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Abstract

A study is conducted of the finite element solution
of the partial differential equations governing two-
dimensional electromagnetic field scattering problems
on a SIMD computer. A nodal assembly technique is
introduced which maps a single node to a single proces-
sor. The physical domain is first discretized in parallel
to yield the node locations of an O-grid mesh. Next, the
system of equations is assembled and then solved in par-
allel using a conjugate gradient algorithm for complex-
valued, non-symmetric, non-positive definite systems.
Using this technique and Thinking Machines Corpo-
ration’s Connection Machine-2 (CM-2), problems with
more than 250k nodes are solved.

Results of electromagnetic scattering, governed by
the 2-d scalar Helmholtz wave equations are presented
for a variety of infinite cylinders and airfoil cross-
sections. Solutions are demonstrated for a wide range
of objects. A summary of performance data is given for
the set of test problems.

1 Introduction

The finite element technique is a method which allows
for the approximate solution of partial differential equa-
tions over some finite domain. Because partial differen-
tial equations govern various physical phenomena, the
technique has applications in many disciplines. Here, a
study is conducted of the finite element solution of the
partial differential equations governing two-dimensional
electromagnetic field scattering problems on a SIMD
computer.

First, the weak form of the continuous governing
equations are given. Second, the mapping of the fi-
nite element program onto Thinking Machines Corpo-
ration’s Connection Machine using nodal assembly is
described. Third, results are presented for a variety of
scattering shapes. Lastly, conclusions are drawn and
future research discussed.

2 Problem Formulation

The equations of interest are the 2-d scalar and vector
Helmholtz wave equations [1]. The equations are ap-
plied over an open region artificially truncated with an
absorbing boundary condition [2]. The scalar equation
1
V.—VE, +k3¢E, =0 (1)
Hr
governs the transverse magnetic (TM) normal incident
case and the vector equation
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governs the TM oblique incident case. H represents
the unknown magnetic field and E, represents the z-
component of the unknown electric field. Each case
can be written

E, =
H =
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(3)
(4)
where E! and H' represent the known incident fields

while E2 and H* are the unknown scattered fields (Fig-
ure 1).
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Figure 1: Open region scattering problem.

Applying the Galerkin technique, the scalar equation
is written
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where the unknown is the scattered electric field and
the vector equation is written

(5)
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where the unknown is the total magnetic field. In each
case the Bayliss-Turkel radiation condition has been ap-
plied to satisfy the Neumann boundary condition on the
outer boundary.

In order to obtain the final finite—element form, these
equations are discretized and presented as a linear sys-

tem of equations
Ku=b )

for u the unknown.

3 Nodal Mapping

The SIMD computer used is Thinking Machines Cor-
poration’s Connection Machine 2 (CM-2). Briefly, the
CM-2 is described as a SIMD (Sequential Instruction
Multiple Data) or data parallel type of parallel com-
puter. This means that each computer instruction oper-

- ates on data stored in a processor array. Each processor

in the array holds a single data item. The CM-2 may be
configured to have up to 64k (k=1024) physical proces-
sors each with its own local memory. Computationally,
each physical processor may be subdivided into some
number of virtual processors where the computational
resources of the physical processor are shared among its
virtual processors. The virtual processor ratio, then, is
the ratio of the number of virtual processors assigned
to each physical processors and must equal an integer
power of 2. For a more complete description, see (3]

While SIMD computers have been in existence for
a number of years, finite element algorithms for them
have been few. One reason is that, as with all parallel
architectures, techniques which may be mature on serial
computers must be altered and sometimes discarded in
favor of more applicable algorithms. This paper intro-
duces a new nodal basis mapping of the finite element
algorithm onto the CM-2.

One difficulty with implementing finite element algo-
rithms on a SIMD computer is the choice of the data
item. To achieve a relatively high level of efficiency
as well as to limit communication, a data item which
may be maintained throughout the algorithm is desir-
able. Typically, finite element algorithms operate on
an elemental level during the calculation of the system
of equations and then assemble these elemental equa-
tions to a global set of equations which exist on the
nodal level. This global set of equations is then solved
to yield results at the nodal level. This may be seen
as having two different data items during different por-
tions of the program and previous implementations of
this mapping on the CM-2 have proved inefficient (4],
[5]. To avoid this inefficiency, an algorithm which uses
a nodal level data set throughout the program has been
developed for use on the CM-2. While the solution on
the nodal level remains basically the same as previous
finite element algorithms on the CM-2 [6), (7], the cal-
culation of the system of equations is done on the nodal
level using what has been termed nodal assembly.

3.1 Mesh Generation

The nodal-basis mapping assigns a node to a processor.
This mapping is maintained throughout the program,
from discretization through solution. During discretiza-
tion, each processor calculates its position in the prob-






lem domain based on information which describes the
domain geometry. Each processor also determines its
boundary status. To enhance the speed of the program,
a parallel O-grid mesh generator is used to generate
meshes. The O-grid meshes allow the use of nearest
neighbor (NEWS) communication grid while the par-
allel mesh generation means that only geometry data
need be specified on a front-end preprocessor.

A mesh is generated by the set of points formed by
the intersection of the lines of a boundary conforming
curvilinear coordinate system. The problem of inter-
est is a two-dimensional, multiply-connected, arbitrary
region with specified inner and outer boundaries. The
boundary values are specified in cartesian coordinates
(z,y) and are transformed to curvilinear coordinates
(s,t). In the transformed region, algebraic interpola-
tion is used to generate the physical cartesian coordi-
nates (z,y). See [8] for a complete description.

3.2 Nodal Assembly

The nodal assembly technique makes use of the concept
of a nodal region which contains a given node and its
neighboring nodes and elements as in Figure 2. Each
processor simply calculates the local interaction coeffi-
cients associated with its row in the global system of
equations as well as the forcing value. Since the in-
teractions are local, nearest-neighbor communication
is used. This portion of the algorithm is somewhat
inefficient in applying boundary conditions since only
processors which represent boundary nodes are active
during this phase of the program. However, this may
only be slightly detrimental to the overall efficiency of
the program if the boundary-condition calculations are
not too laborious.

3.3 System Solution

Once calculated, the system of equations is solved us-
ing a conjugate-gradient based algorithm [9]. Conju-
gate gradient algorithms have been used previously on
the CM-2 for the solution of linear systems [6], [7].
This is because they are a collection of various matrix
and vector operations which can be performed with a
high level of concurrency. Further, in the case of a
regular grid, all the system coefficients represent local
interactions and so any interprocessor communication
will be nearest neighbor. Thus, communication is also
optimized using this solution technique. However, in
contrast with previous finite element algorithms on the
CM-2, the conjugate gradient algorithm used here is
one which must handle a complex-valued, non-positive
definite system of equations. It is given as

Figure 2: Nodal Region of node “D” indicating nearest
neighbor nodes and adjacent elements.

Initialize:
ro = b—Kug (8)
po = KTro (9)
Iterate:
| KTr; 2
aG = — 10
* | Kp; |2 (10)
i1 u; + a;p; (11)
Ti41 r; — a;Kp; (12)
| KTrig |2
by = ———— 1
pi+1 = KTriy+bipi (14)

where the choice of ug is arbitrary. Note here that the
matrix-transpose implies the conjugate-transpose.

Figure 3 is a flow chart of the finite element program
as implemented on the CM-2.

4 Results

The method described above has been implemented on
the CM-2 using the C-Paris (PARallel Instruction Set)
programming protocol for the Connection Machine [10].
This program was used to obtain results for the solu-
tion of electromagnetic wave scattering from a variety
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Figure 3: Flow chart for CM-2 nodal-basis finite ele-
ment program.

of 2-dimensional objects. Table 1 gives some test prob-
lems for scattering from perfect electric conducting ob-
jects. The first 4 cases are all cylindrical shapes for
which a semi-analytical solution is available for accu-
racy verification. The last case is an airfoil with NACA
number 0010. All floating point calculations are done
using 32 bit arithmetic and the floating-point acceler-
ation hardware available on the CM-2. The conjugate
gradient algorithm was halted when the following was
satisfied
| ri |
Ib|
Figures 4 — 13 represent magnitude and phase plots
of the fields for the cases listed in Table 1. In each case,
the incident plane wave is taken as traveling in the z-
direction. The total field magnitude becomes zero on
the boundary and displays a shadow region behind the
conducting body. The phase plots illustrate that lines
of constant phase approach the perfect conducting inner
boundary at normal incidence. This follows from the
boundary condition that

< 10~* (15)

Etan=0

on the boundary.

Table 2 gives timing and Megaflop ratings achieved
on the same problems. All timing results were obtained
using the CM timing facility. As Table 2 illustrates,
projected floating point computations from 200-400
MFlops have been achieved during both phases of the
algorithm. Further, the MFlop ratings extrapolated to
the same virtual processor ratio run on a full 64k CM-2

Figure 4: Case 1 magnitude: Total field magnitude for
scattering from a perfect electric conducting cylinder
with a =3) and b = 5)

Figure 5: Case 1 phase: Total field phase for scattering
from a perfect electric conducting cylinder with a = 32
and b =52
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Figure 9: Case 3 phase: Total field phase for scattering

from a perfect electric conducting cylinder with a = 10X from a perfect electric conducting cylinder with a = 102
and b = 14\. Twice the nodal density was used in both

and b = 14\
the radial and circumferential directions as for Case 2

Figure 7: Case 2 phase: Total field phase for scattering
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show capabilities on the order of 1.5 GFlops for both
portions. The finite element mapping described above
will allow the solution of problems in excess of 4 million
nodes on a fully configured CM-2 with the larger 256-
kbit memory chips. Because of this capability, objects
of electrical sizes (dimension in terms of wavelengths)
exceeding 100 wavelengths may studied using the finite
element method. This has not previously been possible.

Figure 14 shows a plot of the ‘relative speedup” -

demonstrated by the Fill and Solve portions of the pro-
gram. This “relative speedup” is defined as

tminp (16)

rsp =
np

where tminp is the execution time of a given problem
on the minimum number of processors possible (highest
virtual processor ratio) and t,, is the execution time on
some number of processors. Note that the graph illus-
trates the speedup over the largest possible range of
these ratios for this program using a CM-2 with pro-
cessor memories of 64k-bits.

= Tanefler Speedp
O FllSpetp
=+ Theoreical Speehp

Figure 14: Relative Speedup.

Table 1: Test cases.

Num. Nodes V.P.

Case a b irc. | Radial | Total | Ratio
1 3N 5A 512 32 16384 1
2 10| 14 X | 1024 64 65536 4
3 10| 14 X | 2048 128 262144 16
4 300 | 321 | 2048 32 65536 4
5 5A* ] 9.5\ ] 1024 128 131072 8

+ — the chord length of the airfoil was taken as 5A.

Table 2: Timings and Mflop ratings for the above cases.

Time (s) MFlops
Case | Fill Solve Total Fill | Solve
11005 33.52 | 113.25 | 365 | 211
5 1017 | 137.88 | 314.65 | 430 | 322
3 10.78 | 1811.82 | 1967.79 | 375 | 399
2 | 0.17 | 125.24 | 224.72 | 430 | 318
5 | 0.32 - 6798 | 457 | -

Table 3: Mflop ratings extrapolated to the virtual pro-
cessor ratio implemented on a full 64k processor CM-2.

[T VP | Projected MFlops
Ratio | Fill Solve
1 1461 846
4 1719 1289
16 1500 1596







5 Conclusions and Future Re-
search

Using the nodal-assembly technique, a finite element
program is implemented on a data parallel computer
in a manner which allows the use of the same data
structure throughout the program, from discretization
through solution. Nodal-assembly mapping provides
for a relatively efficient program.

From the work presented here, conclusions may be
drawn.

¢ Nodal assembly allows the mapping of one finite el-
ement node onto one virtual processor. This map-
ping is maintained throughout the program.

o Using first order quadrilaterals and a regular mesh,
the mapping may be configured in a NEWS grid,
allowing nearest-neighbor communication.

¢ The mapping described above will permit a max-
imum virtual processor ratio of 16 under the cur-
rent CM-2 memory limitations (64k bits per pro-
cessor). On a 64k processor machine, this allows a
maximum of 1048576 nodes.

¢ Nodal assembly is inefficient when handling bound-
ary conditions. This is because only processors on
a given boundary are active during this portion of
a program.

o Nodal basis mapping is well suited for use with a
conjugate-gradient iterative solution. All the ma-
trix and vector operations can be computed with a
high level of concurrency. Nearest neighbor com-
munication is again used in performing the matrix-
vector products.

With respect to the CM-2, several things need be
said. First, although all these examples were run on
a machine with only a 32 bit floating point accelera-
tor, 64 bit accelerators are now available to allow dou-
ble precision floating point calculations in hardware.
Second, the individual processor memory has been in-
creased from 64k bits to 256k bits on some machines.
This would effectively allow the solution of problems
with 4 times the number of nodes. The 64k bits of pro-
cessor memory allowed for a maximum virtual processor
ratio of 16 for 10485760 nodes. The new memory size
would allow a virtual processor ratio of 64 for 41943040
nodes.

Further research into data parallel techniques and
their use in the solution of scattering problems is on-
going. These include an extension to 3-dimensional fi-
nite elements, effectiveness of the absorbing boundary
condition for both 2- and 3-dimensional problems and

convergence properties of the conjugate gradient algo-
rithm when applied to complex geometries.

Also, with respect to mesh generation, several ar-
eas require further investigation. These include par-
allel mesh generation, mesh refinement techniques as
well as other interpolation schemes. Mesh refinement
techniques allow the program to actively alter the node
distribution in the physical domain. This permits more
nodes to be allocated in regions where the solution is ex-
pected to vary rapidly and fewer nodes in regions where
the solution is expected to be relatively constant. Thus,
a better approximation to the exact solution is obtained
for a given number of nodes.
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