))

4.5 Unsupported Distributions

Though FORTRAN D supports several regular distribution patterns, our intention is to keep the
distribution attributes relatively simple to allow straightforward communications generation by the
compiler. As a result, FORTRAN D distributions obey these simple rules:

e decomposition dimensions are distributed independently
(no diagonal distributions are possible)

¢ decomposition segments have uniform size and shape (except for boundary conditions)

.

e processor assignments are regular

17

DP1|Ps|{P1|DPs|P1|Ps|P1|Ps P »
1 1
P3| ps pr P3| ps pr
P2|Ps|P2| Pe|P2|P6|P2|Ps
p3|Dp7| P3| Pr|P3|P7|P3|P7
P2 D4 P P2 D4 D6
Ds Ps
DP4|Ds|P4|P8|Pa|Ps|Pa|Ds8
(BLOCK (4),CYCLIC(2)) (BLOCK(2),CYCLIC(4))
y41 Ds
y4! D3 Ps pr
P2 Pe
D3 D7
P2 D4 y Ps
P4 ps
y1 Ps
n P3 Ps pr
P2 Ps
b3 pr
P2 P4 Ps Ds
P4 Ds
(CYCLIC(4),BLOCK(2)) (BLOCK_CYCLIC(2,2),BLOCK(4))

FIGURE 16: 2-D Uneven Combination Distributions

Figure 17 shows some distributions we do not plan to support in FORTRAN D. We do not believe
there will be a significant loss of performance caused by using the regular distributions provided in
ForTrAN D.

18

h D2 b3 D4 h b3 p2 P4
P4 b1 P2 P3 P2 P4 N D3
b3 P4 n P2 h b3 D2 22
P2 p3 P4 n P2 y2 h p3
Diagonal Arbitrary block assignment
P4
n
p3 p3
h | P2 pP3 P4
b2 D2
‘ n
P4
Arbitrary block size Arbitrary block shapes

FIGURE 17: Unsupported Distributions

19

4.6 Irregular Distributions

For problems with irregular data parallelism, regular distributions may not be efficient. For these
cases, FORTRAN D allows user specified irregular distributions through the use of a mapping array,
which will itself usually be distributed. An example for implementing an irregular distribution in
this manner is as follows:

n$proc = 4

REAL X(16)

INTEGER MAP(16)

DECOMPOSITION REG(16), IRREG(16)

ALIGN MAP with REG

ALIGN X with IRREG

DISTRIBUTE REG(BLOCK)

...set values of MAP array by some algorithm...
DISTRIBUTE IRREG(MAP)

In this example, the elements of MAP must be set to integers between 1 and 4 (the number of
processors). IRREG(i) will then be stored on the processor value in MAP(i), as shown in Figure 18.
If an element of MAP is not a valid processor number, then that element of decomposition
IRREG will not be mapped to any processor; accessing such an element is an error. This is the
case with X(15) in the figure. Changes to MAP made after the DISTRIBUTE statement is executed
do not affect the distribution. MAP may be either distributed or replicated; distributed MAP
arrays will consume less memory, but may require more communication steps to access elements.

Combined Regular and Irregular Distribution

A mixture of regular and irregular distributions may also be used.

n$proc = 16

INTEGER MAP(16)

REAL X(16,16)

DECOMPOSITION A(16), B(16,16)

ALIGN MAP with A

ALIGN X with B

DISTRIBUTE A(BLOCK)

...set values of MAP array by some algorithm...
DISTRIBUTE B(MAP,BLOCK(4))

In this example, the map array is block distributed among all processors. The array X (aligned
with decomposition B) is distributed irregularly in the first dimension according to the map array,
and block distributed in the second dimension. Since only four processors are available in the first
dimension, the map array must only provide a distribution for processors 1-4.

20

MAP[1:4] 2 3 1 3
PTOCeSSoT]
x @ © @O 0 W
MAP(5:8] 1 4 1 3
processor;
x Q@ 0 W
MAP(9:12] 2 2 1 4
processors
x © @ 0 W
MAP(13:16] 1 4 0 3
PToCessory
x O @

FIGURE 18: Irregular Distribution Example

5 Additional Features

In the previous sections we presented data decomposition specifications. Here we discuss some
other features of FORTRAN D.

5.1 Dynamic Alignment and Distribution

Data mappings may also change between different phases, thereby requiring dynamic realignment
and/or redistribution to reduce data movement. FORTRAN D thus supports dynamic data decompo-
sition. Depending on their location, both ALIGN and DISTRIBUTE may be interpreted as executable
statments rather than declarations. In the following example, the second set of data specifications
cause dynamic realignment of arrays X and Y. This is done to reduce communications for the
second loop.

21

REAL X(N), Y(N)
DECOMPOSITION A(N)
ALIGN X, Y with A
DISTRIBUTE A(BLOCK)
DOI =1,N

X(I)=Y(I
ENDDQO

ALIGN X(I) with A(I+1)

DO I =1,N
X(I)=Y(I+1)

ENDDO

Another reason to employ dynamic data distributions is to is to configure a program for greater
efficiency, based on the problem size or number of available processors.

REAL X(N,N)
DECOMPOSITION B(N,N)
ALIGN X with B
IF (n$proc .GT. 20) THEN
DISTRIBUTE B(BLOCK,BLOCK)
ELSE
DISTRIBUTE B(BLOCK,*)
ENDDO

In this example, the program is configured so that the data distribution chosen is dependent on the
total number of processors available. The FORTRAND compiler will require additional sophistication
in order to handle dynamic data decompositions.

5.2 Procedures

There are a number of issues concerning procedures in FORTRAN D. First, it is permitted to
call procedures with distributed arrays as arguments. The compiler will perform all the analysis
required to generate the correct code.

Second, in FORTRAN D the effect of all DECOMPOSITION, ALIGN, and DISTRIBUTE statements
are limited to the scope of the enclosing procedure. This provides users with a structured method
to limit the scope of their decompositions, and simplifies the problem of dealing with dynamic
decompositions.

REAL X(N), Y(N)
DECOMPOSITION A(N)
ALIGN X, Y with A
DISTRIBUTE A(BLOCK)
CALL FO0O(X)

X(1) = ...

For instance, in this example the scoping rule in FORTRAN D ensures that the array X will be BLOCK
distributed at the assignment to X(1), even if procedure FOO redistributes X locally. However,
procedures do inherit data decompositions from their callers. Upon entry of procedure FOO, the

22

array X will be BLOCK distributed. Array X may be dynamically redistributed in procedure FOO.
but FORTRAN D ensures that it will not affect the decomposition of X of the parent procedure.

5.3 FORALL Loops

Certain programming constructs, such as the use of index arrays, make compile-time detection
of data dependences impossible. This is especially true for irregular computations, since many
parallel loops cannot be detected by the compiler. The compiler is forced to assume loop-carried
or inter-iteration dependences that force synchronization to be inserted [AK87].

As a remedy, FORTRAN D defines FORALL to be a loop such that each iteration can only use
values defined before the loop or within the current iteration. When a statement in an iteration
of the FORALL loop accesses a memory location, it will not get any value written by a different
iteration of the loop. Instead, it will get the old value at that memory location (i.e., the value at
that location before the execution of the FORALL loop) or it will get some new value written on the
current iteration. Another way of viewing the FORALL loop is that each iteration gets its own copy
of the entire data space that exists before the execution of the loop.

At the end of a FORALL loop, any variables that are assigned new values by different iterations
have these values merged at the end of the loop. Merges are performed deterministically, by using the
value assigned from the latest sequential iteration. Note: for performance reasons, some compilers
may not wish to support this merge feature. See Appendiz A.

The major benefit of a FORALL loop is that since no values depend on other iterations, the
loop may be executed in parallel without communication. However, communication may still be
required before the loop to acquire non-local values, and after the loop to update or merge non-local
values. Another advantage of the FORALL loop is that it has deterministic semantics, provided that
the underlying system merges values in a deterministic manner. The syntax of the FORALL loop is
shown in the following example:

FORALL I = 1,N
X(IDX(I)) = ...
... = X(IDX(I+1))
ENDDO

In this example, the FORALL loop may be executed in parallel without communication or synchro-
nization, even though loop-carried dependences cannot be eliminated by compile-time analysis.
Instead, the compiler and run-time system will ensure that statements in the loop body access old
values of X instead of new values written on other iterations.

5.3.1 Example FORALL Loop

Here we provide a more detailed example. In the following FORALL loop, there are three dependences
caused by the assignment to X(I) at statement S;—a loop-carried antidependence to X(I+1) at S,
a loop-independent true dependence to X(I) at S3, and a loop-carried true dependence to X(I-1)
at S,.

FORALL I = 1,XN

Sh X(I) = ...

S2 = X(I+1)

S3 = X(I)

S = X(I-1)
ENDDQ

23

Both sequential FORTRAN and FORALL semantics specify that the reference to X(I+1) at S uses its
old value; i.e., the value of X(I+1) before it is assigned at statement S;. Similarly, both sequential
and FORALL semantics require the reference to X(I) at S3 to use the new value; i.e., the value
assigned to X(I) at S1. This is because the new value is assigned in the current iteration.

On the other hand, sequential and FORALL semaantics differ for the loop-carried true dependence
between X(I) and X(I-1). Sequential FORTRAN semantics require that the reference to X(I-1) at
statement S; use the new value computed at S;. However, FORALL semantics cause statements in
the loop body to use new values only if they are calculated in the current loop iteration. All other
values are old values from before the FORALL loop. The reference to X(I-1) thus uses the old value
of X(I-1), before it is assigned to at statement S;. In effect, all loop-carried true dependences are
converted to antidependences in a FORALL loop.

5.3.2 Nested FORALL Loops

Multiple nested FORALL loops may be used to specify more than one level of data parallelism. A
nested FORALL loop has exactly the same semantics as the standard FORALL loop—no value may be
computed and used on different iterations of the FORALL loop. In most cases, all communications
can be moved entirely out of several nested FORALL loops.

FORALL I = 1,N
FORALL J = L,N
XG.J = ...
ENDDO
ENDDO

FORALL I = 1,N
FORALL J = 1,XN
X(..J = ...
o= X0l
ENDDQ
ENDDO

For instance, consider the two example loop nests. Standard FORALL semantics allow all commu-
nications resulting from values assigned to X in the inner J loop to be moved outside the J loop.
What is less clear is that the communications can actually be moved outside the outer I loop as
well. This is because the semantics of the FORALL loop guarantee that the values of X produced (by
the J loop) in one iteration of I cannot be used until the entire I loop is complete. Since there is
no possible use of these values in the same iteration of loop I, the communications may be delayed
to the end of the entire loop nest. However, a different situation exists in this example:

FORALL I = L,N
FORALL J = L,N
X(..J) = ...
ENDDO
o= X))
ENDDO

In this loop nest, there is actually a possible of use of X following the inner J loop. The difference
here is that the values generated in the inner J loop may be used in the same iteration of the outer

24

I loop. If the compiler cannot eliminate possible dependence between the definition and use of X,
communications may be necessary at the end of the J loop to update values of X.

Our intent in providing the FORALL loop in FORTRAND is to provide an optional method for users
to aid the compiler in generating efficient codes for irregular or sparse computations. FORALL loops
are unnecessary for regular computations—we believe that a sophisticatéd compiler can readily
extract the parallelism from normal do loops for regular computations.

We have defined semantics of the FORALL loop to be quite close to sequential FORTRAN. In par-
ticular, FORALL loops are deterministic. As a result we believe that it will be easy to understand and
use for scientific programmers. The FORALL loop possesses similar semantics to the CM FORTRAN
FORALL statement [TMC89, ALS90] and the Myrias PARDO loop. In fact, the FORALL statement in
CM FORTRAN may be used as a special form of the FORALL loop—one that has only one statement
in the loop body.

5.4 Reductions

A reduction is an operation on a collection of data that results in new data of lesser dimensionality,
usually a single scalar value. Simple but common examples of reductions include calculating the
sum or maximum of a vector or array of numbers. FORTRAN D provides the REDUCE statement as
an optional method of specifying reductions that the compiler may find difficult to detect. The
syntax of the REDUCE statement is as follows:

REDUCE (function, LHS, RHS)

Where the function is the reduction function to be performed, the ks is the target data, and the
RES is the source data. The following standard reduction functions are provided in FORTRAN D:

SUM sum of a list of numbers
PROD product of a list of numbers
MIN minimum of a list of numbers
MAX maximum of a list of numbers
AND logical AND of a list of booleans
OR logical OR of a list of booleans

Programmers may also define their own reduction functions, providing much greater flexibility in
performing reductions. FORTRAN D will assume any function passed to a REDUCE statement to be
user-defined if it does not match the name of a standard reduction function. In such cases, all
other arguments to the REDUCE statement are passed as arguments to the user-defined reduction
function. The following example shows reductions performed with both standard and user-defined
reduction functions:

REAL X(N), S, P, M1, M2, Z

BOOLEAN B(N), T1, T2

DO I = 1,N
REDUCE(SUM, S, X(I))
REDUCE(PROD, P, X(I))
REDUCE(MIN, M1, X(I))
REDUCE (MAX, M2, X(I))
REDUCE(AND, T1, B(I))
REDUCE(OR, T2, B(I))

25

REDUCE (USER_FUNCTION, Z, X(I))
ENDDO

Reductions in DO loops may be automatically recognized by the FORTRAN D compiler, even if the
REDUCE statement is not employed. However, use of the REDUCE statement is required for reduc-
tions in FORALL loops, since FORALL semantics change the meaning of standard user-programmed
reductions. Reductions in essence provide appropriate merge functions for FORALL loops.

5.4.1 Restrictions

Reductions provide a means for executing otherwise sequential computations in parallel. However,
several restrictions must be observed in order to avoid nondeterministic results when using reduc-
tions in FORALL loops. First, because reductions change the order of operations in a reduction,
all user-defined reduction functions must be both associative and commutative. Otherwise, any
change in the actual evaluation order of the reduction may affect the final value returned by the
reduction operation. Note that this requirement has to be relaxed for floating point operations,
which may prove unstable because of rounding errors.

Second, since intermediate values of the LHS variables in reductions are undefined, they must
not be used within the loop. However, they may be employed in other REDUCE statements in the
same loop, provided that the reduction functions are identical. The following shows some examples
of variables involved in multiple reductions.

REAL X(N), Y(N), S, M
FORALL I = 1,N
REDUCE (SUM, S, X(I))
REDUCE(SUM, s, Y(I))

IF (...) THEN
REDUCE (MAX, M, X(I))
ELSE
REDUCE (MAX, M, Y(I))
ENDIF
... =38
ENDFOR

In the previous example, the variables S and M serve as the LHS of several reductions. Variable S
is used to sum up the values in both arrays X and Y, and variable M is set to the maximum value
in some subset of arrays X and Y. In both cases the reductions are legal since the same reduction
function is used. On the other hand, the FORTRAN D compiler will mark the last statement in the
loop as illegal, because it attempts to use an intermediate value of variable S during execution of

the FORALL loop.

5.4.2 Location Reductions

FoRrRTRAN D also provides additional support for determining the location of minimum or maximum
values. For the MIN and MAX reductions, the REDUCE statement will accept additional pairs of
arguments of the form <LHES,RES>. In the course of the reduction, the values of the RHS will be
assigned to that of the LHS when the minimum or maximum element is found. This provides a
mechanism for determining the location of the minimum or maximum value.

26

INTEGER I, J, IDX1, IDX2, IDX3, IDX4, IDX5, IDX6
REAL X1(N), X2(N,N), Mi, M2, M3, M4
DOI=1,N
REDUCE(MIN, M1, X1(I), IDX1, I)
REDUCE (MAX, M2, Xi(I), IDX2, I)
DO J = 1,N
REDUCE (MIN, M3, X2(I,J), IDX3, I, IDX4, J)
REDUCE(MAX, M4, X2(I,J), IDXS, I, IDX6, J)
ENDDO
ENDDO

In the previous example, additional arguments of the form <var, current index> are passed to the
REDUCE statements for to find the index of the minimum or maximum element of the array. If there
are multiple elements with the minimum or maximum value, the assignment is performed only for
the first such value found.

5.5 On Clause

FoRTRAN D provides a feature from KaLt [KMV90], an optional on clause. The on clause is used
to specify the processor which will execute each iteration of a loop. This allows user greater control
of where the computation is performed for load-balancing and reducing communications.

n$proc = 4

REAL X(1024), Y(1024), Z(1024)

DECOMPOSITION A(1024)

ALIGN X, Y, Z with A

DISTRIBUTE A(BLOCK)

FORALL I = 1,512 on HOME(A(I))
X(I+512) = F(X(I),Y(I),Z(I))

ENDFOR '

In this example, it may be advantageous to perform the computation on the processor where the
data is stored (where X(I) is) rather than where the results are to be sent (where X(I+512) is).
This is precisely what the on clause specifies. There are three forms of the on clause.

n$proc = 4

REAL X(N)

DECOMPOSITION A(N)

ALIGN X(I) with A(I+1)

DISTRIBUTE A(CYCLIC)

FORALL I = 1,N on HOME(A(I))

FORALL I 1,N on HOME(X(I))

FORALL I = 1,N on MOD(I, n$proc) + 1

In all cases, the expression in the on clause names the processor to execute a given iteration of
the FORALL loop. HOME is used to derive the identifier of the actual processor assigned ownership.
Referencing the HOME of a decomposition or array element in the on clause will cause the iteration to
be assigned to the processor where that element is mapped. This is the case for the first two FORALL
loops. Otherwise the on clause takes an expression to calculate a processor identifier between 1 and
n$proc, and directly assigns each iteration of the'loop to a specific processor. Arbitrary expressions

27

are allowed in the processor, decomposition, or array subscripts. However, the user should be aware
that complex expressions will be difficult for the compiler to implement efficiently.

6 Relationship to Other Research

A large number of researchers are investigating compilation for distributed-memory multiprocessors.
Many of them have explored the problem of specifying data decompositions, and we have drawn
upon their work. In particular, we have been influenced by alignment specifications and reduction
functions from CM FORTRAN [TMC89] and structures to handle irregular distributions from PARTI
[(WSBH91] and Kali [KMV90, MV90]. Here we quickly describe other research in the area.

6.1 Single Array Decomposition

Some researchers concentrate on computations within loops that only involve a single array. These
researchers do not need alignment or distribution specifications, since they automatically generate
the data decomposition. Ramanujam and Sadayappan [RS89] examine both the data and iteration
space to derive a combined task and data partition of the loop nest. Hudak and Abraham [HA90]
find a stencil-based approach useful for analyzing communications and deriving efficient rectangular
or hexagonal data distributions. These researchers do not discuss generating communication for
the resulting distributions.

SpoT [SS90, Soc90] is a point-based SIMD data-parallel programming language for single arrays
in loops. Computations are specified from the point of view of a single element in the array.
This stencil-based approach allows the SPOT compiler to derive efficient near-rectangular data
distributions. The compiler then generates computation and communication by expanding the
single point algorithm to cover all points distributed onto a node.

6.2 Alignment

For computations involving multiple distributed arrays, both alignment and distribution must be
dealt with in order to minimize data movement. The CRYSTAL compiler [CCL89, LC90a, LC90b]
performs automatic data decomposition and communications generation for the CRYSTAL func-
tional language. Heuristics are employed to align data arrays, both within and across dimensions.
Different distributions are evaluated, then communication using CRYSTAL collective communication
routines is generated. Since data decompositions are automatically calculated, no decomposition
specifications are provided.

CMFORTRAN [AKLS88, TMC89) is a version of FORTRAN extended with vector notation, align-
ment, and data layout specifications. Programmers must explicitly specify data parallelism in
CM FORTRAN programs by marking certain array dimensions as parallel. CM FORTRAN has a
FORALL statement [ALS90] similar to the FORTRAN D FORALL loop, but which applies to only a
single assignment statement. The REDUCE statement in FORTRAN D is patterned after equivalent
reduction functions in CM FORTRAN.

CM FORTRAN does not possess distribution specifications since the operating system of the
underlying SIMD distributed-memory machine provides the illusion of infinite machine size through
the use of virtual processors. This approach has freed researchers to concentrate on deriving
efficient data alignments [KLS88, TMC89, KLS90, KN90]. Proper alignment, including dynamic
realignment, is especially important for SIMD machines, leading to a factor of 80-fold improvements
in an example program [KN90]. More recently, researchers have also begun to study strip mining
as a technique to avoid the inefficiencies of using virtual processors [Wei91].

28

AL [Tse90] is a language designed for the Warp distributed-memory systolic processor. The
programmer utilizes DARRAY declarations to mark parallel arrays. The AL compiler then applies
data relations to automatically align and distribute each DARRAY, detect parallelism, and generate
communication. Only one dimension of each DARRAY may be distributed, and computations must
be linearly related.

6.3 Distribution

Because of the lack of operating system support, research projects for MIMD distributed-memory
machines have been forced to first tackle the data distribution problem. These systems do not
directly specify alignments between arrays. Instead, they distribute each array individually and
implicitly derive the alignment between different arrays based on their relative distributions. Sys-
tems such as DiNo [RSW90], ID Nouveau [RP89], MiMDIZER [SWW91], OxYGEN [RA90], and
PANDORE [APT90] all provide data distribution specifications equivalent to some combination of
BLOCK and CYCLIC. DiNo also supports special stencil-based data distributions with overlaps.

The AspPar [IFKF90] compiler performs automatic data decomposition and communications
generation. A micro-stencilis derived and used to generate a macro-stencil to identify communica-
tion requirements. Communications utilizing EXPRESS primitives are then automatically generated.
In addition, reductions are identified and replaced with the appropriate EXPRESS combine opera-
tion. ASPAR derives simple BLOCK distributions; alignment specifications are not provided.

Gupta and Banerjee [GB90] propose a constraint-based approach to automatically calculate
suitable data decompositions. They support BLOCK and CYCLIC distributions, but do not specify
alignment. Instead of standard BLOCK distributions, SUPERB [ZBG86, Ger89, Ger90|, SUSPENSE
[RW88], and ParRaGoN [CR89. Ree90] support arbitrary user-specified contiguous rectangular dis-
tributions. SUPERB also originated the overlap concept as a means to both specify and store
nonlocal data accesses.

Wolfe [Wol89, Wol90] describes transformations such as loop rotation for programs with BLOCK
distributions. Callahan and Kennedy [CK88] propose methods for compiling programs with user-
specified data distribution functions. They also demonstrate how such programs can be optimized
using loop transformations. BoosTER [PvGS90] also provides user-specified distribution functions
defined as program views, but does not generate or optimize communications. Prins [Pri90] utilizes
shape refinement in conjunction with linear transformations to specify data layouts and guide
resulting data motion.

Finally, there are two systems that provide irregular data distributions to support irregular
computations. PARTI [SBW90], a set of run-time library routines, is first to propose and imple-
ment user-defined irregular distributions [MSS*88], as well as a hashed cache for nonlocal values
[MSMBO0]. PARTI has also motivated the ARF compiler which supports BLOCK, CYCLIC, and user-
defined irregular distributions. Its goal is to demonstrate that inspector and ezecutor loops for
run-time preprocessing can be automatically generated by a compiler [KMSB90, WSBH91]. KaLI
[KMV90, MV90], a descendent of BLAZE, is the first compiler that supports both regular and irreg-
ular computations. It provides BLOCK, CYCLIC, BLOCK_CYCLIC, and user-specified data distributions.
Like PARTI, KALI also uses an inspector/executor strategy to support run-time preprocessing of
communication for irregularly distributed arrays [KMV90].

29

7 Conclusion

Programming languages lack support to efficiently exploit fine-grain data parallelism on distributed-
memory machines. We believe that explicit data alignment and distribution specifications provide
programmers and compiler writers with the correct paradigm for specifying data decompositions.
We have designed FORTRAN D to be powerful enough to express most fine-grain parallel compu-
tations, but also simple enough that a sophisticated compiler can produce efficient programs for
different parallel architectures. To make it usable for computational scientists, we have also made
the meaning of FORTRAN D deterministic and quite close to sequential FORTRAN. In fact, any
FORTRAN program is also a valid FORTRAN D program.

We are implementing a compiler to automatically convert FORTRAN 77D programs into mes-
sage passing FORTRAN 77 programs that run on MIMD distributed-memory machines such as the
Intel iPSC/860 [HKT91a, HKT91b]. In the process we will evaluate both the data decomposition
specifications in FORTRAN D and the effectiveness of advanced compiler techniques for distributed-
memory multiprocessors. We are also developing a FORTRAN 90D compiler for the iPSC/860
[WF91] and a FORTRAN 77D compiler for the Thinking Machines CM-2.

We are pursuing other projects in the FORTRAN D programming system [HKK*91] at Rice and
Syracuse. They include automatic data decomposition [BFKK90], static performance estimation
using a machine-independent training set [BFKK91], compiler support for unstructured computa-
tions [KM90], run-time preprocessing using the PARTI communications library [SBW90], as well
as a suite of applications programs to evaluate the effectiveness of the FORTRAN D compiler. We
are also exploring the utility of additional language constructs to support parallel operations on
high-level data structures such as trees or graphs.

8 Acknowledgements

We wish to acknowledge and thank Vasanth Balasundaram, Marina Kalem, John Mellor-Crummey,
and Jaspal Subhlok for their many contributions to this work. In addition, we are grateful for the
helpful comments from Hans Zima, Michael Gerndt, and the rest of the SUPERB research group.

References

[AKS87] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.
ACM Transactions on Programming Languages and Systems, 9(4):491-542, October
1987.

[AKLS88] E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr. Compiling Fortran 8x array features
for the Connection Machine computer system. In Symposium on Parallel Programming:
Ezperience with Applications, Languages and Systems, New Haven, CT, July 1988.

[ALS90] E. Albert, J. Lukas, and G. Steele, Jr. Data parallel computers and the FORALL state-
ment. In Frontiers90: The Srd Symposium on the Frontiers of Massively Parallel Com-
putation, College Park, MD, October 1990.

[APT90] F. André, J. Pazat, and H. Thomas. Pandore: A system to manage data distribu-
tion. In Proceedings of the 1990 ACM International Conference on Supercomputing,
Amsterdam, The Netherlands, June 1990.

30

[BFKK90]

[BFKK91]

[BKK+89]

[CCH™*88]

[CCL8Y]

[CG89)
[CKS8]

[CR89]

[FO90)

(FT90]

[GB90]

(Ger89]
[(Ger90]

[HA90]

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment
for data partitioning and distribution. In Proceedings of the 5th Distributed Memory
Computing Conference, Charleston, SC, April 1990.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimator
to guide data partitioning decisions. In Proceedings of the Third ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, Williamsburg, VA, April
1991.

V. Balasundaram, K. Kennedy, U. Kremer, K. S. McKinley, and J. Subhlok. The
ParaScope Editor: An interactive parallel programming tool. In Proceedings of Super-
computing ’89, Reno, NV, November 1989.

D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Torczon. ParaScope: A parallel
programming environment. The International Journal of Supercomputer Applications,
2(4):84-99, Winter 1988.

M. Chen, Y. Choo, and J. Li. Theory and pragmatics of compiling efficient parallel code.
Technical Report YALEU/DCS/TR-760, Dept. of Computer Science, Yale University,
New Haven, CT, December 1989.

N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444-458, April 1989.

D. Callahan and K. Kennedy. Compiling programs for distributed-memory mulfipro—
cessors. Journal of Supercomputing, 2:151-169, October 1988.

A. Cheung and A. Reeves. The Paragon multicomputer environment: A first imple-
mentation. Technical Report EE-CEG-89-9, Cornell University Computer Engineering
Group, Ithaca, NY, July 1989.

I. Foster and R. Overbeek. Bilingual parallel programming. In Proceedings of the Third
Workshop on Languages and Compilers for Parallel Computing, Irvine, CA, August
1990.

I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall,
Englewood Cliffs, NJ, 1990.

M. Gupta and P. Banerjee. Automatic data partitioning on distributed mem-
ory multiprocessors. Technical Report CRHC-90-14, Center for Reliable and High-
Performance Computing, Coordinated Science Laboratory, University of Ilinois at
Urbana-Champaign, October 1990.

M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Systems.
PhD thesis, University of Bonn, December 1989.

M. Gerndt. Updating distributed variables in local computations. Concurrency—
Practice & Ezperience, 2(3):171-193, September 1990.

D. Hudak and S. Abraham. Compiler techniques for data partitioning of sequentially
iterated parallel loops. In Proceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, The Netherlands, June 1990.

31

[HKK*91]

[HKT91a]

[HKT91b]

[HSS6]

[IFKF90)

(Kar87]
[KLS8S]

[KLS90]

[(KM90]

[KMSB90]

[KMV90]

[KN90]

[LC90a]

[LC90b]

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview of
the Fortran D programming system. Technical Report TR91-154, Dept. of Computer
Science, Rice University, March 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for Fortran D on
MIMD distributed-memory machines. Technical Report TR91-156, Dept. of Computer
Science, Rice University, April 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-independent
parallel programming in Fortran D. Technical Report TR90-149, Dept. of Computer
Science, Rice University, February 1991. To appear in J. Saltz and P. Mehrotra, editors,
Compilers and Runtime Software for Scalable Multiprocessors, Elsevier, 1991.

W. Hillis and G. Steele, Jr. Data parallel algorithms. Communications of the ACM,
29(12):1170-1183, 1986.

K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic paral-
lelization system for distributed memory parallel computers. In Proceedings of the 5th
Distributed Memory Computing Conference, Charleston, SC, April 1990.

A. Karp. Programming for parallelism. JEEE Computer, 20(5):43-57, May 1987.

K. Knobe, J. Lukas, and G. Steele, Jr. Massively parallel data optimization. In Fron-
tiers38: The 2nd Symposium on the Frontiers of Massively Parallel Computation, Fair-
fax, VA, October 1988.

K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to reduce
communication on SIMD machines. Journal of Parallel and Distributed Computing,
8(2):102-118, 1990.

C. Koelbel and P. Mehrotra. Compiler support for unstructured scientific computations.
Technical Report TR90-144, Dept. of Computer Science, Rice University, December
1990.

C. Koelbel, P. Mehrotra, J. Saltz, and S. Berryman. Parallel loops on distributed
machines. In Proceedings of the 5th Distributed Memory Computing Conference,
Charleston, SC, April 1990.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on
distributed memory machines. In Proceedings of the Second ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, Seattle, WA, March 1990.

K. Knobe and V. Natarajan. Data optimization: Minimizing residual interprocessor
data motion on SIMD machines. In Frontiers90: The 3rd Symposium on the Frontiers
of Massively Parallel Computation, College Park, MD, October 1990.

J. Li and M. Chen. Generating explicit communication from shared-memory program
references. In Proceedings of Supercomputing ’90, New York, NY, November 1990.

J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing
between distributed arrays. In Frontiersgd0: The 3rd Symposium on the Frontiers of
Massively Parallel Computation, College Park, MD, October 1990.

32

[LS91]

[MSMB90]

[MSS*88]

[(MV90]

[PBYO]

[Pri90]

[PvGS90]

[RA90]

[Ree90]

[RPS9)

[RS89]

[RSW90]

[RWSS]

[SBW90]

S. Lucco and O. Sharp. Parallel programming with coordination structures. In Pro-
ceedings of the Eighteenth Annual ACM Symposium on the Principles of Programming
Languages, Orlando, FL, January 1991.

S. Mirchandaney, J. Saltz, P. Mehrotra, and H. Berryman. A scheme for supporting
automatic data migration on multicomputers. In Proceedings of the 5th Distributed
Memory Computing Conference, Charleston, SC, April 1990.

R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and K. Crowley. Principles of runtime
support for parallel processors. In Proceedings of the Second International Conference
on Supercomputing, St. Malo, France, July 1988.

P. Mehrotra and J. Van Rosendale. Programming distributed memory architectures
using Kali. ICASE Report 90-69, Institute for Computer Application in Science and
Engineering, Hampton, VA, October 1990.

C. Pancake and D. Bergmark. Do parallel languages respond to the needs of scientific
programmers? IEEE Computer, 23(12):13-23, December 1990.

J. Prins. A framework for efficient execution of array-based languages on SIMD com-
puters. In Frontiers90: The 3rd Symposium on the Frontiers of Massively Parallel
Computation, College Park, MD, October 1990.

E. Paalvast, A. van Gemund, and H. Sips. A method for parallel program generation
with an application to the Booster language. In Proceedings of the 1990 ACM Interna-
tional Conference on Supercomputing, Amsterdam, The Netherlands, June 1990.

R. Ruhl and M. Annaratone. Parallelization of FORTRAN code on distributed-memory
parallel processors. In Proceedings of the 1990 ACM International Conference on Su-
percomputing, Amsterdam, The Netherlands, June 1990.

A. Reeves. The Paragon programming paradigm and distributed memory compil-
ers. Technical Report EE-CEG-90-7, Cornell University Computer Engineering Group,
Ithaca, NY, June 1990.

A. Rogers and K. Pingali. Process decomposition through locality of reference. In
Proceedings of the SIGPLAN ’89 Conference on Program Language Design and Imple-
mentation, Portland, OR, June 1989.

J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs for mul-
ticomputers and complex memory multiprocessors. In Proceedings of Supercomputing
’89, Reno, NV, November 1989.

M. Rosing, R. Schnabel, and R. Weaver. The DINO parallel programming language.
Technical Report CU-CS-457-90, Dept. of Computer Science, University of Colorado,
April 1990.

Th. Ruppelt and G. Wirtz. From mathematical specifications to parallel programs
on a message-based system. In Proceedings of the Second International Conference on
Supercomputing, St. Malo, France, July 1988.

J. Saltz, H. Berryman, and J. Wu. Multiprocessors and runtime compilation. ICASE
Report 90-59, Institute for Computer Application in Science and Engineering, Hamp-

33

[Soc90]

(SS90]

[SWW91]

[TMCS9]

[Tse90]

[Wei91]

[WF91]

[Wolg9)

[Wol90]

[WSBH91]

[ZBGSS]

ton, VA, September 1990.

D. Socha. Compiling single-point iterative programs for distributed memory computers.
In Proceedings of the 5th Distributed Memory Computing Conference, Charleston, SC,
April 1990.

L. Snyder and D. Socha. An algorithm producing balanced partitionings of data arrays.
In Proceedings of the 5th Distributed Memory Computing Conference, Charleston, SC,
April 1990.

R. Sawdayi, G. Wagenbreth, and J. Williamson. MIMDizer: Functional and data
decomposition; creating parallel programs from scratch, transforming existing Fortran
programs to parallel. In J. Saltz and P. Mehrotra, editors, Compilers and Runtime
Software for Scalable Multiprocessors. Elsevier, Amsterdam, The Netherlands, to appear
1991.

Thinking Machines Corporation, Cambridge, MA. CM Fortran Reference Manual,
version 5.2-0.6 edition, September 1989. :

P. S. Tseng. A parallelizing compiler for distributed memory parallel computers. In
Proceedings of the SIGPLAN ’90 Conference on Program Language Design and Imple-
mentation, White Plains, NY, June 1990.

M. Weiss. Strip mining on SIMD architectures. In Proceedings of the 1991 ACM
International Conference on Supercomputing, Cologne, Germany, June 1991.

M. Wu and G. Fox. Compiling Fortran90 programs for distributed memory MIMD
parallel computers. CRPC Report CRPC-TR91126, Center for Research on Parallel
Computation, Syracuse University, January 1991.

M. J. Wolfe. Semi-automatic domain decomposition. In Proceedings of the 4th Con-
ference on Hypercube Concurrent Computers and Applications, Monterey, CA, March
1989. ‘

M. J. Wolfe. Loop rotation. In D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing. The MIT Press, 1990.

J. Wu, J. Saltz, H. Berryman, and S. Hiranandani. Distributed memory compiler
design for sparse problems. ICASE Report 91-13, Institute for Computer Application
in Science and Engineering, Hampton, VA, January 1991.

H.Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD /SIMD
parallelization. Parallel Computing, 6:1-18, 1988.

34

A Fortran D Subset

This appendix suggests a subset of FORTRAND that can simplify the implementation of a prototype
compiler.

A.1 Dynamic Data Decomposition

The prototype may require that only one local data mapping can “reach” any reference to a
distributed variable. This will simplify the job of communication generation. The compiler can
ensure this by requiring all ALIGN and DISTRIBUTE statements to be unguarded.

REAL X(N)

DECOMPOSITION A(N)

ALIGN X with A

DISTRIBUTE A(BLOCK)

IF (I .EQ. 1) THEN
DISTRIBUTE A(CYCLIC)

ENDIF

X(I) = 1.0

For instance, this example will not be supported, because it determines at run-time whether X has
a BLOCK or CYCLIC distribution.

A.2 Procedures

To reduce interprocedural analysis, the prototype compiler may place restrictions on procedures.
First, to avoid calculating interprocedural reaching data decompositions, the prototype may require
procedures to locally declare data decompositions for all distributed arrays accessed. Second,
procedure calls may also be barred from FORALL loops.

A.3 FORALL Loops

With the assistance of dependence analysis, FORALL loops with regular computation patterns may
be compiled into efficient code. However, there are irregular cases which will require run-time
support to produce the proper results.

FORALL I =1, N
X(IDX(I)) = ...
... = X(IDX(I+1))
ENDFOR

For instance, in the previous example it is not possible to determine at compile-time whether there
are any loop-carried true or output dependences that must be handled. As a result, code must be
generated at run-time to ensure the semantics of the FORALL loop are observed by preprocessing the
values of IDX(I). If the values of IDX(I) are not modified in the FORALL loop, an inspector prior to
the loop will be sufficient to detect loop-carried dependences. Otherwise checking will be required
on each iteration of the loop.

For ease of implementation the prototype compiler may wish to simply assume that no loop-
carried true or output dependences exist for these loops. A compile-time warning should then list
all references that may cause violations of FORALL semantics. Alternatively, special compile-time

35

options may be provided to instruct the compiler to either generate code to ensure the proper
results through some form of run-time resolution, or to generate debugging code that will detect
when such violations occur.

A.4 Array Overflow

A similar problem exists with detecting array overflow that occur when attempting to access array
elements that have not been mapped to a decomposition. Most cases may be detected at compile-
time, but irregular or complex computations require run-time support. The prototype compiler may
either provide a special compile-time option that generates code that assumes no array overflows,
or an option that generates code to aid run-time detection of such overflows.

B Fortran D Examples

In this appendix we present some example FORTRAN D programs.

B.1 Red-Black Relaxation

DOUBLE PRECISION v(N,N), a, b

DECOMPOSITION d(N,N)
ALIGN v(I,J) WITH d(I,J)
DISTRIBUTE d(BLOCK,BLOCK)

DOk =1, M
/; Compute the red points
DO j=1,N, 2
DOi=1, N, 2 .
v(i,j) = ax(v(i,j—1) + v(i-1,j) + v(i,j+1) + v(i+1,j)) + b*v(i,j)
ENDDQ
ENDDO
DO j = 2,
DO i =
v(i,
ENDDO
ENDDO

// Compute the black points
DO j =1, N, 2
DO i =2, N, 2
v(i,j) = ax(v(i,j—1) + v(i—-1,j) + v(i,j+1)
ENDDG
ENDDQ
DO j =2, N, 2
DOi=1, N, 2
v(i,j) = a*(v(i,j—1) + v(i-1,j) + v(i,j+1) + v(i+1,j)) + bxv(i,j)
ENDDO
ENDDO
ENDDO

’

, 2
ax(v(i,j—1) + v(i-1,j) + v(i,j+1) + v(i+1,j)) + bxv(i,])

=N

N
2,
3

+

v(i+1,j)) + b=*v(4i,j)

36

B.2 LU Decomposition

INTEGER ipvt(N)
DOUBLE PRECISION a(N,N), max, temp, da

DECOMPOSITION d(N,N)
ALIGN a(I,J) WITH d(I,J)
ALIGN ipvt(I) WITH d(I,I)
DISTRIBUTE d(*,CYCLIC)

DO k=1, N-1
// Find maximum element in column for use as pivot
temp = 0.0
DO i =1, N-k+1
REDUCE (max, temp, dabs(a(i,k)), ipvt(k), i)
ENDDO

// Swap diagonal element with pivot
temp = a(ipvt(k),k)
a(ipvt(k),k) = a(k,k)

a(k,k) = temp

// Divide remainder of column by pivot
da = -1/a(k,k)
Do i=1, N-k

a(k+i,k) = a(k+i,k) * da
ENDDO

// Reduce remaining columns

DO j = k+1, N
// Swap element in pivot column
temp = a(ipvt(k),j)
a(ipvt(k),j) = a(k,j)
a(k,j) = temp

// Reduce column
Do i =1, N-k
a(k+i,j) = a(k+i,j) + a(k,j) * a(k+i,k)
ENDDQ
ENDDO
ENDDQ

37

