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Abstract

Parallel computing works for the majority of large scale computations.
The development of parallel hardware designs has been largely transferred
to industry, while universities continue major research efforts into better
software environments. We describe a classification of problems and how
different software models are needed for portable user friendly high per-
formance implementations on parallel machines. The education of a new
generation of computational scientists will be a major challenge to our
universities.



1 Introduction

In 1981, I listened to a Physics colloquium given by Carver Mead at Caltech.
Carver was a pioneer in the development of VLSI, and explained how develop-
ments in this technology would inevitably lead to parallel computers. At the
time, we were using our relatively new VAX11/780 to perform crude Quantum
Chromodynamics (QCD) simulations with week-long runs. That talk changed
my career, as I realized that QCD would naturally run in parallel. While waiting
for the initial 64 node 8086-8087 based hypercube to be completed, I realized
that we (now a collaboration with Carver’s colleague, Chuck Seitz, in the Caltech
Computer Science Department) had a machine that appeared to be generally
useful in science. Thus was born the Caltech Concurrent Computation Program
(C3P) which, from 1983-1090, investigated the question:

“Is the hypercube (and later more general parallel architectures)
effective in numerically intensive scientific and engineering calcula-
tions?”

I have described the history of C*P elsewhere [Fox:87d], [Fox:8800] with the
culmination [Fox:89n) that in 1989 (eight years after believing Carver’s dream),
we finally obtained parallel computers that were truly Supercomputers. In a
series of articles, I have described some highlights of the fifty significant ap-
plications we built for the hypercube [Fox:89b), [Fox:89i], [Fox:89n], [Fox:900].
Here, I will concentrate on other areas—hardware, software and education—but
1 emphasize that these were each built on the experience of

“Using Real Hardware with Real Software to Solve Real Problems”

Indeed, this motto will continue to be a guiding principle in the new program
that I am setting up at Syracuse University.
The research of C3P taught me several lessons.

e Parallel Computing works for essentially all computationally intense prob-
lems.

e Computation will grow in importance—fed by high performance parallel
computers—and will “change the world”—in academia, industry, day to
day life and government applications.

e We need to develop new educational approaches to train the next gener-
ation of scientists who will have the interdisciplinary skills to exploit new
computers for new problems.

My time at Caltech, and in particular with C3P, were immensely rewarding
and Caltech was one of the very few universities where a program like C3P could
have succeeded. Now, we know both that parallel computers work and how to
exploit them for leading edge academic applications. The new challenges are
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different. We must make parallel computing available to a broad range of users
both in academia and more importantly in the real world of industry—only in
this way will it enter the mainstream of computing. This principle underlies
my vision of the future of parallel computing. Correspondingly, at Syracuse
University, we will have some similarities with C3P. It will be interdisciplinary
but with a different focus—the Syracuse Center for Computational Science will
emphasize education and the integration of parallel computing into industry.
This paper has three major sections describing respectively, the status and
prospects for hardware, software and education. We will see my focus on appli-
cations in the chapter on software, which we discuss from this point of view.

2 Hardware Prospects

Parallel Computers were surveyed by Paul Messina for this conference, and I will
just make a few general remarks. University and industry research has developed
the basic principles of parallel computer hardware, and this knowledge has been
successfully transferred to industry which can be expected to produce future
hardware. The time of large scale machines designed and built in universities
has passed.

Existing machines can be classified into three broad architectural areas;
MIMD distributed memory or multicomputers; SIMD distributed memory; MIMD
shared memory or multiprocessors. My interest is in the first two—distributed
memory—machines which can be expected to realize the highest and most cost
effective performance. Shared memory machines will certainly be important in
the near future, and this software (as opposed to hardware) structure will be of
great importance even on distributed memory hardware.

There are several effective large-scale distributed memory machines now
available; the Connection Machine CM-2, INTEL 1860, and NCUBE2 custom
hypercube all having multi-gigaflop peak performance. Smaller (in size and
price) systems include those based on transputers, and the SIMD AMT DAP
and Maspar machines. Although all these machines are very usable, many of
them have rather clear design or implementations flows. These are in the areas
of communication bandwidth and latency, input/output subsystems including
the host or interface computer. More generally, system integration needs to be
improved. The communication issues can be illustrated with the measurements
shown in Table 1 [Dunigan:90a], [Hu:90a], [Williams:90e].

We would expect future systems to be able to achieve tcomm [tacp (typical
node to node communication time per word/typical floating point node calcu-
lation time) in range 1 — 10 which is the value needed for general applicability
of the machine. However, even the current i860 based INTEL systems with the
high value of tcomm/taop ~ 60 perform well on many applications.

The issue of latency is less clear and cannot be separated from questions
of network topology or node interconnection. Often these points, latency and



tfiop node tcomm/tfiop 12t /1f0p
Machine Floating Point Communication Message
Time Time/64 bit Word | Latency
(ns) measured in units of a typical
node floating point time)
Transputer System
— Direct 2 2.2 13
(no routing)
— Express 2 2.8 300
(routing software)
INTEL i860 0.1 60 1400
Express
NCUBE 1 7 2 100
Express

Table 1: Communication and Calculation Parameters

topology, are treated separately with more attention being given to the intercon-
nection scheme. We now find in current machines, interconnects using meshes,
hypercubes, and switches with or without automatic routing hardware. These
have all been successful and there is no convincing argument in favor of any one
interconnect scheme. Most theoretical studies use unrealistic message passing
models, such as random message traffic which is a poor representation of the
highly correlated communication needs in scientific computation. Further, the
current systems have too few nodes to allow decisive experiments which could
distinguish different interconnect methods. Even less is known about latency
which deserves greater study, and this one of the areas where further research
is needed to refine the architecture of future machines.

There is no uniquely good machine, as is illustrated by the current com-
mercial systems which are all broadly successful. We can expect architectural
diversity to continue within the design space indicated by today’s existing and
planned machines. Such a range of machines implies that the software must be
portable and insensitive to changes in topology, granularity (number of nodes,
memory per node), latency and if possible the choice between SIMD and MIMD.
To motivate our research in algorithms, applications and software, we can imag-
ine what one of the year 2000 teraflop computers will look like. It could have
perhaps N ~ 10,000 nodes, each realizing some 200 megaflops. Maybe the ar-
chitecture would be hierarchical; perhaps a 1024 element hypercube, with each
element consisting of around ten processors sharing the same memory system.




Such machines will exist before the year 2000 but at higher price and with
technology trade-offs (e.g., are optical interconnects cost-effective?) which will
affect the architecture and hence “balance” and “generality” of the machine.
We can expect that some or all of today’s parallel computer companies will
grow as the field matures; new enterprises will be formed and traditional com-
puter manufacturers will move into the field. In particular, Digital and IBM,
with their systems integration experience, may be major players. This growth
is currently limited by software tools and the need to increase the number of
industrial applications that run on parallel machines.

In the above, we have discussed “conventional” parallel machines. These
will be the top of the line supercomputers and get unbelievable performance on
most problems. In particular, special purpose machines, such as those in high
energy physics (QCD) and computational fluid dynamics, will no longer be cost
effective. Major special purpose hardware will only be justified in areas like
neural networks, which use a radically distinct computational methodology.

3 Software

The greatest challenge, and least agreement among practitioners, is found in
software support for parallel computers. We will discuss this in the context of
the layered structure shown in Figure 1, and introduced to me by Ken Kennedy
for the Center for Research in Parallel Computation. Of the four layers, the
uncertainty centers on the third; namely, on high level relatively general systems
such as Parallel Fortran. It is not clear as to the nature of this software level
and if it even works (exists)! Before returning to this, let us quickly discuss the
other levels. We should first note that we will not discuss the support software
that is critical for a reasonable environment; this includes debuggers, libraries,
performance evaluation and visualization tools. These are important, but not
the subject of this paper.

The top layer, with software systems such as NASTRAN (finite elements)
and CHARMM (molecular dynamics), is particularly important in industry.
These systems will certainly be at least as important for parallel systerns, es-
pecially as there is an even greater need to shield the user from the immature
parallel computers. However, it inevitably will take some time to produce these
systems. This work will be accelerated when standards are established for the
lower levels, two and three. Fortran and C, plus message passing (level two),
are clearly effective in giving high performance implementations on MIMD dis-
tributed machines. Indeed, essentially all successful work, including the some
fifty hypercube applications we did within C3P at Caltech, has used this ap-
proach. As long as you parameterize the number of nodes, this software is
formally portable; and the same program will run on the NCUBE and INTEL
hypercubes, a network of workstations, and even multi-headed IBM 3090’s and
CRAY vector Supercomputers. This portability is supported by the commer-



Software Layers

Application Domain Specific
e.g., Parallel Ellpack

Y

High Level System with language support for parallelism in many

but not all applications
e.g., Parallel FORTRAN, CMFORTRAN,

C++, LINDA

Y

General High Performance System with explicit parallelism required
and high level node software
e.g., FORTRAN or C plus message passing

|

Message Passing with portable syntax
but machine specific high performance implementation
e.g., Express or Reactive Kernel

Y

MACHINE

Figure 1: Software Layers for Parallel Computers



cial system, Ezpress, for level-one software which is the outgrowth of our CrOS
software developed at Caltech [Fox:88a]. However, this portability does not pre-
serve performance; each machine involves different optimizations in the message
passing and node programs to reflect tradeoffs for

Granularity (number of nodes)

Communication bandwidth and latency (1)

Interconnect topology

Overlap (or not) of communication and calculation
e Node architecture

We can illustrate this with our QCD (high energy physics) calculations on
the hypercube. The original code developed for the Cosmic Cube in 1983 was
run with little change on the later Mark II (JPL) and commercial NCUBE-1
hypercubes. However, substantial changes were needed when it was used on the
more powerful (500 megaflops on 128 nodes) Mark III (JPL) hypercube. The
relatively higher communication latency implied substantial rearrangement of
the message passing and a reordering of the algorithm to allow communication
to be blocked into a smaller number of larger messages. The poor compiler
required assembly language coding of key parts of the node program to exploit
the WEITEK XL vector floating point unit. We never did exploit the possible
overlap of communication and calculation which was available on the Mark III.
This would have increased performance by 25% and was possible in principle,
but clumsy to implement. We believe that these optimizations in (1) above,
can be performed by appropriate compilers, and this is a minimal goal for the
higher level-three software systems.

There are many message passing systems including:

OCCAM (Inmos)

Reactive Kernel/Cosmic Environment (Caltech)

Express (ParaSoft, Caltech)
Trollius (Cornell, Ohio State)
Tiny (Edinburgh)

Vertex (NCUBE)

NX (INTEL)

These offer comparable functionality with different tradeoffs in the area of
portability, performance and collective (higher level) communication support.
The latter includes broadcast and its generalizations, and the various primitives
for data shuffling developed particularly by [Ho:86a] and [Ho:89f], and others
[Fox:86¢], [Fox:88g], [Fox:88h], [Stout:87a), [Valiant:88a]. Further work is needed
to define the more sophisticated primitives, but it should soon be possible to
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Figure 2: Computation and simulation as a series of maps.

agree on a standard message passing interface which would provide a portable
base on which to build the higher level software.

As illustrated in Figure 2, we view software as a map of a problem onto a
computer. As such, it is sensitive to the architecture (structure) of both problem
and computer. My goal would be software specialized (optimized) for a broad
class of problem architectures which is designed to run portably on all parallel
architectures. We will illustrate this idea a little later.

We would like to develop a classification of problem architectures and present
here a simple division of problems into three classes; each of which presents dif-
ferent software challenges and solutions (at level three). Previously, we have
introduced the concept of the spatial and temporal aspects of a problem. We
can, rather, generally view a computation as an algorithm performed on the
many elements of a data set; the algorithm is repeated corresponding to an
increasing iteration count or the simulation of the data set for increasing time.
The structure (often called computational graph) of the data set and algorithm
we will refer to as the spatial structure of the problem. We call the nature of iter-
ation, recursion, or time simulation, as the temporal structure. We described in
[Fox:88b] three distinct temporal structures; synchronous, loosely synchronous
and asynchronous. Synchronous problems are characterized by identical al-



Class Temporal Spatial Lxamples Natural Parallel Natural Parallel
Structure Structure Software Machine
I Synchronous | Regular Finite Difference FORTRAN 90D SIMD
Static QCD (CMFORTRAN) Distributed
Matrix Algebra Memory
II Loosely Irregular | Finite elements with PARTI [Berryman:91la), MIMD
Synchronous | Dynamic | adaptive irregular [Saltz:87a),[Saltz:90a] Distributed
[Williams:89b] mesh Extensions of Memory
Cluster approach FORTRAN 90D?
N-body Problem
[Fox:89t}, [Salmon:90a]
III Asynchronous | Loosely Event Driven Simulation | Functional Decompositions | Distributed
Coupled | Computer Chess LINDA [Gelernter:89a) Computing.
Real Time STRAND (PCN) MIMD
Control System [Foster:90a] Shared Memory
Transaction Analysis Object Oriented Systems

Table 2: Three Problem Architectures

gorithms being applied to all points in their data set. Loosely synchronous
problems do not have a tight lockstep with microscopic synchronization, but
rather macroscopic time synchronization. An example is a simulation evolving
from ¢ to t + 6t,t + 26t with different algorithms at each data point, but natu-
ral synchronization at the beginning and end of each time step. Asynchronous
problems have no natural synchronization in the time evolution of the different
data points.

In table 2, we introduce three problem architectures which are imaginatively
labelled Classes I, II and III. These classes are not clearly defined and merge
into each other. Further, a given application may consist of several components
which fall into different classes. From our point of view, Fortran 90 is not re-
garded as the natural language for SIMD computers. Rather, it is the natural
language for synchronous (SIMD) Class I problems. One can, in fact, imple-
ment this language efficiently on SIMD and MIMD machines. This portability
between SIMD and MIMD has been implemented for the analogous language C*
[Quinn:90a], the functional language crystal [Chen:88b], and we are currently
implementing a Fortran 90 to F77+MP (MP = message passing) preprocessor
for MIMD machines [Wu:90c]. We expand on this later.

Class III problems consist of irregular problems with no time synchroniza-




tion. These are, in principle, very hard to parallelize as is illustrated by the
major efforts devoted to parallelizing event driven simulations [Wieland:89a].
This class can be parallelized when the parts are independent or loosely cou-
pled and so synchronization overheads are small. The loose coupling makes
these problems suitable for distributed systems (e.g., networks of workstations)
which have lower communication bandwidth and higher latency than the ded-
icated parallel machines. The powerful (and hence higher software overhead)
programming environments for distributed computers are natural here; an ob-
ject oriented formalism is one obvious possibility.

The situation with Class II problems is less clear and a major research area
for us. We have described in [Fox:89t] the astrophysical N-body simulation
with the Nlog N Barnes-Hut clustering method. It is not easy either to im-
plement on SIMD machines or to code in Fortran 90. We can understand this
as stemming from the fact that the algorithm’s data structure is an irregular
dynamic tree. This cannot be represented in Fortran 90 which only has ar-
ray and vector data structures. We are currently investigating if adding extra
(e.g., tree) data structures to Fortran 90 will allow one to address the N-body
problem and other applications (e.g., quicksort) with a recursive or divide and
conquer architecture. Saltz and his colleagues at NASA ICASE have shown
that Fortran can be used for irregular finite element (more generally sparse ma-
trix) problems with extensions to handle pointers [Berryman:91la], [Saltz:90a].
Similarly, Fortran 90 with vector value subscripts can handle at least some of
these problems [Johnsson:90a], [Mathur:89a}; correspondingly, the Connection
Machine can run these problems successfully. We can understand these suc-
cesses as reflecting that an array, albeit an array of pointers (addresses), is an
appropriate data structure. Fortran 90D is Fortran augmented by those possible
additional data structures and parallel decomposition constructs will have some
general utility. We expect that most (scientific) problems in Class I and II will
be elegantly expressed in Fortran 90D. With similar extensions implemented as
“yser hints”, we should be able to parallelize F77 codes in these classes. Ken
Kennedy’s group at Rice is building this Fortran 77D compiler for distributed
memory parallel machines [Fox:90n) [Wu:90b]; this will either produce directly
F77+MP or possibly more usefully Fortran 90D.

CMFortran implements the essential parallel constructs in Fortran 90 italic
and also the forall statement. We include the latter in Fortran 90D and can
illustrate its importance with a typical chemical reaction [Wu:90a], [Hipes:90a]
or potential calculation. This involves an “embarrassingly parallel” (Class III)
calculation of the values of matrix elements combined with (Class I) matrix
algebra (multiplication, inversion and eigenvalues). These two steps may be
represented respectively by the forall and natural parallel array constructs in
Fortran 90D. We need decomposition statements in Fortran 90D and these are
extensions of the LAYOUT and ALIGN commands of CMFortran. These in-
struct the compiler how break up (either statically or dynamically) the arrays
over the nodes [Fox:90n].
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Above, we have described how Fortran 90 provides a possible high level
language for Class I, and extensions may extend its utility into Class II. A major
goal is to examine further applications to understand which features cannot be
expressed in one of these ways and so provide a test suite of “skeletons in the
programming language closet”. These (like the irregular finite element and N-
body problems) are the applications for which we need new languages. We
do not really need new ways of expressing matrix multiplication and Laplace’s
equation; what we know now is sufficient. Nevertheless, many new language
projects are tested and perhaps motivated by these unrealistic problems. I hope
that our classification of problems and its refinement will focus the development
of parallel languages and environments on the difficult problems that need to
be solved.

We conclude by illustrating the parallelization of Fortran 90 for four small
Class I problems.

4 Experiments with Fortran 90 on MIMD Mul-
ticomputers

These results come from the joint project [Wu:90b] between Rice University

(Ken Kennedy’s group) and my research group at Syracuse. We are building a

library of problems designed to test languages and parallelizing compilers. For
each problem, we build several versions; in particular,

P1) Fortran 77
P2) Fortran 90D (CMFortran)
P3) Hand coded Fortran 77 + Message Passing

P4) “What we think a parallelizing compiler could produce for a MIMD mul-
ticomputer from Fortran 77 (P1)”

P5) “What we think a parallelizing compiler could produce for a MIMD mul-
ticomputer from Fortran 90 (P2)”

We are using the results of these experiments to build the compilers that
realize our expectations for P4) and P5). The Fortran 90D compiler is a collab-
oration with the ParaSoft Corporation.

Our results in Tables 3A, 3B, 3C, 3D are only preliminary but already in-
teresting.
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Coded F774+MP

Number of Processors
on iPSC2 Hypercube
1 2 4 8 16
P3) Original Hand | 85.4 58.1 31.1 16.0 8.42
Coded F77+MP
P5) F77+MP from | 80.0 50.2 26.6 13.8 7.72
Fortran 90
P3) Revised Hand 734 50.1 269 13.8 7.53

Table 3A. Gaussian Elimination (256 x 256 matrix)

Number of Processors
on iPSC2 Hypercube
1 2 4 8 16
P3) Hand Coded 71.7 359 17.9 8.98 4.83
F77+MP
P5) F77+MP from | 139.6 69.1 35.5 18.1 9.40
Fortran 90

Table 3B. N-body Simulation (1024 Particles)

Number of Processors
on iPSC2 Hypercube
2 4 8

1 16

P3) Original Hand
Coded F77+MP

P3) Optimized Hand
Coded F77+MP

P5) Optimized F77+MP
from Fortran 90

368 23.3 142 8.32 4.82

130 667 342 175 091

188 10.1 5.36 2.84 1.50

Table 3C. Fast Fourier Transform (16384 Points)
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Implementation Size Machine Performance
of Code (megaflops)
(lines)
Original C Code 1500 CRAY X-MP ~1
(1C.P.U))
P2) Fortran 90 600 CM-2 66
P5) F77 Produced by Hand 1500 CRAY Y-MP 20
from Fortran 90 (1 C.P.U.)
P5) F77+MP by Hand 1650 NCUBE-1 3.3
from Fortran 90 16 node
hypercube
NCUBE-2 20
16 node
hypercube
INTEL i860 80
16 node
hypercube

Table 3D. Climate Modelling Code [Keppenne:90a]

For a problem with a simple topology, LU decomposition in Table 3A, the
Fortran 90 code produced essentially as good a code as the direct Fortran 77+
Message Passing. Indeed, the “automatic” Fortran 90 procedure pointed out
a possible improvement in our handed codes F77+MP; this is the difference
between lines one and three of Table 3A. In Table 3B, our current automatic
approach for the N-body problem loses a factor of two compared to the best
parallel implementation; this is due to inefficient communication and one may -
need to change the Fortran 90 implementation to allow the compiler to optimize
this. In this sense, the user will need to understand some issues of parallelism,
even when writing “explicitly parallel” code as with Fortran 90. Note the ex-
ample in Table 3B is the simple O(N?) algorithm and not the more interesting
and challenging O(N(log N)) approach discussed earlier. In Table 3C, we find
a 50% degradation in performance on the FFT for the Fortran 90 approach.
This indicates that Fortran 90 does not optimally support the hierarchical data
structures found in the FFT. As already discussed, we expect that the final
Fortran 90D language will include new data structures—over and above the ar-
rays and vectors in Fortran 90. We already mentioned a possible “tree” data
structure needed for the Class II clustering approach for the N-body problem.
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Finally in Table 3D, we come to a “real”, albeit small in code size, problem.
The original climate modelling code has been used in production [Keppenne:89a]
on CRAY and SUN computers. We saw in this project, an interesting division
of labor. The first rewriting from C to Fortran 90 was performed by the applica-
tion expert. The further conversions into Fortran 77 and Fortran 77+ message
passing were performed by “computer scientists” without deep knowledge of the
application [Keppenne:90a]. In this case, we believe that no automatic method
could have parallelized the original C code, but that our planned automatic
approach would be able to perform the MIMD parallelization from Fortran 90.
The result of this project is a portable code running well on the CRAY, Con-
nection Machine and hypercubes. Note that we even improved the sequential
performance (line one vs. line two of Table 3D) by an order of magnitude. The
original C code made extensive use of pointers which had several repercussions.
It made vectorization hard on the CRAY; it made the code impossible to au-
tomatically parallelize as the “structure of problem” has expressed in dynamic
pointer values; it made the code hard to port except by the domain expert.

Our initial experiments are sufficiently encouraging that we believe that a
language like Fortran 90 will become an efficient vehicle for Class I applica-
tions. We also hope that it can be extended with higher level data structures
to accommodate the more complex “problem architectures” seen in Class II
problems.

5 Computational Science Education

The emergence of computation as a fundamental methodology implies major
changes in our educational system which will challenge our universities, com-
munity colleges, and schools in the next decade [Fox:900]. Computers are being
used in schools, even at the kindergarten level. This is necessary, but not suffi-
cient. We need not only to teach students how to program, but instill the un-
derstanding that computing is fundamental and will change the nature of both
their careers and their day to day life. Computing like the traditional reading,
writing and arithmetic is a key enabling skill whose use and understanding per-
meates all other activities. Looking at applicants for graduate school (in Physics
at Caltech), I saw few students who viewed computers as anything but a rather
tiresome tool. Why is this when most of them come from prestigious under-
graduate institutions where the very latest computers abounded? The reason
may be that such students are typically not given any courses that treat com-
putation as fundamental and exciting. They are taught by faculty whose vision
of computing comes from a time when computers were a useful but unexciting
tool. This will change.

The Federal High Performance Computing Initiative developed the concept
of interdisciplinary teams to tackle thé grand challenges and their implemen-
tations on parallel machines. This idea was part of my Caltech Concurrent
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Computation Program but interestingly enough, something else happened as
well. Namely, the majority of the research was performed by interdisciplinary
individuals who combined the skills of a computer scientist with those of an ap-
plication area such as Physics or Chemistry. It is this phenomenon that inspired
much of my thoughts on computational science. You may argue that “jack of
all grades, master of none” implies that interdisciplinary scientists are not com-
petitive. I believe this is a valid concern, but the negative conclusion can be
avoided. I propose that Computational Science should be an interdisciplinary
program with degrees given in the traditional fields. Undergraduates, Masters
or Ph.D. students will get degrees in the Computational Science Program such
as

e “Undergraduate degree in Physics in the Computational Science Program”
(in my point of view, this is a long way of saying an undergraduate degree
in Computational Physics)

e “Masters in Chemistry with a minor in Computer Science”
e “Ph.D. in Computer Science with a Masters Degree in Economics”

Computational Science students will need new curricula, and this will require
cooperation and understanding from the traditional disciplines. For instance,
the requirements for a degree in Physics within the Computational Science Pro-
gram may require fewer base Physics courses than the traditional Physics de-
gree, with this reduction made up by a set of computational courses. There are
typically electives in any set of course requirements and so these reductions in
the base (in our example, Physics) academic area need not be significant. In
some institutions and some departments, these changes may not be accepted,
and a different implementation of Computational Science will be needed. We
must gain experience as to what works and what doesn’t. Students will enter a
program in Computational Science with a variety of aspirations and skills. For
instance, freshman undergraduates may initially be interested in Physics, but
later decide to graduate in Computer Science. We need a good set of courses
to accommodate the different initial skills and allow a student to switch from a
focus on Computer Science to one on an application area—or vice versa. Not
only are such curricula in their infancy but, as found while teaching at Caltech,
the lack of relevant books is a severe handicap. We will develop the curricula,
books and the needed educational software.

A Chemist graduating from the Computational Science program will be well
grounded in Chemistry, but have a broad knowledge of Computer Science. The
latter will enable the Chemist to use computers and new computer science tech-
niques more effectively than a Chemist without the computational science back-
ground. Thus, he or she will be a better Chemist, and in this way the inter-
disciplinary scientist is not handicapped. A Computer Scientist graduating in
our new program will have a sound basis in Computer Science and an under-
standing of the computational needs and algorithms of one or more application
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areas. The latter knowledge will enable our Computer Scientist to develop bet-
ter compilers, debuggers and visualization aids because he or she understands
the needs of the applications. '

Thus, I believe that Computational Science is an exciting and viable area
which can be implemented within the existing academic framework. I intend
to pursue this vigorously at Syracuse. In particular, we will develop the new
courses (definition, notes, books, software). We will work with the international
community to establish common guidelines for the teaching of Computational
Science and build a consensus that it is important.

6 Conclusions

Technology has opened several new opportunities, both in research and educa-
tion. We are at the beginning of changes which will have profound implications
for academia, industry and society. Parallel computing, discussed here, is only
one part of this revolution.

I would like to thank Paul Messina and his colleagues, especially Almerico
Murli from the University of Naples, for their warm hospitality and an ex-
cellent conference. This work was supported by the Department of Energy:
Applied Mathematical Sciences—Grant: DE-FG03-85ER25009; Joint Tactical
Fusion Program Office; and the National Science Foundation under Coopera-
tive Agreement No. CCR-8809165 — the Government has certain rights in this
material.
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