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Abstract

Physical Computation embraces a variety of physical analogies used
to tackle non-traditional problems. We describe Monte Carlo and de-
terministic methods, including simulated annealing and neural networks.
Applications include economic change in Eastern Europe, the travelling
salesman problem, vehicle navigation, track finding, and parallel computer
load balancing.



1 Introduction

Physical Computation encompasses a variety of ideas that can be loosely clas-
sified as the use of physical analogies or methods from the physical sciences to
problems outside heir normal domain of applicability. One example is the use
of simulated annealing (an idea from physics) to chip routing and placement
[Kirkpatrick:83a] (a problem in optimization). Another is the use of neural net-
works (an idea from biology) in learning and pattern recognition (problems in
computer science, robotics, etc.). Again, we will show an example of cellular
automata (an idex from physics) applied to social change in Eastern Europe (a
problem from economics).

The Santa Fe [nstitute and its articulate spokesman Gell Mann has defined
the concept of a complex system.

«The Need for New Options in Education and Research”

“The transformation of society by the scientific revolution of the 19th
and 20th ceaturies is about to be overshadowed by even more sweep-
ing changes arising from a growing ability to understand the complex
mechanisms which are central to human concerns. The technology
base of the new revolution will be provided by almost unimaginably
powerful computers together with the mathematical and experimen-
tal tools ani associated software which are essential to achieving an
understanding of complezily. Complez systems contain large num-
bers of coupled elements. The strength of the interaction between
elements varies with time, space, and the nature of the surround-
ing environ.ment which may also change with time. Such systems
can adapt to their environments. Examples of adaptive, complex
systems include biological evolution, learning, and neural processes,
intelligent computers, protein chemistry, much of pathology, and
medicine, human behavior, and economics.”

It is becoming increasingly evident that understanding complex
systems demands mutually supportive research conducted by schol-
ars representative of a broad spectrum of the intellectual community
ranging from mathematics and the natural sciences to the human-
jties. Socicty must find new ways to nurture the necessary conver-
gences of zcademic disciplines and other critical resources. Present-

day acadernic institutions are not well designed to meet this increas-
ingly urgent need”.

We can view physical computation as the use of physical methods to describe
general complex systems. Note that as used here, “physical” means “pertaining



to nature” and is broader than just physics. However, this field is particularly
relevant as physics has studied large complex systems, albeit those obeying
Newton’s and other basic laws of physics. For example, in thermodynamics, we
find a theory describing large systems in a way that is insensitive to irrelevant
microscopic detail. A key feature of physical computation is approaches that
naturally tackle large problems; we can anticipate a growing role for physical
computation as the growing power of computers allows the simulation of larger
and larger systems. Traditional methods (for optimization) have time com-
plexities that scale exponentially in problem size while physical computation is
often essentially linear. The factor of a thousand in computer performance im-
provement, expected by the year 2000, makes little impact on an exponentially
complex algorithm; however, it implies a revolution for a linear time complexity
algorithm.

Optimization is an important applicant of physical computation and Simic
originally introduced the term physical optimization [Simic:90a]. Indeed, most
physics laws can be formulated variationally as an optimization problem while
nature is also involved in optimization. Thus, in the long term, the evolution
of the human race is maximizing perhaps some combination of survival and
happiness. In the short term, we interpret visual and other sensor information
optimally according to our prejudices and experience. These last two analogies
lead respectively to genetic and neural net approaches to optimization. Simu-
lated annealing minimizes the (free) energy by Monte Carlo methods and later
we will see elastic net and deterministic annealing approaches to optimization.
These correspond to non-statistical variational methods from physics applied
to optimization. Maximum entropy or information theory leads to similar ap-
proaches based on analogies from an engineering field.

Above, we listed several ideas that we collectively call physical optimization.
They can be contrasted with other methods for optimization. Heuristics can
be considered as an approach motivated by the problem; combinatorial opti-
mization as one from mathematics, and expert systems as one from computer
science.

There is no universally good approach to optimization. Each method has
different trade offs in robustness, accuracy, speed, suitability for parallelization,
and problem size dependence. For instance, neural networks do simple things
on large data sets and parallelize easily while expert systems do complex things
on small data sets and parallelize with difficulty. In nature, we see at least
four approaches combining to solve the problem of survival. On the long term,
a genetic algorithm is used to evolve people to maximize survival. On the
short term, we wish to avoid being eaten by a lion. A relatively simple low-level
vision network with largely local connections is used to process the initial image.
A learning (learned) back propagation like network may be used to distinguish
various animals in the scene. A high level, possibly expert system like, reasoning
is used to optimize escape procedures after the lion has been identified.



We also note that physical analogies tend to be fundamentally imprecise;
when applied to optimization, they find approximate and hopefully good solu-
tions, but not the best. Combinatorial optimization aims for the exact solution.
In practice, approximate solutions to large real world problems are all that is
required and, indeed, all that is warranted by imprecise data.

In the next section, we describe a novel cellular automata approach to un-
derstanding society. The majority of the paper is devoted to optimization and
Section 3 describes the basic ideas of physical optimization. Initially, we de-
scribe deterministic annealing for clustering in Section 4; and ncural nctworks
and simulated annealing for the travelling salesman problem, computer load
balancing, and vehicle navigation in Section 5. In Section 6, we develop the
elastic network and its relation to neural networks for the same applications. In
Section 7, we show that track finding may be tackled by difference approaches in
different regimes differing in track and noise density. The final Section 8 looks
to the future.

2 Physical Analogies in Complex System

As mentioned in Section 1, thermodynamics and statistical physics has taught
us how to understand large systems built out of many particles interacting with
nature’s laws. One may speculate that similar behavior may be exhibited by
large complex systems made of members linked in ways distinct from tradi-
tional physics. As described in Chapter 3 of [Fox:88a], [Fox:86a], [Fox:85a) and
[Fox:88tt], we successfully applied these ideas to decomposing problems onto a
multicomputer. VVe were able to introduce a concept analogous to temperature
and observe phase transitions between different types of problem decomposi-
tions onto the cornputer. We are currently experimenting with such an analogy
for society viewed. as a complex system of interacting people. In particular, we
are exploring the idea that the recent changes in Eastern Europe can be viewed
as a phase transition. These are seen in physical systems possessing more than
one stable state idealized in Figure 1 with two states m; and m, whose free en-
ergy takes a value F;()\) as a function of parameter A. For a magnetic material,
A could be the sirength of the external magnetic field or it could refer to an
internal coupling strength. For one value A = A,, m; may be the equilibrium
state, but as \ varies one may find Fi(A) > F2(X\y) with a transition Ar in
between )\, and .\ so that my is the ground state. One also sees the effect of
“supercooling” where system is in the wrong (higher energy) state until a slight
disturbance causes it to find its true equilibrium.

We chose to model Eastern Europe not as a bunch of people, but rather

in terms of geographical cells as idealized in Figure 2 [Fox:90l). In a serious
simulation, one might cover (Eastern) Europe by a set of some 10° cells. Each
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Figure 1: The free energy as a function of system configuration.

cell holds a single spin s; where at the crudest level;

s; =+1 if cell is communist
s; = —1  if cell is capitalist (1)

We model society as governed by a Hamiltonian H that is a function of each
s; where i runs over all the cells. One can speculate on suitable terms to include
in H. One possible term would be a nearest neighbor interaction:

Hi=-h) sisj ©))

(i5)
where the interaction between i and j with a positive Jy tends to force s; and
s;j to line up in order to minimize H;, i.e., Eastern Europe is a ferromagnetic
material. In an unsophisticated culture, only neighboring i and j are linked
in Equation 2 but with an ever increasing fashion, the information revolution
(phones, TV, networks) links i and j at geographically distant points. Another

interesting term would be

Hs=-Js ) si- (3)

i

This is an external field in the physics analogy with, for instance, the “Voice
of America” broadcasts contributing a negative Js tending to force the s; to
negative (capitalist) values. The current model is completed with boundary

5
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Figure 2: A Cellular Automata model for Eastern Europe.

conditions at Western Europe; a set of distactor spins dq — “the Warsaw Pact”
— which couple to each other and to the people s;; impurity spins “Gorbachev”,
“I,ech Walechsa”; and a temperature representing the size of internal fluctua-
tions allowed by the government.

This model is qualitatively reasonable with different societies (US.A. vs
present day China vs. Eastern Europe today vs. medieval feudal Europe)
showing quite different parameter values.

" A different approach to such systems is in terms of chaos and attractors from

non-linear dynamical systems [Stein:89a). The relation and relative merits of
the two approaches is not clear. Both neural networks (~ cellular automata)
and dynamical system models can provide good extrapolations of the time series
produced by such complex systems.

3 Physical Optimization
Suppose we wish to minimize

E = E(parameters y) (4)
where the parameters y can be continuous, discrete or a mix. We introduce a

fake temperature T and set B=1/T;in particular cases, we will have a simple
physical interpretation of T as, for instance, the scale or granularity at which
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Figure 3: Schematic of the free energy F(T) at a set of temperatures
0~Th <T2<T3<T4~OO.

the problem is formulated. A state of the system is labeled by y and to each
state we associate a probability

—PEQ@
Pr(y) = 7
where Z = ZPr(_q) ()
¥

As T — 0 or f — oo, the minimum y_.. of E dominates in Z and the
probability of this state tends to unity. The Pasic idea in annealing is to find
the minimum y_. (T) of F(T) for T ~ 0 by tracking Ypin(T) from high to
low temperatures. Here, F = E—TS is the free energy expressed in terms of
original energy E and entropy S. We have some reasons to believe that y_. (T)
is continuous in T. Then, this continuation technique should avoid local minima,
such as the one shown on Figure 3, as it is easy to find true global minima at

high temperatures.
We will describe in the following, four different methods for finding y . (T)
and tracking it with temperature.



1. Simulated Annealing: We find l’sa.mple(T) by Monte Carlo as either

a mean or & representative of configurations at temperature T. As both
the mean and a representative have the same limit as T — 0, we can
use either. This method is the best known and currently most reliable
physical optimization method [Kirkpatrick:83a]. We view it as the stan-
dard of excellence for the three alternative and less well-known methods
that we will discuss in this paper. From the point of optimization the-
ory, the other methods are faster as they avoid costly Monte Carlo steps
but less reliable, i.e., they are less successful in avoiding local minima.
All the methods have the disadvantage that they cannot in practice ei-
ther guarantee achieving a true global minima or estimate the quality
(F(Ymin(found as T — 0)) — F(Ymin(true))) of solution. Experience has
shown that several of these methods give very reliable answers, near to
the true minima, for a variety of problems. We remember that these are
methods designed to find approximate and not exact minima.

9. Deterministic Annealing: Here we just choose a simple heuristic to
minimize F'(T) at temperature T [Rose:90f] where one starts with an ini-
tial guess for temperature T as the minimum y_.. (T'+6T) at higher tem-
perature. This is most effective for cases where y is low dimensional, i.e.,
we only have a few degrees of freedom. This can be achieved in some cases
by summin;z over all except a few critical components of y. We discuss this
in Section 4. The deterministic approach is familiar in Chemistry where
particle dynamics and Monte Carlo are both used to find the ground state
of a complex molecule. The atoms in the molecule are often found experi-
mentally — say from NMR measurements—and the annealing minimizes a
potential containing both physical forces and artificial terms representing
agreement of the model with the data. This can be viewed as physical com-
putation acldressing the optimization problem “what molecule best fits the
experimental data and is consistent with Chemistry” [Brooks:83b). A sim-
ilar idea underlines the molecular dynamics approach to Quantum Chro-
modynamics Lattice Simulations [Gottlieb:87a], [Duane:86a}, [Duane:87a).

3. Neural Networks: [Hopfield:85b], [Hopfield:86a] This could, and prob-
ably does, have deep biological significance but here we can “Just” view
this methcd as a calculation of an approximation to y_. (T') using the
mean field approximation in the case where y is discrete. We discuss this
in Section 5.

4. Elastic Network: [Durbin:87a] We can view this as a similar approach
to that of neural networks where an improved mean field strategy is used
"that incorporates some of the constraints which are used as penalty terms
in the neural network method. We discuss this in Section 6.

We illustrate these general ideas with examples in the following sections.



4 Deterministic Annealing for Clustering

Consider a set of data points z which we wish to associate into clusters. This
type of problem comes up in many applications, but here we will consider physi-
cal clusters in a two-dimensional space such as the 360 points shown in Figure 4
and generated by four clusters [Rose:90a), [Rose:90d].

For each data point z, we assign an energy E:(j) (cost) for it to belong to
the cluster j with mean y;. We sum over the uninteresting variables that specify
the assignment of z to one of the N clusters. Then the partition function is

N,
z = J[D_exp[-BE=(K)] (6)
z k=1
and the free energy F = —-;- log 2 (1
If the clusters were due to Gaussian fluctuations then we can take
E:(§) = l= = y;° (8)

and now the cluster centers are determined by the deterministic annealing con-
dition
oF _ 0 )
dy;
which gives the implicit equation
Y.z Pr(z in cluster j)
T

Yi= 3 Pr(z in cluster j) ’ (10)

where y; also appears on the right hand side from the expression for the prob-
ability;
- — 12
Pr(z in cluster j) = Nexp Alz — yj] (11)

kzl exp —flz — we[?

We can solve the implicit equation iteratively starting with
y;j (T = o0) = mean of all z’s (12)

and gradually reducing the temperature T'. y; (T + 8T) is used as a starting
point to find y;j(T). Note that Equation (10) surely has many local minima
but these are avoided by the annealing as we can rigorously find the global
minimum at high temperature and track it down with lowering temperature.
This particular example has a striking pattern in its temperature dependence.
At high temperature, all the clusters are degenerate with the same y;. As



L4 .o: °
hd % . . -l
e o
L “‘ .
e® o ':' ®
-e .
o % & @ - °°
N N .o"
b e® 0 0 o ° -
o © o o -
e oo 'y
2

Figure 4: Deterministic Annealing Clustering of four clusters. The lines are the
decision boundaries. The final beta is 0.1, and the final energy is 30.05. O—
computed cluster mean. X—center of cluster random generator [Rose:90a].
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is increased, one finds a critical temperature (B) at which the clusters break
into two sets—again the members of each set have identical y; [Rose:90c]. This
is shown in Figure 5 with transitions corresponding to 1-2-3—4 and finally 18
clusters. We can understand this because T%/2 is proportional to the distance
scale at which the system is observed. Indeed, one can view temperature as the
Lagrange multiplier needed when entropy is maximized at fixed cluster variance,
i.e., a fixed distance scale. Lowering T corresponds to looking at a finer and
finer scale and so we need to specify a minimum interesting T'. The 18 clusters
found in Figure 5 correspond to looking inside the four real clusters. Figure 4
shows that very good results are obtained by this method.

In this application, annealing is equivalent to a multiscale approach; we
initialize the fine scale optimization with the results of a coarse scale analysis.
The utility of this approach is known in many fields including the well known
multigrid method for particle differential equations. It also has been applied to
vision by Terzopoulos [Terzopoulos:83a], [Terzopoulos:86a}, [Battiti:90b].

5 Neural Networks for Optimization

These were first introduced for the Travelling Salesman Problem (TSP) by Hop-
field and Tank [Hopfield:85b], [Hopfield:86a] and although the method is not
very effective in this application [Wilson:88a), the basic ideas are important for
a range of problems. We will set up the formalism for the TSP and then show
how it can be applied to parallel program decomposition (Section 5.2) and navi-
gation (Section 5.3). The application in Section 5.2 is very successful for reasons
we will be able to identify, but for the examples in Section 5.1 and Section 5.3,
neural networks do not perform well. However, in Section 6, we will give the
elastic network extension which gives good results for the TSP and navigation.
In the final Section 7, we show that track finding naturally uses either elastic
and neural networks but in different domains of the parameter values.

For the point of view of deterministic annealing, elastic and neural networks
are similar. They both use mean field approximations to the free energy and
deterministic methods to solve the resultant equations.

5.1 The Traveling Salesman Problem

Consider a set of N cities labeled by the integer p=1...N and illustrated in
Figure 6. We wish to visit each city once and once only in a tour that minimizes
the total distance travelled. We let i = 1... N label successive steps of the tour
with p = P(i) labelling the city visited at the i’th step. Then we need to
minimize

N-1

> dpgy pi+1) (13)

=1

11
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This assignment (i — P(i)) is the classic NP complete discrete optimization
problem [Papadimitriou:82a] which is often used as the standard benchmark for
discrete optimization methods. The following examples make it clear that the
TSP is not necessarily typical of all such problems and methods that perform
poorly on the TSP work well on other (NP complete) optimization problems.

We introduce the neural variables

1;; = 1if p= P(i)
= 0if p# P(3) (14)

and we rewrite Equation (13) as

E, = z Zd,qn:,n';“ (15) )

i P9

where in Equation (13) and Equation (15), dp is the distance between cities
p and ¢g. We now have a nice quadratic form to minimize as a function of the
N?2 neural variables n}. Unfortunately, not all choices of 7} are allowed; for this
to correspond to a true assignment, one needs to satisfy constraints that each i
corresponds to one p and vice versa. These can be written as

Zﬂ;ﬂ: = bpq
i

Somm o= 0 i#j (16)
3
This is implemented by minimizing
E = E;(equation 15) + Z [constraints — equation 16] (17)

with penalty terms, simple linear or quadratic functions of the forms (Equa-
tion (16)), which are positive when constraints are violated.

Combining F:quation (17) with the physical optimization framework of Sec-
tion 3 leads to a traditional statistical physics problem with N 2 “spins” 7},
governed by an cnergy function E. The resultant simulated annealing or Monte
Carlo approach to this statistical physics formulation does provide an effective
approach to the TSP [Martin:89a]. Here we will study a faster, but less reliable,
deterministic method. A well-known approximate method for studying such
physics systems is the mean field approximation. Consider an equation such as

mEy= S ntexp(-BE(n}...nF...nN))/Z (18)

states

Then one can calculate this if one linearizes the exponential by approximating
a term in E that is quadratic in n by a linear dynamic term multiplied by

14



the “mean field” — the other 7’s replaced by their mean value. Roughly, one
substitutes

My — (m)Mn (19)

With the approximation of Equation (19), one can sum over the dynamical
variables labelling the states and Equation (18) can be converted into a deter-
ministic equation for (nf). At the desired ground state, 7f = (n¥) and one finds
a deterministic method for finding the minimum of E.

Unfortunately, this method is an approximation and one will find “illegal”
solutions which are not only non-optimal in E but also violate the constraint
penalty terms in Equation (17). This has made this approach unsatisfactory for

even modest (N ~ 50) TSP problems [Wilson:88a].

5.2 Load Balancing Parallel Programs

A similar approach is much more successful in load balancing; although this is
also NP complete and formally equivalent to the TSP, there is a natural neural
representation which involves no constraints and penalty terms. Here we get
non-optimal solutions, but ones that are accurate enough for the problem at
hand [Williams:90d]. This is encouraging as it shows that the difficulty with
the TSP neural network is not with a deterministic annealing approach, but
rather with the choice of variables. In Section 6, we will change these variables
and find good TSP results for deterministic annealing.

The load balancing or (automatic) decomposition problem in parallel pro-
gramming depends on many issues; the application, the software paradigm and
the parallel computer architecture. We have discussed these points elsewhere
[Fox:86h], [Fox:88f], [Fox:88mm], [Fox:88uu], [Fox:89q] and here we will consider
loosely synchronous problems running on a hypercube; we indicate how to gen-
eralize to other architectures at the end of this subsection. We can abstract
load balancing graph theoretically as illustrated in Figure 7. The application is
defined by a graph with M members, labeled by m = 1... M, such that w(m)
computational units are needed to “ypdate” m while the matrix C(m,m’)is a
measure of information needed to be transmitted from m' to m to update graph
node m. We wish to decompose the graph onto N = 24 processor nodes so as to
minimize total execution time. As in Section 5.1, we again have an association
problem—this time of m — P(m) where P is processor number to which m is
assigned. We could, as in Equation (14), introduce neural variables n(m,p) =1
if p = P(m) and 0 otherwise, but this has difficulties already seen for the TSP.
Rather, we write

d-1
P(m) = Z 2% (m) (20)
k=0

and the Md = M logy N neural variables nx(m) provide a non-redundant spec-
ification of the decomposition. This is to be compared to the M N variables

15



7(m, p) in the recundant formulation. Using some technical assumptions, we
can now specify the energy of the associated physical system as

£ = Ecalc+Ecomm where
d-1
1
Ege = % 2 wim)w(m) TT0+ se(m)se(m’)] (21)

m,m’ k=0

1 d-1
Ecomm = 1 Z C(m,m’) Z[l — se(m)se(m’)]

m,m’ k=0

with spins sg(m) = 2n:(m) — 1 taking values of %1 (for m(m) = 1 or 0). The
physical analogy is particularly good here with E¢;)c (balancing computation on
each node) as a short range repulsion and Ecomm (minimizing communication)-
as a !ong range afitractive force.

Equation (21) can now be used in the physical optimization approach; both
the simulated annealing and neural network methods can be applied [Williams:90d].
Indeed, even in simulated annealing, the elegant neural network choice of vari-
ables is preferred to a direct expression of energy E in terms of P(m). As
shown in [Fox:88¢], the mean field method developed by Hopfield and Tank for
the TSP is directly applicable and gives excellent results. These are comparable
in quality to simulated annealing but much faster as one is just solving deter-
ministic equations [Williams:90d]. As already mentioned, neural networks work
well here as the cbjective function E in Equation (21) has no penalty terms.

The neural representation of Equation (20) was originally motivated by the
hypercube topolcgy. However, it is generally useful and there is an interesting
analogy with the clustering method in Section 4. Thus, as shown in Figure 8,
the neurons provide a multiscale representation with n4_1(m) the coarsest and
no(m) the finest detail. From this point of view, it is clear how to generalize
this approach to non-hypercube topologies by using the appropriate hierarchical
neural multiscale representation in “processor space”.

5.3 Navigation

The discussion of the last subsection is confined to essentially static or what
we like to call adiabatic problems [Koller:89b]. More challenging are dynamic
problems where one needs to determine for each member, m, the time depen-
dent processor location P(m,t). We developed a path or string formalism for
this generalized problem [Fox:88f] and realized that the methods were similar to
those needed for navigation problems. These include two- and three-dimensional
land vehicles and aircraft path planning, and the motion of one or more multi-
joint robot arms. In each case, one needs to determine the path of one or more
entities in a target space; this path typically involving minimizing a travel time
subject to constraints involving avoidance of obstacles and collisions between

16
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Figure 8: Multiscale Decomposition of Processor Node Space with Neural Vari-
ables. The case d = 3 is illustrated.

entities. In the parallel processing application, the target space is formed by
the nodes of the computer with a topology defined by the architecture. In the
navigation case, the target space is typically a two- or three-dimensional phys-
ical space although the higher dimensional configuration space may be used in
a robotics example [Barraguard:90a}.

One can formulate a physical computation approach to navigation using the
direct neural network of Section 5.1, the multiscale representation of Section 5.2
or the path or elastic net formalism of Section 6. We believe the latter to be
most promising, but we have only completed the analysis using the simple neural
representation introduced in Section 5.1 [Fox:88kK], [Fox:89aa], [Gurewitz:89b],
[Gurewitz:90a). We will briefly discuss this here as it illustrates the main issues
for the more powerful approach based on the methods of Section 6 [Gandhi:90b].

Consider a vehicle, V, avoiding a missile, M. Introduce two sets of neural
variables v(z,t), m(z,t)

v(z,t) = 1if vehicle at point z at time t
= 0 if vehicle not at z. (22)
m(z,t) = 1 if missile at point z at time ¢

0 if missile not at point z. (23)

The motion of the vehicle can be found by minimizing an energy function E
embodying its goals and constraints. This includes a term

Er=Y v(z.t)T(z) (24)

z,t

18




where the terrain function T measures the difficulty of driving vehicle at point
z.

Ex=) v(z,)m(z,t—1)+m(z,t)+ m(z,t +1)] (25)
;ut
Minimizing E, ensures that vehicle and missile are safely separated!
Es= Z v(z, )|z — Zdestination| (26)
z,t

This term “attracts” vehicle to its destination Z{estination- These terms
are not realistic but indicative of the ease with which one can express goals and
constraints in this formalism. Our publications give more details and we give,
in Figure 9, one example where we determine the path of four vehicles. These
must avoid each other and reach their destinations by passage through a narrow.
“mountain pass”.

We understand now and show in Section 7 that this neural approach is best
for the case of very many vehicles. The traditional combinatorial method is fine
for one and perhaps two vehicles; the very interesting case of “several” vehicles
is probably best handled by the elastic net method. The redundancy of the
neural net v(z,t) = 0 at all z’s not occupied by vehicles—is, just as in the TSP,
a major difficulty when the number of vehicles is small.

We stress that the essential point of our approaches is that they scale nat-
urally to problems with many vehicles [Jones:80a] or robots with many arms
whilst the traditional methods have a time complexity of O(N 1) for I degrees of
freedom when each of these is discretized into N cells [Heinzinger:90a).

6 The Elastic Net

6.1 The Travelling Salesman Problem

Durbin and Wilshaw introduced the elastic net approach to the TSP [Durbin:87a],
[Durbin:89a] as a physically based model that outperformed the neural network
method in this case. One “invents” a physical system whose equilibrium state
is the desired minimum path [Rose:90f]. As shown in Figure 10, we consider
an elastic string with beads, labeled i, for each (time) step of the journey. The
beads are attracted to each other by a simple elastic force that, in the absence
of other constraints, collapses the string to zero length. We start with this at
temperature T = co when the elastic forces collapse the beads to a point. Each
bead i is attracted to each city p by a force

FFY? = awyi(z, — ¥,) (27)

where
_ exp -L:Ep - £,|2/2K2
T Tjexp—lz, — y;I*/2K?

W,

(28)
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Figure 9: The path produced by the neural network method for four vehicles.
The “cost” (vertical axis) is a measure of travel time and travel in the two-
dimensional z — y plane must avoid other vehicles and the shaded obstacles.
Circles represent initial positions and the final destinations [Fox:90e].
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where city p is at position z, and bead i is at position y..

The deterministic annealing equation is

% o~ LtAy
Ay_. - ZF,'“”'P + ﬂf{(g]+l +-yj-l - 22)) (29)
2
including the elastic term together with the force of Equation (27).

This corresponds to
Ay =—K 2E (30)
Vi = ag‘

with the energy function E given by

E =-aK¥,logy;exp(—lz, = y,l/2K?)
+ﬂ Ej ly_, - yj+;|2 (31)

The formulation is now similar to that of Section 4 with K playing the role of
temperature or equivalently in this case, as for clustering, a position resolution.
For large K, Equation (31) is minimized with all bead’s i at the geometric
average (center of mass) of the cities

yi(K =o00) = -Iv::; Z_:gp (32)
1 4

We have exactly satisfied the second term in Equation (31) corresponding
to the elastic forces between beads and we are surely at a global minimum of
E. As K is reduced, we increase the importance of the first term in E which
is the constraint that each bead lie near a city (or in the limit K = T — 0,
each bead is on top of). In [Durbin:89a], it is shown that one gets a similar
set of bifurcations to that illustrated in Figure 5 as K is lowered and the single

global minima splits into several local minima. Empirically, the deterministic
annealing ansatz of Equation (29), namely:

e Start at Ko =T = oo,

e Minimize Energy E at fixed K = Ko starting with minimum for K =
Ko+ 6Ko and using steepest descent, Equation (30),

e reduce K from Kp to Ko — 6 Ko

tracks the global minimum approximately and gives good solutions to the Trav-
elling Salesman Problem.
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Figure 10: The elastic net for the TSP of Figure 6.
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6.2 Neural Network Approach

In Section 6.1, we showed that the TSP could be mapped into a physical com-
putation involving a mechanical system of interacting beads. In Section 5.1, a
seemingly different physical analogy was presented with the solution of the TSP

corresponding to the ground state

of a system of interacting spins 7. Simic

has shown that these two approaches correspond to different approximation
solution methods for finding the ground state of essentially the same physical
system. Here, we will just describe the relation between the approximation
methods without the detailed mathematical justification which can be found in

[Simic:90a].

Simic starts with the analogy of Section 5.1 with the energy function of
Equation (17) which includes penalty terms corresponding to the constraints
of Equation (16). The degrees of freedom are the redundant set {nf,}. Apply--
ing the mean field approximation and deterministic annealing to the statistical

mechanics based on Equation (17),

gives rise to the neural network approach.

Alternatively, we may choose a “better” set of degrees of freedom which satisfy

exactly some of the constraints of

Equation (16). Suppose we only consider

those physical states {n}} which exactly satisfy

D%
4
2T

=0 i#j

=1, allp (33)

We are ensuring that each city p corresponds to one and only one time step

i but we allow the constraint

Zn§n§=0 p#4 (34)

to be violated, i.e., we do not enfor
a unique city p. Equation (34) is
function.

Then Simic derives a new mean

ce that each time step i be associated with
included as a penalty term in the energy

field approximation for

E = E, (Equation (15)) + Z [constraints — Equation (34)] (35)

with this restricted phase space. Change variables to

P

where (17,",) are the mean values of the fields q; in the mean field approximation

to Equation (35). Then apart from

a few technical differences, we find that we

have derived the elastic net method expressed in terms of the bead positions
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of Equation (36). The term E) gives rise to the elastic forces between beads,
and the constraint of Equation (34) leads naturally to the potential which gives
the forces of Equation (27) which attract cities p to beads i. This is reasonable
as the constraint of Equation (34) is ensuring that each bead i correspond to a
single city p.

6.3 Other Applications of the Elastic Net

An important consequence of Simic’s results is that we understood better the
trade off between the neural network and elastic network approaches; both
correspond to deterministic annealing of an energy function, but with different
phase spaces, i.e., different degrees of freedom. Secondly, we can more easily
generalize the elastic network from the TSP to other optimization problems
[Rose:90f]. We now briefly show how the problems of Section 5.2 and Section 5.3.
fit into this scheme.

As shown in Section 5.2, the neural network approach was very successful
in the load balancing application. We do not need to, and indeed cannot,
“mprove” it using the ideas of Section 6.2 because there are no constraints in
the energy function of Equation (21). The neural variables of Equation (20) are
not redundant like those used for the TSP.

On the other hand, the neural variables of Equation (22) and Equation (23)
used in the navigation problem are redundant and constraints must be satisfied.
Thus, we would expect that the direct (Hopfield-Tank) neural network approach
can be improved using the ideas of Section 6.2 This is in fact straightforward
as shown in [Fox:90k], [Gandhi:90a}, and [Gandhi:90D]. In fact, Lhe situation is
easier than the TSP because we do not need to ensure the two sets of constraints
— corresponding to Equation (32) and Equation (33). Thus, for navigation, each
time step ¢ corresponds to a unique position Yvehicle (¢) but it is not necessary
or generally desirable to ensure that each position be visited once and once
only. Thus, one can use Simic’s idea directly with the minor technical change
that the variables i and p of Section 6.1 need to be interchanged. The resultant
physical computation picture for navigation is straightforward and illustrated in
Figure 11 for two vehicles with a common source and destination. The degrees
of freedom are the positions of the vehicles at discretized time values labelled
by an index i = 1,2.... The goal of minimum travel time translates into elastic
forces between neighboring beads on each path. Other constraints correspond to
avoidance of obstacles — this is represented as repulsive forces between obstacles
and beads; and avoidance of collisions corresponding to repulsive forces between
beads of different vehicles at each time step. The formalism allows the inclusion
of many different issues such as variable terrain and vehicles of finite size and
these are discussed in [Gandhi:90b]. This work is still at an exploratory stage,
but we believe if, is very promising and can be applied to areas such as robot arm
manipulation. There, a similar physical approach has been extensively explored
[Barraguard:90z], but our elastic network is significantly different as previous
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approaches have viewed the problem in terms of the “Newtonian” dynamics of
the instantaneous position of the «yehicle” whereas we use the complete path as
the basic degrees of freedom. The advantage of the elastic net approach is that
you can ensure that the paths link source and destination whereas the other
methods can get trapped with the “yehicle” (robot arm) evolved in time into a
state which cannot (easily) reach the desired destination.

Note that there are two distinct features of physical computation and, in
particular, of the elastic net approach to the TSP and other problems. Critical
is the choice of degrees of freedom and the idea of the minimization of an
energy function E. Secondly, we can use either deterministic or Monte Carlo,
or probably better, a mix to find the approximate minimum of E.

We can also relate the elastic network to the deterministic clustering algo-
rithm of Section 4. Indeed, the TSP can be viewed as a special case of clustering
where there is but a single point in each cluster. In his thesis, [Rose:90f] and”
[Rose:90e], Rose has shown how the elastic network approach can be derived
from the formalism given in Section 4. Thus, we find a rather unified pic-
ture with different formulations of physical computation being related in a clear
fashion.

7 Track Finding
7.1 The Problem

Here, we briefly discuss track finding to illustrate the different possible ap-
proaches to optimization that we have discussed here. Consider a set of mea-
surements z, (t1) =6z, (ti) where we observe the data values z; at a set of times
t;. This application is present in many different areas of data analysis and sig-
nal processing. These applications differ in the number and reliability of the
measurements and the number of underlying tracks giving use to these signals.
The example in Figure 12(a) shows five tracks in a very noisy environment with
many false signals. Other examples differ in the number of tracks — which
could vary from one to say 10° in a strategic defense application; the complex-
ity (cross overs) of tracks; the noise level; and the number of dimensions — the
measurements can be in one, two or three spatial dimensions. The applications
also differ in the shape of the tracks; they can be at their simplest, linear as in
Figure 12 or curved as in say high energy physics data analysis, where several
hundred particles will bend in a magnetic field as they are produced in a colli-
sion in the new SSC (superconducting colliding beams under construction near
Dallas).

In each case, one wishes to find an optimal interpretation of the situation
given the data measurements z, (t1), their errors, and any knowledge or prej-
udice as to the nature and number of tracks. So we have what is “just” an
(N P-complete) optimization problem which can be approached by the many
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elastic net approach [Gandhi:90b].
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Figure 13: Track Finding divided in three regions based on the noise and track
complexity level and number of real tracks. The regions are labelled by the
sections of this paper in which they are discussed.

methods, including those discussed here. In the following sections, we discuss
appropriate methods in different parameter domains illustrated schematically
in Figure 13.

7.2 The Kalman Filter Approach

When one is finding a relatively small number of tracks in a clean environment,
the Kalman filter approach is well developed and optimal [Blackman:86a). Very
crudely, we can explain this as follows. First, one finds all N, tracks up to time
2o and then exteads them to to + 6to by using Ny measurements at this later
time value. The optimization involves a chi squared fit following the solution of
an assignment problem of the following kind:

e What is the best assignment of the Ny measurements
to lie on the extrapolation of the N, tracks. (37)
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This is solved by combinational or simple heuristic methods. In many cases,
it is easy to find good assignments, but in general one is faced by a well-known
optimal assignment problem which can be tackled by clever combinational algo-
rithms such as Munkres’ method [Blackman:86a), [Burgeios:71a}, [Kuhn:55a]
with a time complexity of order O(N%, Nu)- Although not NP complete
(i.e., not exponential in Nrr, Np), this method is very time consuming in
many important cases even though we have been able to parallelize it effec-
tively [Gottschalk:88a], [Gottschalk:90a], [Gottschalk:90b). The use of neural
networks for this case has been discussed in [Sergupta:88a], but this does not
address the real difficulty. In cases where Nr, and Njs are large, then the prob-
lem in Equation (37) becomes ill posed. There are too many ambiguities in the
assignment for one to consider a single “best” solution which matches tracks
to measurements. One can and does carry along several possibilities which are
resolved by later measurements. However, in general, the strategy of reduc-~
ing track finding to a single time step matching fails with noisy data or many
tracks. Rather, one must go back to the “original full optimization problem”
and view it as a simultaneous optimization over all (many) time values ¢, tracks
and measurements z, (t;). In the following two sections, we consider this last
possibility from two points of view.

7.3 An Analogy with Vision

One can consider the global optimization approach combinatorially, and, indeed,
this is common in high energy physics data analysis. Indeed, I used it myself
in analyzing data from an experiment at Fermilab which had around ten tracks
to be found from about one hundred measurements [Fox:80a). In many signal
processing applications, it is natural to step in time as this is how the data is
gathered. In High Energy Physics, the relativistic particles form tracks in a few
nanoseconds, and the data is naturally gathered together for all time values.

However, the combinatorial approach is clearly limited and breaks down
when N, and Njs are large. In [Fox:89h], we noted that track finding is
formally equivalent to edge detection in vision problems. The problem of finding
tracks on one space and one time dimension, as illustrated in Figure 12, is
formally identical to conventional two-dimensional vision. Track finding in two
or three spatial dimensions, requires an obvious generalization of vision to three
or four dimensions.

We know that combinatorial methods are not effective in vision, but rather
one uses methods like neural networks and Hough transforms [Ballard:82a],
[Ballard:86a), [lllingworth:88a). We have neural variables 7(z, t) which are
nonzero when one or more tracks pass through the discretized point (z, t).
Note that the number of neural variables is independent of the values of N,
and Njs. Thus, as N, N increase, the time complexity of a neural network
formalism is invariant, whereas that of heuristic and combinatorial increases
rapidly, sometimes exponentially. The major problem with the neural network
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method for the TSP in Section 5.1 was the redundant formalism and correspond-
ing constraints. Ir. this application, we have some constraints corresponding to
continuous tracks, but these are easy to implement as a local term in the energy
function. We do not have the difficult (in Section 5.1) constraints corresponding
to uniqueness. Incleed, one usually does not know how many tracks are present
and it is an advantage and not a disadvantage of the neural network formalism
that it allows any number of tracks.

There has not been much experience with this approach, although initial re-
sults are encouraging [Kuczewski:88a]. It is clear to me that neural networks are
the right approach to the case of many tracks in a noisy environment. However,
further research and experimentation is needed.

7.4 The Elastic Net Approach

It is also clear to me that for some values of the parameters N, and Ny, the
elastic net or string (path) approach of Section 6 is appropriate. As shown in
Figure 13, this will probably be used in the parameter region that is intermediate
between the methods of Section 7.2 and Section 7.3.

At a superficial level, tracking and navigation are the “same” problem.

e In navigaticn, we are finding paths in some space respecting the terrain
and vehicle behavior, and avoiding obstacles.

e In tracking, we are finding paths in some space rwpectiﬁg the track models
and passing through measurements.

Thus, we find that the methods of Section 6.3 are immediately applicable
to tracking. The repulsive forces in Figure 12 between obstacles and vehicles
are replaced by attractive forces between measurements and tracks. Rose has
explored this general approach in [Rose:89b], [Rose:90b] and obtained excellent
results shown already in Figure 12. These ideas are developed more generally
in [Fox:89h] where we note that the elastic net (string) approach is not really
an alternative to the neural network method but rather a natural higher level
formalism. After preliminary tracks are found from a Hough transform or neural
network, this step needs to be followed up by 2 “clean-up” stage which labels
independent tracits and makes them continuous; the step from the field of track .
densities n(z, t) which is nonzero at a candidate track, to the discrete set of
Nr, tracks {z; (t)} is non-trivial. The elastic net is an appropriate approach to
this higher level labelling problem.

7.5 Summary

We have illustrated by qualitative arguments in one example that there is no
uniquely good approach to optimization. A given problem, namely tracking, is
best approached by combinatorial, heuristic, neural network or elastic network
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methods in different circumstances. The last two methods, elastic and neural
networks, are characterized by searching for approximate global solutions over
the entire data set.

8 Conclusions

We have shown in this paper how physical analogies can be used in several
applications outside the domain of the traditional physics problem. We believe
that as we search for the solution of larger and larger problems on more and
more powerful parallel computers, these analogies will grow in importance.
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