Spectral Element Solutions for
the Navier-Stokes Equations on
High-Performance Distributed Memory
Parallel Processors

Paul F. Fischer

CRPC-TR90082
December, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Spectral Element Solutions for the Navier-Stokes Equations
on High-Performance Distributed Memory Parallel
Processors

Paul F. Fischer
Center for Research on Parallel Computation
California Institute of Technology
Pasadena, CA 91125

Abstract

We present a parallel spectral element method for solution of the unsteady incom-
pressible Navier-Stokes equations in general three-dimensional geometries. The approach
combines high-order spatial discretizations with iterative solution techniques in a way which
exploits with high efficiency currently available medium-grained distributed-memory paral-
lel computers. Emphasis is placed on the development of algorithm constructs which allow
for solution of physically relevant problems; we specifically address the problem of parallel
solution in domains of general topology. Measured performance analysis on the Intel vector
hypercubes and example Navier-Stokes calculations demonstrate that parallel processing

can now be considered an effective fluid mechanics analysis tool.

Introduction

To address many problems in fluid mechanics, it is necessary to solve the fully viscous,

incompressible, Navier-Stokes equations governing fluid motion at low Mach numbers:

ol 1
S +a-VE = -Vp+

at
ViZ = 0 inQ
£ = s ondN,

Vi - f inQ (1)

where Re = UL/v is the Reynolds number based on a characteristic velocity, length, and
viscosity. Examples include stability analysis, transitional and fully separated flows, heat
transfer applications where boundary layer resolution is important, and direct simulation of
turbulence in which convective effects determine the large scale motion while viscous effects
dominate the smaller scales. In such instances, high-order techniques have advantages
because of their good boundary layer resolution capabilities, their ability to accurately
resolve a broad solution spectrum, and their minimal numerical dispersion and dissipation
properties [1,2,3].

Despite the ever decreasing clock-cycle time of conventional scalar computers, the abil-

ity to solve very large fluid flow problems is still strongly dependent upon the development

1

and implementation of algorithms which exploit specialized vector and parallel architec-
tures offering both increased computational speed and economy. As a result, there is a need
for inter-disciplinary study combining fluid mechanics, numerical analysis, and computer
science, in order to optimize performance in the large parameter space spanning discretiza-
tions, solvers, and computer architectures. To this end, we present an analysis of a spectral
element method for the Navier-Stokes equations implemented on a high-performance, dis-
tributed memory, parallel processor. Our target class of problems is general domain, two-
and three-dimensional incompressible Navier-Stokes equations at low to moderate Reynolds
numbers. The goal is a parallel implementation which retains the full generality and spectral
accuracy of its serial processor counterpart, while simultaneously exploiting the economic
computing potential offered by currently available parallel processors (4].

The spectral element method [5,6] is a generalized variational scheme which exploits
the rapid convergence rates of spectral methods while retaining the geometric flexibility of
the finite element techniques. It is based upon a macro- (spectral) element discretization
in which degrees-of-freedom internal to elements are coefficients of high-order expansion
functions, and for which C° continuity is imposed across element boundaries. With an
appropriate choice of interpolants and quadrature formulae, it can be shown that the error
for problems having smooth solutions will decrease exponentially fast as the order of the
expansion, N, is increased [6].

Traditionally, the arguments against the use of high-order discretizations are that they
yield high-bandwidth, non-sparse, linear operators and hence require much more compu-
tational effort than their low-order counterparts, and that they do not provide sufficient
geometric flexibility for problems of engineering interest. However, with increasing com-
puter performance, it is becoming feasible to address three-dimensional Navier-Stokes cal-
culations. In such cases, it proves economical to employ iterative solvers for both low-
and high-order methods. While the high-order operators are still full, it has been known
for some time that the tensor-product operators associated with spectral methods can be
factored into a series of sparse operators - resulting in operation counts which are com-
petitive with low-order methods [7]. In addition, at higher Reynolds numbers, high-order
methods become more attractive because the correct, physical, dissipation can be obtained
with fewer grid points in each spatial direction; the implication for three-dimensional cal-
culations is a significantly reduced number of equations. As regards geometric flexibility,
high-order spectral element and p-type finite element methods are capable of handling mod-
erately complex geometries by virtue of iso-parametric mappings, and are an appropriate
approach to discretization for problems in which the length scales of the solution are much
smaller than those of the associated geometry, as is typically the case with fluid mechanics

problems.

Finally, we note that heterogeneous discretizations such as spectral element methods,
or heterogeneous work decompositions such as iterative methods based on classical domain
decomposition techniques (e.g., [8]), are appropriate algorithms for modern architectures
featuring a memory hierarchy. It is clear that advances in processor speeds are currently
outpacing conventional memory access rates and, although new processor technology such
as RISC architectures offer the potential of very high execution rates, the performance ac-
tually obtained will be largely dependent upon having sufficient memory bandwidth and/or
sufficiently dense computations to keep the processors active. Several avenues can be pur-
sued to exploit the performance of these fast CPU’s. One is to use distributed memory
parallel architectures which not only increase performance through parallel data processing,
but have the significant advantage of providing parallel data access. Another is to employ
algorithms relying on dense operations, such as matrix-matrix multiplication, for which the
operation count is significantly higher than the required number of data accesses. (This has
been the motivation behind the development of the Level 3 BLAS routines, a basic linear
algebra package based upon block matrix techniques [9].) It is somewhat paradoxical that,
on the one hand, from a parallel view point it is preferrable to have data which is completely
independent, while on the other hand, from a register or cache standpoint, it is desirable
to have data which is completely interrelated so that it is used several times per access. As
such, heterogeneous work decompositions are of further interest.

We turn now to a brief outline of the spectral element discretizations and solvers, fol-
lowed by a description of the parallel implementation and the associated computational
complexity analysis. We conclude with measured performance on the Intel iPSC-VX hy-
percube parallel processors, and present two representative Navier-Stokes calculations which
illustrate that parallel computing can indeed be considered a useful fluid mechanics analysis

tool.

Spectral Element Discretizations

Our numerical methods for the Navier-Stokes equations are premised upon a ‘layered’
approach, in which the discretizations and solvers are constructed on the basis of a hierarchy
of nested operators proceeding from the highest to the lowest derivatives. For incompressible
viscous flow equations the linear self-adjoint elliptic Laplace operator represents the ‘kernel’
of our Navier-Stokes algorithm insofar that it involves the highest spatial derivatives. This
operator governs the continuity requirements, conditioning and stability of the system. The
fully discretized Navier-Stokes equations are typically solved at each time step by performing
a series of elliptic solves and preconditioning steps.

As the parallel implementation of the spectral element method is intrinsically tied to the

discretization, we briefly outline the basis of the discretization by considering the solution

of a two-dimensional Poisson equation on the domain shown in Fig. 1.

-V = f inQ, (2)
u = 0 ondqQ.

Equation (2) can be equivalently expressed as: Find u € H3(Q) such that

/ﬂ VéVud = /ﬂ $fdQ Vo€ HA(Q), (3)

where the space H} is the space of all functions which are zero on the boundary and have
a square integrable first derivative. The variational form has the significant advantage that
it reduces the required level of continuity on the solution from C! to C°, which in turn has
implications as regards parallel communication.

Discretization of the variational statement proceeds by restricting the admissible so-
lutions and trial functions in (3) to a finite-dimensional subspace, Xj, of the infinite-

dimensional space, H}. For the spectral element method we choose the space X}, to be:
Xn(Q) = {4l € Pn(Q%)} NH5(Q) (4)

where Py(02*) is the space of all polynomials of degree < N in each spatial direction on
element k. The spectral element method is thus characterized by the discretization pair
h = (K, N), where K is the number of subdomains (elements) and N is the order of the
polynomial approximations. For reasons of efficiency (tensor products, [7]) the subdomains
are taken to be quadrilaterals in R? and hexahedra in R3. The spectral element discretiza-
tion of (2) thus corresponds to numerical quadrature of the variational form (3) restricted
to the subspace Xj: Find up € Xn(f2) such that:

/ﬂ VénVundQ = /n Snfad Vén € Xn(Q), (5)

where fj, is the interpolant of f in the space Xj.

(-2,2) 80 ™ (2,2)
Q
Q! ?
('2s0) (2!0)

Figure 1: Computational domain Q consisting of K = 2 subdomains.

4

While (5) is a statement of the type of solution which we seek, it does not indicate
the form in which our solution will be represented, i.e., the choice of basis functions to
be used for the polynomials in Xj. The Legendre spectral element method employs a
tensor product form of Lagrangian interpolants based on a local, elemental, mapping of
x € Q% = r = (r,s) € [-1,1]*. We consider for illustration the case where the elemental
decomposition consists of the union of squares with sides of length 2. Within each element,
up, has the form:

N N
un(Z, ¥)las = 2D Upehp(r)ho(s) (6)
p=0¢=0
where uk, = u¥(rp, s,) are the unknown grid values of the approximate solution in element
k. The interpolants, h;(§), satisfy:

hi(¢) € Pn[-1,1] (7
hi(&) = &ij

The grid points, §;, are chosen to be the Gauss-Lobatto-Legendre quadrature points [3,10].
With the explicit representation of functions given by (6), it is straightforward to evalu-
ate the discrete variational form (5). Integration is performed using Gauss-Lobatto quadra-

ture:
K N N
‘/‘;g(z, y)aQ — Z Ezgz Pij(> (8)
k=1 {3=0,3=0

where p;; is the quadrature weight associated with the point r;;. The derivatives at the

quadrature points are computed as:

du ou*

—_ . ok
8z |xr. - or _.—(D"up")’ ()
1% Tij
dh;(r
oy = S8

where, for notational convenience in this and the following equations, we use (.) to imply
summation over the repeated index within the parentheses. The variational statement (5)
therefore takes the form:

K N N
z{ S35 pis [(Dt} (D) +
k=1 =0 =0

(i) (Dsest) - #555] -} = 0. (10)

where it remains to specify what are the admissible values of ¢{°J

Since Eq. (10) holds for arbitrary ¢, € Xp, the requisite discrete system of equations
can be generated by setting ¢t1 = 8;016j16kkr, for all (¢,5',k') corresponding to unique
points in the domain interior. Note that the outermost summation in equation (10) implies
that in the case where ¢{~‘j has a physical counterpart in another element, k', (i.e. ¢£-‘J- lies
on the interface between elements k and k'), the contributions to the integral (sum) from
the adjacent elements must be added together. We refer to this operation as direct stifiness
summation and denote it by Z‘ . The final system to be solved for u is therefore:

N o N
2’{2 Dyi (Dpqug;)Ppi +), Dy (Dmuﬁ‘.,)mp} = D 'fipi (11)
ar (p=0 p=0 Qk
We solve equation (11) using iterative techniques, and therefore never explicitly construct
the associated (elemental or global) matrices. Nonetheless, for notational convenience, we
express (11) as:
Au = Bf , (12)

where A is the global stiffness matrix and B is the (diagonal) mass matrix.

Iterative Solution Procedures

Due to memory, operation count, and parallelization considerations, iterative methods
are used to solve the system (12). Such methods are dependent upon repeated evaluation of
matrix-vector products of the form r = Au, where u and r are intermediate vectors associ-
ated with successive iterations. For spectral element problems in higher space dimensions,
d, the linear operators have large bandwidth and, if formed explicitly, are non-sparse with
O(K N3d) entries. The subsequent operation count and memory requirements can be sig-
nificantly reduced if the matrix-vector product, Au, is evaluated element by element, using
a factored form in which the discrete derivatives associated with the gradient operators in
(11) are applied in a sequential fashion.

A typical term in the elemental matrix-vector product A*u* for the case d = 2 is:

N
3" Ppi Dpi(Dpquls) Viyj € {0,..,N}? (13)
p=0)

Derivatives of the form (13) can be evaluated very efficiently via machine coded matrix-
matrix product subroutines which require only O(K N¢) memory references for the O(K N d+1)
operations. The derivative calculation is the single most computationally intensive step in
the algorithm; as a result, a five-fold reduction in Navier-Stokes solution time is obtained
when standard vectorized FORTRAN code is substituted with library matrix-matrix prod-
uct routines on the Cray-X/MP. The residual evaluation is completed via direct stiffness

summation wherein intermediate residual values at nodes shared by multiple elements are

summed and redistributed to the elemental data structures. The factored evaluation of
Au requires only O(KN9) storage and O(K N9+1) operations for general isoparametric
discretizations.

To solve (12), we use Jacobi- (diagonal) preconditioned conjugate gradient iteration
[7). The preconditioned A system has condition O(K ?N?) implying an iteration count of
O(K1N), where K is the number of elements in a single spatial direction. The majority
of the computational effort is associated with evaluation of Au, all other terms have an
operation count of O(KN d) or less. In addition, two operations require communication of
information between elements, namely, direct stiffness summation and inner-product evalu-
ations of the form rfr. While these steps require only O(K N4-1) and O(KN 4) operations,
respectively, they represent the leading order communication terms in the parallel imple-

mentation discussed below.

Parallel Implementation

The spectral element discretizations, bases, and iterative solvers of the previous sections
are constructed so as to admit a native, geometry-based, parallelism in which each spec-
tral element (or group of spectral elements) is mapped to a separate processor /memory,
with the individual processor/memory units being linked by a relatively sparse communi-
cations network. This conceptual architecture is naturally suited to the spectral element
discretization in that it provides for tight, structured coupling within the dense elemental
constructs, while simultaneously maintaining generality and concurrency at the level of the
unstrucfured macro-element skeleton. The locally-structured/globally-unstructured spec-
tral element parallel paradigm is closely related to the concept of domain-decomposition by
substructured finite elements, and many of our results are generic to both computational
models.

Our methods are implemented in an essentially machine-independent fashion. First, we
construct a spectral element code in a standard high-level language in which each spectral
element is treated as a “virtual parallel processor”. In particular, each spectral element
is treated as a separate entity, and all data structures and operations are defined and
evaluated at the elemental level. The data and code are descended to M processors, each
operating asynchronously. During the solution phase, the only procedures which require
communication are, by construction, direct stiffness summation and vector reduction, which
are relegated to special subroutines to effect data transfer. Processor synchronization is
imposed at each iteration by these communication steps.

We comment that the element-processor partition is currently computed on a host pro-

cessor during the problem start up, implying that, in that phase, a single processor has

access to a description of the entire problem. In an effort to eliminate the need to support
two source codes, one on the node processors and one on the host, we are adapting an
approach in which the nodes compute the element-processor mapping. This is decidedly
more difficult when one envisions running on thousands of processors. If one is to fit the
entire problem description on a singe processor, the amount of memory on at least one pro-
cessor must grow in proportion to the number of processors in the system. Alternatively,
an algorithm which works with segmented memory access must be developed. We are fol-
lowing the latter approach, but point out that this difficulty would be easily overcome in
an environment which supports some shared memory or, at least, shared read access.

The most complex operation in our current parallel Navier-Stokes algorithm is the resid-
ual calculation, r = Au, because of the communication required for direct stifiness summa-
tion. We illustrate its implementation in Fig. 2 in which a four element configuration

in R? is mapped to four processor/memory units. The elemental contributions to the

e e o 0O O e ¢ 0 0
@ e 0 00O (-2 BN BN BN]
Aly! A3? eeee0 Oeecoeoe
e o0 00 o e 0o
00000 o©00O0OO
00000 ©00O0OO
e e 0 00 (-2 BN BN BN)
A34y8 Atyt eeee0 Oeeoce
e e 0 00 (-3 BN BN BN J
eeee0 oOeeee
(a) (b) (<)
.".@ G.... e e 0 00 e 0 09 o © ¢ 00 o 0o 0 00
e e e o0 Oje & o o e 0o 0O ® 06 e 0O ® © o 0 0 e e 0 0 0
....o@c.... o o0 0O e o0 00 o e 0 00 e ®© 0 0O
e o @ 0|0 Ole @ 0o o [N B B BN J ® 00 00 e 6 0 0O e 6 0o 00
oooob \0Jo 0 0 0 0 00 OO 00000 oo o000 oo o 00
0000f0) (dloooo (cocooo (coooo eceeee occeoe
e 0 @ 9]0 Ole @ o @ e o0 00 o ® 0 00 o 0 00 o 00 00
oo o olofdole e e e eeeee ooccoce eceeee occooe
eeoelo] |[o]leeee eeeee occeoe eeceee oeccooe
eeoelo) Qoo eceeee oeccoe eeeee occooe
(d) (e) 6]

Figure 2: Computation of residual vector for regular geometry in R?: (a) four element
mesh; (b) simultaneous (parallel) computation of incomplete residual, 7% = Aki*; (c) nodal
content of #* is denoted by circles - solid circles indicate correct residuals, open circles
indicate values requiring contributions from neighboring elements; (d) and (e) bi-directional
exchange and sum sequence, ¥, which effects the completed residual at all nodes including
the corner nodes; (f) completed residual, * = Y Akik.

matrix-vector product Au are computed concurrently, and a d-directional exchange and
sum sequence is used to complete the residual at the shared nodes. The exchanges denoted
by the double arrows in Figs. 2d and e imply that a copy of the circled nodal content is sent
to the adjacent processor which, upon receipt, is added to the resident values. Since each
processor acts according to the same algorithm it follows that the shared edge values will
be identical after direct stiffness summation. Note that for the frequently occuring regular
geometry of Fig. 2a, the value at the common vertex is correctly updated by the ordered
exchange sequence of Figs. 2d and e. However, for many topologies (e.g., one involving
three or five elements sharing a single vertex) it is not possible to find a simple exchange
sequence which will update shared vertices correctly. In order to retain the full generality
of the spectral element method and to avoid the use of costly short data transfers, we have
augmented the direct stiffness summation routine with a gather-scatter operation in which
nodes not correctly addressed by the standard exchange sequence of Fig. 2 are mapped
to copies of a global descriptor which are then summed via standard inter-processor vector
reduction techniques.

The conjugate gradient algorithm requires evaluation of two inner-products during each
iteration. In addition, the CFL condition will need to be evaluated at each time step.
Such evaluations are typical of vector reduction operations in which information which is
distributed over M independent memories must be condensed into a single result. Efficient
evaluation of inner-products proceeds by computing local sums first, yielding distinct values
on each processor. The M values are then summed via a log, M binary spanning tree
which can be readily constructed for many network topologies, in particular for hypercube
architectures [11]. When computing the global inner-product, multiple representations of
vertices on the element interfaces are accounted for by multiplying each term by an inverse
multiplicity corresponding to the number of elements which share that given vertex. The
multiplicity can be computed once and stored during problem initiation.

Computational Complexity

We analyse the M-parallel performance of the spectral element conjugate gradient algo-
rithm. Because of the heterogeneous nature of distributed memory parallel processing, it is
necessary to account for the difference between local and non-local operations by introduc-
tion of two distinct time scales, & - the (clock-cycle) time to execute a single floating point
operation, and A(n) - the time per word required to transfer n words of data from one
processor to another. The ratio A/ is denoted o(n); o(n) is assumed to be a decreasing
function of n, with o(1) appreciably greater than 0(00) due to message startup overhead.

Note that on vector systems, it is in fact an over simplification to give a single value for §, as

the achieved execution rate will depend greatly upon the scalar-vector mix of the particular
implementation. However, for purposes of parallel performance analysis, we take § to be an
average time per floating point operation.

Having already identified the leading order computation and communication terms, the
expected solution time of our elliptic problem on M processors is readily expressed as:

CIKNd'H

i + cao(N4 1)K N9-?

Teol(M) = JN‘A{

-+ cso(1)log(M) } , (14)

Where NA is the number of A iterations required to reach a specified tolerance, ¢, and
K < 2dK/M is the maximum number of element edges per processor for which inter-
processor communication is required in order to complete the direct stiffness summation.
The ¢; term represents the leading order operation count per processor (generally, the
matrix-matrix product operations), and is the only term present for the case of a serial
processor implementation. The c; term accounts for the communication cost associated
with the direct stiffness data exchange, while the c3 term accounts for the communication
for vector reduction operations.

The estimate (14) is based upon the assumptions that the computational load (¢; term)
is balanced and that direct stiffness summation is M-independent. The first assumption
only holds in the case where K is a multiple of M. The second assumption is justified
to the extent that disjoint element-element/processor-processor pairs can exchange data
simultaneously, at a rate which is independent of the location of the processors in the
network. Because direct stiffness summation is inherently local (though not intra-element),
it will not be strongly dependent upon the system size. Note finally that the c3 term
associated with vector reductions grows as O(log, M) and is strongly M-dependent due to
the global nature of the operation.

It is clear from (14) that for a fixed problem (K, N, d) there will be a minimal obtainable
solution time for a number of processors, Mop = ¢1 K N9t11n 2/c30(1), due to the presence
of the log, M term. In addition, for a fixed number of processors, increasing the size of
the problem (K, N) will result in solution times which approach the theoretical minimum,
Teol(M) = Teol(1)/ M, due to the concurrent nature of the iterative algorithms.

It is of interest to analyse the case where K and M grow simultaneously in fixed pro-
portion, in anticipation of the availability of larger numbers of processors and the con-
sequent ability to solve larger problems. We consider the variation in parallel efficiency,
7 = Toot(1)/ MT,(M), which is given to leading order as:

- 3 M
LR R < ~aio(1)log(M) (15)

10

where 7o is the efficiency obtained if one accounts only for direct stiffness communication
costs. From (15) it is clear that for sufficiently large values of N, d, and K /M, the logarith-
mic degradation in efficiency will be small. Such performance has been observed empirically
in our experience with the iPSC/2-VX. A typical three-dimensional flow calculation with
N = 10 and K/M = 2 runs at roughly 75 percent efficiency and 10 to 11 MFLOPS on
four processors. Similar performance is obtained for larger systems in which K /M =2:16
processors yield 44 MFLOPS, 32 yield 80 MFLOPS, and 64 yield 160 MFLOPS.

Measured Performance Analysis

We have implemented our algorithms on the Intel iPSC/1-VX and iPSC/2-VX hyper-
cubes which are typical of the class of architectures for which the parallel spectral element
method is well suited. The iPSC is a distributed memory, message passing, parallel pro-
cessor consisting of M = 2D independent processor/memories, or nodes, arranged on a
D-dimensional hypercube communication network. The iPSC /2-VX is an upgraded version
of Intel’s original iPSC hypercube which incorporates improved “worm-hole” message rout-
ing, allowing data to be transferred between non-nearest-neighbor processors with minimal
degradation in data transfer rate, as well as a twenty-fold reduction in message transfer
times, resulting in A(1) ~ 300usec and A(oo) =~ 1.4usec. The nodes are based upon In-
tel 80386,/80387 processor/coprocessors with a floating point execution rate of roughly 0.1
MFLOPS, coupled with attached vector processors which achieve 3-4 MFLOPS on stan-
dard vector operations and 10-12 MFLOPS on matrix-matrix products. Each node has 4
Mbytes of memory with an additional 1 Mbyte of fast vector memory. The programmer is
responsible for vector calls and explicit transfer of data between the standard and vector
memory.

We now analyze the spectral element/Intel iPSC-VX algorithm/ architecture coupling
based on the complexity estimates of the previous section. We measure the time required
for 250 A iterations for a model system consisting of a periodic chain of three-dimensional
elements arranged in a 1X1xK array. The problem parameters are (N=10;K=M2M),
M=1.24,...,32. A “gray-code” mapping ensures that only nearest neighbor communication
is required during direct stiffness summation, although this is, in fact, not critical.

In order to calculate speedup on the basis of this limited dataset we use the analysis of

the previous sections to motivate a functional form for 7,
fr(K,M)=aK/M+ (b+clog; M)-(1-é1m) (16)

where a, b, and ¢ are constants assumed independent of K and M. We then fit these
constants (via least squares) to the total time data, finding for the iPSC/1-VX: a = 9.2 sec,
b=3.1 sec, and ¢ = 6.2 sec; and for the iPSC/2-VX: a = 8.1 sec, b = 0.46 sec, and ¢=0.32

11

sec. The results of the analysis are shown in Fig. 3 in which we plot f(K,M)/f(K,1)
versus K for the iPSC/1-VX and iPSC/2-VX. The dashed portion of the upper curves is
the unreachable operating regime where M > K. The lower dashed curve is the asymptotic
limit given by 1/M. The communication effects are clearly evidenced by the presence of
minimum solution times at M,pe =~ K in the iPSC/1 results of Fig. 3a, whereas Mope > K
for the iPSC/2.

The functional form (16) can be used to predict the number of processors required
to achieve a sustained 1 GFLOPS performance for the parallel spectral element method.
We find that for the current iPSC/2-VX configuration and K/M = 1, 507 processors are
required. If § or A is halved, only 318 or 430 processors are required, respectively. For
K/M = 6, the required number of processors is reduced by roughly 25 percent in all cases.

Given the care that is required in developing parallel algorithms, it is necessary that
there be demonstrable advantages which justify departure from traditional programming
strategies. To this end, we have performed extensive timing and operation count analysis
of our parallel implementation and found that parallel processing indeed offers both speed
and economy. Sustained execution rates of 40, 80, and 160 MFLOPS have been achieved on
16, 32, and 64 processors, respectively, for large three-dimensional Stokes and Navier-Stokes
problems on the iPSC/2-VX. We present as an example timing results for the solution of
an 80,000 degree-of-freedom steady Stokes problem. We plot in Fig. 4 resource efficiency, e,
(MFLOPS/$) versus execution rate (MFLOPS) for the solution of this problem on several
modern computers. The execution rate is derived by dividing the time required to solve the
problem into the time required to solve the problem on a uVAX-II and multiplying by an
application independent MFLOPS rating of 0.1 MFLOPS for the uVAX-IL The resource
efficiency is derived by dividing the execution rate by the quoted manufacturer’s list price.
Performance on the 16-node Intel vector hypercube (44 MFLOPs) to that on a single node
of a (dynamic RAM based) Cray-2 (66 MFLOPs) clearly shows that parallel machines can
achieve serial supercomputer speeds at a fraction of the cost. We note that it is significant
that the i/o performance of the Intel machines is much worse than that of the Cray-2; the
i/o time for the Intel vector machines was roughly equal to the solution time, while for
the Cray-2 it was virtually negligiblé. However, we have not included i/o times in this
performance analysis because we are generally interested in time dependent calculations for
which the i/o time is amortized over many time steps.

To illustrate the importance of the MFLOPS—e framework, we have also included the
data point for the K=32, M=16 problem on the nonvector iPSC/1 and iPSC/2; although
the parallel efficiency on the nonvector machines is close to unity (n > 0.99), the nonvector
machines are obviously uninteresting compared to their vector counterparts. This is due to

the fact that the nonvector machines achieve high efficiency due to a decrease in o brought

12

1.6 ERasassasn nssssanansnsRASARARERARAS AR AL
b 7 -

e Ve .

INVERSE SPEEOLP

o lljlllllll‘ll‘ll‘ll‘llll'llllll‘ll' iasds : e
1 2 4 8 16 32
Number of Processors, M
(a)
1.8 (AT T T T T Y
e} 4
.21 4

INVERSE SPEEDLP

-4

.2

lnl‘A.nlAnAAl..l.lAn.nlAA.Al‘.-.l‘.‘Al..A-l.“-

1 2 4 8 16 32
Number of Processors, M

(b)

Figure 3: Measured and computed speed-up on the iPSC-VX for 250 A iterations for
(N =10;K = M,2M), and M = 1,2,4,8,16,32. (a) iPSC/1-VX, (b) iPSC/2-VX.

13

107 — T T T T T YT
iPSC/2-VX/d4 ¥
10 b /2-VX/ J
iPSC/1-VX/d4
!
(4
(MFLOPS/$)
CRAY-2/4 (M=1)
®
(-]
10% - WVAX-IT < CRAY-2/4 =
C iPSC/2-d4¢ * p
iPSC/1-d4 =
lo-‘ 42 2 as0al A4 2 22223l At 2 a2l At 2 aasaal A4 A atad
10% 107 10° 10 102 10°
&' (MFLOPS)

Figure 4: Measured computational resource efficiency, e, for spectral element solution to an
80,000 degree-of-freedom Stokes problem

about by increases in §, not decreases in A. It is apparent from the nonvector exercise that
vectorization internal to the nodes is important to performance; the nested parallel/vector

hierarchy of the spectral element discretization is ideally suited for the task.

Results

The parallel spectral element method has been used in a number of two- and three-
dimensional flow calculations. We present two recent results below.

Our first calculation is that of flow around a low aspect-ratio cylinder having height
H =1/2 and diameter D = 1. The computational domain extends to z = 1.75, and fluid is
allowed to pass over the top of the cylinder. Baker [12] presents extensive flow visualization
results for this configuration with Re = UD/v = 4370 and D/§* = 21.3, where §* is the
boundary layer displacement thickness at the position of the cylinder when the cylinder is
not present. For the present calculations, Re = 3000 and D/é* = 21 at the inlet plane.
The boundary conditions are: € = 0 at z = 0 and on the cylinder which is centered at
(z=0,y=0); u=1—(1-2/D)* at z = —2; periodic boundary conditions at y = +2.25;
g—f, i-é;,=0at z=1.75; g—g = 0 at z = 3.25. The discretization consisted of 168 elements,
with N = 7. The problem was run on a 16 node iPSC/2-VX and required roughly 70 hours
of wall clock time. Visualization results are presented in Fig. 5. The chaotic flow seen above

the cylinder is due in part to lack of resolution in this area and to the singular nature of the

14

Figure 5: Horseshoe vortex at Rep = 3000, §* = D/21, and H/D = 1/2. Tight vortex core
is seen at the cylinder base in the top figure. Multiple vortex formation is evident in the

lower figures. Six vortex pattern at this Reynolds number is similar to the results of Sutton

[12).

15

geometry which results in separation at the sharp edge. The results are in good qualitative
agreement with the results of Baker and Sutton [12], in particular as regards the vortex
pattern upstream of the cylinder.

In our second example, we consider flow in a container with a rotating lid. The prob-
lem is exactly that studied by Lugt and Abboud [13] for the case Re = Q2R/v = 1492,
H/R = 2, with the exception that the full three-dimensional, time dependent Navier-Stokes
equations are solved in anticipation of investigating three-dimensional modes. The spectral
element decomposition (K = 48, N = 10, d = 3) is shown in Fig. 6a, with meridional plane
streamlines in Fig. 6b, and axial velocity along the centerline in Fig. 6¢c. The results are in
excellent agreement with Lugt and Abboud who use a 51x51 finite difference, axisymmetric
discretization. The fact that the spectral element configuration requires fewer points in the

meridional plane (20x40) is clearly advantageous in R*.

Acknowledgements

The author wishes to acknowledge the significant contributions to this work made by
Anthony Patera of M.I.T., Einar Rgnquist of Nektonics, Inc., and David Scott of Intel
Scientific Computers. This work was supported while the author was at M.LT. by the
ONR and DARPA under contracts N00014-85-K-0208, N00014-87-K-0439, and N00014-
88-K-0188, by NSF under Grants DMC-8704357 and ASC-8806925, and by Intel Scientific
Computers. Research in the CRPC was provided by the NSF under Cooperative Agreement
No. CCR-8809615.

References

[1] D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods SIAM-CBMS,
Philadelphia, 1977.

[2] P. Moin and J. Kim, “On the Numerical Solution of Time-Dependent Viscous Inom-
pressible Fluid Flows Involving Solid Boundaries,” J. Comput. Phys., 35,1980, p.381.

[3] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dy-
namics, Springer-Verlag, 1987.

[4] P.F. Fischer and A.T. Patera, “Parallel Spectral Element Solution of the Stokes Prob-
lem,” J. Comput. Phys., to appear.

[5] A.T. Patera, “A spectral element method for fluid dynamics; Laminar flow in a channel
expansion,” J. Comput. Phys., 54, 1984, p.468.

16

‘£310070A

dUMI2jUL) [erxe (2) pue ‘saururesiss [euolpow (q) (g = pOT = N‘8h =)) urewop
[euonesndwod (e) :g6yT = 4/Y,U = 2y 10 pI| Suye10I © YIIM JDUTEIUOD © UT MO[] :9 2InJig

Nl

01

(9)

=

\

]
_————-—\

=

N

AN

A\ \\

/S

v

[6] Y. Maday and A.T. Patera, “Spectral element methods for the Navier-Stokes equa-
tions,” in State of the Art Surveys in Computational Mechanics (Edited by A.K. Noor),
ASME, New York, 1989.

[7] S.A. Orszag, “Spectral Methods for Problems in Complex Geometries,” J. Comput.
Phys., 37, 1980, p. 70.

[8] D.E. Keyes and W.D. Gropp, in Proceedings of the Second International Conference on
Domain Decomposition Methods for Partial Differential Equations, Los Angeles SIAM,
Philadelphia, 1988

[9] Christian H. Bischof and Jack J Dongarra, “A Linear Algebra Library for High-
Performance Computers,” in Parallel Supercomputing: Methods, Algorithms and Ap-
plications , G.F. Carey, ed., Wiley (1989), pp. 45-56.

[10] A.H. Stroud, and D. Secrest, Gaussian Quadrature Formulas, Prentice Hall, 1966.

[11] Y. Saad and M.H. Schultz, Topological Properties of Hypercubes, Research Report
YALEU/DCS/RR-389, Yale University, New Haven, 1985.

[12] C.J. Baker, “The laminar horseshoe vortex,” J. Fluid Mech., 95, 1979, p. 347.

[13] H.J. Lugt and M. Abboud, “Axisymmetric vortex breakdown with and without tem-
perature effects in a container with a rotating lid,” J. Fluid Mech., 179, 1987, pp.
179-200.

18

