The Finite Element Solution
of Elliptical Systems on a Data
Parallel Computer

Scott Hutchinson
Edward Hensel
Steven Castillo

Kim Dalton

CRPC-TR90084
August, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

THE FINITE ELEMENT SOLUTION OF ELLIPTICAL
SYSTEMS ON A DATA PARALLEL COMPUTER

Scott Hutchinson®
Edward Hensel?
Steven Castillo!
Kim Dalton?
1Department of Electrical and Computer Engineering,
2Department of Mechanical Engineering,
New Mexico State University, Las Cruces, New Mexico 83003
USA

August 14, 1990

Abstract

A study is conducted of the finite element solution of elliptic partial differential
equations on a data parallel computer. A nodal assembly technique is introduced
which maps a single node to a single processor. The system of equations is first
assembled and then solved in parallel using a conjugate gradient algorithm for to
unsymmetric, non-positive definite systems. Using this technique and a massively
parallel machine, problems in excess of 100k nodes are solved.

Results of electromagnetic scattering, governed by the 2-d scalar Helmholtz
equation, are presented for both an infinite cylinder and an airfoil cross-section.
Solutions are demonstrated for a wide range of object sizes. A summary of per-

formance data is given for a set of test problems.

1 Introduction

The finite element method is a versatile and general technique for solving partial
differential equations in geometrically complex domains. In spite of this versatility,
certain domains often present too great a computational task for conveational
computers. There will probably always be some problem of interest whose solution
is prevented by its shear size and the limitations of available computers. This is
one reason for the ever increasing need of greater computational power, both on
the leading edge of computer technology and on a per cost basis. In the past 10
years, the use of parallel computers (computers which use multiple processors)
has become a cost effective method for increasing computational resources.

This paper looks at the capabilities of a data-parallel supercomputer as ap-
plied to the finite element solution of an elliptic partial differential equation — the
9-d scaler wave equation. The particular computer used is Thinking Machines
Corporation’s Connection Machine 2 (CM-2). The CM-2 employs up to 64k (k =
1024) simple processors, each with 64k bits of memory. While the CM-2 has been
in existance for nearly 4 years, finite element algorithms for the CM-2 have been
few. One reason is that, as with all parallel architectures, techniques which may
be mature on serial computers must be altered and sometimes discarded in favor
of more applicable algorithms. This paper will show that this is especially true of
data parallel architectures if one wishes to approach both peak performance and
peak efficiency for finite element problems.

Work in finite elements on the Connection Machine has been done by Johnsson
and Mathur [9], Hutchinson, et al. [8], Cline, et al [2], Fonseca (3] and others.
This paper takes a new approach to the generation of the finite element equations
while solution of the equations is done using a parallelized version of the conjugate
gradient methods described by Hestenes and Stiefel [5] and Peterson [10].

In what follows, data parallel programming is introduced. Next, the governing

equation is given along with its finite element form. The implementation of the
finite element equations using a nodal assembly technique as well as their solution
on a data parallel computer is then described. Results and conclusions follow with

future research interests.

2 Data Parallel Programming

While developed on the CM-2, the techniques presented here may be useful on
a variety of data parallel or SIMD (Single Instruction Multiple Data) computers.
A brief introduction to some aspects of data parallel programming will Irelp in
understanding the techniques described in the following sections. In data parallel
programming, two concepts should be considered when developing algorithms for
a data parallel architecture.

First, in a data parallel architecture, one data element is ideally associated with
one processor. Computationally, each instruction is performed on each member
of a data set concurrently. This is in contrast to coarser-grained parallel com-
puters which typically divide computational domains into large segments and/or
distribute tasks among the processors. Because of a data parallel computer’s fine-
grain nature, the selection of an elementary data item is critical. Subdividing a
problem for data-parallel implementation should be done in a manner which pro-
duces high efficiency. An efficient algorithm is one which delegates the subtasks
or subdomains such that at all times, the full power of the machine is brought to
bear on the problem, i.e., the idle time of any processor is brought to a minimum.
Choosing a data item for which the complete processor set does not participate
in éach operation can be detrimental to a program’s efficiency [8].

Second, parallel computers depend on attacking a problem with multiple pro-
cessors to gain speed over their serial counterparts. They do, however, possess a
time consuming aspect which is absent in serial computers — interprocessor com-
munication. Keeping communication to a minimum and, where necessary, doing it
as efficiently as possible, will allow the architecture to realize its fullest capabilities.
In minimizing communication, the data item should be chosen such that separate
processes are as independent as possible. Dependency usually requires information

and, thus, communication. On an architecture whose processors are connected in

a hypercube arrangement, one method of speeding interprocessor communication
is to perform it only with a given processor’s nearest neighbor. Nearest neigh-
bor commupication is faster than random interprocessor communication for two
reasons. First, the address of the processor with which communication is taking
place need not be calculated or checked and second, there is no possibility of mes-
sage collision. The data item and associated data structure should lend itself to
minimal and efficient communication. Much of what is developed in the following
sections was based on these two basic ideas. Data structure and communication
are the keys to gaining performance in this type of algorithm development and
the two are not related.

3_ Problem Formulation

The finite element method is a numerical technique used to obtain an approxima-

tion to some boundary value problem

Ly=f (1)

over some domain with associated boundary conditions. In finite elements, the

domain is discretized and represented by the linear system
Ky =Db (2)

for the unknown, ¥ [7].
The Helmholtz wave equation governs the properties of time harmonic wave
propagation [4]. It is derived from Maxwell’s equations on the interaction of

electric and magnetic fields. The 2-d scalar Helmholtz equation takes the form
Vi + k=0 ©)

Boundary conditions on the problem are usually written as

%) = Cq on Linner 4)
ﬁ_zi_ = C, on [outer (5)

Solving for the scattered fields produced by a Transverse Magnetic (TM) po-
larized (the magnetic field is transverse to the direction of propagation) incident
plane-wave and considering a non-homogeneous media, the wave equation is writ-

ten
V. (ZI—VE’) + ki, E°=-V- (LI—VE‘) — kle, E* (6)
where the scattered electric field (E*) has replaced the ¥ of Equation (3). Here,

E' represents the incident plane wave as in figure 4 and ko is the free-space wave

number and is defined as
2%

ko = —
0 *

()

4

where)\, represents the free-space wavelength. Also, u, and ¢ are known as

the relative permeability and the relative permittivity, respectively, and may be

functions of position

e = pe(,)

& = &(z, y)
Although not of primary importance, Equation (6) is the governing equation ex-

plored in this paper. The development presented here is applicable to a wide class
of elliptic partial differential equations.

On T,...,, the normal derivative of the scattered fields is approximated with a

second order Bayliss-Turkel [1] absorbing boundary condition

OE* . G*F’
Sa = APE + B 5z (8)
where p and ¢ are the familiar cylindrical coordinates and
=3 +J 3 — k

a(p) = ¥ (_“f) (®)

ko
Bp) = 22 (10)

ke

for 3 = v/-1.

Cinner is taken to be a perfect electrical conductor, thus, the scattered fields

are known on the object to be

E’ = _E;:inner ° (1 1)

Cinner

Using these boundary conditions, the wave equation is discretized using a

Galerkin method of weighted residuals technique, yielding a standard linear sys-

tem

N, N,
> (K@) =3). (12)
e=1 e=1

The summation here is used to represent an assembly of the elemental quantities.

This is the standard method employed in most serial finite element programs. As

6

the next section shows, this assembly is not explicitly carried out in the technique

presented here, however it is equivalent and helps in the development which fol-

lows. Also, 9* represents a vector of scattered field values at the discrete nodal

points.

4 Data Parallel Implementation

As with all finite element programs, the algorithm may be divided into the fol-
lowing parts [9]:

e discretization of the problem domain into a mesh
e representation of the discretized problem domain as a computational domain

e generation of the system of equations representing interactions between the

discrete points in the computational domain

e solution of the system of equations to produce an approximation to the exact

solution at the discrete points in the computational domain

Thus, for each of the above portions, the parallel considerations listed in Sec-
tion 2 must be taken into account. Using this method, what is termed a nodal
basis technique has been developed for usage on data parallel ucﬁitectures. The
remainder of this section is a description of how the portions itemized above were

implemented in a data parallel fashion on the CM-2 using nodal mapping.

4.1 Discretization

To make use of fast nearest neighbor communication, it is necessary to use a
regular discretization of the physical domain. To facilitate the regular mesh, the
elements used here are first order two-dimensional quadrilaterals. When a physical
doma.fn representing two boundaries is discretized using these elements, it may be
“wrapped” into a 2-d torus or “O-grid” as in Figures 1 and 2.

For this algorithm, a mesh is generated in a conventional preprocessor and
read from disk by the controlling program. Each processor is given its required

geometrical information from the front end computer.

4.2 Representation

Subdivision of the computational domain into a finite number of relatively inde-
pendent domains for parallelization is a significant consideration in any parallel
implementation. On a data parallel computer, all active processors must execute
the same function on the data set. The problem of choosing the individual data
stemn has received some attention in the literature [9], (3], [8]. The choice of one
processor per element has been explored by the authors [8]. However, due in part
to the fact that the concept of an element does not naturally exist in the assem-
bled system of equations, this choice presents some problems in terms of parallel
efficiency. Johnsson and Mathur (9] also discuss this choice of elementary object
but actually implement a scheme based on a processor per node per element. The
Johnsson and Mathur method has distinct load balancing advantages when using
higher order elements.

As can be seen in Equation (12), Section 3, the system of equations is a nodal
representation of the discrete behavior in the computational domain, i.e., there is
a single equation for each node in the domain. From this standpoint, it is logical
to choose a data structure such that each processor is responsible for a single node.
An immediate advantage is that this structure can be preserved throughout the
program from discretization through solution. Further, in the case of the 2-d
regular mesh, it allows for nearest neighbor or NEWS (North, East, West, South)
grid communication throughout the program. A possible problem, however, exists
for first order elements in that processors representing boundary nodes may be

inactive during phases of the program.

4.3 Nodal Assembly

The mapping employed herein is one in which each processor is responsible for
a single node. In terms of the system of equations, each processor both gener-

ates and stores a given equation which describes that node’s interaction with its

surrounding nodes. This manner of generating the system of equations has been
termed nodal assembly.

In describing nodal assembly, it is helpful to define a node’s neighborhood
or nodal region. In a regular mesh of quadrilaterals, the nodal region may be
represented as in Figure 3. Here, node D has neighbors which may be designa.ted
as the South West neighbor, the South neighbor, the SouthEast neighbor, the
East neighbor, the NorthFEast neighbor, the North neighbor, the North West
neighbor and the West neighbor. Note that four of these nodes correspond to the
four directions in regular communication grid (North, East, West and South).
For an O-grid, there are always four elements surrounding node D, the South West
element, the SouthEast element, the NorthEast element and the North West
element.

Standard finite element formulations assemble each elemental set of equations
to produce the global system of equations. During this process, each row (nodal
equation) in the global system receives contributions from its elements, i.e., those
elements of which it is a node. For the mesh described above, each row in the
global system would have nine non-zero entries, one for each of the eight neigh-
boring nodes and a diagonal value. In nodal assembly, each processor executes
instructions which compute the coefficients of each non-zero entry in its row.

An example will illustrate the nodal assembly procedure. Each processor will

compute the following nine coefficients
SW, S, SE, E, NE, N, NW, W, D

which correspond to the left-hand side of the global equation for node D. Each

processor also computes the right-hand side value for its equation.

10

Referring to Figure 3, an elemental stiffness matrix is represented as
K(‘) K(e) K(e) K(‘)
(e) (¢) (e)
K’ K(e) Hos o (13)
K s1 Ksz Kiz Kag
K(e) K(e) K(e) K(e)

for each of the 4 elements adjacent to node D. For node D, the coefficients above

K®© =

may be computed from the entries in the neighboring elemental stiffness matrices:

SW = SW{
S = SWiJ+SE(]
SE = SEY)

E = SEQ+NEY

NE = NEY (14)
N = NE&+NWf
NW = NW{

W = NW+swE)

D = SWY+SES+NES+NWS3.

Here, the notation S Esg refers to the coefficient in row 4, column 3 of the SE
element’s stiffness matrix.

Thus, once an expression for the elemental stiffness matrices is developed, the
equations above may be used to generate row D in the global system of equations.
All processors concurrently generate their own equations. Since the elemental
stiffness matrices are dependent on the nodal locations of that given element, the
implementation described here requires that at some point in the computation

each processor obtain the location (z,y) of each of its 8 neighbors in the nodal

11

region. In this implementation, reading the mesh simply gives each processor its
own location as well as its boundary information. To determine its neighbors’

locations, 16 nearest neighbor communications are performed (8 z-locations and

8 y-locations). _

For boundary nodes, the appropriate computations can be made on those pro-
cessors. In this portion of the program, the remaining processors are idle. If
the required boundary condition computations are laborious, this can affect the

parallel efficiency of the program.

4.4 System Solution

A frequently chosen method for solving a sparse system of equations on a data
parallel computer is the conjugate gradient iterative technique. This type of solu-
tion algorithm has been used in nearly every algorithm which requires the solution
of some sparse system of equations on the CM-2. The main reason for this is that
the method is mainly a collection of matrix and vector operations — operations
for which a data parallel computer is well suited.

The basic conjugate gradient algorithm was given by Hestenes and Stiefel [5] for
use on symmetric, positive definite systems. Hestenes and Stiefel also presented a
method for any non-singular system of equations. The second technique is chosen

for the solution of the wave equation presented here. It is given as

Initialize:
ro = b—-Kiy (15)
Po = KTro _ (16)
Iterate:
c= Ll (17)
Vi = ¥i+api (18)

12

ripn = ni—aKp; (19)

IKTI‘£+1 ?
= TRE 0
Pit1 = K +bip (21)

where the choice of ¥} is arbitrary. Note that the system of equations represented
above by K is symmetric for the problem considered here and so K” need not be
computed. |

The nodal assembly and naming convention presented for the generation of
interaction coefficients also lends itself well to the solution phase. During this
portion of the program, each processor stores the interaction coefficients and forc-
ing coefficient associated with its represented node. In addition, it now stores
its corresponding entry in each of the vectors given in the above equations. This
scheme allows for an efficient method for performing the matrix and vector oper-
ations given in the solution algorithm, (15)-(21).

In Equations (15)-(21) there are 4 basic matrix and vector operations — 1) vector
addition/subtraction, 2) scalar-vector multiplication, 3) vector dot products and
4) matrix-vector products. Each of these operations is carried out in parallel as

described below.

¢ In performing the vector addition/subtraction, each processor, having an
entry in the appropriate vectors, computes its result. No communication is

required.

e The scalar-vector multiplications are performed by broadcasting to each pro-
cessor a copy of the front-end serial variable and multiplying within the pro-
cessor. A one-to-all communication is required for each processor to obtain

a copy of the serial variable.

¢ Computing the vector-dot products is done by first multiplying each vector

entry within its processor. A global reduction then sums each processor’s

13

result to a front-end serial variable. All-to-one communication is required to

perform this global reduction.

e The matrix-vector products are the most complicated operation performed
in the solution algorithm. It first multiplies all the non-zero coefficients
stored on each processor with the corresponding vector entries. Since each
processor has only its own vector entry, 16 (8 real and 8 imaginary) nearest
neighbor communications are necessary to obtain the other 8 vector entries
corresponding to the neighbors of node D. Once done, each processor sums

the results to its entry in the resultant vector.

Here, there are 3 vector additions/subtractions, 3 scaler-vector multiplications,
3 vector dot products and 2 matrix-vector multiplications per iteration. Since
the communication operations described above are few and, on the CM-2, are
optimized, the algorithm is highly parallel.

Note that, where required (matrix-vector products), the same interprocessor
communication pattern is used as was for the nodal assembly procedure. In ad-
dition, the proper data items required by the solution technique (i.e. interaction
coefficients and forcing values) are already in place on the processors. No further
assembly or communication is needed. These facts are not peculiar to the conju-

gate gradient method, but are applicable to most iterative solution strategies.

14

5 Results

The finite element techniques presented above for the solution of the 2-d scalar
wave equation have been implemented on the CM-2. The results presented in this
section were obtained from a program written in C-PARIS. Double precisien (64
bit) computations are now run using floating-point accelerators the CM-2 where
available. On other machines, only 32-bit accelerators are available and so any 64-
bit computations are done in software. All results here represent single-precision,
hardware arithmetic. Timings were obtained using the CM-2 timing facility.

Results for two different geometries are examined — a cylinder and an airfoil.
Both geometries are taken as perfectly conducting bodies infinite in the third
dimension. In the case of the cylinder, an eigenfunction solution was obtained
for program verification purposes with nearly indistinguishable results. In both
cases, the magnitude and phase of the total field results are presented.

The meshes in Figures 1 and 2 are much coarser than those used to obtain
results. Typical meshes used 32 nodes in the radial direction and up to 2048 nodes
in the circumferential direction. The number of nodes in each of the respective
directions was chosen to give in excess of 10 nodes per wavelength throughout the
problem domain.

There are many ways to evaluate both the utility and the performance of
any program. Further, depending on one’s viewpoint, the performance may take
precedence over the utility or vice-versa. From the engineering point of view,
increased performance over existing methods is required but must be coupled
with a degree of utility. While both these terms are subject to interpretation, the
remainder of this section will endeavor to provide results which demonstrate both
qualities.

Table 1 gives geometry and mesh information for the cases presented. The

virtual processor ratio gives the number of virtual processors that are assigned to

15

1 physical processor (see Section 2). The cylindrical case is a small (3-wavelength
radius) cylinder wrapped in a dielectric (¢, = 5.0) coating which extends 0.5A out
from the inner conducting cylinder. |

The airfoil problem is considered using NACA airfoil number 0010. The inci-
dent wave was taken as striking the leading edge of the airfoil at normal inci.dence.
Figures 7 and 8 show the phase and magnitude of the total scattered fields from
the airfoil.

The phase plots illustrate that lines of constant phase approach the perfect
conducting inner boundary at normal incidence. This follows from the boundary

condition that
Etan =0

on the boundary. The magnitude plots illustrate the total field for an incident
plane wave traveling in the z-direction. The total field becomes zero on the
boundary and displays a shadow region behind the conducting body.

Table 2 shows timing data for each case. Total program time is just that and
includes the reading of the mesh data and writing of results. For large problems,
this is a significant portion of the total program time. This is illustrated by
comparison with the fill and solve times. Future use of “in-place” mesh generation
on the processors will significantly reduce this time. The fill time represents the
time necessary to generate the finite element system of equations. This does not
include the calculation of the boundary conditions. The solve time represents the
solution time of the conjugate-gradient algorithrr.l-. It includes a single complex
matrix-vector multiply in the initialization phase of the algorithm as well as two
complex matrix-vector multiplies per iteration during the iterative phase. In the

cylindrical case, iterations were terminated based on a normalized residual of
r-
-l-—'—l <1074 (22)

The cylindrical geometry results in a relatively well conditioned stiffness matrix

16

with solutions that converge to the criteria above in much fewer iterations than
the number of equations.

Convergence for the airfoil problem was extremely slow. This can be partially
attributed to the fact that some of the quadrilateral elements in the mesh had
large internal angles leading to poor conditioning of the system. This occ:urs at
both the leading and trailing edges of the airfoil as seen in Figure 2. As these
angles approach 180 degrees, the two defining edges tend towards a straight line.
In the limit as the line becomes straight, the elemental equations become singular.

This problem was run for 131072 iterations (the number of equations in the
system) before being terminated. The normalized residual after this number of

iterations was
l_ll‘_l <1.35 x10™* (23)
|b]

yielding an acceptable result.

Table 3 gives MFlop (Million Floating point operations) performance charac-
teristics of the program. Each floating point operation, whether a multiplication,
division, addition or subtraction, is counted. Achieved as well as extrapolated
ratings are given for various portions of the program. Extrapolated ratings are
obtained by extrapolating the times on the given processor ratio to the same ratio
on a full 64k CM-2. This extrapolation assumes a perfectly parallel algorithm
while the solve portion actually contains some front-end communication which
does not scale exactly. However, previous research [2] shows that this commu-
nication does not greatly effect the time per iteration and so the scaled results
represent a very good approximation.

The largest MFlop rating achieved during the solve portion of the program
used the highest virtual processor ratio. This occurs because, although the cal-
culations in each virtual processor are slowed due to a sharing of the physical
resources, interprocessor communication becomes a simple memory swap for vir-

tual processors sharing a physical processor. This memory swap is faster than

17

nearest neighbor communication between physical processors and so communica-
tion time is reduced. In effect, doubling the virtual processors doubles the number
of floating point operations while the execution time is somewhat less than dou-
ble, resulting in more MFlops. Note here that this is not necessarily the optimum
program execution time. Using a higher virtual processor ratio than nec.essa,ry
will cause an increase in execution time even though the MFlop rating will go up.
For the fill portion of the program, the Mflop rating remains somewhat constant
(depending on the front-end availability and other factors) as the virtual proces-
sor ratio is increased. This is because the fill portion contains no interprocessor
communication and so doubling the number of floating point operations a given

processor must execute doubles the execution time.

18

6 Conclusions and Futuré Research

Using the nodal assembly technique, a finite element program is implemented
on a data parallel computer in a manner which allows the use of the same data
structure throughout the program, from fill through solution. Discretizatior using
this mapping is also possible. Nodal assembly mapping provides for a relatively

efficient program.

More importantly, the computational advantages described above allow the so-
lution of a larger class of problems. Specifically, the method permits the finite
element solution of scattering problems with geometries much larger than previ-
ously possible. This is also true of other finite element problems such as those

governed by Laplace’s and Poisson’s equations.
From the work presented here, conclusions may be drawn from several areas.

First, with respect to the nodal assembly implementation on the CM-2:

e Nodal assembly allows the mapping of one finite element node onto one vir-

tual processor. This mapping is maintained throughout the program.

e Using first order quadrilaterals and a regular mesh, the mapping may be

configured in a NEWS grid, allowing nearest-neighbor communication.

e The mapping described above will permit a maximum virtual processor ra-
tio of 16 under the current CM-2 memory limitations. On a 64k processor

machine, this allows a maximum of 1048576 nodes.

e Nodal assembly is inefficient when handling boundary conditions. This 1s
because only processors on a given boundary are active during this portion

of a program.

o Nodal basis mapping is well suited for use with a conjugate-gradient iterative

solution. All the matrix and vector operations can be computed with a

19

high level of concurrency. Nearest neighbor communication is again used in

performing the matrix-vector products.

" Second, considering the scattering-problem capability of the nodal assembly as

implemented on the CM-2: -

e The regular grid allows for the solution of 2 variety of shapes of interest in

the physical world.

o Taking the outer boundary to be a radial distance of 2 wavelengths from the
inner conductor and at least 10 nodes per wavelength, finite element solutions

for cylinders on the order of 100 wavelengths are possible.

With respect to the CM-2, several things need be said. First, although all
these examples were run on a machine with only a 32 bit floating point accelera-
tor, 64 bit accelerators are now available to allow double—precision floating-point
calculations in hardware. Thinking Machines estimates that double precision com-
putations in hardware take approximately twice as long as do single precision
hardare computations. On machines with only 32-bit floating point accelerators,
64-bit computations (software) and are about 20 times slower than the 64-bit
hardware results(13].

Second, the individual processor memory has been increased from 64k bits to
956Kk bits on some machines. This would effectively allow the solution of problems
with 4 times the number of nodes. The 64k bits of processor memory allowed for
a maximum virtual processor ratio of 16 for 1,048,576 nodes. The new memory
size would allow a virtual processor ratio of 64 for 4,194,304 nodes.

Further research into data parallel techniques and their use in the solution of
scattering problems is on-going. Currently, a study of the limitations of the ten
nodes per wavelength rule of thumb is taking place. Other areas which require
investigation include an extension to 3.dimensional finite elements, non-uniform

meshes which result from the discretization of multiply connected problem do-

20

mains, effectiveness of the absorbing boundary condition for both 2- and 3- dimen-
sional problems and convergence properties of the conjugate gradient algorithm
when a.pplied to complex geometries. Also, with respect to mesh generation, sev-
eral areas require investigation. These include parallel mesh generation, mesh
refinement techniques as well as control over specific element geometries. B

It is well known that the use of a pre—conditioner with a conjugate gradl-
ent solver can decrease the number of iterations required to achieve some re-
quired convergence criteria [14]. The algorithm used here does not employ any
pre—conditioning as this work was mainly directed towards the development of a
suitable mapping technique. Others [2], [9] have shown that a simple diagonal
preconditioner may be used on a data parallel computer without to much diffi-
culty. However, more research into the use of preconditioned conjugate gradients
on data parallel computers is needed.

Work on an nodal assembly algorithm for non-uniform meshes is currently un-
der progress. It is expected that this algorithm will lack some of the performance
of the one presented here. This is due to the fact that the nodes can no longer
be mapped onto the simple nearest neighbor communication grid and that, in the
case of the CM-2, all interprocessor communication will require the slower router
mechanism. Some idea of the comparison in solution times for conjugate gradient
algorithms using the two interprocessor communication schemes can be obtained
from [2] who shows a significant degredation in performance.

Parallel mesh generation would allow the each processor in a nodal-basis data
structure to compute its own location as well as its nodal region properties. This
means that the controlling program need only read in data which describes the
overall domain geometry. The amount of data would be much less than that
required by the current method which gives the location of each node. This
results in less disk storage and less program time spent doing disk I/O.

Mesh refinement techniques allow the program to alter the node distribution in

21

the physical domain. This permits more nodes to be allocated in regions where the
solution is expected to vary rapidly and fewer nodes in regions where the expected
solution is relatively constant. Thus, a better approximation to the exact solution

is obtained for a given number of nodes.

7 Acknowledgements

This work was supported by NSF grant # EET-8812958.

Computational resources were provided by Los Alamos National Laboratories,
Los Alamos, New Mexico and by the Northeast Parallel Architectures Center
(NPAC) at éyracuse University, which is funded by and operates under contract
to, DARPA, and the Air Force Systems command, Rome Air Development Center
(RADC), Griffiss AFB, NY, under contract number F30602-88-C-0031.

22

References

[1] A. Bayliss and E. Turkel, “Radiation boundary conditions for wave-like equa-
tions,” Communications on Pure and Applied Mathematics, 33,707-725.

[2] R. E. Cline et al., “Towards the development of engineering production codes
for the Connection Machine,” Proceedings of the Fourth Annual Conference
on Hypercubes, Concurrent Computers and Applications, to be published,
Monterey CA, 1989.

[3] A. Fonseca, “An adapted finite element method for massively parallel proces-
sors”, Proceedings of the Fourth Annual Conference on Hypercubes, Concur-

rent Computers and Applications, to be published, Monterey CA, 1989.

[4] R. F. Harrington, Time Harmonic Electromagnetic Fields, McGraw-Hill: San

Francisco, 1961.

[5] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solution
of linear systems,” J. Res. Nat. But. Standards, vol. 49, pp.409-436, 1952.

[6] W. Daniel Hillis, The Connection Machine, MIT Press, Cambridge, MA,
1985.

[7] K. H. Huebner and E. A. Thornton, The Finite Element Method for Engi-
neers, John Wiley & Sons, 1982.

[8] S. A. Hutchinson, S. P. Castillo and E. Hensel, “Solving 2-d problems on
the Connection Machine using the finite element method,” Proceedings o f the
5th Annual Review of Progress in Applied Computational Electromagnetics,
Monterey CA, 1989.

23

[9] S.L. Johnsson and K. Mathur, Data Structures and Algorithms for the Finite
Element Method on a Data Parallel Supercomputer, Technical Report CS89-1,

Thinking Machines Corp., 1988.

[10] A. F. Peterson, On the Implementation and Performance of Iterative_Meth-

ods for Computational Electromagnetics, Ph.D. Dissertation, University of

Illinois, Urbana, IL, 1986.

[11] A. F. Peterson and S. P. Castillo, «Differential equation methods for electro-
magnetic scattering from inhomogeneous cylinders,” IEEE Transactions on

Antennas Propagation, vol. AP-37, pp.601-607, 1989.

[12] Thinking Machines Corp. Connection Machine Model CM-2 Technical Sum-
mary, Version 5.1, Thinking Machines Corp., 1989.

[13] Thinking Machines Corp. Paris Re ference Manual, Version 5.2 Release Notes,
Thinking Machines Corp., 1990.

[14] Matriz Computations. The John Hopkins University Press, 1985.

List of Figures

5a

Sh

6a

6b

2-d Torus Mesh. e e e s s e e e e et e e ae e
2-d Airfoil Mesh. i o
Nodal Region of node “D” indicating nearest neighbor nodes and
adjacent elements oo oo
Open region scattering probler;l
Cylidrical magnitude: Total field magnitude for scattering from a
perfect electric conducting cylinder with a =3\ and b = 5\ and a
0.5 dielectric coating around the cylinder,e, =50
Cylindrical phase: Total field phase for scattering from a perfect
electric conducting cylinder with @ = 3A and b = 5A and a 0.5\
dielectric coating around the cylinder, ¢, =5.0

Airfoil magnitude: Total field magnitude for scattering from a per- -

fect electric conducting airfoil with chord length = 5) and b = 9.5).
NACAnumberis 0010ci oo n.
Airfoil phase: Total field phase for scattering from a perfect electric
conducting airfoil with chord length = 5) and b = 9.5A. NACA
numberis 0010 ittt

List of Tables

1
2
3

Test CaSES . & v v v i e e e e e e e e e e e e e e e e e e e
Timings . - .« « c i vt e e e e e e

MFlopratings ¢ ¢ v v v i v i it e e et

25

32

Figure 1: 2-d Torus Mesh.

Figure 2: 2-d Airfoil Mesh.

27

and adjacent elements

Figure 3: Nodal Region of node “D” indicating nearest neighbor nodes

28

Q2

€o&r(Z,Y)
pot(Z,Y)

routef

i
T™

HTM

Figure 4: Open region scattering problem.

29

31

Table 1: Test cases

Inner | Outer Num. Nodes ¥.P.

Case Radius | Radius [Circum. [Radial | Total | Ratio
Cylinder 3 5A 512 32 16384 2
NACA no. 0010 Airfoil | 5A™ | 9.5 1024 128 | 131072 8

* — a perfect electrical conductor wrapped with a 0.5 dielectric coating, ¢, = 5.0
+* — inner radius refers to chord length

Table 2: Timings

Time (sec.) Number
Case Total Fill Solve | Per Iter. Iter.

Cylinder | 112.07 | 0.06 | 36.62 0.018 2030
Airfoil

16732.02 | 0.61 | 12504.27 | 0.0954 | 131072*

* — Program terminated after the number of iterations equaled the number of
equations with the normalized residual < 1.35 x 10~

Table 3: MFlop ratings

Achieved MFlops | Extrapolated MFlops

Case [Fill | Solve Fill | Solve

Cylinder | 318 103 2545 823
Airfoil | 250 155 2003 1242

30

1.07

. 860

. 645

. 430

. 216

. 000818

Figure 53 : Cylidrical magnitude: Total field magnitude for scattering from a perfect electric
conducting cylinder with a = 3) and 4 = 5 and a 0.5\ dielectric coating around the cylinder,
& =50

31

180. _

140. |

Total field phase for scattering from a perfect electric conducting

Figure5b :Cylindrical phase:
5 and a 0.5) dielectric coating around the cylinder, ¢, = 5.0

cylinder with @ = 3 and b =

29

R

Ra0

R R R

RRRTE LS
"ToT TR NN

6303

X
. X X
£, X XD X XX XRX
X X IR K. XX %X XXX
XX <2 % %: tniad
NI 3 s 2y RS
X N

"

Figure 6a :Airfoil magnitude: Total field magnitude for scattering from a perfect electric

ducting airfoil with chord length = 5X and b = 9.5A. NACA number is 0010

. 986

.822

. 657

. 493

.329

. 164

con-

X RXRXRRXK
36 3¢ 2 X XRNK

oo
N,

2 «00

XRK
SRS

otedaedol
o&o&w&vo

32 CXRXNS
5 SRRRRRIKR
s soss

KAX>

|

0

60

RXXKKXK
B ety

AR RRAARHRL,

KA.
..*).vM 3

-140

.
0

irfoil

ing a

Total field phase for scattering from a perfect electric conduct

Figure6b ‘Airfoil phase

5\ and b = 9.5A. NACA number is 0010

with chord length

33

