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1 Introduction

When solving parabolic partial differential equations using Galerkin finite element proce-
dures, it is frequently advantageous to use implicit time-stepping, due to the severe time-step
constraint needed to insure stability when using explicit time-stepping. Thus, a large, global
system of equations must be solved at each time step. Domain decomposition procedures

can be used to break these large computations into several smaller ones, but the smaller
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“spbdoma,in problems” must be coupled in some way. The procedures studied here use
simple, explicit calculations on the boundaries between subdomains to predict the flux and
this is the only coupling between subproblems. Thus, these procedures are non-iterative,
and involve dividing the domain into nonoverlapping subdomains. The explicit nature of
the flux prediction induces a time step limitation that is necessary to preserve stability, but
this constraint is less severe than that which comes with a fully explicit method.

Galerkin procedures are useful in situations that require non-rectangular geometry and
the procedures given here allow considerable gometric flexability. The function spaces used
on the subdomains need not match up in such a way that they are restrictions of the same
global subspace of H!, and the operator used to approximate the flux does not have to
match the grids used in the subdomains.

The a priori error bounds given here rely on previous work on elliptic Galerkin ap-
proximations. In fact, our theorems are stated in terms of the errors of certain elliptic
approximations rather than powers of some asymptotic parameter.

We exhibit second and fourth order correct boundary flux approximations. The analysis
is done for arbitrary order correct boundary flux approximations. The first results use a
first order time discretization, but the results in Section 4 give a second order in time
approximation.

Experimental results are also given. They show that the stability constraint is necessary,
although not necessarily sharp. They also exhibit (on some example problems) asymptotic
rates of convergence that are slightly better than are proved here. These experimental rates
of convergence agree with what can be proved in some special cases.

In a previous paper on finite differences [3], we coupled subdomains by explicit pre-

dictions of boundary values and this work was carried over to a finite element context in






[2). The new procedures given here offer greater geometric generality. They also have the
advantage that they are conservative across subdomains boundaries in the sense that the
interior boundaries do not serve as sources or sinks. This conservation property is missing

in our earlier schemes based on explicit interface value prediction.

2 Preliminaries

Let Q denote a spatial domain in R‘i. Denote by H™(2) and W23 (2) the standard Sobolev
spaces on £, with norms || - || and || - ||co,m, respectively. Let LP(Q2), p = 2,00, denote the
standard Banach spaces, with || - || denoting the L? norm, || - ||cc the L* norm.

Let [a, 8] C [0,T] denote a time interval, X = X(Q) a normed space. To incorporate
time dependence, we use the notation ||+||r(a,3,x) to denote the norm of X -valued functions
f with the map t — || f(-,t)||x belonging to LP(a, B).

Assume ( has a piecewise uniformly smooth, Lipschitz boundary, 8Q. Assume that u°,
a, and b are smooth, real-valued functions on Q, with a being positive and b nonnegative.

For some T > 0, the function u(z,t) satisfies

% ~V-(aVu)+bu=0, onQx(0,T], (2.1)
ou

o = 0, on 89 x (0,7}, (2.2)

u(z,0) = u’(z), on @, (2.3)

where nq is the outward normal to 99Q.
We use approximations of derivatives of delta functions at several points in this work,
and these approximations can be viewed as coming from one-dimensional approximations

of the delta function. For future reference we define two special functions ¢, and ¢4 as






follows:

L 0, otherwise.

(z-2)/12, 1<z<2,
—5z/4+7/6, 0<z<1,
¢a(z) =4 5z/4+7/6, -1<z<0,

—(.’B+2)/12, —232: S _1,

{ 0, otherwise.

Note that if p(z) is a polynomial of degree at most one, then
[ p@)é2(2)dz = p(0), (2.4

and if p is a polynomial of degree at most three,

/ p(2)¢a(z)dz = p(0).

3 Domain Decomposition Procedures

In this section we consider the case of two subdomains and we use a Galerkin procedure on

each subdomain. As motivation for the abstract formulation presented later we start with

an example. For this example use a = b =11in (2.1).
Let © = (0,1)x(0,1). Take £ = (0,1)x(0,1), Q2 = (3,1)%(0,1),and T = {3} x(0,1).
Define, for some H € (0,3),
#=)=:((s-3) /H) /B (3.1)
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For j = 1,2, let M; be a finite dimensional subspace of H!(Q;), and let M be the
subspace of L%() such that if v € M, v|g, € M;. Note that functions v in M have a
well-defined jump [v] on T; [v)(3,¥) = v(3,¥ + 0) — v(3,y = 0).

Take the bilinear form D to be given by

2
Do)=Y [ (V- Vp+vp)dsdy. (3:2)

=1

Define an approximate derivative as follows:

B (3.0) = - [ #@ s, (33)

where ¢ is given by (3.1).

Let (-,-)s be the L?(Z) inner product:

W)z = [ ve. (3.4)

In the case ¥ = Q2 we omit the subscript:

(¥, p) = (¥,p)a. (3.5)

Let 0=1° < t! <...< tM = T be a given sequence and suppose that U? € M is given.

Define U,...,UM by
(B U™, v)+ D(U™,v) + (B(U™1),[v)r =0, ve M, (3.6)
where At™ = " — t"~1 and
8U™ = (U™ = U™ 1Y)/ A" (3.7)

This scheme has the property that U™ can be computed on ; and 2, completely indepen-
dently once B(U™"1) has been computed on I'. The flux at each point on T is computed

explicitly from U™~!, and the two parts of U™ are then computed using an implicit Galerkin
p
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backward difference equation on each ;. Note also that if the function v = 1 belongs to

M, then (3.6) is conservative in the following sense. If we use b = 0 instead of 1, then the

average value of U™ is the same for all n, just as the average value of u(-,t) is independent

of t, by (2.1) and (2.2).

For functions 1 with restrictions in H!(;) and H!(Q;) define

W9l = D(w, )+ H ||[$]l[Z2r -

Next, note that for such ¥’s,

(B(#), [¥Dr

[ $@w ) (5.y) dedy
L (3
+ [wr (3) @

+/01 /01 ¢(z)¢z(m,y)d1[¢](%,y)d%

and

1
/0 /01 #(z)z(z,y) dz [¢](%, y) dy
< 1¥zll 20, ua,) 191 20,1 ¥l L2 (r)

2\?
< Weliaon ( (57) ¥l )
From this result we get that
1 2
Db, )+ (B, e 2 (1- 7= il
in deriving this we used
2, 1
af < ea” + —p
4e

on the product in (3.10) with €2 = 1/6.

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)






We restate (3.11) as

-1
P < (1-25) (DWw)+ B, LD
< LT(D@, %)+ (BW), D). (3.13)

The following two bounds are straightforward

IBIIZary < 2HI¥l1% (3.14)

IBlary < 2B 1l (3.15)

Also, if ¢ is smooth in €, it follows from integration by parts, (2.4), and Taylor’s Theorem

that

5w) (5:9) = e (5:9) + [ [} 0= use (5.0) dsblorte. (a10)

Hence it follows

e () - 509, < Tglbeslle (3.17)

To state an error bound for the procedure (3.6), we introduce an elliptic projection [6]

W € M of the solution u as follows:
D(u(-,t) - W(-,t),v)=0, veM. (3.18)

The function W at each t is just the H!(Q;) projection of u into Mj. Let the error in the

projection be denoted by
n=u-— w. (319)

Theorem 1 Suppose that the solution u is sufficiently smooth and that U® € M is taken

to be WO. Let At = max, At". Then there ezists a constant C, independent of the spaces






M;, such that

T
max [[u" - U] < C (At + H?*S +/(; [[me(+, t)l|dt + H-%“U”L“(QX(O.T))) ,  (3.20)

provided that

At —. (3.21)

The procedure is first order correct in At as expected since this would be the case even
if no domain decomposition were used. The second order correct approximation B gives
rise to the H%"3 since we only make the H? error on a “small” set. The loss of H -% in
the last term in the estimate can be avoided in certain special cases [1], but at this level of
generality we do not know how to improve this term. The theorem will follow as an easy
consequence of Theorem 2 below.

We now treat a more general case. The domain Q in R? is divided into two nonoverlap-

ping subdomains ; and 3. The interface between these domains

T=0nn, (3.22)

is assumed to be a uniformly smooth, (d — 1)-dimensional manifold.

For functions 1, p with restrictions in H(£;) let

D(.p)= [ (aVi-Vp+bup)ds, (3.23)

WU
and let the jump in such a ¢ on I be denoted by [¢]. For definiteness let [1] be the trace
from Q minus the trace from ;.

We need a parametrized approximation to the normal derivative on I'. Assume for some
H > 0 that B is a linear map of L?(Q) into L%(T) and that it satisfies the following four

conditions, which are generalizations of (3.13), (3.14), (3.15), and (3.17):
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(i) There is a constant Cg such that

911> < Co(D(%, %) + (aB(¥), [¥])r) , (3.24)

where
1112 = Db, %) + 2 (all, ¥Dr- (3.25)
(ii) There is a constant C; such that
(aB(%), B(¥))r < C1H%||9|[%. (3.26)
(iii) There is a constant Cy such that
”B(w)“L?(I‘) < CH™? ”d’“po(n) . (3.27)
(iv) There is a constant k¥ > 0 and a constant C3 which depends on the solution u such

that

951 _ puy(,1)

< k .
B < G3H", (3.28)

L*(r)

for 0 < t < T, where du/d7y is the normal derivative of u on T, in the direction from

Ql to Qz.

Suppose that M; is a finite dimensional subspace of H 1(Q,) and let M be the set of
L*(Q) functions whose restrictions to ; belong to M;. For0 =t® <! < ... <tM =T,

and U° € M given, define U',...,UM by
(8:U™,v) + D(U™,v) + (aB(U™'),[v)r =0, veEM, (3.29)
where At" = " — "1,

o, U™ = (U™ - U™ 1)/ At". (3.30)

9






Just as in the example we define W(-,t) € M by
D((u—-W)(-1),v)=0, veM, (3.31)
at each t € [0,T). Let the error in the elliptic projection be denoted by
n=u—W. (3.32)

Theorem 2 Suppose that the solution u to (2.1) is sufficiently smooth and that U° =
W(-,0). Let At = max, At". Then there ezists a constant C, independent of the spaces

M; such that
n k+1 T -1
max|(u = U)(, ) < C{ At + B+ [ ing-.ollde+ B nllzmaxiom |

provided

H?
= CoC4 )

(3.33)

Note that there are no assumpti;)ns that require M; and M, to be compatible in some
way. Also, as we saw in the example, the H parameter for the operator B is not necessarily
related to any aspect of the spaces M; in particular, it is not required that ¢ restricted to
2; have any relation to M;.

Proof of Theorem 2. Note first that u satisfies
n n aun n
(Oeu™,v) + D(u",v) + aa—v,[v] = (p",v), vEM, (3.34)
r
where u™(z) = u(z,t"). The time truncation term p" satisfies

M T
S lievliae < At [l ollde

n=1

IN

CAt. (3.35)
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From (3.34) and the definition of W we see that

(W™, v) + D(W",v) + (aB(W"!), [v])r

=(p" = 0", v) + (a (B(W"'l) - %1;—") ,[v])r, vE M.

Let

This gives, from (3.29) and (3.36),

(8™, v) + D(v"*, ) + (aB(v"™1), [v])r
ou”

= (0" - p",v) + (a (—57 - B(W"'l)) ,[v])r, v € M.

Let

I=a (‘?g‘; - B(W"-l)) .

Then

J =

ou® Qu"!  Gun! nel nel
a(a‘y— 5 + 5 - B(u""")+ B(n )).

From this it follows that
191l 2y < C(AL+ H* + H7Y|n"|oo).
Use v = v™ in (3.38) to see that

(8™, v") + D(v", V") + (aB(Y"), [V"])r
< (a@B(¥"™ = v™ 1), [v"Dr + 110en™ + "I 11"

+C (at+H* + H i7" leo) HEIIII

11
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(3.38)

(3.39)

(3.40)

(3.41)






Since (a — B)a = 1(a? — 8?) + L(a - B)?, we see that
(@, v™) = 30 (IW7117) + S5 118w" |12 (3.42)
Use this and (3.24) in (3.41) to see that

n 2 n
B (Iw™117) + Aemljow| + ol
1
< 2C7 H7' A0 || [|lw™ Il + 2110en™ + o™ || 112"
+C(At+ H* + H7Y ™ |oo) H 20"

2
< C_O”l""m2 + (CoCr1H2At™) AL || 0" |2

+2/|0n" + p"|| 1" + C(At + HE + H™Y|n"|oo ) H. (3.43)
Provided
H2
At < ——, .
S Gl (3.44)
we see that
8 (II"112) < 2M0en™ + o7l 071 + C(ACH + H* 4 BV Ip™Y2).  (3.45)

From this we see that, by multiplying by At"™ and summing on n,

M
(max|lp")? < |01 +2 3 118en™ + p" llo"]] A"

n=1

+C(ACH + H™' + H™Y|nl|3(ax(0,17))- (3.46)

Use 1% = 0 and

IA

M M
2> 110" + p"| llv"]|AL" 2max||v"]| Y (100" + || AL"

n=1 n=1

2
1 n i n n n
5 (max||v I)? +4 (Ellam +p"||At ) (3.47)

n=1

IA
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to see that
L -1
max ||| < C (At+ H**% + H™5||nllLeoqax (o)
T
: + [ i) e (3.49)

Here we have also used (3.35). The conclusion follows from the triangle inequality. //

The bound (3.44) (and hence (3.33)) can be relaxed by almost a factor of two, at the
expense of a larger constant in the last term in (3.43). The L* bound on 7 is needed near
T in the examples of B with which we have worked; away from I' an L? bound can used
instead.

Note that the projection W has no dependence on H, and this implies that n has no
H dependence. From this observation it follows that we can allow H to vary from step to

step, provided only that

HZ
At < o
- CoCh

(3.49)

Return to consideration of the example problem used to introduce this section. Define
B using ¢4 of Section 2 by taking ¢(z) = ¢4((z — 3)/H)/H. Now we need H € (0, %)
Then calculation gives that (3.24), (3.26), and (3.27) hold with Co = 1.64, C; = 3.14, and

C2 = 8/3. Thus, Theorem 2 requires

In this case (3.28) holds with k = 4.

4 A Second Order in Time Procedure

In this section we illustrate the use of a second order in time backward discretization using

the Galerkin based procedure of Section 3. We restrict attention to the case of uniform
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time steps t" = nAt. The context used here is that of Theorem 2; i.e., we allow variable
coefficients, @ C R?, and T is a smooth (d — 1)-dimensional manifold.

The results of this section are slightly related to the results in [5], where energy methods
are used on second order backward difference Galerkin methods (and blending methods).
In [5], variable time steps are analyzed, but not in a domain decomposition context.

Let
&U™ = o U™ + %(&U" -8, U™ ). (4.1)

Assume that U° and U' in M are known and define U?,..., UM by the following analogue

of (3.29):
(6U",v)+ D(U",v) + (BQU™ - U"?), [v])r =0, vEM. (4.2)

This procedure is formally second order correct in time, and like (3.29), it allows the calcu-
lation of U™ to be done independently on ; and §2; once the operator B has been evaluated
on I using 2U™"! — U"~2.

The analogue of Theorem 2 is the following:

Theorem 3 Take W and 1 as in (3.31) and (3.32) and let B satisfy (3.24), (3.26), (3.27),
and (3.28). Suppose that the solution u of (2.1) is sufficiently smooth and that U° = W(-,0)
and U! = W(-,At). Then there is a constant C, independent of the spaces Mj, such that

U™ given by (4.2) satsifies
T
max ||(v - U)(-,¢")[| £ C {At2 + H 172 +/:J [I7e(-, )l dt + H-l/2”77”L°°(9x(0,T))} ;

provided

2

< .
At < o= T

(4.3)
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Of course it is unlikely that we could take U® and U exactly as indicated in the theorem.
The proof will show that U° and U! need only approximate these values in a certain sense,
but we will not give the details of that result.

Proof of Theorem 3. In analogy with (3.34) we see that

(62u™,v) + D(u",v) + (a%u——, [v]) = (p",v), vEM, (4.4)
7 r
where
M T
S llerliae < Cat? [ lluC,olldt
n=1 0
< C(a) (4.5)
Thus
(62W",0) + D(W™,0) + (aBW™! - W"2), [v])F
= (" = b+ (o (Bow W) - 20) ) | e My (48)
r
Use
ou" n-1 _ pyrn—2
5, ~ B@W wn-2)
_ 0w —2un 4wt | [9(2unt - ) n-1_ yn-2
= 5 + 5 - B(2u"™" —u"7%)
+B(2n"t - ) (4.7)
to get

(620™,v™) + D(v™, V™) + (aB(v"™), [V"])r
= (aB(" - 20" +0"72), ")+ 1160" + " 17|

+C (A0 + H* + B0 loo + 10" 2lleo)) H2AIWIIL - (48)
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To replace (3.42) we use

1
(60",0") = QE(v", V") 4 o= (V" = 2 40" (4.9)

where

E(y, 1)

7 (11 + 126 - w1?)

v

1 2
FwIe (4.10)

The first term on the right side of (4.8) is bounded by

CoH
2

(aB(V" —oun-ly l/"—z),B(V" —ounl 4 l/n—2))r + EéTOIIIan“z

C’ _ _ _ 1
0 ——C1H®||v" = 20" 4+ 022+ |12,
2Co

where (3.26) was used to introduce C;. To complete the proof follow the proof of Theorem

2.//

The critical step in determining the At constraint is the relation

1 CoH Cy
m‘(T ) (ﬁ)z"‘

This gives

2

H
< — .
At < oo (4.11)

just as in Theorem 2 this could be relaxed by almost a factor of two.

5 Numerical experiments

In this section we present the results of some numerical experiments for the Galerkin pro-

cedure described above.
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First, we study the sensitivity of the scheme to the At-H constraint. Consider (2.1) on
the unit interval in R with @ = 1 and b = 0. Recall that, for purposes of L2-stability, the

constraint is of the form
At < H?/2. (5.1)

We take as initial data the function u® given in Figure 1. At steady-state the solution
u(z,t) = Jj u®(z). We apply the Galerkin procedure (3.3), (3.6) to this problem, taking
4 subdomains. The L? norm of the solution for two different values of At/H? is given in
Figure 2. Here it can be seen that when (5.1) is violated by as much as a factor of two,
[|U(-,t)|| blows up as time increases.

Next, we study the experimental rate of convergence of the scheme. As remarked earlier,
in certain instances a better rate of convergence than that predicted by Theorem 2 can be
proven. However, for piecewise linear approximating spaces and B(%) based on ¢, k = 2
or 4, we expect the rate of convergence to be at best quadratic in A and order k¥ + 1 in H,
based on the truncation error of the scheme and the fact that the support of ¢ is O(H).
Determing the sharpness of the estimates in general will be the subject of future work.

In these runs a = 1 and b = 0, and 2 = (0,1) x (0,1). The solution u is approximated
in the space of continuous piecewise linears in z tensored with continuous piecewise linears

in y. We consider three scenarios:
1. Fully implicit Galerkin on uniform mesh; i.e., no domain decomposition,

2. Galerkin domain decomposition with four subdomains, with interfaces I'* = {i/4} x

(0,1),7=1,2,3, and with global uniform mesh.

3. Galerkin domain decomposition with three subdomains €, 1 = 1,2,3, with interfaces
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Figure 1: Initial data for stability test
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