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A Robust Trust Region Algorithm for Nonlinear
Programming

Karen Anne Williamson

Abstract

This work develops and tests a trust region algorithm for the nonlinear equality
constrained optimization problem. Our goal is to develop a robust algorithm that
can handle lack of second-order sufficiency away from the solution in a natural way.
Celis, Dennis and Tapia [1985] give a trust region algorithm for this problem, but in
certain situations their trust region subproblem is too difficult to solve. The algorithm
given here is based on the restriction of the trust region subproblem given by Celis,
Dennis and Tapia [1983] to a relevant two-dimensional subspace. This restriction
greatly facilitates the solution of the subproblem. The trust region subproblem that
is the focus of this work requires the minimization of a possibly non-convex quadratic
subject to two quadratic constraints in two dimensions. The solution of this problem
requires the determination of all the global solutions, and the non-global solution,
if it exists, to the standard unconstrained trust region subproblem. Algorithms for
approximating a single global solution to the unconstrained trust region subproblem
have been well-established. Analytical expressions for all of the solutions will be
derived for a number of special cases, and necessary and sufficient conditions are given
for the existence of a non-global solution for the general case of the two-dimensional
unconstrained trust region subproblem. Finally, numerical results are presented for
a preliminary implementation of the nonlinear programming algorithm, and these
results verify that it is indeed robust.



"~



11

Contents

Abstract i
List of Tables v
Introduction 1

Some Trust Region Subproblems for Equality Constrained

Optimization 4
2.1 Background . . .. .. ... 4
2.2 The New Trust Region Subproblem . . .. .. ............. 7
2.3 Overview of the Algorithm . . . . .. ... .. ... ........ .. 8
Solution of the Quadratic Program 9
3.1 Calculating a Most Linearly Feasible Step . .. ... ......... 11
3.2 Directions of Zero or Negative Curvature . . .. ... ......... 18
3.3 Formulation of the Algorithm . . ... .. ... .. ... ....... 20
3.4 Statement of the Algorithm . . . ... ... .............. 24
Calculation of a Trial Step 27
4.1 Determining the Required Amount of Linear Feasibility and the

Choice of the Two-dimensional Subspace . . ... .. ......... 29
4.2 Ill-conditioning of the Linear Feasibility Constraint . ... ... ... 32
4.3 Solution of Problem QPTR and Related Subproblems . . . .. .. .. 34
4.4 Statement of the Algorithm . . . . ... ... ... ... ...... 36
Solution of the Constrained Trust Region Subproblem
2DCTR 40
5.1 Conversion of Subproblem 2DCTR to two dimensions . . . .. .. .. 45

5.2 Conversion of Problem LF into Standard Trust Region Form . . . . . 46



6 Solution of the Unconstrained Trust Region Subproblem

Restricted to Two Dimensions
6.1 Preliminaries . . ... ... ... ... ... .. ... ..
6.2 Characterization of the Solutions for the Degenerate Cases

6.3 Calculating the Global Solution in the Non-degenerate Case . . . . .
6.4 Existence and Calculation of the Local Solution in the
Non-degenerate Case

...........................

6.5 Statement of the Algorithm . . . . . ... ... . ... .. . . . .

7 The Nonlinear Programming Algorithm
.1 The Choice of a Merit Function
Choice of Lagrange Multiplier Estimates

Choosing the Penalty Constant . . ... .. ......... . ... .

Evaluating the Step and Updating the Trust Region Radius
Statement of the Algorithm

.....

.......................

-1 :\l =1 Tl .—l 1
= W o

Implementation Details

--------------------------

b B
-~ OO W

Numerical Results . . . .. .. ... ... ... ... .. .. . .. . .
8 Concluding Remarks
A Test Problems

Bibliography

48

19
52

64

100

106

107

111



W= 0O Y

et Bt B! B BN |

A

©

-1 O O

Tables

Multiplier Test Results
Multiplier Test Results
Multiplier Test Results . . . . ... ... ... .. .. .. .. . . . . 91

Effect of the Initial Trust Region Radius . . ... .. ... ... ... 95
Effect of the Initial Trust Region Radius . . . . ... ... .... .. 96
Convergence Results . . . .. .. ........... .. ... . ... 102
Convergence Results . .. .. .. ............. .. .. ... 103
Convergence Results . . . . ... ... ... .. . ... . .. .. . . 104

Solutions Found . . . . ... ... ... ... ... ... . ... 105






Chapter 1

Introduction

In this work, we will consider the nonlinear equality constrained optimization problem:

Problem ENLP: (1.1)
minimize f(z)

subject to hi(z) =0, i=1,...,m,

where f and h; are assumed to be smooth nonlinear functions such that f : [R® — IR,
hi : R® — [R for i = 1,...,m, and (m < n). We will denote by h(z) the vector
(h1(z), ha(z), ..., hm(z))T. The Lagrangian function associated with problem ENLP
is the function

I(z,)) = f(z) + A\Th(z) (1.2)

where A = (A1, A2,...,Am)7 are the Lagrange multipliers. The augmented Lagrangian
function associated with problem ENLP is the function

L(z, A, p) = f(z) + ATh(z) + ph(z)T h(z) (1.3)

with penalty constant p > 0.
We will assume that problem ENLP has a solution z.. The standard assumptions
for the analysis of Newton-type methods applied to problem ENLP are

1. The functions f and k; have continuous second derivatives in an open neighbor-
hood D of a local solution z. of problem ENLP, and these second derivatives
are Lipschitz continuous at z..

2. Vh(z.) has full rank.
3. 27V23I(z.,A.)z > 0 for all z # 0 satisfying VAT (z.)z = 0.

If assumptions 1" and 2 hold, then necessary conditions for z. to be a solution of
problem ENLP are that there exists A\. € IR™ such that (z.,A.) is a solution of the



nonlinear system of equations

VA(z,\) = 0 (1.4)
R(z) = 0,
and
2TV X)z 2 0 for all = # 0 satisfying VhT(z.)z =0. (1.5)

Assumption 3 is the standard second-order sufficiency condition requiring the Hessian
of the Lagrangian to be positive definite on the null space of VAT at the solution.

Since we are interested in iterative methods, we will use z. to denote the current
iterate and the subscript (+) for quantities at the next iteration. Subscripted values
of functions represent evaluation at a particular point. For example, f. = f(z.). and
l+ =1(z4.);). We use B(z.)) to denote the Hessian of the Lagrangian with respect
to z, V2I(z,\), or an approximation to it. Finally, all vector norms || - || are the
2-norm unless they are specifically labelled otherwise.

One of the most successful methods for solving the equality constrained opti-
mization problem is the successive quadratic programming (SQP) method. At each
iteration, the SQP method solves a quadratic program of the form

Problem QP: (1.6)

e 1
minimize V.I(z., /\C)Ts + ;sTBcs

-

subject to VhA(z.)Ts + h(z.) =0,

for the step s. and the associated multipliers A).. The next iterate and multipliers
are taken to be z, = z. + s. and A+ = Ac + A)X.. Thus, a SQP method solves a
sequence of quadratic programming problems of the form (1.6) for the SQP step s.
and multipliers A)..

To clarify the terminology concerning the multipliers, notice that A), is the mul-
tiplier step, or change in the multipliers, for the iterative SQP algorithm. Using the
form of the quadratic model given in (1.6), A\, are the multipliers associated with
the solution of problem QP, and they are the change in the multipliers for the SQP
algorithm.

Of course, the solution to this quadratic program, which we will denote by sqp,
may fail to exist for several reasons, some more serious than others for standard SQP
implementations. Frequently, assumptions 2 and 3 are implicitly assumed to hold not



only at the solution, but for all intermediate iterates (z.,\.). Since our goal is to
develop a robust nonlinear programming algorithm. we specifically will not assume
that VA(z) has full rank or that second-order sufficiency holds. except at the solution.
If Vh(z.) does not have full rank. the linearized constraints, VA(z.)Ts + h(z.) =
0, may be degenerate, or there may not exist a feasible point for problem QP at
each intermediate iteration. We will discuss ways of dealing with these situations in
Chapter 3.

The more fundamental difficulty in the definition of the SQP step is that second-
order sufficiency need not hold at any intermediate iteration. By this we mean that
B(z, ) need not be positive definite on the null space of VA(z)T. If thereis a direction
of negative curvature inside the null space of VA(z)7, then the quadratic model of
the Lagrangian is unbounded below on the set of feasible points, and the QP will not
have a solution. This situation can also happen if there is a direction of zero curvature
inside the null space of VAT. Near a solution to problem ENLP (1.1), this difficulty
should not arise because of the standard assumptions, and, locally, the SQP method
performs very well. Away from the solution, however, any acceptable algorithm
must be prepared to choose a step based on a globalization strategy, particularly
when second-order sufficiency does not hold. The issue of a satisfactory globalization
strategy still remains open. A number of line search techniques have been proposed,
but none of them have proven to be entirely successful. Our approach will use a trust
region strategy to handle non-positive curvature in a natural way.



Chapter 2

Some Trust Region Subproblems for Equality
Constrained Optimization

Trust region algorithms have been very successful in the solution of nonlinear equa-
tions and unconstrained minimization problems where they deal very naturally with
negative or zero curvature in the objective function. In this chapter, we will first
describe some trust region subproblems that have been proposed to extend the trust
region concept to equality constrained optimization. Then we will present the trust
region subproblem that will be the focus of this work.

2.1 Background

Consider the essence of trust region algorithms for unconstrained optimization. They
are centered around Newton’s method, a method with fast local convergence prop-
erties. At each iteration, we build a quadratic model gc(s) of the objective function
around the current point z. and calculate the Newton step for this model. (The
Newton step is the unconstrained minimizer of the quadratic model.) The trust re-
gion serves to restrict the step to a region of the form Is]l £ A in which we trust
the model. If the Newton step is inside the trust region, then we will take it as our
trial step s.. Otherwise, we choose the trial step to be a solution of the unconstrained
trust region subproblem

minimize g¢.(s)

subject to ||s|| < A..

Once we have a trial step, we must decide if T4+ = Z.+S. is a better approximation to
the solution z. than the current point. If it is, then we accept the step and start the
next iteration with the new iterate z,. If the step is not acceptable, then we reduce
the radius of the trust region, A, and calculate a new trial step in this smaller region.

Trust region algorithms for problem ENLP contain all of the basic ingredients of
unconstrained trust region algorithms. They are based on the SQP method which has
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fast local convergence properties. The SQP step will play the role that the Newton
step plays in unconstrained optimization. If the SQP step does not exist or if it
lies outside the region in which we trust our model, then the trial step will be the
solution to a constrained trust region subproblem. A variety of constrained trust
region subproblems have been proposed.

The most straightforward way to extend the trust region idea to SQP is to simply
add a trust region constraint, ||s|| < A, to the SQP subproblem. This leads to a
subproblem of the form

QPTR Subproblem (

[A)
—

C e 1
minimize V.[.Ts+ asTBcs
subject to VhIs+h, =0

lIsll < A..

If the current iterate is a nonlinearly feasible point, i.e., h(z.) = 0, then this sub-
problem can be solved as a lower dimensional unconstrained trust region subproblem.
However, if z. is not a feasible point, then this subproblem may not have a solution.
The difficulty is that the feasible set may be empty, for the linearized constraint
manifold VA s + h. = 0 may not intersect the trust region.

Vardi (1980, 1985] studies a trust region subproblem of the form

Vardi Subproblem: (

o
o
N

.. 1
minimize V.I.7s + §sTB¢s
subject to VA s+ h, = O,

sl < A,

where ©. € IR™ is a multiple of A, chosen to ensure that the feasible set is non-
empty. The Vardi subproblem can be transformed into an unconstrained trust region
subproblem of a lower dimension, and then existing algorithms from unconstrained
trust region methods can be used to obtain the solution at each iteration. This method
handles lack of second-order sufficiency away from the solution with no difficulty, but
there remains the problem of the specific choice of ©..

Celis, Dennis, and Tapia [1985] avoid this difficulty by considering a subproblem
of the form

CDT Subproblem: (2.3)



minimize V.[.Ts + ésTBcs
subject to || VhTs + A || <4,
sl < A,

where 6. € IR is chosen to be ||VA.T3 + A.|| for some § inside the trust region. In this
way, the feasible set in the CDT subproblem is guaranteed to be non-empty. Celis.
Dennis and Tapia chose 6, to be HthTscp + h.|| where scp = a.Vh.h. is the step
to the Cauchy point for the constraints, i.e., the minimizer inside the trust region
{s:llsll <A} of |[VATs + A along the direction of its negative gradient. This is
enough to ensure that nonlinear feasibility will be attained in the limit, but it allows
flexibility for the subproblem to progress towards optimality. Furthermore, El-Alem
[1988] gives a global convergence proof for a variant of the algorithm given by Celis,
Dennis and Tapia [1985] which uses the augmented Lagrangian for a merit function
with a specific strategy for updating the penalty constant.

Powell and Yuan [1986] also consider a subproblem of the same form as the CDT
subproblem with a different choice of 6.. They chose it to be any number that satisfies

6. = min{||VhTs + k|| : ||s]| < oA} (2.4)

for some 0 < ¢ < 1. This choice of 6. is computationally more expensive than
the choice based on the Cauchy point for the constraints, and it will provide faster
convergence to nonlinear feasibility. However, getting nonlinearly feasible too early
can cause an expensive trip around a curved boundary of the feasible region, and
numerical experimentation supports this notion, (Dennis, El-Alem and Tapia). A
conceptual advantage of 6. given by (2.4) is that the SQP step would be chosen
automatically whenever it is inside the trust region and the linear constraint manifold
intersects the smaller trust region of radius ¢A.. Instead, Celis, Dennis and Tapia
(1985] compute the SQP step and take it as the trial step s. whenever it is inside
the trust region. Notice that when the SQP step is inside the trust region, it is not
necessarily the solution to the CDT subproblem. The solution to the CDT subproblem
could give a smaller value of the quadratic model than the SQP step but have a larger
residual of the linearized constraints.

Celis, Dennis and Tapia [1985] give an algorithm for solving the CDT subprob-
lem. Using this subproblem, they developed an algorithm for solving the equality
constrained optimization problem which compared favorably with two existing SQP



implementations. However, at the time of the original development of the CDT al-
gorithm, a complete characterization of the solutions to the CDT subproblem was
not known. In essence. the CDT subproblem requires the minimization of a possi-
bly non-convex quadratic subject to two quadratic constraints. Unfortunately. when
both of the quadratic constraints are binding, the CDT subproblem is too difficult
and expensive to solve unless the quadratic objective function is strictly convex. (See

Y. Zhang [1988] and Y. Yuan [1987], [1988]).

2.2 The New Trust Region Subproblem

Motivated by the work of Byrd, Schnabel and Shultz [1988] on trust region methods
for unconstrained optimization, Dennis, Martinez and Williamson [1991] have pro-
posed a more convenient trust region problem by restricting the CDT subproblem to
a relevant two-dimensional subspace. This gives a subproblem of the form

2DCTR Subproblem:
minimize V. [.Ts + %STBC.S
subject to ||Vh.Ts +~hc]|2 <4,
Isll2 < A
s € span{vy, v2}.

We will refer to this subproblem as the 2DCTR. (2-Dimensional Constrained Trust
Region) subproblem. For the required amount of linear feasibility, we choose 4. in
a manner similar to Celis, Dennis and Tapia [1985]. We use a dogleg strategy as
in unconstrained trust region algorithms to determine the step § which will give us
8. = |VhT5+ h||. We use the Cauchy point for the constraints and a most Linearly
Feasible point spr for the dogleg. More details about the dogleg and calculating the
required linear feasibility can be found in Chapter 4.

The 2DCTR subproblem also requires the choice of the relevant two-dimensional
subspace. We will use the dogleg step which determined the required linear feasibility
as the first direction. Notice that this ensures that the two-dimensional subspace
intersects the feasible region given by the two quadratic constraints since the dogleg
point determined this region. For the second direction, we will use the SQP step
when it exists. If the SQP step does not exist, then we will use a resulting direction
of negative or zero curvature which is a descent direction for the quadratic model
inside the null space of VA.T as the second direction.



2.3 Overview of the Algorithm

The remainder of this work is concerned with the specification and solution of the
2DCTR subproblem. and the incorporation of this two-dimensional subproblem into
an algorithm for solving problem ENLP. Chapter 3 gives our algorithm for solving
the quadratic programming problem QP and discusses how we deal with the situation
when VA, does not have full rank. In addition, we discuss how to obtain a direction
of zero or negative curvature when second-order sufficiency does not hold.

In Chapter 4 we give our strategies for calculating a trial step at each iteration of
our nonlinear programming algorithm. Included in this chapter is the characteriza-
tion of the solutions to our two-dimensional subproblem 2DCTR, and the resulting
algorithm to solve this constrained trust region subproblem. The solution of this
subproblem requires the minimization of a possibly non-convex quadratic subject to
two quadratic constraints in two dimensions. As we will see, to solve this subproblem,
we will need to be able to find all of the local solutions to the unconstrained trust
region subproblem in two dimensions. In Chapter 6, we derive analytical expressions
for all the local solutions of the unconstrained trust region subproblem in a number
of degenerate situations. We also give necessary and sufficient conditions for the ex-
istence of a local, non-global solution in the non-degenerate case. Finally, we give an
algorithm for finding all of the local solutions to the two-dimensional unconstrained
trust region subproblem. This algorithm completes the calculation of a trial step.

Once we have a trial step, Chapter 7 discusses the criteria we use to accept the
step and update the trust region radius. This chapter contains the choice of the merit
function which includes the strategy for choosing the penalty constant. We discuss
several choices of Lagrange multiplier estimates and numerical experimentation with
them. Finally, we give the numerical results for a preliminary implementation of
our nonlinear programming algorithm, and we compare it to other existing nonlinear
programming codes.



Chapter 3

Solution of the Quadratic Program

In this section we will discuss the solution of the quadratic program
Problem QP:
minimize V. I.Ts + -fl)-sTBcs
subject to VA.Ts + l:c =0

for the step sgp and the associated multipliers AAgp when the solution exists. and
we will discuss how to handle the quadratic program when the solution does not
exist. Since we will focus attention only on obtaining a solution to problem QP in
this chapter, we will drop the subscript ¢ which indicates the current iteration in the
nonlinear programming algorithm.

First we will briefly summarize the standard approach to the solution of problem
QP under the ideal conditions; namely that VA has full rank and that the Hessian
B restricted to the null space of the linear constraints is positive definite. See. for
example, Gill, Murray and Wright, [1981]. If sqp is the solution to problem QP and
AAgp is the associated multiplier, then sqp and A\gp satisfy the linear system

B Vh sQp | _ _ V.l
Ry e N EC

The first step in the solution of problem QP is the orthogonal factorization of the
matrix Vi = Q R where Q is (n x n) and orthonormal and R is (n x m), nonsingular
and upper triangular. Then, the first m columns of the matrix Q, which we will denote
by Q1, provide a basis for the range space of VA, and the last (n — m) columns of
@, which we will denote by Q2, provide a basis for the null space of VAT. The range
space component of the solution sgp is completely determined from the solution to
the lower triangular system
RT w, = —h.

The null space component of sqp is determined by minimizing the quadratic objective
function restricted to the null space. If the reduced Hessian, Q,7 BQ,, is positive
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definite, then the null space component is uniquely determined from the solution to
the linear system

[@27BQa| w2 = Q.7 (Bsr + V.1),

and the solution to problem QP is given by

sqp = Q1 wy + Q7 w,.

Once sgp has been calculated. the multipliers associated with problem QP. A)gp.
are determined from the solution of the linear system

VhAX = —(Bsgp + V1)

using the QR factorization of Vh.

Let us consider the difficulties that can arise in the solution of problem QP. Since
V' h may not have full rank, the algorithm must be able to handle situations in which
the constraints are degenerate. This is not a serious problem, and it can be handled
in a straightforward manner. A more substantial difficulty is that there may not be
a linearly feasible point. In other words, there may not be any step s which satisfies
the linear constraints VATs + A = 0, and problem QP will not have a solution. To
overcome this obstacle, let sy r, (a most Linearly Feasible step), be a solution of the
linear least-squares problem

minimize [|[VATs + A,
and define Oar1x to be the residual of the linear constraints at sz,
Omiv = VR spp+h. (3.2)

We will replace the linear constraints in problem QP with VATs + 4 = Oarrn which
will require the step to be as linearly feasible as possible. Thus, when problem QP
does not have a solution because VA does not have full rank, we will actually solve
the quadratic program referred to as problem GQP, for a generalized sqp step.
Problem GQP: (3.3)
minimize V_ITs + %STBS
subject to VATs +h = Oarin.

There should be no confusion in using the notation sqp in this way since if a linearly
feasible point exists, @as;n will be 0 and problem GQP is identical to problem QP.

p
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Otherwise, if problem QP does not have a solution because there is not a step s that
satisfies VATs+ A = 0, then this constraint is relaxed in a meaningful way in problem
GQP to obtain a quadratic program which does have a solution. In addition. we
point out that problem GQP can be formulated as the bi-level optimization problem

minimize V. Ts + %sTBs
subject to s € argmin{[[VhTs + h||} .

As indicated in Chapter 1. we will also assume that second-order sufficiency may
not hold away from the solution to problem ENLP. Recall that the second-order
sufficiency condition at the point (z,)) is

zTB(z.\)z > 0 for all = # 0 satisfying VAT (z)z = 0. (3.4)

If this condition does not hold, then there will be a direction of zero or negative
curvature inside the null space of VAT. We will denote such a direction by dgp.
These situations yield three possibilities. First, if dqp is a direction of negative
curvature, then the quadratic model is unbounded below on the linear constraints,
and the QP does not have a solution. If dgp is a direction of zero curvature which
makes a nonzero inner product with the gradient, then again the quadratic model
is unbounded below on the linear constraints, and the QP does not have a solution.
Finally, there is the possibility that the quadratic model is completely flat along a
direction of zero curvature, and the QP has an infinite number of solutions.

Thus, our algorithm for the solution of the quadratic programming problem first
computes a most linearly feasible step, sz, which will be the range space component
of the solution, if a solution exists. (The nonlinear programming algorithm will use
the step syr regardless of whether or not problem GQP has a solution.) The next
step is to form the reduced Hessian and to determine if a solution exists. If a solution
exists, the algorithm will find it and its associated Lagrange multipliers. Otherwise,
we will calculate a descent direction of zero or negative curvature inside the null space
of VAT,

3.1 Calculating a Most Linearly Feasible Step

The first part of the solution of problem GQP is the determination of the step to the
linear constraints, syr. The first step is the calculation of the QR decomposition of

.
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Vh using column pivoting. Notice that this is not the obvious way to solve the linear
constraints in the least-squares sense. but keep in mind that the goal is to solve the
system given by (3.1), not just the linear constraints. The QR decomposition vields

Vh = QRIOT = [Q,]|Q.] RIT (3.3)

where Q is (n x n) and orthonormal. R is (n x m) and upper triangular, and II is the
(m x m) permutation matrix that describes the column pivoting. This decomposition
allows us to estimate the rank of VA. which we will denote by r. Then. the columns
of the matrix @ can be partitioned into two sets, @1 and Q. The matrix Q; has r
columns which form an orthonormal basis for the column space of Vh. The matrix
@2 has (n — r) columns which span the null space of VAT. When Vk does not have
full rank. we will partition R in a similar manner so that

_ R1 R2

where R, is an (r x r) nonsingular, upper triangular matrix.

Let w; € IR” and w, € IR™ "), The step s can now be represented as the sum of
two components, one which lies in the column space of VA and another which lies in
the null space of VAT, i.e.

s = Q1w1 <+ lel)g . (36)

Often, Q,w; is referred to as the vertical component of the step and Q,w, as the
horizontal component.

Since we have not assumed that VA has full rank, we will interpret VATs = —4
in the least-squares sense. Namely, we want to find a step spr which is a solution to

minimize || VATs + &||. (3.7)

In addition, we would like s;r to be the shortest step to the linearized constraints
since we intend to use it in a trust region algorithm. For example, if sy r is outside
the trust region, we will want to conclude that there are no linearly feasible points
inside the trust region. Using the QR decomposition of VA and the representation of
s given by (3.6), the least-squares problem (3.7) is equivalent to

T
minimize ||[Z.}, o] [::]+H7h||, (3.8)
2
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and
minimize || [ﬁgz J + I 74|. (3.9)
If Vh has full rank. then R, = R, and s;f is easily determined from the solution of
the lower triangular system
RTwy = —[074] (3.10)

with SLF = Q;wl.
When Vi does not have full rank, the most tempting idea is to simply take w, as
the solution to

RTw, = —[HTh]r (3.11)

where [I'I Th] is intended to denote the first r elements of the vector II T . However,
the resulting step is not necessarily a solution of the least-squares problem (3.7) as
the following example will show.

Example: (3.12)
Vhk = QRIT, Q=1 OT7=1,
-4 1 .5
R = 01 1|, and A=]|1
00 O
Solving equation (3.11) yields
0.25
§=-QiRT [I7h] =| -1.5
0.00

and [[VAT3 + h|| = 1.2748. On the other hand, the direct calculation of the minimum
norm least-squares solution using the pseudo-inverse of VA7 yields

0.2481
st=— (VhT)+ h=| —1.1860
0.0000
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and ||VATs* + h|| = 1.2117. Clearly § obtained from equation (3.11) is not a least-
squares solution. Thus. when VA does not have full rank. the QR decomposition of
Vh is not sufficient to determine a least-squares solution to VATs + A = 0.

Can we use the QR decomposition that we already have to obtain the minimum
norm least-squares solution? Surprisingly enough, we can. Contemplation of the
structure of the least-squares problem in (3.8) and (3.9) suggests that we would
like to eliminate the R, term. To accomplish this, we further decompose R using
Householder transformations into

R R, R; _ T 0 7T
0 o0 0 0
where T is an (r x r) nonsingular, upper triangular matrix and Z is an (m x m)

orthonormal matrix. Pivoting is not necessary since we have already selected the
columns in R, to have full rank. The complete decomposition is then

Vh = QRIOT = QT 2zTnT (3.13)
= [QIIQ2]{§ 3J zTnrT. (3.14)

Combining this with (3.8) vields the least-squares problem

T »
minimize || "o w1 + 2T 7h|,
0 0 wo

which reduces to
minimize |77 w, + [Z7 1T Th)_1I. (3.15)
Therefore, w, is the uniqﬁe solution of the lower triangular system
TTw, = —[27074] (3.16)

and sir = Qw;.
Returning to the example in (3.12), we further decompose R into

i
R = TOJZT

00
[ 4.0156 —1.0607 0.0000 —0.9961  0.0623 —0.0623
= 0.0000 -1.4142 0.0000 0.0000 -0.7071 -0.7071

| 0.0000 0.0000 0.0000 —0.0880 —0.7044  0.7044
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Using this decomposition. we can solve equation (3.16) for wy, and spr = Qquy =
(0.2481. —1.1860, 0.0000)T, the same as the solution obtained using the pseudo-inverse
of VAT,

The following theorems verify that the decomposition of VA given in (3.14) can
be used to obtain the minimum norm least-squares solution to VATs + A = 0.

Theorem 3.1 Let Vh be an (n x m) matrix, for m < n, with the QR
decomposition

Vh = QRIT (3.17)

where Q is n x n and orthonormal, R is n x m and upper triangular, and
IT is the m x m permutation matrix that describes the column pivoting.
If Vh has full rank, then the pseudo-inverse of VAT is given by

(VA)* = QR TnT. (3.18)
Let r denote the rank of VA. If VA does not have full rank, then R has

the structure
0 O

where R, is an (r x r) nonsingular, upper triangular matrix. The matrix
R can be further decomposed so that VA can be written as

" Vh = Q[g g] zTn?, (3.19)

where T is an (r X r) nonsingular, upper triangular matrix and Z is an
(m x m) orthonormal matrix. Then, the pseudo-inverse of VAT can be
represented as

(VAT)* = Q[T;T g] ZT T, (3.20)

Proof To show that the expressions given in equations (3.18) and (3.20) represent
the pseudo-inverse of VAT, we must verify that they satisfy the four Moore-Penrose
conditions:

1. VAT (VAT)* VAT = VAT



2. (VAT)* VAT (VAT)*+ = (VAT)*
3. (VAT (VAT)")T = UAT (VhT)+
1. ((VAT)* VAT)T = (VAT)* VAT,

See. for example, Golub and Van Loan (1983]
exercise to verify that equation (3.18) satisfies

When V4 is rank deficient, we will show th
1 - 4. First,

VAT (VAT)* OAT

= Iz QTQ[

|
|

(-

4

T—T
0

I 0
00

Iz

[

oz

O O O o oo oo

| —

Next,
(VRT)* VAT (VAT)* =
[ 7-T ]
Q

| 0
[ T—T

| 0
[ p-T

|0

[ 7-T 0
L 0 0]
Now we will verify the symmetry requirements.
[T ¢
0 0
(1 0
00

ZTHTHZ[J;

I

JzTnT

T—T
0

[ TT
0 0
[ 0
0 0

Q

Q

0]

Q ZTn? = (vaT)+.

VAT (VAT)* = 11z

Iz

T o

Joe]

]ZTHT,

16

. In the full rank case, it is an easy

the Moore-Penrose conditions.

at equation (3.20) satisfies conditions

T-T 0
0 0

0

OJ[TT 0

0 0
|

T
JZTHTHZ[I;) g}QT

|

QT = VAT,

T-T 0

0 0 0

0
0

o[ 7

JZTHT

T—T
0

0

zTnrt
0
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which is symmetric. Finally,

PT—T T
(VAT AT = Q| T g}ZTHTHZ{J; SJQT
(I o
— T
- Q_O O}Qa

which is also symmetric. Thus, the pseudo-inverse of VAT can be expressed as equa-
tion (3.20) when Vh does not have full rank. a

Theorem 3.2 Let VA, Q, R, I, T, and Z be given as in Theorem 3.1.
Then, if VA has full rank, the minimum norm solution to

minimize ||[VATs + A| (3.21)
is given by
st = —QiRTIT A (3.22)

If VA is rank deficient with rank =, then the minimum norm solution to
the least-squares problem (3.21) is given by

st = —QuT T [ZT 11T 4] (3.23)

r

where [Z T h]r denotes the first r elements of the vector ZT II T h.

Proof The proof follows from the fact that the pseudo-inverse yields the minimum
norm solution to the linear least-squares problem and from Theorem 3.1. a

Once w; has been determined, we can calculate sy r, the step to the linear con-

straint manifold, by
sir = Qrw. (3.24)

We can also calculate Oasrn, the residual of the linear constraints, by
Omin = VhTspr+h, (3.25)

and if VA has full rank, ©pry = 0.



3.2 Directions of Zero or Negative Curvature

Now that we have calculated a step to the linear constraints. we must determine if
problem GQP has a solution or if there is a descent direction of zero or negative
curvature for the quadratic inside the null space of VAT,

To see why problem GQP will not have a solution when dop is a direction of
negative curvature inside the null space of VAT, consider a step s.F to the linearized
constraint manifold VATs g+ h = Oy Then, any step of the form s = SLF+adgp,
where « is a scalar. will also satisfy VAT s+ h = ©y,n since dgp lies in the null space
of VAT. Now the quadratic objective function ¢(s) = V. iTs + %STBS for any step of
the form s = spr + adgp is

1
9(s) = VAT(srr + adgp) + 5(31,1- + adqp)TB(sLr + adgp)
1
= Q(SLF) -+ a(v:leQP + SzdeQP) + sazngBa’Qp .

Since dgp is a direction of negative curvature for B, d5pBdgp < 0. We can choose
the sign of « so that

a(V,ITde + SEFBdQP) <0.

Then, as we increase the magnitude of a, it is easy to see that g(s) — —oo, for
any step s of the form sy r + adgp. Thus, problem GQP will not have a solution
since the objective function is unbounded below on the feasible region. (As an aside,
notice that if we choose the sign of a so that aV,leqp < 0, then a step of the
form s = adgp is a (perhaps infeasible) descent direction for the quadratic ob jective
function since d§pBdgp < 0.)

Now, consider the situation when dgp is a direction of zero curvature inside the
null space of VAT. Without loss of generality, we will assume that there is not a
direction of negative curvature inside the null space of VAT since we have already
shown that problem GQP will not have a solution if such a direction exists. The
quadratic objective function for s = sy + adqp reduces to

a(s) = q(str) +aViTdgp. (3.26)

If V,ITdQ p # 0, then ¢(s) will be unbounded below in the feasible region. In this case,
as in the negative curvature case, problem GQP will not have a solution. (Similarly,
8 = adqp is a (possibly infeasible) descent direction for q(s) when the sign of a is
chosen to satisfy oV, Tdgp < 0.) Since we could have more than one direction of zero
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curvature, problem GQP will not have a solution if any direction of zero curvature is
a descent direction for ¢(s).

On the other hand. if V,leQP = 0 for all of the directions of zero curvature inside
the null space of VA7, then ¢(s) = q(scF) for all a. Thus, dgp gives us not a descent
direction but a direction along which the quadratic is unchanging. However, there
may still be a linearly feasible descent direction from s = str- The step s = s, takes
us to the linearized constraint manifold. To determine if there is a descent direction
inside the null space, we will simply minimize the quadratic restricted to the null
space. This gives us a step sar;n to the minimizer of the quadratic inside the null
space. Combining this step with the step to the null space and the nzero directions
of zero curvature in which the quadratic is unchanging gives us an infinite number of
solutions to problem GQP of the form

nzero

SQP = sLF+sminv + D a(i)dgp(i) (3.27)

=1
for all scalars a(7),i = 1,...,nzero.

To illustrate this case, consider the following trivial example,

Example: (3.28)

. . . 1 2 1 2
minimize sy — s, + 5’31 + 532
subject to s; = -1,

for s = (s1,52,53)T. The step from s = 0 to the linear constraint is scr=(-1,0,0)7.
Restricting the quadratic to the null space of the constraint yields the reduced
quadratic, —s; + 1s3. Since the reduced quadratic does not depend on sz, dgp =
(0,0,1)7 is a direction of zero curvature inside the null space of the constraint along
which the quadratic is constant. Minimizing the reduced quadratic in the s, variable

gives sarrnv = (0,1,0)7. Then, our example has an infinite number of solutions of the

form
-1 0
SQp =SLF+smMiNn+adgp=| 1 | +a| 0 (3.29)
1

for all scalars a.

Thus, there are three possible solution cases. If second-order sufficiency holds,
L.e., if the reduced Hessian is positive definite, then the QP will have a single, unique
solution. If there is a direction of negative or zero curvature inside the null space of
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VAT which is a descent direction for the quadratic model, then the QP does not have
a solution. In this situation. the algorithm will calculate a direction dgp as described
above and a step s r to the linear constraints. Finally, if there are nzero directions of
zero curvature inside the null space of VAT and none of them are descent directions.
then the QP will have an infinite number of solutions of the form given in (3.27). If
the algorithm detects this case, (which we admit is unlikely), it will calculate SMIN
in addition to sy g.

3.3 Formulation of the Algorithm

The first part of the solution of problem GQP is the determination of the step to
the linear constraints. s;r as discussed in Section 3.1. Now we want to determine
whether or not the generalized QP has a single solution, no solution, or an infinite
number of solutions. The Hessian B restricted to the null space of VAT is QTB Q,.
If the reduced Hessian is positive definite, then the QP has a single solution. Let
Ay denote the smallest eigenvalue of Q7B Q., and let v, denote the corresponding
eigenvector. Then. v, is a direction of negative curvature inside the null space if
A1 < 0 or a direction of zero curvature if Ay = 0. If the smallest eigenvalue of the
reduced Hessian is negative, then the quadratic is unbounded below on the feasible
set, and the QP does not have a solution. Changing the basis from that of the null
space to IR" gives us a direction of negative curvature dgp by

dop = Q2 v;.

Although there may be more than one direction of negative curvature inside the null
space, we will calculate only the one corresponding to the smallest eigenvalue of the
reduced Hessian. This direction is the “steepest” direction of negative curvature in
the sense that it gives the most negative value of dgp” Bdgp.

If the smallest eigenvalue of the reduced Hessian is zero, then we must distinguish
between flat directions of zero curvature and descent directions of zero curvature along
which the quadratic will be unbounded below. From the expression for the quadratic
objective function for a step of the form s = s LF+adqp given in (3.26), the quadratic
will be unbounded below on the feasible set if any direction of zero curvature makes
a nonzero inner product with the gradient, i.e., if

VoAT(Qzvi) # 0 for any i = 1,.. . nzero,
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where v;, forz = 1,...,nzero. are the eigenvectors of the reduced Hessian correspond-
ing to zero elgemalues If there is more than one descent direction of zero curv ature.
then we will take the one which makes the smallest angle with the gradient to obtain
dgp. |

If the quadratic objective function is flat along all of the directions of zero curva-
ture. then problem GQP will have an infinite number of solutions of the form

nzero

SQP = SLF + SMmIN + Y aidgp(i) (3.30)

t=1
where dgp(i) = Qqv;, for i = 1....,nzero. In this case, syrrn is obtained by min-
imizing the quadratic restricted to the null space minus the flat directions of zero
curvature. Thus, syrrv = Q,w, for

w2 = —(Q7 B Q2)* Q7 (V! + Bstr) (3.31)

where (-)* denotes the pseudo-inverse of the matrix. Since we will use SQp in a trust
region algorithm. we need the following lemma for completeness.

Lemma 3.1 Assume that the smallest eigenvalue of the reduced Hessian
is zero. Let Q be an orthonormal matrix with the partition given in (3.3),
where Q1 is a basis for the column space of VA and Q; is a basis for
the null space of VAT, Let s;p = Q1w where w; is determined from
(3.10) or (3.16), and let spyrrv = Qow; where w, is given by (3.31). Let

dqp(i) = Q2v; where v;, for i = 1,...,nzero, are the null orthonormal
eigenvectors of the reduced Hessian Q7 B Q,. Assume that
V:Tdgp(i)=0foralli=1,...,nzero. (3.32)
Then, rsero
sz + sminll < llser + smav + D aidgp(i)|| (3.33)

=1
for all constants a;.

Proof Expanding the norm yields

nzero nzero

lscr + smiv + Y cidgp()II* = |serll® + llsmanl> + 1| 3. aidar(d)] +
1= =1
' nzero .
2sLrTsmiv +2 Y (cusprTdgp(i)) +
=1
nzero .
2 3" (cusarrn” dop(i)). (3.34)

=1



Since the null eigenvectors of the reduced Hessian are orthonormal,

dop(i)Tdor(j) = v Q2T Qav; = v.Tv; = 0, for i % j ,

and ||dgp(i)|| =1, for i = 1....,nzero. Therefore.
I3 eidor(DI* = 3 otfldop()> = 3 o?. (3.33)
=1 =1 =1

Since spr = Q w; and syrv = Qquws,
strlsan = 07 QTQuw, = 0. (3.36)
Similarly, since each dgp(i) can be written as Q.v;,
stTdQP(i) = wITQITng,- =0, fori=1,...,nzero. (3.37)
Expanding the remaining term gives

dop(i) syivy = —v;TQgTQg(QfB Q2)* QI(V.l + Bsir) (3.38)
= —u7(Q]BQ2)* QI(V.I+ Bs.r). (3.39)

We can write the pseudo-inverse of the reduced Hessian in terms of its eigen decom-
position, i.e.,

(QTBQ2)* = V(A)*VT, (3.40)

where the columns of V' are the orthonormal eigenvectors and A is a diagonal matrix
whose diagonal elements are the eigenvalues of the reduced Hessian. Let e; denote
the :** unit vector. Then,

dap(i) smiv = —vTV(A)V*VIQI(V.I+ Bscr) (3.41)
—eT(A)*VTQI(V.l + Bsir) (3.42)
= 0, (3.43)

since the i** diagonal element of (A)* corresponds to a zero eigenvalue and is 0.
Combining these relations yields

nzero nzero
lscr + sminv + Y- aidop(i)||? = |Iscrll® + ||sarrnl]? + > e, (3.44)
i=1 =1

anc the desired result follows. d
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Thus, when the smallest eigenvalue of the reduced Hessian is zero and none of the
resulting directions of zero curvature are descent directions for the quadratic objective
- function. we will take sgp = spr + sarzyv as our particular solution to the quadratic
program. Lemma 3.1 guarantees that this particular solution is the minimum norm
solution. In the nonlinear programming context, if SQP = SLF + SpIn 1s not inside
the trust region, then none of the infinite number of solutions to problem GQP are
inside the trust region.

Therefore, if dgp is a direction of zero or negative curvature, then either problem
GQP does not have a solution, or it has infinitely many solutions of the form s;f +
sarin + adgp. In either case, we are finished.

At this point. the only remaining possibility is that the reduced Hessian is positive
definite. Then. we will compute the component of the step sqp that lies inside the
null space of VAT from

Bs + VhAN = =V_I. (3.43)

Substituting the parameterization s = Q; wy + Q2 w; and multiplying from the left
by QT yields

Q7B Q2] w2 = —Q¥(V.l + BQuwn). (3.46)
Since spr = @) wy, equation (3.46) simplifies to
(7B Q2] w2 = —Q¥(Val + Bsr). (3.47)

This linear system can be solved for the remaining component of the step w,, and
then the solution of the step is complete with

sQp =SLr + Q2w

The only task remaining is the determination of the associated Lagrange multi-
pliers, A)gp, from equation (3.45). Substituting the decomposition of VA, equation
(3.45) becomes

T 0

[lezl[o X

} ZTNTAN = —(V I + Bsgp). (3.48)

Partition the vector ZTIIT A\ into the first 7 components, [ZTHTA)‘]’_, and the
last (m —r) components, [Z Tt A/\] (mmr)’ The first r elements are determined from

the solution of the upper triangular system

T [2707AN = —Q\"(V.l + Bsqr), (3.49)



and the last (m — r) components will be set to zero, i.e.,

[zTnTay =0
Application of the orthogonal transformations represented by Z and the pivot inter-
changes represented by II to the resulting vector yield the multipliers associated with
the quadratic program. A)gp. In the event that VA has full rank, the multipliers are
simply determined by application of the pivot information II to the solution of the
upper triangular system

R [IT AN = —QT(V.l+ Bsgp). (3.50)

3.4 Statement of the Algorithm

The algorithm for the solution of problem GQP will calculate sgp and Algp when
such a solution exists. When a solution does not exist, a step spr that satisfies
VhIsip+h = Oxrrv and a descent direction of negative or zero curvature inside the
null space of VA will be found. The preliminary implementation of this algorithm
uses the full eigen decomposition of the reduced Hessian to determine the necessary
curvature information. A topic for the future will be to replace this decomposition
with a symmetric indefinite factorization. The algorithm can be stated as follows.
Algorithm GQP:

1. Obtain h, Vh, V., and B.

2. Calculate the QR decomposition of V& using column pivoting.

(a) VR=QRIOT,
(b) Determine the rank of V4. Let the rank of VA = r.

R, R

(c) Partition Q and R such that Q = (@1 ] Q2] and R = 02 J where

@1 has r columns and R, is 7 x r and upper triangular.
(d) If (Vh not full rank), then
e Eliminate R; using Householder transformations to obtain

T 0 r
Vh = 17,

where T is an (r x r) nonsingular, upper triangular matrix and Z is
an (m x m) orthonormal matrix.



[RV]
(@]}

End if
3. Calculate the step to the linear constraint manifold.

(a) If (Vh full rank), then

e Solve RTw; = — [H Th} for w;.
Else

e Solve TT w; = — [ZT nr h]r for w;.
End if

(b) SLF = QL w;.

(c) Calculate the residual of the linear constraints Ourrn.

4. Determine if problem GQP has a solution or if B has a descent direction of zero
or negative curvature inside the null space of VA7, ‘

(a) Form the reduced Hessian, QR¥B Q..
(b) Find the smallest eigenvalue of [Q{B Qg} , A1, and the corresponding
eigenvector, v, .
(c) If (A; > 0), then
e solution = true
Else
o If (A; < 0), then

* curvature = negative -
* solution = false
* dop = Q2 1y
Else
* curvature = zero

* Determine the number of zero eigenvalues of QI B Q,, nzero, and

the corresponding eigenvectors, v;.
* If (VoTQgv; # 0 for any i € [1,nzero]), then
o solution = false

© tmaz = argmax { |V:ITQ20;I ,t=1,...,nzero}



<o dQP = Q2Uima.x

Else
¢ solution = true
o dgp(il) = Qqu; ,i=1,..., nzero
End if
End if

End if
5. Calculate the horizontal component of the step.

(a) If (solution = true), then

o If (curvature = zero), then

* wy = —(QTBQ2)* QI(V.l+ Bsrr).

Else
* w2 =—(Q]BQ2)"! QT(V.l+ Bsrr)
End if
® sQp =SLF + Qaw,.
End if

6. Calculate the multipliers.

(a) If (solution = true), then
e If (Vh full rank), then
+ Solve R [IITA)| = —QT(V.! + Bsqp) for [m7ay.
Else

* Solve T [u], = —QT(V.l + Bsgp) for [u], where [u], denotes the
first r elements of [Z T TA/\] .

* Set the last (m — r) elements of u to zero, [t](n-r) = 0.
+ [I7AN = Zu
End if
e “Unpivot” the multipliers: Adgp =1I [I7A)] .
End if

7. End.
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Chapter 4

Calculation of a Trial Step

The focus of this chapter is the calculation of a trial step s. at each iteration of our
nonlinear programming algorithm. At the current iterate z. with multipliers \., we
will calculate the function information f. = f(ze), Vf., B., h. and Vh, needed to
build a local model of problem ENLP (1.1). We assume that we have the current
trust region radius A.. (The strategy for calculating the trust region radius will
be discussed in Section 7.4.) Given this information, we want to determine a trial
step sc which, when added to the current point, will hopefully give us a new iterate
T4+ = T, + s. that is a better approximation to z. than the current iterate.

To design an algorithm for calculating a trial step. there are some considerations
to keep in mind. First, in order to retain the fast local convergence properties of the
SQP method, we will want to take SQp as our trial step whenever it exists and lies
inside the trust region. Far from the solution, though, we will need to choose our trial
step based on a globalization strategy. The globalization strategy that is the basis of
this work is the 2DCTR subproblem, and so we will choose the trial step to be the
solution to the two-dimensional constrained trust region subproblem,

2DCTR Subproblem: (4.1)
minimize V. [.Ts+ %-sTBcs
subject to ||[VA.Ts + k|, < 6.
lIsll2 < A

s € spa'n{vla Uz},

when we are far from the solution.
Using these ideas, the obvious strategy is to first solve the generalized quadratic
program,

Problem GQP: (4.2)

1
minimize V.I.Ts+ §sTBcs



subject to VhCT.s + he = Ourrn

for sqp. if problem GQP has a solution, or dgp, a descent direction of zero or negative
curvature inside the null space of VAT, otherwise. If sQp exists and is inside the trust
region. then we will take it as our trial step. If not, we would then solve the 2DCTR
subproblem for a trial step. The advantages of this simple and straightforward ap-
proach are that it retains the fast local convergence of the SQP method, the cost
of the trial step is dominated by the cost of the solution to problem GQP, and the
numerical results show good global behavior.
However, there are a number of circumstances in which the constraint

“thT-s + hc”2 < 6. (43)

can be ill-conditioned, and it is not numerically advisable to use the 2DCTR sub-
problem. Consider, for example, the situation when h(z.) = 0 and the SQP step
is not chosen as the trial step. Then, the linear feasibility constraint (4.3) becomes
IVATs||2 = 0. The theory for linear least squares problems, (Golub and Van Loan,
Chapter 6), tells us that we would prefer to solve IV hTs||; = 0 directly as VhIs =0
to avoid squaring the condition number of the problem.

We will discuss other specific circumstances in which the constraint (4.3) may be
ill-conditioned presently, but first, let us reconsider our design criteria for the trial
step algorithm. We know that we want to choose sqp as the trial step whenever it
exists and is inside the trust region, and we want to use the 2DCTR. subproblem when
we are far from the solution. In the simple strategy outlined above, we were “far from
the solution” whenever sgp did not exist or was outside the trust region. Instead,
suppose we use the distance to the linearized constraint manifold VhTs+h, = Ouin
to determine if we are “far from the solution.” During the solution of problem GQP,
(see Chapter 3), we obtain sy r, the step to the linearized constraint manifold. Then,
llscrll is the distance to this subspace since Theorem 3.2 guarantees that s;z is the
minimum norm solution of {s ; min ||VATs + h||}. In addition, the fact that SLF is
not inside the trust region is sufficient to conclude that sqp, if it exists, will not be
inside the trust region either.

Using this new notion of “far from the solution,” if s;f is inside the trust region,
then the natural choice for a subproblem is clearly

QPTR Subproblem (4.4)



minimize V_/.Ts+ %STBCS
subject to VA s+ h. = Op v
sl < A,

since we know the constraint region is now non-empty. There are two different

motivations for using the QPTR subproblem in these circumstances. First, it directly
avoids using the possibly ill-conditioned 2DCTR. subproblem when A(z.) = 0. since
sLF = 0 when h(z.) = 0. Next, the subproblem given in (4.4) is a special case of the
Vardi subproblem (2.2). Recall that the difficulty with the Vardi subproblem was the
choice of ©. in the constraint VA Ts + A, = O., but in this situation, the obvious
choice is ©. = @arry. Furthermore, it has the desirable property that sgp is the
solution to the QPTR subproblem whenever sqp exists and is inside the trust region.
So, we will use the QPTR subproblem whenever we know that its feasible set is non-
empty. Specifically, we use ||s.r|| < .8A. as the criterion for choosing the QPTR
subproblem since this guarantees that the feasible set has a non-empty interior.

Now we have essentially a three-phase strategy for calculating the trial step. First,
we will solve problem GQP for either a solution sgp or a descent direction of zero or
negative curvature, dop, and the step to linear feasibility, spr. If sqp is inside the
trust region, then we take it as our trial step. Otherwise, we choose our subproblem
based on the distance to linear feasibility, ||s.¢||. If we are “close” to linear feasibility,
then we use the QPTR subproblem to calculate the trial step, and if we are “far”
from linear feasibility, then we use the 2DCTR. subproblem as our global strategy.

In the next section, we will discuss the choice of the two-dimensional subspace and
the required linear feasibility constant 6, that are needed to complete the specification
of problem 2DCTR. Once we have determined the linear feasibility constraint (4.3)
the following section is concerned with the circumstances in which this constraint can
be ill-conditioned and how we will deal with them.

4.1 Determining the Required Amount of Linear Feasibility
and the Choice of the Two-dimensional Subspace

Recall that our constrained trust region subproblem 2DCTR has a linear feasibility

constraint of the form
IVATs + k| < 6., (4.5)
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and in this section we will discuss how to choose 6.. The strategy we use is based on
the idea that if we choose 8. to be equal to |V T3 + h.|| for some $ inside the trust
region. then we are guaranteed that the feasible set of the form

{s :IVATs + .| < 6. and ||s]| < A.) (4.6)

is non-empty. To preclude the possibility that the feasible set given by (4.6) consists
of a single point. we choose 3 such that ||3|| < .8A.. Celis, Dennis and Tapia [1985]
chose 6. to be ||[VA scp + h ¢|| where scp = a.VA.A. is the step to the Cauchy
point for the constraints. i.e., the minimizer inside the trust region {s : ||s|| < .8A.}
of ||[Vh.Ts + h.|| along the direction of its negative gradient while Powell and Yuan
[1986] chose . to minimize |[Vh.Ts + A|| inside a trust region of radius o.\. for
O<eo<l.

Our choice for 4. is based on a dogleg strategy similar to the dogleg approach
for the solution of the unconstrained trust region subproblem, (Dennis and Schnabel
(1983]). In unconstrained optimization, the dogleg approximates the solution curve
s(u) of the trust region subproblem by a piecewise linear function connecting the
Cauchy point to the Newton step. If the Newton step is inside the trust region, then
it is the dogleg point. Otherwise, the dogleg step sp. is the point on this polygonal
arc such that |lspr]| = A.. The dogleg has the nice property that the value of
the quadratic model decreases monotonically along the curve from z. to scp to the
Newton step.

We want to determine a dogleg step sp, for the quadratic model of the constraints
IVATs + h||2. We use the Cauchy point as defined above with a trust region radius
of .8A. as the first segment of the dogleg. The Cauchy point is determined as follows.

Calculating the Cauchy Point: (4.7)
hIVR IV A
- — c c ciéc thhc
P TR IVhIVh. VATV hoh,
8A,

if ”.Scp” > .84A,, then scp = "TC-P—”-.SCP

Now we need the segment of the dogleg step that will play the role that the
Newton step plays in the dogleg step for unconstrained optimization. We could use
the Levenberg-Marquardt-type step of Powell and Yuan. However, this choice requires
the solution of an additional unconstrained trust region subproblem, and we would
prefer not to incur this computational expense. Instead, recall that we have a step
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scr to the linearized constraint manifold VhTs + he = Oprry from the solution of
problem GQP. and we will use this step in the dogleg strategy to play the role of the

Newton step. If |spr|| < .8A., then spy = spp. If srr lies outside of the .8 trust
region. the dogleg step is of the form

SpL = scp + asrr such that ||sp.]| = .8A. and a > 0. (4.8)
From apphcatxon of the standard dogleg analysis to the function IVA.Ts + h.ll, we
know that |[Vh.Ts + A.|| decreases as we move along spr, given in (4.8) from s = 0

to s = spr. The calculation of the dogleg can be summarized as follows.

Calculating the Dogleg Step:
o If (|lscrl < .8A.), then

* SpL = SLF
Else

* Calculate the Cauchy point from (4.7).

* SpL = Scp + asrF such that ||sp.]| = .8A. and a > 0.
End if
The details on how to calculate « such that llscp + astr|| = .8A. can be found in

Dennis and Schnabel [1983]. The dogleg step spz will be zero only when s f is zero
and s = 0 is a linearly feasible point.

Once we have found the step which will determine the required linear feasibility,
all that remains is to calculate 4. by

gc = ”thTSDL + hc - G)MIN”’ (49)

where the inclusion of @asx simply translates the constraint so that the minimum
value of | VA s + A, — Omin|| is zero.

Now we will consider the choice of the two-dimensional subspace. As indicated
previously, the first direction we use will be sqp if it exists. If the SQP step does not
exist, then we will have determined a descent direction of negative or 7ero curvature
inside the null space of VA.T, and we will use this direction dgp as tLc first direction.

For the second direction we will use the step sp, that determined the required
linear feasibility. This choice will ensure that the intersection of the two-dimensional
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subspace with the feasibility region given in (4.6) is non-empty. Thus. the two-
dimensional subspace will be

s € spa.n{st or de; SDL}- (4.10)

4.2 Ill-conditioning of the Linear Feasibility Constraint

In this section. we will discuss several situations where the linear feasibility constraint
(4.9) may be ill-conditioned. Previously, we used the case k(z.) = 0 to motivate the
use of the QPTR subproblem when s;r is inside the trust region. If A(z.) = 0.
then (4.9) becomes ||VATs||2 = 0, and to avoid squaring the condition number of the
problem we would prefer to solve ViTs =0 directly.

A similar situation arises when VA.h. = 0. Notice that this includes the case when
Z. is a nonlinearly feasible point, i.e. h, = 0, but it also includes the situation when
s = 0 lies in the linearized constraint manifold VhIs+h, = Oumin and A, # 0.
When Vh.h, = 0. we can show that VhTIs+ he = Oy is equivalent to VA s = 0.
By definition. @y is the residual of the linear least squares problem VA.Ts = —h..
In addition, VA A. = 0 implies that the projection of A. onto the column space of
Vi is zero. Thus, ©ary = h. in this case, and VhTs + b, = O reduces to
Vh.Ts =0. In both of these situations, the QPTR subproblem reduces to

minimize V_I.7s + -;-sTBcs (4.11)
subject to VAIs=0
lIsll < A..

Since sir and scp are zero under these circumstances, switching to the QPTR sub-
problem when s ¢ is inside the trust region avoids the possibility of ill-conditioning
in the linear feasibility constraint.

Since the subproblem given in (4.11) is a special case of the Vardi subproblem, it
can be reduced to a lower dimensional unconstrained trust region subproblem. This
reduction will be discussed in the next section. Then, the resulting unconstrained
subproblem can then be solved with existing software designed for unconstrained
trust region algorithms. See, for example, Moré and Sorensen [1983].

Although we have discussed this special case assuming that we have solved the
quadratic program GQP, notice that if sqp exists and lies inside the trust region,
then it will be the solution to the subproblem given in (4.11). Thus, for efficiency,
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the algorithm will solve the subproblem in (4.11) first if it detects Vh.h, = 0. and in
this situation, problem GQP does not need to be solved.

Next, we will discuss two more special situations that lead us to solve a Vardi-type
subproblem (2.2). The first of these is when the value for 6, from (4.9) is small. and
the linear feasibility constraint becomes

”thTs + hc = GNIIN” < ec ~ 0. (4-1‘))

This is essentially a translated version of the previous case, and the obvious choice
would be to switch to a constraint of the form

VhTls+h.—Ormv=0 (4.13)

for numerical conditioning. However, the shortest distance to this linear manifold
is ||scF||. Since we have already dealt with the case when lIscrl] £ .84, it is very
possible that spr is outside the trust region and the intersection of the constraint
(4.13) and the trust region is empty. Instead, using the definition of 4., (4.12) becomes

VhTs + he — Opmrn|| = | VAT spr + he — Omin|l -
If we now remove the norms, we have a constraint of the form
thTs = thTsDL ,

which has a non-empty intersection with the trust region since |[spr| < .8A.. This
gives us a subproblem of the form

1
minimize V.I.Ts+ EsTBcs (4.14)
subject to Vh.Ts = VhTspL
lIslf < A..

We have also seen numerical ill-conditioning when
lhe = Ormin|l = 6., (4.15)

and ||Vh s + h, — OumiIn|| = 6. over the entire feasible region of problem 2DCTR.
Essentially the linearized constraints are not well-scaled in comparison with the trust
region radius. Then, the linear feasibility constraint is

VAT s + he — Oprrnl| = 6. (4.16)
VT spL + he — Opran|| (4.17)
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and with (4.13),
IVRTs|| =~ |[VATspLl. (4.18)

Thus. in this situation. we would prefer a subproblem with a constraint of the form
Vh.TIs = VhTsp, instead of the 2DCTR subproblem. Inserting this structure into
the QPTR subproblem yields a subproblem of the form (4.14).

4.3 Solution of Problem QPTR and Related Subproblems

In this section we will briefly outline the solution of the QPTR subproblem and the
special cases (4.11) and (4.14) developed in the last section. Each of these subprob-
lems can be reduced to a lower dimensional unconstrained trust region subproblem.
We will start with the solution of the simplest one:
o 1
minimize V.[.Ts + §sTBcs
subject to VhTs =0
lIsll < A..

The constraint VA.Ts = 0 requires that the solution lie ; in the null space of VAT
Thus, we can write s = Q2w where Q is the orthonormal basis for the null space of
VAT from the orthogonal decomposition of VA, given in (3.14). With this change of
variables, the subproblem in (4.11) becomes

minimize §(w) = (Q2TV.1.)Tw + %wT(QZB Q2)w (4.19)
subject to ||w| < A.,

and the dimension of the resulting unconstrained subproblem will be the dimension
of the null space of VA.7. The trial step is then s. = Q,w.
Now we turn our attention to the solution of the QPTR subproblem,

QPTR Subproblem (4.20)

1
minimize V.. Ts+ ESTBcs

subject to VA Ts + k. = Oprin
sl < A..



35

Using the definition of @y n given in (3.2), the constraint VhTIs + he = Oarrn
becomes
VhTs + h. = Oury = VA spr + ke,
or
VhTs = VhTs,r. (4.21)
Using the orthogonal decomposition of Vh., we can write
s = Q1w + Qaw; (4.22)

where Q) is an orthonormal basis for the column space of VA, and Q2 is a basis for
the null space of VA.T. For subproblem QPTR, the component of the trial step in
the range space will simply be sz since sLF is orthogonal to the null space, and so
§ = srF + Q2ws. Substituting this into (4.20) yields an unconstrained trust region
subproblem of the form

L 1 ‘
minimize §(wz) = (Q2T Vol + Q7 Bsrr)Tw, + sw3 (@I BQ2)w, (4.23)
subject to |lwz|| < (A: = ||scrl]) - (4.24)

o

The form of the trust region constraint (4.24) is due to the fact that sy is orthogonal
to the null space, and so

sl = llstr + Qaw.||
= |[scrll + ||Q2we||
= |lscrll + |lw.]| . (4.25)

We know (A; — ||sr|l) > 0 since ||scr|| < .8A.. Thus, subproblem (4.20) requires
the solution of a standard unconstrained trust region subproblem for w,, and then
the trial step is s. = spr + Q,w;.

The solution of (4.14) is basically the same except that sp; is not necessarily
orthogonal to the null space. Since we need this orthogonality so that the trust
region constraint will separate as in (4.25), we compute the portion of spy that is
orthogonal to the null space, i.e.,

wPLl = Q,Tspy . (4.26)

Then, the solution can be written as s = Q,wPl + Q,w,. Substituting this back into
subproblem (4.14) yields an unconstrained trust region subproblem which can then
be solved for w,, completing the calculation of the trial step in this instance.
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In our preliminary implementation, we use the subroutine GQTPAR from the
MINPACK project to solve these unconstrained trust region subproblems for our
trial step. GQTPAR is based on the algorithm given in Moré and Sorensen. [1983].

4.4 Statement of the Algorithm

In this section, we will summarize our strategy for calculating a trial step. First. if
h(zc) = 0 or if A is orthogonal to the column space of VRI, then the linearized con-
straint manifold contains s = 0. Since the feasible region for the QPTR subproblem
is guaranteed to be non-empty in these circumstances, we will use this subproblem
to determine a trial step. Otherwise, we will solve problem GQP for either a solution
sqQp or a descent direction of zero or negative curvature inside the null space of VAT,
The step s 7 to the linearized constraints will be a by-product of the solution of
problem GQP. If sqp exists and is inside the trust region, then we will take it as our
trial step.

If we did not take sgp as our trial step, we choose a globablization strategy based
on the distance to linear feasibility, lscrll. If spr is inside the “inner” trust region of
radius .84, then we use the QPTR subproblem to calculate our trial step. Otherwise,
we will use the 2DCTR subproblem unless we encounter one of the situations in which
the constraint ||[VATs + A, — Oumin|| £ 6. may be ill-conditioned, and we will handle
these cases as discussed in Section 4.2.

Algorithm Trialstep:

1. Given A, Vh,, the quadratic model, g.(s) = V. I.Ts + %sTBcs, and the trust
region radius, A., calculate a trial step s..

2. If (Vh.h. =0), then

(a) Solve:
minimize q.(s)
subject to VA JIs=0
lIsll < A
for s..

(b) Return.



End if.

3. (a) Solve Problem GQP:

minimize q:(s)

subject to VA s+ h. = Oygv

for

* sir. the step to the linearized constraints, VA.Ts + A, = Orrv

e sqp. if such a solution exists, or

e dop a descent direction of zero or negative curvature inside the null
space of VAT, otherwise.

(b) If (a solution to problem GQP exists), then
e solution = true
Else
e solution = false

End if.
4. If ((solution = true) and (||sqp|| < A¢)), then

(a) sc =sgp

(b) Return.
End if.

5. Calculate the required Linear Feasibility.

(a) If (Jlscrll < .8A.), then
® SpL = SLF
Else
o Calculate the Cauchy point for the constraints, scp.
e Find a such that ||scp + ascr|| = .8A,
® SpL = Scp + QSLF
End if



(b) 6. = |VhTspr + he — Ourrv||

6. If ((0. is too small), or (6. = ||h. — Oarrn]|)) then

(a) Solve:
minimize q:(s)
subject to VhTIs =VhIsp
sl < A
for s..
(b) Return.
End if

7. Choose the 2D Subspace.

o If (solution= true), then

* {v1,v7} spans {sqpr,spr}
Else

* {v1,v,} spans {dop,spL}
End if.

8. Solve Problem 2DCTR:
minimize q.(s)
subject to  ||VATs + A, — Oprrn|| < 6.

llsll < A

s € span{v, v2}
for s..
9. Return.

10. End.
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We point out that this is not the most efficient way to implement the algorithm
since there will be occasions when problem GQP is solved unnecessarily. For example.
suppose we solve problem GQP for sgp only to discover that it is outside of the trust
region. and in addition, suppose that Istr|l < .8A.. Then we would use the QPTR
subproblem to compute the trial step, and the solution of problem GQP would have
been unnecessary. In our preliminary implementation, however, we are interested
more in stability than speed. and we view the solution of problem GQP as a diagnostic
tool. In addition. we will use the curvature information we obtain from problem GQP
in choosing Lagrange multiplier estimates. Future implementations will address the
issue of efficiency.
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Chapter 5

Solution of the Constrained Trust Region
Subproblem 2DCTR

Now that we have specified the two-dimensional subspace and the amount of linear

feasibility that we will require, in the form of 6., we are ready to discuss the solution
of the 2DCTR subproblem. Recall that it is

2DCTR Subproblem: (3.1)
minimize V.I.Ts + %sTBcs
subject to ||[Vh.Ts +-hc||2 <4, (5.2)
lIsll2 < A,

s € span{sqp or dgp,spLr}.

This subproblem consists of the minimization of a non-convex quadratic subject to two
quadratic constraints in two dimensions. Recently, Dennis, Martinez and Williamson
[1991] gave a characterization of the solution of the constrained trust region subprob-
lem CDT. Since we will use this characterization as the basis for our algorithm, we
will state their result.

Theorem 5.1 Dennis, Martinez, and Williamson [1991].
If s. is a global solution of the CDT subproblem,
Problem CDT:
. S
minimize V. 0[.°s+ 59 B.s
subject to ||VA.Ts + k.|| < 6.
sl < A,

then either both constraints are binding, || VAT s+k.|| = 8. and ||s]| = A,
or s. is a local solution of at least one of the two problems:

Subproblem TR: (5.3)
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C 1
minimize V,lcTs-l-;sTBcs

subject to ||s|| < Ac:

or

Subproblem LF: (3.4)

minimize V_.I.Ts+ %STBCS
subject to ||VA.Ts + A, <6..

If any global solution of either (5.3) or (5.4) is feasible for both constraints.
then it is a global solution of problem CDT.

Theorem 5.1 will be our guide in developing an algorithm to solve the 2DCTR
subproblem. Theorem 3.1 clearly will hold for our subproblem 2DCTR since it is
a two-dimensional version of the CDT subproblem. This characterization tells us
that to find the global solution to the 2DCTR subproblem, we must be prepared to
calculate all of the local solutions to the subproblems TR (5.3) and LF (5.4). The
subproblem TR (5.3) is obviously the standard unconstrained trust region subprob-
lem. The subproblem LF (5.4) can be transformed into the standard unconstrained
trust region subproblem by transforming the elliptical constraint into a spherical con-
straint. Algorithms for approximating the global solution of the unconstrained trust
region subproblem have been well-established. See, for example, Dennis and Schnabel
[1983]. However, Theorem 5.1 tells us that the global solution to problem 2DCTR
may be a local, non-global solution to one of the unconstrained subproblems TR (5.3)
and LF (5.4). We have developed an algorithm to obtain all of the global solutions
and the non-global solution, if it exists, to the unconstrained trust region subproblem
of the form (5.3), and this work will be described in Chapter 6. For now, we will
assume that we can obtain all of the solutions to the subproblems (5.3) and (5.4).

Using Theorem 5.1 as a guide, we give the following rough outline for the solution
of the 2DCTR subproblem.

Outline of the Solution to the 2DCTR Subproblem:

1. Find all local solutions to subproblem TR given in (5.3).

2. If any global solution to subproblem TR satisfies ||[VATs + &|| < 6., then it is
a solution to problem 2DCTR.



3. Find all local solutions to subproblem LF given in (3.4).

4. If any global solution to subproblem LF is inside the trust region. then it is a
solution to problem 2DCTR.

5. Determine the points where both constraints are binding.

6. The solution to problem 2DCTR is the point with the smallest value of the
quadratic model among:

(2) The points where both constraints are binding.

(b) The non-global solution to the subproblem in (5.3), if it exists and satisfies
IVATs + hell < 6.

(c) The non-global solution to the subproblem in (3.4), if it exists and is inside
the trust region.

When we have a direction of negative curvature inside the null space of V4.7, (or
a direction of zero curvature which is a descent direction for the quadratic model).
the algorithm will simplify since the trust region constraint must be binding at the
solution to the subproblem. To understand this point, consider a step 3 in the two-
dimensional subspace which satisfies the constraint | VATs + A.|| < . and is strictly
inside the trust region, [|5|] < A.. Now consider taking a step of the form § + adgp
to the boundary of the trust region, and remember that in this case, dgp is one of
the directions that defines the two-dimensional subspace. The quadratic model for
this step is

. 1
q(§ + adqp) = q(.§) + C!(V_.,ITJQP + .STBdQP) + -‘)-azdngde .
If we choose the sign of a such that a(V . ITdgp + sTzBdgp) < 0, then

9(3 + adqp) < (),

which shows that the trust region constraint must be binding when dgp is a direction
of negative (or zero curvature which is a descent direction) inside the null space of
Vi

Once we know that the trust region constraint is binding, the algorithm will
simplify because we do not have to solve subproblem LF. To show this fact, suppose
that it is not true. Suppose that a global solution to subproblem 2DCTR § is a solution



43

of problem LF which lies on the boundary of the trust region. but lies strictly inside
the linear feasibility region. | VA s + k.|, < 8. However. since it is a global solution
of problem 2DCTR. it must have the smallest value of the quadratic model in the
region

q(3) < q(s) for {s: ||s]| = A and ||VATs + A, < 6.) (5.3)

which includes the points where both constraints are binding. Since dgp is a descent
direction in this case. the trust region constraint is binding, and any solution to
problem TR must lie on the boundary of the trust region. But, (5.3) shows that 3
must be a solution to problem TR, which gives us the necessary contradiction.

We have described our solution procedure for subproblem 2DCTR. and a complete
outline follows. In the next section, we give some details concerning the conversion
of the subproblem to two dimensions. After problem TR has been converted to a
standard two-dimensional unconstrained trust region subproblem, it can be solved by
the techniques which will be given in Chapter 6. If a global solution to problem TR
satisfies the linear feasibility constraint, then we take it as the solution. Otherwise. if
second-order sufficiency holds, we convert problem LF to the standard unconstrained
trust region form and use the techniques of Chapter 6 to solve it. If a global solution
to problem LF is inside the trust region, then it will be a solution to Problem 2DCTR.
Finally, all that remains is to find the points where both constraints are binding, and
there can be at most four such points. In two dimensions, this merely requires finding
the roots of a fourth-degree polynomial.

Solution of Problem 2DCTR:

1. Given k., VA, the quadratic model, ¢(s) = V.I.Ts + 1sTB.s, the trust region
radius, A., and the two-dimensional subspace {v;,v,}, calculate a solution, s.,
to problem 2DCTR.

2. Solve Problem TR:
minimize qc(s)

subject to  ||s]| < A,

s € span{vy, vz}

for all global solutions, strg, and the local, non-global solution, srgr, if it
exists.
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3. If ( any sTgg satisfies || VAT srre + he — Ourrvll < 6. ), then

(a) s =stre

(b) Return
End if.
4. If (Second-order Sufficiency holds), then

(a) Solve Problem LF:
minimize q.(s)
subject to  ||[VATs + A, — Oy n|| < 6.

s € span{v, vo}

for all global solutions, s;rg, and the local, non-global solution, sy rr , if

it exists.
(b) If (any srre satisfies ||scrg|| < Ac ), then

® Sc =SLFG

e Return

End if.

5. Calculate the points where both of the two-dimensional constraints are binding,
1. e, find s¢cp1, scB2, ScB3, and scgs such that

IVhTs + k|| = 6.

llsll = A

s € span{vy, vz}
There may be 2, 3 or 4 intersection points.

6. Determine if problem TR or problem LF has a local, non-global solution which

satisfies the remaining constraint.

(a) If ( ( stre exists ) and ( ||[VATsTrr + h — Opnl| < 6e) ), then

® save STRrL



End if.

(b) If ( ( scrr exists ) and ( ||lsprzfl < A) ), then

® save Srrr

End if.

se = argmin{ q(scp1); q(scm2); q(scas); q(scBs )i q(stRe), if sTrr was
saved: ¢( sprr ), if s pr was saved }.

8. Return.

9. End.

5.1 Conversion of Subproblem 2DCTR to two dimensions

In this section we will discuss the conversion of the 2DCTR subproblem to two di-
mensions. The 2DCTR subproblem is

2DCTR Subproblem:

minimize V. [.Ts + %STBCS
subject to ||VA.Ts + hell2 < 6.
llsll2 < A
s € span{sqp or dgp,spr}.

The first step is to orthonormalize the vectors defining the two-dimensional subspace
to obtain
span (sqp or dqp; spr) = span (v1, v2).

Let V' denote the matrix whose columns are [vv,]. We point out that it is possible
but unlikely that v, and v, are actually the same direction. If this occurs, then we
will take a step in the direction spy, to the boundary of the trust region.

Given the matrix V, we write the step as s = Vz where z € IR? will be our new
variable in the two-dimensional subspace. Then, writing subproblem 2DCTR with
the new variables yields

minimize g,p(z)
subject to ||VhapTz + k|2 < 6.
2]l < A
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where
1
Q2D(Z) = V;L{Dz + ")'ZTBZDZ. (56)
vrl2D = ""Tvxlcv (51-)
B,p = VIB.V, (3.8)
and Vhyp = VIVh,. (5.9)

Then. V. lop € IR?, Byp € IR**?, and Vhop € R**™,

5.2 Conversion of Problem LF into Standard Trust Region

Form

In this section. we will discuss the conversion of problem LF

minimize V.[.7s + %STBCS (5.10)
subject to ||V s+ A |, < 6. (5.11)

s € span{sqp,spL},

into the standard trust region form:

minimize qrr(y)
lyll < 6.

Recall that if we need to solve this subproblem, then we know that sqp exists and
satisfies (=Vh Tsgp = A, — ©m1n). Using this relation, (5.11) becomes

IV4T (s = sqp)ll < 6.
Recall that our two-dimensional subspace is
span {sqgp; spr} = span {v,v;},

where V' = [viv;]. Then, we can find a vector zqp such that Vzqp = sqp. The
determination of zgp merely depends on the procedure we used to orthonormalize
{sqPispr} into {vi,v:}. Substituting sqp = Vzqp, yields ||VhapT(z — zqp)|| < 6.
where Vhyp was defined in the previous section.
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Ve now replace (:—zop) with Uy where ' € [R**2,y € [R?. and U is orthonormal,
and U is chosen such that the columns of VhopTl are also orthonormal. Thus.

IVheTs + hell = [VhapTUy|| = |ly]| < 6.
All that remains is to transform the quadratic model into

1
qr = Vo IpTy + §yTBL1-‘y

where

(W1

Vir = (VilapTU + 2gpBopU)T (5.12)
and Bir = UTB,pU. (5.13)

Now problem LF has been transformed into a standard unconstrained trust region
subproblem. We remark. however, that if the columns of Vhep, which are vI VA, and
vIVh,, are not linearly independent, the feasible region determined by (5.11) will not
be a solid ellipse but instead will be the region between two parallel lines.



Chapter 6

Solution of the Unconstrained Trust Region
Subproblem Restricted to Two Dimensions

Our goal. to develop a nonlinear programming algorithm, requires us to find an algo-
rithm to solve the two-dimensional constrained trust region subproblem 2DCTR. As
we have seen. the characterization of the solution to problem 2DCTR. (Theorem 5.1
restricted to two dimensions), tells us that the solution may be any local solution to
the standard unconstrained trust region (UTR) subproblem. The unconstrained trust
region subproblem minimizes a quadratic model of the objective functlon subject to
a trust region constraint on the length of the step and is of the form

Problem UTR: (6.1)

_ 1
minimize g¢7s + EsTHs
subject to [[s]| < A,

where the Hessian H is assumed to be symmetric and the trust region radius is
assumed to satisfy A > 0. We use the expression local minimizer to refer to a point
that has the smallest function value in an open neighborhood intersecting the feasible
region. By global minimizer, we mean a point in the feasible set where the objective
function takes on the absolute lowest value. Clearly, all global minimizers are also
local minimizers. In addition, we will refer to local minimizers which are not global
minimizers as non-global minimizers. Theorem 5.1 requires us to distinguish between
global solutions and non-global solutions to problem UTR. When we get to the point
- where we are ready to determine if any local solution to the subproblems of the form
given in (6.1) is the solution to problem 2DCTR, we must treat the global solutions
and non-global solutions differently.

This chapter is concerned with finding all of the possible global solutions and
the non-global solution, if it exists, to the standard unconstrained trust region sub-
problem. This is a daunting task, but recall from Chapter 2 that we have restricted
our constrained subproblem 2DCTR to a relevant two-dimensional subspace. The
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original motivation for this restriction centered on the difficulty in minimizing the
quadratic model over the intersection points of the two quadratic constraints, but in
two dimensions this becomes easy. We shall see that the restriction to two dimensions
also makes the problem of finding the local solutions to problem UTR analytically
and computationally more feasible. Thus, we will assume the restriction to the two-
dimensional subspace holds throughout the remainder of this chapter, i.e., g € IR?
and H € [R**%.

Our approach to solving this problem will break down the analysis into several
different cases based primarily on the eigen-decomposition of the (2 x 2) Hessian H.
These cases can be summarized as follows.

1. g=0.

2. Ay = A
3. vfg=0.
4. vfg =0.

5. 9 #0, A1 < Ag,vTg #0, and vfg # 0.

We will attack each of these cases in this order. We will refer to cases 1,2,3 and 4 as
degenerate cases, and we will show that for these degenerate cases, all of the global
solutions to problem UTR and the non-global solution, if it exists, can be determined
analytically. This fact is strongly dependent on the restriction to two dimensions
and is the primary reason that finding all of the local solutions to problem UTR
is computationally inexpensive. In the non-degenerate case, we will use a modified
version of the algorithm given in Moré and Sorensen [1983] to determine the global
solution to problem UTR. Then we will determine if a non-global solution exists, and
if it does, we will again use a modified version of the algorithm given in Moré and
Sorensen [1983] to find it.

6.1 Preliminaries

The unconstrained trust region subproblem UTR is the basis for trust region algo-
rithms for unconstrained optimization. Algorithms for determining an approximation
to a global solution of problem UTR have been well-established. (See Dennis and
Schnabel [1983] for a survey of this area.) We are interested in finding not only a
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global solution but all of the local solutions to problem UTR under the assumptions
that ¢ € IR®, H € IR**? H is symmetric. and A > 0. As mentioned above. we
will base our analysis on the eigen-decomposition of the Hessian. Since H is real and
svmmetric, we have the real Schur decomposition of A

QTHQ = A = diag(Ay, As) (6.2)

where @ is orthogonal and A; < A; are the real eigenvalues of H. (See, for example.
Golub and Van Loan [1983].) The columns of @ are the orthonormal eigenvectors of
H. and we will denote the eigenvector corresponding to :\; by v, and the eigenvector

corresponding to A; by v, where

Q= [01 1’2]-

In addition, we use the notation
= vng and ¢ = vag.

We will now give the tools that we will need to characterize the solutions of the
unconstrained trust region subproblem. Sorensen [1982] gives the following charac-

terization of the global solutions to problem UTR, and similar results can be found
in Gay [1981].

Lemma 6.1 Sorensen [1982], Gay [1981].

If s* is a (global) solution to problem UTR, then s* is a solution to an
equation of the form

(H+p " I)s"=—g (6.3)
with p* > 0, u*(||s*]|*> — A?) = 0 and (H + u~I) positive semidefinite.

We have inserted the qualifier (global) into the statement of Lemma 6.1 for clarity
since we must make the distinction between global and non-global solutions to prob-
lem UTR. We point out that the conclusion in Lemma 6.1 that (H + ") is positive
semidefinite at a solution depends strongly on the fact that s* is a global minimizer.
This can be seen in the proof of Lemma 6.1 in Sorensen [1982] where it is assumed
that s* has the lowest value of the quadratic model on the boundary of the trust
region.

Since Lemma 6.1 only gives necessary conditions for a step to be the global solu-
tions to problem UTR, we give another lemma from Sorensen [1982] stating sufficient
conditions for a step to be a global minimizer.



Lemma 6.2 Sorensen [1982].

Let y and s satisfy
(H + ul)s = —g with (H + ul) positive semidefinite. (6.4)

(1) If p =0 and ||s|| < A, then s solves problem UTR.

(ii) If ||s]| = A. then s solves w%(s) = min{¥(w) : |lw|| = A} where
(w) = gTw+ LwT Hw.

(iii) If # > 0 and ||s|| = A, then s solves problem UTR.

If (H + pI) is positive definite, then s is unique in each of the cases (1).
(i1), and (iii).

Since Lemmas 6.1 and 6.2 only address global solutions, we will need another tool
to find a characterization of the non-global solutions. We apply the standard second-
order sufficiency theorem for general nonlinear programming, which can be found in
Avriel [1976], to problem UTR to obtain the following theorem.

Theorem 6.1 Second-order Sufficiency.

If there exists a vector u. such that

(H+u'D)s™ = —g (6.5)
s’ < A (6.6)
p(A=|si) = o (6.7)
B 2 0, (6.8)

and for every z # 0 satisfying
27520 if ||s"|=Aand p"=0 (6.9)
25" =0 if ||s’||=A and 4" >0, (6.10)

it follows that

2ZT(H +u")z > 0, (6.11)

then s* is a strict local minimizer of problem UTR.
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Using these tools. we derive analytical expressions for all of the local solutions
to problem UTR in the four degenerate cases in the next section. The following
section is concerned with finding the global solution in the non-degenerate situation.
In particular, we develop a good initial guess for the iterative procedure that we will
use. Finally, we derive conditions that will determine if a non-global solution exists
in the non-degenerate case, and we discuss how to find it if it exists.

6.2 Characterization of the Solutions for the Degenerate
Cases
As indicated at the beginning of this chapter, we will start our analysis with the case

where g = 0. The following theorem gives the solutions to problem UTR in this
situation based on the eigenvalue distribution of H.

Theorem 6.2 Solutions to Problem UTR when g=0.

Given g € IR?*, H € IR**? with H symmetric, and A > 0, let A; < A; be
the eigenvalues and {v,v,} be corresponding orthonormal eigenvectors of

H.

If (9 = 0) and (A, > 0), then problem UTR has one global solution s* = 0
with multiplier u* = 0.

If (9 = 0) and (A; = 0) A (A2 > 0), then problem UTR has an infinite
number of global solutions of the form s* = awv, for all a € EAWANR

If (g = 0) and (A; = A; = 0), then any point in the trust region is a
global minimizer for problem UTR, s* = {s : ||s]| < A}

If (9 =0) and (A; < 0) A (A; < Ay), then problem UTR has two global
solutions of the form s} = Av; and s3 = —Awv; with multiplier u* = —A,.

If (g = 0) and (A; = A; < 0), then any point on the boundary of the trust
region is a global minimizer of problem UTR, s™ = {s : ||s|| = A.}.

Proof Since g =0, (H + p*I)s* = —g has the form

Av+u 0 uis™ ) _o. (6.12)
0 Ay 4+ p* vg's'
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4

(Al > 0)
Since \; > 0 and \; < A, the only solution to (6.12) with U 2> 01is s = 0.

Complementarity then requires x* = 0, and (H+p"I) is positive definite. Thus.
from Lemma 6.2. problem UTR has a single global solution s* = 0 with g™ =0.

(Al = 0) A (.’\2 = 0)

In this case, (6.12) reduces to the two equations

(k7)vys™ = 0 (6.13)
(A2+,u')v2Ts' = 0. (6.14)

Since (A2 + u*) > 0 for all 4= > 0, equation (6.14) is only satisfied if s= is
orthogonal to v,. Since v, is orthogonal to v, and the dimension of the space is
only two, s* must be of the form av, for some constant a. Substituting s* = av,
into equation (6.13) shows that u* = 0. With this p*, (H + p~I) is positive
semidefinite. Then, Lemma 6.2(i) shows that problem UTR has an infinite
number of global solutions of the form s* = av, forall a € (-4, A] with u= =0.

(A=A, =0).

For this case, equation (6.12) reduces to

(b )ofs™ = 0
(K )vys™ =

First consider yu* = 0. With this p*, (H + p*I) is positive semidefinite, and
(H + pI)s™ = —g is satisfied for all s. Application of Lemma 6.2(i) gives an
infinite number of global solutions of the form s = {s: ||s|| < A}.

Notice that since (H + p*I) is also negative semidefinite, every point in the
trust region is also a global maximum. This is geometrically reasonable since
the quadratic is completely flat over the entire space in this case.

(A1 <0)A (A >0).

Equation (6.12) is satisfied for u4* = —A; and s* = av, for some constant a,
and g* > 0. Since (A; — Ay) > 0, (H + p~I) is positive semidefinite, and
Lemma 6.2(iii) yields two global solutions s* = Awv; and s* = —Awv; with
[J- = —Al-
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Although equation (6.12) is satisfied with u = —A,, this cannot correspond to

a minimizer since g < 0.

Equation (6.12) is also satisfied with s = 0, and complementarity would require
p = 0. Since (H + ul) is indefinite, Lemma 6.1 shows that s = 0 cannot be
a global minimizer. It is not a local minimizer either. The quadratic model
at s = 0 1s ¢(0) = 0. Now consider a step of the form s = cv; where ¢ is

small so that cv, is inside the trust region. The quadratic model for this step
is q(cv1) = 0.5¢*A;. Since Ay < 0, g(evy) < q(0) for all 0 < 2 < A. and s = 0

cannot be a minimum. It is actually a saddlepoint.

(A1 < 0) A (A = 0).

Equation (6.12) reduces to

(AMi+p™)vis” = 0

(g )wls = u,

and is satisfied by u* = —A; > 0 and s* = av, for some constant a. (H +pu*I)
is positive semidefinite. Then, Lemma 6.2(iii) yields two global solutions of the
form s” = Av; and 5 = —Av;.

Equation (6.12) is also satisfied by 4 = 0 and s = av, for some constant a.
(H + upl) is negative semidefinite, and so s = Av, and s = —Av; are global
maximizers.

Equation (6.12) is satisfied by s = 0. With p =0, (H + pul) is negative
semidefinite, and this solution is also a global maximum.

(A1 < Az < 0)

Equation (6.12) is satisfied for p* = —A; and s* = av, for some constant a,
and p* > 0. Since (A2 — Ay) > 0, (H + p=I) is positive semidefinite, and
Lemma 6.2(iii) yields two global solutions s* = Av; and s* = —Awv, with
pt = —=A.

Equation (6.12) is also satisfied for u = —A; > 0 and s = av, for some constant
a. and complementarity would allow @ = A and a = —A. Since A; — A; < 0,
(H + plI) is negative semidefinite. Lemma 6.2(ii) applied v the correspond-
ing maximization problem shows that s = Av, and s = —Awv; maximize the
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quadratic model on the boundary of the trust region. Thus. they cannot be
minimizers.

Again. s = 0 satisfies equation (6.12), and complementarity would require y =
0. Then. (H + u[) is negative definite, and s = 0 is a global maximum.

7. (A =12<0).
Equation (6.12) is satisfied for u~ = —A; > 0 and any s, and (H + p*I) is
positive semidefinite. Application of Lemma 6.2(iii) yields an infinite number
of global solutions of the form s* = {s: ||s|| = A}.

The only other step which satisfies (6.12) is s = 0. With p=0,(H+ulis
negative definite, and s = 0 is a global maximum.

C

Now that we have enumerated all the possible solutions when g = 0, we will
assume g # 0 and consider the situation when H has two equal eigenvalues. Again. all
possible solutions can be determined analytically, and they are given in the following
theorem.

Theorem 6.3 Solutions to Problem UTR when (A; = A,).

Given g € IR?, H € IR**? with H symmetric, and A > 0, let A; < A, be
the eigenvalues and {v;,v;} be corresponding orthonormal eigenvectors of
H. Assume that ||g|| # 0. Let

= llgll
By = A]_ + N (615)
If (A = Az) and (p4+ > 0) where p, is given by (6.15), then problem

UTR has one global solution of the form

where the multiplier u* = u.,.

If (A1 = A2) and (p4+ < 0) where p.4 is given by (6.15), then the Newton
step is inside the trust region, and problem UTR has one global solution
of the form s* = —(1/A,)g with u* = 0.



Proof In this case. (H + ul)s = —g reduces to
g

s = —m ; (6.16)
and this equation is well-defined since 4 = —A, is not a solution to (H+ul)s = —g.
Complementarity requires the trust region constraint to be binding when u £ 0.
Thus, there are only two solutions to (H + ul)s = —g satisfying lsll = A. and they
are
ue = —a, + Lol (6.17)
A
o = =N\ - Ui—” (6.18)
First we will consider whether or not u, corresponds to a minimizer.
L. (p+ 20).

Since uy > 0. g4 can correspond to a minimizer, and p* = py. From (6.16),
the step must be of the form

.

" T lel”

and (H + u°I) is positive definite. Lemma 6.2 verifies that s is the unique
global minimizer in this case.

2. (ﬂ+ < 0)

In this case, p4 cannot correspond to a minimizer. However, we can show that
H is positive definite since y4. < 0 implies A; > 0. With u" =0, (6.16) becomes
. 1
=19
and this is the Newton step. From (z4 < 0), we can show that the Newton step

is inside the trust region by
llgll
sl ==— < A.
\ sl = 2
Thus, for this case, the Newton step is the unique global minimizer.

Now we will consider whether u_ can correspond to a minimizer, and we obviously
need only to consider u— > 0. In this case, u_ < —A,, and this implies that (A; +
p-) < 0. Thus, for all p— > 0, (H + p_I) is negative definite, and p_ cannot
correspond to a minimizer. a
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We have given all of the possible solutions to problem UTR for the special cases

g = 0 and \; = \,. The next special case we shall consider occurs

orthogonal to the eigenvector corresponding to the smallest eigenvector,

when g is
Note that

this situation will include what Moré and Sorensen [1983] call the hard case.

Theorem 6.4 Solutions to Problem UTR when (v7g = 0).

Given g € IR*, H € IR**? with H symmetric, and A > 0, let A, < A, be
the eigenvalues and {v;,v,} be corresponding orthonormal eigenvectors of
H. Assume that ||g|| # 0 and A; # A;. Let

He = —.’\2 + — (619)

If (vIg =0)and (A, > 0)A(u+ < 0) where p is given by (6.19), then the
Newton step is inside the trust region, and problem UTR has one global
solution of the form s* = —(c;/A;)v,.

If (vJg =0) and (\; > 0) A (k+ > 0) where p. is given by (6.19), then
problem UTR has one global solution of the form s* = —sign(c;)Av, with
multiplier u* = p..

If (vfg = 0) and (A, < 0)A (4 > —A,) where p.. is given by (6.19), then
problem UTR has one global solution of the form s* = —sign(c;)Av, with
multiplier p* = pu.,.

The following situations are referred to as the hard case in Moré and
Sorensen [1983].

If (vfg =0) and (A S 0) A (py = —A,), where p4 is given by (6.19),
then problem UTR has one global solution of the form

C2
= ) 6.20
y (A2 - A1> v2 ( )

If (vg = 0) and (A; < 0)A (g4 < —A;) where p, is given by (6.19), then
problem UTR has two global solutions of the form

" = — (A2 f Al) vy + TV, (6.21)
C2
- - _ - 6.22
and s (Az — A1> V2 — TV ( )
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where

- A"’—L : (6.23)
T = o WL . !

If (vITg=0and (A =0)A (k+ < —A;) where u. is given by (6.19), then
problem UTR has an infinite number of global solutions of the form

§T = - (i—z) v2 + (27 — 1)7v, for all v € [0, 1]
A2
where 7 is given by equation (6.23).

Proof First we will show that 4 = —\; cannot correspond to a minimizer. For
this case, (H + pl)s = —g reduces to

(Ar 4+ p)oTs™ = 0 (6.24)
(A2 +p)vls™ = —vlg. , (6.25)
For u4 = —A,, there is no finite s such that equation (6.25) can be satisfied since

vig #0.

For p # —.\,, equations (6.24) and (6.25) require
T
v2 9

=— , 6.26
S <A2 + #) U2 ( )
since v, is orthogonal to g. Unless u* = 0, complementarity requires ||s*|| = A. There

are only two choices of y that satisfy the complementarity condition and (6.26), and
they are
b o= A+ 12 (6.27)
|c2]

= _p, el 2
K- Az X (6.28)

First we will show that y_ cannot correspond to a minimizer. For s,

— A, - lal
(H+p0)=Q ( A ‘;’ = o ) oT. (6.29)
a

Since Ay < Az, (H + p_I) is negative definite, and p_ could only correspond to
maximizers.
Now consider u.,.



1. (\; >0).

(a) (u+ £0).
In this situation, the Newton step, s* = —(cy/A3)vs, is in the trust region.
and g* = 0. Since g, < 0, we know that lc2] € A;A. and we can show
that s* is in the trust region by
2
- C2 2
sl == < A“

With u* =0 and Ay > 0, (H + u*I) is positive definite, and the Newton
step is the unique global minimizer.

(b) (u+ >0).
Since Ay > 0 and py >0, Ay + py >0, and (H + p4 1) is positive definite.
Substituting u* = u. into equation (6.26), we have

s™ = —sign(c;)Av,

where sign(c:) = 1 if c; > 0 and sign(c;) = =1 if ¢; < 0. Since (K + p*1)
is positive definite, s* is the unique global minimizer.

2. (A, <0).

(a) (#+ > =A1).
In this case, A; < 0 implies g > 0. With u,, (uy > —A;) ensures that
(H + p+1) is positive definite. Thus, as in Case 1b, s* = —sign(c,)Av; is
the unique global minimizer. -

(B) (k+ < —A).
This situation is referred to in Moré and Sorensen [1983] as the hard case.
It has the characteristic difficulty that ||s(u)|| < A for s(u) satisfving
(H + puI)s = —g when (H + pl) is positive definite. Moré and Sorensen
(1983] prove that solutions to problem UTR are of the form s* = p + v,
where

(H=AI)p=—g (6.30)

and 7 is chosen so that ||p + 7v;|| = A. Notice that the resulting solutions
still satisfy
(H—-MI)(p+7v1) = —g.
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Equation (6.30) reduces to (A, — A)efs = —vlg, and this gives

p= —’ = va. (631)

) 2 3
o= (A — 2 ) 6.32
* ( (.r\.z-.f\l)=> (6-32)
. o= —(a? ¢\ (6.33
- (A2 = A;)2 )
Notice that p; < —A,; implies
2
c
AP 2 S ,
(.’\2 - 1\1)2 - 0

and so the values for 7 given in (6.32) and (6.33) are well-defined.

Lo(pe = =4Ay).
In this case, 7, = 7_ =0, and s* = p, which extends to the boundary
of the trust region, is the single global minimizer.

. (A <0).
In this case, there are two global solutions

s"=p+riviand s"=p+ r_1y

where p is given by (6.31) and 74 and 7_ are given by (6.32) and (6.33).
We can show that they have the same value of the quadratic since

q(p+1v1) = avlg + l(A11'2 + Aza?) with a = — 2
2 Az — Ay

does not depend on the sign of 7.
iii. (A =0).
In this case, the quadratic reduces to

1
g(p+71v1) = avlg + 51\202,

and it does not depend on 7 at all. Thus, every step of the form
p + tv; for all 7 has the same value of the quadratic model. Also,
in this case, y* = —A; = 0 implies that the trust region radius is no
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longer binding, and any step of the form p+ rv, which lies in the trust
region is a global solution. So we have an infinite number of slobal

solutions which can be written as
s"=p+(2y = 1)ryvy for all v € [0.1]
where p is given by (6.31) and 74 is given by (6.32).
a

The last special case we shall consider is when g is orthogonal to the eigenvec-
tor corresponding to the largest eigenvalue. The following theorem gives analvtical
expressions for the possible solutions in this situation.

Theorem 6.5 Solutions to Problem UTR when (vIg = 0).

Given g € IR?, H € [R**® with H symmetric. and A > 0, let A; < \; be
the eigenvalues and {v;,v;} be corresponding orthonormal eigenvectors of
H. Let ¢; = v{g and ¢; = vTg. Assume that llgll # 0, Ay # A, and
vfg #0. Let

po = —A; — ICA—I‘ and pu. = —-A; + ICA—II (6.34)
If (vJg = 0) and (A; > 0) A (g4 < 0), then the Newton step is inside
the trust region and problem UTR has one global solution of the form
s =—(1/Ay)g.
If (v] g = 0) and (u4+ > 0) where y, is given by (6.34), then problem UTR,
has one global solution of the form s* = —sign(c;)Av; with multiplier
K* = p4 given in (6.34).
If (vJg = 0) and (A; < 0) A (= > 0) A (4= > —A3) where p_ is given
in (6.34), then problem UTR has a non-global minimizer of the form
s* =sign(c;)Av, with multiplier g* = u_.

Proof First we will show that 4 = —A; cannot correspond to a minimizer. For
this case, (H + ul)s = —g reduces to

(A + p)vls® = —vlg (6.35)
(A2 + pw)vis™ = 0. (6.36)
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For u = —Ay, there is no finite s such that equation (6.353) can be satisfied since
vlg £0
197U

For p # —\y, equations (6.35) and (6.36) require
T
v, g -
s=— | — 1, .
(:\1-!-/1) U (6.37)

since v; is orthogonal to g. Unless u* = 0, complementarity requires IIs*]] = A. There
are only two choices of u that satisfy the complementarity condition and (6.37), and
they are

He = —'1\1+— (638)

B = =/ — —. (6.39)
Now we will consider if u, and #- correspond to minimizers.

1. (Al Z 0)

(a) (p+ £0).
Since g # 0 and v, is orthogonal to g, we know that ¢, # 0. Since A; > 0.
#+ < 0 implies A; > 0 and

E S 1\1. (6.40)

with multiplier 4~ = 0. We can write g = c1v1+c2vz, and so ||g|| = 2 + 2.
In this case, ||g]| = c2. We can now show that the Newton step is inside
the trust region by

e
>
-t

|

Therefore, the Newton step is the unique global solution.

(b) (p+ > 0).
Substituting . into equation (6.37) yields

st = ——Cl—Avl = —sign(c;)Av

el
with 4* = py. Since (H + p*I) is positive definite, s* corresponds to a
global minimizer.
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(c) Consider p_.

Since A; > 0. u_ < 0, and so u_ cannot correspond to a minimizer.

2. (A1 <0).

(a) Consider p..

Since Ay < 0. we know that ;. > 0. As in Case 1(b), (H + ) is positive
definite, and

s™ = —sign(c;)Avy

with u* = py is the unique global minimizer.
(b) Consider u-.

Clearly, we are only interested in y- > 0. Using u- in equation (6.37)
vields s = sign(c;)Av;.

i.

ii.

Suppose u_ > 0.
Then. for Theorem 6.1, all z # 0 satisfying z7s = 0 can be written as
z = av, for all a # 0. Then,

T(H 4+ u_D)z=a*(Ay + p-). (6.41)
Thus, from Theorem 6.1, when - > 0 and p_ > —A,,
s* = sign(c;)An

with multiplier 4* = u_ corresponds to a strict local minimizer. From
Lemma 6.1, this is not a global minimizer since (H + u*I) is indefinite.

Suppose p_ = 0.
If A, <0, then (H + p_I) with u_ = 0 is negative semidefinite, and
p- = 0 would correspond to a global maximizer.

Now consider A; > 0. In this case, H is indefinite and geometrically
§ = sign(c¢;)Av, is a saddlepoint for the quadratic model. Thus, we
will be able to show that § is not a local minimizer by showing that
the quadratic model decreases as we move inside the trust region along
the direction v, from 3. The quadratic at 3 is

1
q(3) = lalAa + '2'421\1- (6.42)
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Now consider a step 5 which is slightly inside the trust region from 3
along v, of the form

5 =sign(c)(A - o)y (6.43)

for some small ¢ > 0. Then, the quadratic evaluated at 3 is

2(3) = lerl(A = &) + 2(A - )2, (6.44)

To show that q(s) decreases as we move inside the trust region, we
must show that ¢(3) < ¢(3). Subtracting q(3) from q(3) vields

- . 1
9(5) —q(3) = —|ele + 5\ ((A —-e)? - A2> (6.453)
1.,
= —,CllE + 1\1A5 + 51\1;". (646)

But. since u_ = 0, we know that —A\1A = ¢, and so,
. . I, ,
q(3) — q(3) = 51\16 <0.
Thus, - = 0 does not correspond to a local minimizer.

O

Thus, we have analytical expressions based on the eigen-decomposition of A for
all of the possible global solutions and the non-global solution, if it exists, to problem
UTR for the degenerate cases. The possibilities include a single global solution, two
global solutions, a global solution and a non-global solution, and an infinite number
of global solutions. When there are an infinite number of solutions, the shape of the
solution set can be a line segment, the boundary of the trust region, or every point
in the trust region.

6.3 Calculating the Global Solution in the Non-degenerate
Case
In this section we will discuss how to find the global minimizer of problem UTR in

the non-degenerate case. By non-degenerate we mean g # 0, A; # Az, and g is not
orthogonal to either eigenvector.
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In this situation, we know there is a unique global minimizer with multiplier 4= in
the interval (—=A;,oc). The solution is the Newton step if it is inside the trust region.
Otherwise. it is the solution to

(H + ul)s = —g such that ||s|| = A and p € (=4, oc). (6.47)
Using the eigen-decomposition of H, we can write s as
s(n) = —Q(A + pI)7'Q7y. (6.48)

With the notation ¢; = v{g and ¢; = v7g, (6.48) becomes

Cy C2
= - - . 6.49
s(p) (1\1+y) 1 (1\2+#) V2 ( )

Adding the trust region constraint yields

2 2
4 c2

A+ p2 © (A + p)

Note that s(u) is well-defined in the sense that there is no finite step satisfying
(H + pl)s = —g for multipliers u = —A; and g = —A,.

lIs(w)lI* =

- = A2, (6.50)

Moré and Sorensen [1983] give an effective algorithm for determining an approx-
imation to a global solution of the n-dimensional trust region subproblem. Their
algorithm is a safeguarded Newton’s method on the function

1 1

——— =0
A (H +uD)7gll2

(6.51)

Newton’s method is very efficient when applied to (6.51) since this nonlinear function
is almost linear on (—A;,o0), and the safeguarding strategy serves to confine the
steps that Newton’s method takes to the interval of interest. We will use a simplified
version of Moré and Sorensen’s algorithm to find an approximate global solution.
Their algorithm has an additional level of complexity designed to detect a hard case
solution of the form p + rv; . We do not need this feature because the hard case
occurs when g is orthogonal to v;, and this is one of the special situations where
we can calculate the solutions analytically. Since Moré and Sorensen’s algorithm is
designed to solve the n-dimensional problem, they do not have the luxury of the
eigen-decomposition of H. In two dimensions, though, the eigen-decomposition of H
is inexpensive, and we will use this information as much as possible.
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We define o(u) as the following function
1 1
o(u) = — - —=0, (6.52
I(E+al)gl; & )

and we will consider applying Newton’s method to it. Given a starting point Ho. the

iterates that Newton's method generates are of the form

be = pe— (9" (pe)) o (pe).

The linear system (H + u,l)s = —g then determines s(u,). As mentioned above,
@(u) is almost linear on the interval (=:\1,00), and the following lemma gives the
slope of the line tangent to o(u) as # — —A; from both the right and left sides. We
will use this information to calculate an initial guess for Newton's method.

Lemma 6.3 Given g € IR?, H € IR**? where H is symmetric, and
A > 0. let A; < A, denote the eigenvalues of H, and let v, and v, denote
corresponding orthonormal eigenvectors. Let a = vlg and ¢, = vfg.
Assume that g # 0, A; < A,, and that g is not orthogonal to v; or v,. Let

1 1

= -—. 6.53
) = T 2 (6:53)
Then,
lim ¢'(u) = - ! (6.54)
p=——AT l c |
and, .
”_13111 ¢'(p) = Y (6.53)
Proof -First,
_ b c3 )-% _1 -
o(p) = ((A1+u)2 + e X (6.56)
and
) = [—4 g ( 4 % )-%. 6.57
#lu) = ((m +ap T (A2+#)3) M+ 07 T (A + )2 (6:57)
Since

lim_¢'(4) = lim ¢'(=Ay +¢),
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we will consider ¢'(—A\; + ¢).

, 2 3

_ (cf(.\g =M+ +2%) (cdA = Ay + )2 + 2e2 -3
53(;\2 - Al + 5)3 62(1\2 - .’\1 + 5)2

(9]
-0
njL

~

n 4 i
T - re)

oy

3
B(Ay — &y +s)3+c§;‘3>’. 6.55)

= sign(s) sign(\y — Ay +¢) <02(\2 A+ ) + a2
12 = ¢ = 2¢

Thus,
20N, — | 3
lim ¢'(=A; +¢) = (-1) ‘il(.\z Arp) -
e (c3(A2 = A1)?)2
and so.
1
1. b’ -—! ) = ——o,
A=t |c1]

Similarly, from (6.58).

Cf(i\z -_— 1\1)3
(A — Ay)2)F

lm ¢(=Ay+¢) =

and so,
. _ 1
el;l‘rgi ¢ (-Al + ") = Icll.
a
The same type of relations can be shown as g4 — —A,, and they are
lim &(n) = —— (6.59)
p—=Ay | c2 |
and, )
li ! = . 6.60
L W= (6:60

We now have the slope of ¢(u) as g — —A;, which is also the slope of the function
#(#) = ||s()]|"*. The next lemma shows that the line tangent to d(p) as u — —A,
from both the right and the left is always greater than or equal to ¢(u).

Lemma 6.4 Given g € IR?, H € IR**? where H is symmetric, and
A >0, let Ay < A; denote the eigenvalues of H, and let v; and v, denote



corresponding orthonormal eigenvectors. Let

- 1
® = .
T

(6.61)

Assume that g # 0. \; < A,, and that g is not orthogonal to v or v,. Let

I=(p) denote the line tangent to o(p) as y — —A7 . Then,
o(p) S 17 () for p € (=00, —A4].
Let I*(u) denote the line tangent to 6(u) as u — —Af. Then.
o(1) < I* () for p € [~Ay,00).
Proof The line tangent to ¢(x) as y — —-AT is

(1) = == (4 + Ay).

lcll
Consider o(u)?2:
2 2 -1

< \2 €1 <3

= +
#a) ((Al T p)? (A2+#)2)

A2 + p)?
= (A 2 (Aq 2
(bt 4) (c%(Az T uP + (A AP

2\ -1
_ 2 2 2 A1+/‘
= (hta) (Cl+c2(z\z+#)) '

Thus,
e < (e (),
and so,
é(n) < M‘,C—:”'

For p € (—o0, Ay, |Ay + p| = —(A1 + p), and so

Thus,

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)
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for u € (=00, =44].

The line tangent to o(u) as p — —A} is

1
F(p)=— (g + A1) (6.67)
|C1|

For 4 € [=Aq,0¢), (1 + A1) 2 0, and from (6.63),

#(u) < (-All—:lﬂ
Thus,
$(u) < 1* ()
for p € [—Aq, ). a

The point at which the tangent line I*(x) = 1/A is

c
He = —Al + |A—1’ . (668)
Let 4* denote the solution to é(x) = 0, and recall that u* corresponds to the global
solution to problem UTR. Since we know that u= > 0, we will take

#o = max{0, u,} (6.69)

as our starting point. From Lemma 6.4, we know that the tangent line I*(x) > é(u),
and this tells us that uy < u*. Since u* > 0, we have g < p*. Thus, Newton’s
method started from po produces a monotonically Increasing sequence converging to
the solution of ¢(u) = 0. We point out that since we know the eigenvalues of H,
and we know that our starting iterate is smaller than the solution, we do not need
the safeguarding feature. The final ingredient we need is the stopping criteria for the
algorithm. However, we need only test to see if either we have the Newton step,

llscll < A and p. =0, (6.70)
or we have a step that is sufficiently close to the boundary of the trust region,
| A =lscll | £ oA (6.71)

for some tolerance 0. Thus, using Newton’s method from g given in (6.69), we can
find the global solution in the non-degenerate case.



0

6.4 Existence and Calculation of the Local Solution in the
Non-degenerate Case

Now that we have found the global solution in the non-degenerate case. all that
remains is to determine if there is a non-global solution and to find it. if it exists.

Clearly, 4 € (—2c. —A\;) cannot correspond to a local minimizer since (H + ul)
is negative definite. Recall that there is no finite s satisfying (H + pl)s = —g for
p = —A2. This leaves the interval (—A,, —A1) in which we will search for a local
minimizer. Note that any local minimizer with 4" 1n this interval cannot be a global
minimizer since (H + u"I) will not be positive semidefinite. If a local solution exists.
it must satisfy

(H + ul)s = —g such that ||s|| = A,u€(—=A,—Ay) and x> 0. (6.72)

Obviously, if .\; > 0. then there will not be a local solution.
Consider the function

o(p) = (H + pI)"g|? (6.73)
on the interval (—Aj, —A,). Dennis, Martinez and Williamson (1991] proved the

following facts concerning a local solution to problem UTR.

1. @(u) is strictly convex for u € (—A,, -A,), and Iim“__‘\x- w(u) = 0.

N

. The equation (1) = A? has at most two roots in (=A2,—4y).

w

. If a non-global solution exists, it must be the largest root of ¢(u) = A? and
satisfy ¢'(u) > 0.

The following theorem gives necessary and sufficient conditions for the equation
@(u) = A? to have roots in the interval (—Az, —A,).

Theorem 6.6 Given g € IR?, H € IR**? where H is symmetric, and
A >0, let A; < A, denote the eigenvalues of H, and let v, and v, denote

corresponding eigenvectors. Let ¢; = v{g and ¢; = vfg. Assume that
9 # 0, A; < Az, and that g is not orthogonal to v; or v,. Let

L
QAQ bl A1 C2 3
#0 = ﬁ— Where A= — (c—é> . (6-74)



Then, the equation ||[(H + #J)~'g||2 = A? has a solution on the interval
(=A2,—4,) if and only if

I(H + mol)7lgll3 < A%

Proof Expanding (u) gives

2 2
€1 c3

A+ p)? 0 (A +p)?

o(p) = (

Then. ¢(u) will have a unique minimizer for 4 € (—=:\,, —A;) since it is strictly convex
on this interval. To find this minimum, we set ¢'(x) = 0.

2 2
€1 C3

WS E e T e (67
So, ¢'(u) = 0 is equivalent to
Mtpr _ _d
(A + #)3 C%
Aitp) _ (&) (6.76)
(A2 +p) a/ .

Let

2\ 3
a=—(%). (6.77)
2

Then, equation (6.76) becomes A, + ¢ = a(Az + u), and it is easy to see that

_ GAQ—A1

Ko = (6.78)

l—a

where a is given by (6.77). Notice that uo given by (6.78) is well-defined since
(1-a)>1.

This follows from (6.77) and the fact that A; < A,. Clearly uo minimizes () since

®"(po) > 0.
Thus, we have established that uo is the unique global minimizer of () for
g € (—Az,—A,), and consequently,

I(H + poI)"'gll* < I(H + pI)7'g||? for all p € (A2, —A1) with g # po.  (6.79)



From this, it is obvious that w(u) will intersect the horizontal line A2 if and only if

I(H +uol)~lg||* < A2

—
e

The next theorem gives conditions that are necessary and sufficient for a local
minimizer to exist in the interval (=A2,=Ay).

Theorem 6.7

Given g € IR*, H € IR**? where H is symmetric, and A > 0, let \; <
A2 denote the eigenvalues of H, and let v; and v, denote corresponding
orthonormal eigenvectors. Let ¢, = v]g and ¢, = v]g. Assume that

g9 # 0, A1 < Ay, and that g is not orthogonal to v; or v;. Let yq be given
by (6.74). and let

lcll

P = —=\; - and u; = max(0, o). (6.80)

If (1o < 0), then problem UTR has a non-global solution on the interval
(=A2,=4A,) if and only if

A <Oand [[(H +ml) 'gll, = ||H Y| < A. (6.81)

If (ko > 0), then problem UTR has a local minimizer on the interval
(=A2,—4,) if and only if

A1 <0 and ||(H + pol) gl < A . (6.82)

Furthermore, the non-global solution, if it exists, is contained in the in-
terval u* € [y, p_].

Proof Let u* denote the multiplier contained in (—Az, —A;) which corresponds to
a non-global minimizer, if one exists.

1. ONLY IF: Show u* exists implies either condition (6.81) or condition (6.82).

From Theorem 6.6 and the fact that Ko is not a minimizer, we know u* €
(#o, —A1). Since u* must be greater than or equal to zero, then A, < 0.



(a) (1o <0)
In this case. we have po < 0 < p™ < —A;. Since ||(H + u1)"1g||? is strictly
increasing on the interval {uo, —A\;), and ||(H + p~1)~1g||? = A2. we have

I(H)™'gll? S I(H + 47 1) g? = A?

which gives us the desired result.
(b) (ko 20).

In this case. we have 0 < o < p™ < —Ay. Since ||(H + pI)~'g]|? is strictly
increasing on the interval [uo, —Ay), and ||[(H + u*I)~'g||> = A2, we have

I(H + pol) 7' gll” < I(H + p~1)7'g|I* = A%
which gives us the desired result.

2. IF: Show that conditions (6.81) and (6.82) imply u* exists.

We know that a local solution must be a non-negative root of the equation
I(H + pI)7Hgl* = A% (6.33)

From Theorem 6.6 we know that (6.83) will have roots in the interval (— A5, —.\)
if and only if
I(H + pol)'gll2 < A (6.84)

where o is given by (6.74).

(a) (no <0).
Since (o < 0) and A, < 0, we have po < 0 < —A;. Theorem 6.6, together
with ||(H)™'g]|? < A?, and the fact that ||(H + pI)"'g||? = o0 as p —
—AT!, shows that there exists u* € [0, —A;) such that ||(H + u~I)"'g||* =
A2, which is the local minimizer.

(b) (ko 2 0).
In this case, we do not actually need A; < 0 since it follows from po = 0.
Theorem 6.6, together with [[(H + pol)~'g||*? < A?, and the fact that
I(H + uI)~'g||* = oo as u — —A7', shows that there exists uo > 0
and u* € (po, —A;) such that ||(H + u=I)~1g||> = A?, which is the local
minimizer.
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From the definition of x; and the above arguments. we know x; < u*. The constant
fi— given in (6.80) is the point where the tangent line [~ (p) intersects the trust region
constraint. From Lemma 6.4, we know [~ (y) > l(H +ul)~tg||! for p € (= \,. -\1)

and this implies u* < p_. Therefore, u* € [, p-], if it exists.
a
From Theorem 6.7. we can use the following logic to determine whether or not a
non-global solution exists.

Existence of a Non-global Solution:
If (\, <0), then

If (1o < 0), then
If (| H=1g|I* < A?), then
A non-global solution exists on (u, p_).
Else

No non-global solution exists.
End if
Else
If (||(H + pol)~'g||? < A?), then
A non-global solution exists on (u, ).
Else

No non-global solution exists.

End if
End if

Else

No non-global solution exists.

End if

Once we have determined that a local solution exists, we use essentially the same
algorithm we used to find the global solution in Section 6.3. We start the algorithm
with po = u_, and since we know u* < u_, Newton’s method produces a monotoni-
cally decreasing sequence converging to the solution of ¢(x) = 0. Since the Newton
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step is not a possibility, we only need the stopping criteria to test that the step is
sufficiently close to the boundary of the trust region,

(98]

| A =|lsc]| | £ oA (6.33)

for some tolerance o. Thus. using Newton’s method from u_, we can find the non-
global solution in the non-degenerate case if we have determined that it exists.

6.5 Statement of the Algorithm

The following statement of the algorithm first summarizes the analytical expressions
for the solutions to problem UTR in the four degenerate cases. These degenerate
cases are g = 0. Ay = A, g orthogonal to v,, and g orthogonal to v,. Then, we give
the details concerning the iterative procedures we use to find approximations to the
global solution and the local, non-global solution, if it exists. in the non-degenerate
case. This includes conditions to determine if the local solution exists.

Algorithm UTR:

1. Given g € [R?, H € IR**? where H is symmetric, and A > 0, find the global
solutions, s; and s}”, and the local solution, s}, to problem UTR.

2. Calculate the eigen-decomposition of H. Let A; < A; denote the eigenvalues,

and let v; and v, denote corresponding orthonormal eigenvectors.
3. If (9 =0), then

(a) If (A, > 0), then

S = 0
p =0
Else

If (A = 0), then
If (A2 > 0), then
s;=(2y—=1)Av forvy€[0,1]
Else
5= {s:lsl < &)
End if



If (L\l = z\g), then
5= st sl = 2)

Else
s;=A4uy
;7 =-A4Auny
pE= =N\
End if
End if
End if
(b) Return.

End if
4. If (A, = A,), then

(a) ue = =1 + (llgll/A)
(b) If (44 2 0), then

a=A4/lgl
s;=-—ag
BT = py

Else
s=—(1/A1) g
=0

End if

(c) Return.

End if
5. Calculate ¢; = v{g and ¢; = v¥yg.
6. If (vfg = 0), then

(a) pt ==+ (| e | /D)



(b) If (A; > 0). then
If (u+ > 0), then

s; = —sign(cz) A vy
BT = pg

Else
s; = —(c2/A2) vo
pu =0

End if

Else

If (u+ > —:\1), then
s; = —sign(cz) A vy
BT = pt

End if

If (u+ = —A,), then
a=—c3/(A2 — Ay)
s; = av,
End if
If (k4 < —A,), then
If (\; #0), then
a=—c/(A2 = Ay)
D=av;
= VATTE

s;=p+7un

s;T=p—Tu
Else
b= —cz/A;

r=JAT=R
s; =bva+(2y = 1)7v, for v € [0,1]
End if
End if

End if



(c) Return.
End if
7. If (v7g = 0), then

(a) pe ==N1+ (] | /)
(b) If (A, > 0), then
If (ne > 0), then
s, = —sign(c;)Avy
K= py
Else
s;=—(1/A) g
=0
End if
Else
s, = —sign(c;)Av,
BT =gy
b-==A —(a | /A)
If ( (k- 2 0) and (u- > —A,) ), then
s; = sign(c;)Av,
Bl = po
End if
End if
(c) Return.

End if

8. Iterative Method to determine the global solution with u* € (=Ay,00):

e = =M+ (Ja | /8)
po = max(0, )
k=0
(a) Solve (H + pxI)p = —g for p

(98]



(b) Check Convergence Criteria:
IF( (1A —lpll IS ¢a) or (Jlpfl £ A and pi = 0) ). then
S;=p
BT =
GoTo 9.
End if

(c) Take a Newton step:
a=c}/(A + u)® + /(N2 + pi)?
pesr = px + (Ipl2/ @) ((A = Ipll)/A)
(d) k=k+1
(e) GoTo Sa.

9. Determine if there is a local solution with u; € (=Aj, —Ay).

If (A, <0), then
a= (/&)
#o = (a2 — A1)/(1 - @)
p = max(0, o)
p-==M—=(la|/4)
If (1o < 0), then
If (| H gl < A%), then
A non-global solution exists on (u, u-).
Else
A non-global solution does not exist.
Return.
End if
Else
If (|(H + pol)~gl|* < A?), then
A non-global solution exists on (u, p-).
Else

A non-global solution does not exist.



Return.
End if
End if

Else

A non-global solution does not exist.

Return.
End if
10. Iterative Method to determine the local solution with K € (p,p-).
Ho = H-
k=0
(a) Solve (H + pxl)p = —g for p
(b) Check Convergence Criteria:
I (| A —[lpll IS ¢A), then
S| =p
B = Hk

Return.

End if
(c) Take a Newton step:
a = cl/ (A + pe)® + G/(Az + me)?

e = px + (llpl?/a) ((A = Ipl)/A)
d) k=k+1

(e) GoTo 10a.
11. End.

(03]



6.5.1 Accuracy in the Trust Region Subproblems

In this section, we will consider how accurately we need to solve the two-dimensional
trust region subproblems

Problem TR: minimize g¢.(s)
subject to ||s|| < A,

s € span{vy, v;}
and

Problem LF: minimize ¢
subject to ||[VA.Ts + h. — Oy < 6.
s € span{v, vy} .

In unconstrained optimization, the trust region subproblem is usually not solved to
any great accuracy. See, for example, Dennis and Schnabel [1983]. Since the trust
region radius is never increased or decreased by a factor smaller than 2, it is reasonable
to ask only that a solution to the unconstrained trust region subproblem, s(u), satisfy

| Ac = [Is(p)ll IS 0a A (6.86)

when s(u) is not the Newton step. Typically, oa € (.1,.5).

Constrained optimization problems; or the other hand, are complicated by the
interaction between the objective function and the constraints and thus require more
care in the determination of oa. In the course of calculating a trial step, there are four
situations where we will need to use a test like (6.86). These situations are deciding if
a step is an acceptable solution to problem TR, determining if a solution to problem
TR satisfies the required linear feasibility, deciding if a step is an acceptable solution
to problem LF, and determining if a solution to problem LF satisfies the trust region
constraint.

First consider finding an approximate solution to problem TR. Recall that we
defined the required amount of linear feasibility, IVhTs + ke — Ouxin|| < 6., based
on a trust region of .84, to insure that the intersection of this constraint with the trust
region constraint yields a feasible region containing more than a single point. Suppose
that str is an approximate solution to problem TR and that it is not the Newton
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step. How accurately do we need to compute this approximate solution? Clearly. if
the exact solution to this subproblem satisfies the required linear feasibility. we would
like our approximate solution to also satisfy it. This suggests that we choose oy < .2
to insure that the approximate solution will lie outside of the .8 trust region. For
this implementation. we have chosen a conservative oa = .05. A conservative choice
for o4 will not noticeably affect the amount of computation since we are solving only
two-dimensional subproblems.

Once we have calculated an approximate solution sTr to problem TR. we now
want to determine if this solution satisfies the required linear feasibility. The obvious
test 1s

IVhTsTr + he — Orrrn|| < (1 + 0)8. (6.87)
where oy = o5. However, our strategy for updating the penalty constant requires
IVhTsc + he = Orpan]] < |Ihe]] - (6.38)

Condition (6.88) can be enforced by choosing o4 in (6.87) as

09 = min (O'A,‘/ (“Z_c” - 1)) , (6.89)

where 0 < ¥ < 1. For example, v = 0.95 .

We must also enforce (6.88) when deciding if a step is an acceptable approximate
solution to problem LF when the solution is not the Newton step. To accomplish
this, we use o given by (6.89) in

| 0 = IVARTs + ke — Oprpin]| | < 040, .
The more liberal, but unsymmetric test
(1 - UA)ec S ”thT3 - hc + GNIIN“ S (1 + 0'0)0::

is also sufficient. Once we have a solution to problem LF, we will use (6.86) to
determine if this solution also satisfies the trust region constraint.



Chapter 7

The Nonlinear Programming Algorithm

In this chapter, we will discuss the remaining ingredients in our nonlinear program-
ming algorithm. We have presented the solution of our trust region subproblem and
the calculation of a trial step. Now we must consider how to evaluate the trial step.
This requires the choice of a merit function, the determination of the penalty pa-
rameter in the merit function. and the calculation of Lagrange multiplier estimates.
Although we will discuss the choice of each of these components separately, they are
all interrelated.

Finally, after we have presented the entire algorithm, we will give a few of the
details about our preliminary implementation of the algorithm. Then we will give
numerical results for this implementation, and we will compare it to other available
nonlinear programming codes.

7.1 The Choice of a Merit Function

The merit function plays an important role in trust region algorithms. It is used to
decide whether the step obtained from the subproblem gives a new iterate that is a
better approxiniation to the solution z. than the current iterate. The merit function is
used to accept or reject the trial step and to update the radius of the trust region. The
choice of a merit function in trust region algorithms for unconstrained optimization is
obvious; simply use the objective function. However, in constrained optimization the
situation is more complex. Any measure of improvement must balance improvement
in the objective function with improvement in the constraint error. Thus, an effective
merit function for a constrained optimization algorithm will include a weighted com-
bination of the objective function and the error in the constraints. Given a particular
form of merit function, it is often the choice of the weights that is one of the most
difficult and elusive tasks in the implementation of the algorithm.
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Vardi [1980], [1985] and Byrd. Schnabel and Schultz [1987] choose the £, penalty
function

61(2) = flz) + 3 e | hulz) |

for the merit function. Both of these applications require that the penalty constants
(weights) p; be sufficiently large.

Celis, Dennis and Tapia [1985] and Powell and Yuan [1986] choose for the merit
function the augmented Lagrangian

L(z,)) = f(z) + ATh(z) + ph(z)Th(z) .

However, they made different choices for the Lagrange multipliers A and the penalty
constant p.

Powell and Yuan choose for the multipliers in the augmented Lagrangian the least
squares multipliers

A== (Vh(z)TVh(z)) " Vh(z)TV f(2) (7.1)

which is the least squares solution to V_I(z,A) = 0. With this choice of multipliers,
the augmented Lagrangian becomes a function of z alone and becomes what Powell
refers to as the Fletcher exact penalty function, Tapia [1983]. However, it has the
computational disadvantage of requiring the evaluation of Vh(z4) and computation
of the QR factorization of Vi(z,) for every trial step. This work will be wasted if
the step is not accepted. Powell and Yuan also require p to be sufficiently large and
define it iteratively so that it attains this goal.

El-Alem [1988] also used the augmented Lagrangian as the merit function to prove
global convergence of the CDT algorithm. However, given a trial step s., he made
the following choice for the multiplier update:

A = = (VATVA) ™ (Bese + Val(z., M) - (1.2)

Following Celis, Dennis and Tapia [1985] and El-Alem [1983], we will use the aug-
mented Lagrangian as the merit function in our algorithm. The multipliers that
we will use incorporates both the least squares multipliers (7.1) and the multipliers
given by (7.2), and they can be interpreted as an efficient implementation of the least
squares multipliers.
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7.2 Choice of Lagrange Multiplier Estimates

In this section we will discuss the choice of the Lagrange multipliers and the numerical
experimentation that led to this choice. Our strategy was forced on us by some
interesting behavior we observed in situations when negative curvature existed inside
the null space of Vh.T. This caused us to treat the three roles of the Lagrange
multipliers separately. The multipliers are used in deciding whether or not to accept
the step, in testing for convergence, and in building a new quadratic model for the
next iteration.

After we have a trial step s., we want to use the information we have about the
model at the current point to calculate a multiplier update AX., and we will use the
trial multiplier Ap = A+ E\c to decide whether or not to accept the step. The
multiplier update we first tested is the update which is obtained as a least squares
solution of

Vh AN = —=(B.sc + Vi i(zc, M), (7.3)

and the resulting :\+ is then the least squares solution to V.i(z, A. + 5\)\,:) = 0. This
is the multiplier update that El-Alem [1988] used to prove the global convergence of
the original CDT algorithm. We will denote this update by A for model multi-
pliers since they use only the current model information. This update has some nice
properties. First, if s, is the SQP step, then E\c is the SQP multiplier Algp that we
obtained during the solution of problem GQP. If s, = 0, then the multiplier update
(7.3) is equivalent to the multiplier update given by (7.1) evaluated at z.. Thus, the
multiplier update (7.3) varies smoothly between the multiplier update given by (7.1)
and the QP multipliers.

Numerical experience indicates that using the trial multipliers determined from
(7.3) to decide whether to accept the step, to test for convergence, and as the multi-
pliers in the quadratic model at the iteration works well when second-order sufficiency
holds. However, in an effort to improve the observed performance and robustness of
the algorithm, we use different trial multipliers when second-order sufficiency does
not hold. To motivate our choice of multipliers in this situation, consider problem
GQP when second-order sufficiency does not hold. When we have a descent direction
of negative or zero curvature for the quadratic model inside the null space of VA7,
the quadratic model is unbounded below on the feasible region (linearized constraint
manifold). Thus, the linearized constraints are active, but not binding in the sense
that moving off of the constraints will not give further decrease in the quadratic
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model. This interpretation led us to set A\, = 0 when second-order sufficiency does
not hold for problem GQP.

This strategy usually works well, but it has one subtle flaw. Numerical experience
has shown that the algorithm could obtain the solution T. at which second-order
sufficiency would hold if it had the correct multipliers A.. However. with the current
estimates of the multipliers that were obtained from the model, the algorithm may not
recognize that it has the solution. This situation occurs when the reduced Hessian at
z. with the current multipliers is not be positive definite. When the reduced Hessian
is not positive definite, this strategy will use AX, = 0, and the correct multipliers ).
will not be obtained. Without the correct multipliers, the convergence test cannot
recognize the solution. In fact, the algorithm with this choice of multipliers exhibited
this unacceptable behavior on several of the test problems.

To overcome this difficulty. we use a two-step approach to updating the multipliers.
First we use information we have about the model to find trial multipliers to use in
accepting the step and updating the trust region radius. (The procedure for evaluating
the step and updating the trust region will be discussed in a later section.) If we do
not accept the step. then we will reduce the trust region and calculate another trial
step from (z., A.). If we accept the step, then we will calculate function information
at the new point. VA(z,) and V f(z4+), to test for convergence and to prepare for the
next iteration. Once we have this new function information, we will use it to obtain
a better estimate of the new Lagrange multipliers A, to use in the convergence test.

The second multiplier update A, is chosen to be the least squares solution to
(7.1),

Vh(z.)AN = = [V f(z,) + Vh(z,) (A +2%)], (7.4)

and then the new multipliers are
At = A+ AX + A (7.5)

Unlike Powell and Yuan [1986], the work needed to solve for the least squares mul-
tipliers will not be wasted if the step is rejected, since we have already accepted the
step and need Vi(z4) and its factorization for the next iteration.

Tables 7.1 and 7.2 give the numerical test results for each choice of the multipliers
discussed above. All of the conditions under which these tests were done are identical
to the numerical testing conditions that will be described in the section on numerical
results. Section 7.7 is primarily concerned with comparing our algorithm to other
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available codes. The test problems are all from Hock and Schittkowski (1981]. and
the problem numbers refer to the numbers given there. Tables 7.1 and 7.2 do not
include the test problems for which second-order sufficiency held at every iteration.
and for which all versions of the algorithm behaved identically.

The first set of columns in the tables are the results for the versions of the algo-
rithm using a single multlphet upda.te at each iteration, i. e., A\; = A\, = Ae + AN
The column labelled A,\c = A \M always took the rnultlphet update to be the least
squares solution to (7.3). The column labelled 7 _l,\c = 0 used A/\M except when
second-order sufficiency did not hold, and then A\, was set to 0. In several cases,
this version of the algorithm failed to find a solution.

The second set of columns are the results for the versions of the algorithm using a
two-step a.pproa.ch to computing the multipliers. The columns labelled AX, = 0 and
A,\c =A \M correspond to the same choices as before for the first trial update which
is used to evaluate the step. Then, if the step is accepted, A, is computed to be
the least squares solution of (7.1), and the new multipliers are Ay = A + A\, + Al
These strategies for computing the Lagrange multipliers are detailed in following
outline where the choices for the first update are (a, b) and to update a second time
or not using the least squares multipliers is determined by choices c or d.

Calculating Lagrange Multiplier Estimates:

1. Given A, s, V.i(z., ), Vhe, and B., calculate As.
2. If (s. = sqp), Then
AX. = Adgp
Else

If (Second-Order Sufficiency Holds), Then
Solve Vh.AX = —(Bese + Vol(ze Ac)) for A,

Else

a. E\c =0, or

b. AX. solves Vh.AX = —(B.se + Vol(zZey Ao))
End if

End if



3. X.p = AC + L&j\c
4. Evaluate the step.
5. If (Step is accepted). Then

c. Ap =), or

d. Ay = Ay + A, where A), solves VA(z,)AN = — [Vf(zs) + Vh(zs)A,]
End if

Notice from Tables 7.1 and 7.2 that the two-step approach is usually more efficient
than the single update based only on the model information. This is reasonable since
the two-step approach uses the newest function information to calculate the new
multipliers.

It is interesting to note that the choice of multipliers influenced which solution the
algorithm converged to. For the problems for which different versions of the algorithm
converged to different local solutions, the solution that was found is indicated by the
Roman numeral i, ii. iii or iv in Table 7. 3, and a list of these solutions can be found
in Appendix A.

For the problems that encountered zero or negative curvature, the version of the
algorithm which sets the only multiplier update to 0 in this situation failed to find
the solution for a significant number of the test problems, as mentioned earlier, and
so we will not consider this version further.

Each of the three remaining multiplier strategies should be evaluated for robust-
ness and efficiency. Both of the two-step approaches have only four failures but the
two single-update strategies each have many more failures. Interestingly, the algo-
rithms did not fail for the same problems, and in fact, at least one of the methods
successfully solved each problem listed. To consider efficiency, we can compute the
average number of iterations and function evaluations per problem The le average
number of iterations per problem is 30.1 for the single update with AX, = Ay, 25.6
for the two-step multiplier strategy using AX. = 0 and 31.7 for the two-step strategy
using AX. = AX sm. Similarly, the average nu number of function evaluations per problem
is 40.1 for the single update with A/\ = AAM, 35.3 for the two-step mnlhpher strat-
egy using AX. =0 and 41.7 for the two-step strategy using AX. = Ay Given these
considerations, we slightly prefer the two-step multiplier strategy using AX. =0, and
we will use it to state the algorithm in the remainder of this work.



Table 7.1 Multiplier Test Results

Problem | Starting Point # Iterations (# Function Evaluations)
At = A+ AN, Ar = A+ AN + AN,
A'\c =0 l A/\c = Ar\,\{ .&Ac =0 A/\c = .l,\‘\v{
6 -1.211 F 14(26) 14(26) | 14(26) |
-2 4 F 17(27) 17(28) 17(28)
65 F 8(9) 8(11) 8(11)
-12°10 F. 16(22) 8(10) 8(10)
-10 10 F 15(23) 7(9) 7(9)
-10 0 F 12(18) 14(21) 14(21)
20 20 7(9) 7(9) 12(19) 12(19)
T -35 -40 22(28) 23(31) 26(31) 26(31)
26 3-55 28(32) 26(31) 27(31) 29(33)
50 -50 50 34(41) 28(29) 28(29) 28(29)
450 -370 645 39(52) 38(52) 34(35) 34(33)
-0.3 2.1 -2.1 21(23) 21(24) 21(25) 21(24)
27 222 F 17(26) 16(26) 16(26)
142 F 10(15) 9(13) 9(11)
134 F 11(14) 23(31) 25(38)
144 F 11(18) 20(29) 29(44)
-4-2-1 11(17) 13(22) 13(17) 13(17)
20 20 20 131(154) 105(149) 105(143) 105(143)
5-108 41(59) 31(51) 28(42) 33(53)
15-93 F F 53(82) 185(246)
-26-11 13(19) 10(15) 12(17) 12(17)
1057 F F 54(82) 108(143)
23 -19 38 122(155) 104(142) 98(125) 98(125)
39 2222 F 13(16) 15(17) 15(17)
-10 -10 10 10 16(24) 16(26) 16(21) 16(21)
20 20 20 20 F 32(41) 38(54) 38(54)
3237 13(19) 13(19) 10(14) 10(14)
50-50 F 14(17) 13(19) 13(19)
3579 16(25) F 15(20) 15(20)
2462 14(20) 18(29) 14(21) 14(21)
20 49 63 -9 46(76) 40(59) 36(49) 36(49)
4-59 36 31(43) 31(43) 41(51) 41(51)
4024 -5 38(52) 66(82) 78(113) 78(113)
0000 F 8(14) 11(18) 11(18)

F Failed to converge.



Table 7.2 Multiplier Test Results
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Problem | Starting Point | # Iterations (# Function Evaluations) ]
ﬁ A = A+ AN, Ae = A+ AN + AN,
LAA =0 ]AX. =AMy [ AN =0 AKX = Ary,
40 3.3.8.3 F F 3(4) 3(4) |
1-1-1-1 9(12) 16(22) 9(13) 10(15)
244 -2 F 156(222) 14(20) 14(20)
10-10 7(10) 7(11) 7(10) 6(7)
2.462 F F F 17(25)
0-0510 11(14) 10(13) 8(10) 7(9)
88838 F 13(20) 12(19) 12(19)
3247 9(13) 9(13) 8(9) 8(9)
30 29 -39 3 F 96(113) 116(172 66(96)
53-100 -10 101(129) F 77(120) 69(90)
42 10 10 10 10 3(9) 8(9) 7(38) 3(9)
100 -100 30 -70 F 11(14) 12(16) 12(16)
60 -1040 9 13(24) 13(24) 15(17) 15(17)
100 100 -100 F 18(19) 18(19) 18(19)
7 22222 8(10) 8(10) 9(11) 9(11)
10 10 10 10 10 21(23) 21(23) 23(25) 23(25)
20 20 20 20 20 26(27) 26(27) 24(26) 24(26)
437-5-3 F 33(43) F F
-13-0.5-2-3 F 35(51) F F
121314157 19(22) 19(22) 20(23) 20(23)
2-2.2.2-2 F F 108(143) | 310(370)
-5-5-5-5-5 F F 50(80) F
32719 18(26) 17(25) F F
-12506 F 269(295) 19(27) 97(117)
00000 F 10(18) 9(16) 9(16)
78 -20 15 20 -10 -10 F F 13(19) 13(20)
50 50 50 50 50 F 43(64) 24(41) 23(38)
-10 10 10 -10 -10 F 16(29) 8(9) 8(9)
00111 7(11) 6(10) 6(10) 6(10)
79 10 10 10 10 10 11(12) 11(12) 10(11) 10(11)
2.2.2.2-2 28(35) 16(23) 10(13) 10(13)
-326-79 15(16) 15(16) 19(24) 18(21)
40 -30 50 -80 20 F 51(80) 20(29) 16(21)

Failed to converge.



Table 7.3 Multiplier Test Results
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Problem | Starting Point Solution Found
A=A+ AN, Ap = A+ AN+ AN,
AN =0 AN =a) [3X. =0 2X, = ALy,
26 5-55 B i I i
50 -50 30 i i i i
450 -370 643 i i i i
0.3 2.1-2.1 i i i i
40 8.8.33 F F i i
-1-1-1-1 i i i i
-2 -4 -4 -2 F i i i
10-10 ii i ii i
2462 F F F i
0-0.510 i i i i
88838 F i i i
3247 i i i i
30 29 -39 3 F iii i i
53 -100 -10 iii F ii ii
60 -1040 9 i i i i
100 100 -100 F i ii i
7 32222 i i i i
10 10 10 10 10 i i i i
20 20 20 20 20 i i i i
437-5-3 F i F F
-13-05-2-3 F i F F
121314157 i i i i
2-2-2-2-2 F F iii iii
-5-5-5-5-5 F F i F
32719 ii ii F F
-12506 F ii i i
00000 F i i i
78 -20 15 20 -10 -10 F F iii iii
50 50 50 50 50 F iii i ii
-10 10 10 -10 -10 F iii i i
00111 ii ii ii ii
79 10 10 10 10 10 i i i i
2-2-2-2-2 iii iii iii ii
-326-79 i i i i
40 -30 50 -80 20 F iv iv iv

F Failed to converge.

i,ii,iii,iv Solution found: See Appendix A.



7.3 Choosing the Penalty Constant

The global convergence theory of the original CDT algorithm, El-Alem [1988]. requires
that the sequence of penalty constants, {po. p1, ps. . . .}, be nondecreasing and that the
predicted reduction in the merit function at each iteration be at least as much as a
fraction of Cauchy decrease in |VA.Ts + he|l. El-Alem [1988] gives a scheme for
updating the penalty constant to achieve these objectives. In his scheme, the penalty
constant is updated before every step is evaluated. However, numerical experience has
shown that success of the algorithm depends on keeping the penalty constant as small
as possible. Thus, we have modified the penalty constant given in El-Alem [1988]
slightly. We will update the penalty constant Pc to p. before we evaluate each step,
and, if we accept the step, then we will keep the updated penalty constant, Ps+ = po.
However, if we do not accept the step. we will not keep the update, and p. = p..
This strategy is designed to keep the penalty constant from becoming unnecessarily
large in situations where we must calculate several trial steps while reducing the trust
region radius before we find an acceptable step. The penalty constant update depends
on the predicted reduction in the merit function pred. which is given by (7.8). We
use the following strategy for updating the penalty constant.

Updating the Penalty Constant:

Given a small, fixed constant 3 > 0 and po > 0, at each iteration:

If (prede2 3pc(llhell® = [|hc + VAT s][?)),then

Pe = pe

Else
. 2vzlcT3c + 33T Bes. + AN T (ke + VAT s,) +4
Pe= kel = [he + VAT |2

End if

If (Step is Accepted), Then
P+ = pe
Else

P+ = Pc
End if
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Notice that this strategy requires that we predict a reduction in the mode] of the
constraints,

Thell* = llhe + TR Ts:|2 > 0, (7.6)

to insure that the sequence of penalty constants is nondecreasing. If condition (7.6)
does not hold. then it is possible that the updated penalty constant 5. could be
negative. If the trust region subproblem was solved exactly, then (7.6) will hold.
However, in practice, the subproblem is only solved approximately, and care must be
taken to ensure (7.6) holds. See Section 6.5.1 which concerns the accuracy in the trust
region subproblems for more details. In addition. a necessary property of the merit
function is that it must predict improvement for some s unless z. is optimal. This
property holds if the penalty constant is sufficiently large and the predicted reduction
in the model of the constraints is positive.

Numerical experience indicates that the algorithm does not perform well when the
penalty constant becomes too large. We have found that it is advantageous to ‘restart’
the algorithm when the penalty constant becomes large. After we have accepted the
step, we reset the penalty parameter to po if p4 > parax, and for this implementation.
we set parax = 1 x 108,

The values of the constants that we use in our implementation of this penalty
constant strategy are po = 1.1, 8 = 0.1, and pyrax = 1 x 106.

7.4 Evaluating the Step and Updating the Trust Region
Radius

Once we have all of the ingredients in the merit function, we are ready to evaluate
the trial step s.. To measure improvement, we compare the actual reduction in the
augmented Lagrangian from the current iterate (z., A.) to the new iterate (z4+,A4),

ared, = L(zeA) — Lz, Ay)
= I(zede) = 24, Ae) = (Re = 2) T by (7.7)

+pe (Ilhell® = 1h+?)
to the predicted reduction,
1 - T
pred. = -V.l(z., /\c)Tsc - EscTBcsc - (A+ - /\c) (hc + thTsc) (7.8)
+pe [[1hell? = llhe + VAT sc||7] .
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If the agreement between the actual and predicted reduction is reasonable and the
step gives at least a small amount of decrease, i. e.,

ared,

0<m <
pred.

where 7, € (0,1) is a small. fixed constant, then the point T4+ = z. + s, is accepted
and A, is computed from (7.4). Otherwise, we will reject the step and set z, = z,
and Ay = A.. We will compute a shorter step by decreasing the trust region radius
by AL = anls.|| where 0 < a; < 1. Consider, for example, a; = 0.5. This has the
effect of halving the trust region, or if the step lies strictly in the interior of the trust
region, then A, would be set to half the length of this step.

Once the step is accepted. we update the trust region radius by comparing the
actual and predicted reduction in the merit function. Namely, if the agreement is

poor,
ared,

n1< <72,

~ pred.
where n; € (71,1) is a fixed constant, then the radius of the trust region is decreased
by the rule Ay = a;|[s.|| where 0 < a7 < 1. However, if the agreement is very good,

ared,
=~ pred.’

n3

where 73 € (n,1) is a fixed constant, then we possibly increase the radius of the trust
region by

A+ = mln{ AMAX, ma.X{ Ac, 03”3':” } }

where Aprax is the maximum allowable trust region radius and a3 > 1.

The values of the trust region constants that we use in our implementation are
m = 0.001, n; = 0.25, n3 = .75, a; = 0.5, a3 = 2.0, and Aprax = 20A,. We
experimented with several choices for Ag; the length of the Cauchy step for the
constraints, the distance to the linearized constraint manifold, ||s.r||, and 1.5||scF||-
These results can be found in Tables 7.4 and 7.5, and they are summarized at the end
of Table 7.5. Surprisely, the most conservative choice, ||scp||, was the most efficient.
Unfortunately, as in unconstrained optimization, the behavior of the algorithm is
sensitive to the choice of the initial trust region radius. In the future, we plan to
consider the strategy of internal doubling when we update the trust region radius as
a way of increasing efficiency, Dennis and Schnabel [1983].



Table 7.4 Effect of the Initial Trust Region Radius

Problem | Starting Point | # Iterations (# Func Evaluations)
Iscell | llscrll | L.5|lscrl
6 -6 3 8(11) 8(11) 11(15)
-12 10 §(10) 8(10) 17(26)
-10 10 7(9) 7(9) 9(12)
-10 0 14(21) 14(21) 124(170)
20 20 12(19) 12(19) 478(843)
7 20 20 18(22) 18(23) 18(23)
-15 6 17(21) | 17(21) 15(17)
23 -10 17(20) 17(20) 22(27)
-35 -40 26(31) 26(31) 18(21)
9 -10 10 6(7) 6(7) 3(4)
26 5-35 27(31) 27(31) 26(33)
-26 20 20 25(26) 25(26) 17(18)
450 -370 645 34(35) 33(34) 33(34)
27 222 16(26) 16(26) 18(23)
142 9(13) 9(13) 14(27)
134 23(31) 23(31) 26(41)
144 20(29) 20(28) 24(32)
111 11(15) | 11(15) 12(16)
-10 -10 -10 28(37) 28(37) 24(33)
20 20 20 105(143) | 107(146) 80(111)
5-108 28(42) 26(42) 29(44)
1593 53(82) 53(82) 29(44)
-26-11 12(17) 12(17) 16(21)
1057 54(82) 53(78) 48(78)
23 -19 38 98(125) | 98(125) 73(99)
39 2222 15(17) 15(17) 10(14)
0200 5(6) 5(6) 5(7)
-10 -10 10 10 16(21) 20(27) 23(37)
20 20 20 20 38(54) 62(85) 39(58)
3237 10(14) 16(20) 10(13)
50-50 13(19) 16(21) 17(19)
-118-29 13(15) | 347(666) 28(38)
3579 15(20) 14(22) 13(21)
-2-462 14(21) 31(35) 13(20)
20 49 63 -9 36(49) F 171(284)
4-59 36 41(51) 38(51) 29(42)
4024 -5 78(113) | 210(335) 180(283)

F Failed to converge.



Table 7.5 Effect of the Initial Trust Region Radius
Problem | Starting Point | # Iterations (# Func Evaluatlons) ‘
- HSCPH [ ||5LFH L.3]|scrl]
10 T-I-1-1 | 9(13) | F | 313
-2 -4 -4 -2 14(20) 24(38) 12(19)
-2-462 F 16(24) 24(34)
0-0510 8(10) 8(10) 11(16)
8883 12(19) 10(11) 10(14)
3247 8(9) 16(23) 9(14)
30 29 -39 3 116(172) 13(18) 17(33)
'3 -100 -10 T7(120) 58(88) 69(109)
42 234 6(7) 5(6) 3(6)
‘25 -30 -10 9 9(10) 8(10) 10(14)
100 -100 30 -70 12(16) 12(14) 12(13)
60 000 11(17) L1(17) 9(14)
10 10 10 11(12) 11(12) 12(13)
-20 -20 -20 13(14) 13(14) 12(13)
-10 40 9 15(17) 15(17) 17(21)
77 11111 6(9) 6(9) 8(11)
10 10 10 10 10 23(25) 22(27) 17(18)
20 20 20 20 20 24(26) 24(27) 23(29)
437-5-3 F 93(113) F
-13-05-2-3 F 134(165) F
121314157 20(23) 18(20) 21(22)
-2-2.2-2-2 108(143) 108(143) 161(192)
-5-5-5-5-5 50(80) F 75(93)
-12506 19(27) 35(47) 31(43)
00000 9(16) 9(16) 10(18)
T8 -20 15 20 -10 -10 13(19) 10(18) 10(18)
50 50 50 50 50 24(41) 18(33) 25(39)
-10 10 10 -10 -10 8(9) 7(8) 7(8)
00111 6(10) 7(12) 6(11)
79 10 10 10 10 10 10(11) 9(10) 17(23)
-2-2-2-2-2 10(13) 11(15) 9(12)
35555 9(10) 10(11) 14(17)
-326-79 19(24) 12(13) 12(13)
40 -30 50 -80 20 20(29) 61(102) 45(78) |
Totals 1769(2276) | 2254(3261) | 2458(3620) |
Averages 25.3(32.5) | 32.7(47.3) 35.1(51.7)
Failures 3F 3F 2F

F Failed to converge.
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7.5 Statement of the Algorithm

Now that we have discussed each piece of the merit function and the strategy for
accepting the step and updating the trust region. we can fit all of these pieces together
into the following nonlinear programming algorithm.

The Nonlinear Programming Algorithm:
1. Initialization:

(a) Given zo, obtain ho, Vho, fo, V fo, and the constants po, prrax. 3, <.
0<ar<liaz>1l,and0<n <mp<n3 <1

(b) Calculate A\g from Vhg\ = =¥ f,.

(c) Calculate Ag = max{]|scp]|l,1.5}.

(d) Aarax = max{202,,10.0}.

[SV]

. Calculate a trial step s..
3. T4 =1z, + s..
4. Calculate the Lagrange multiplier update.

If (s. = sgp), then
AX. = A)gp
Else

If (Second-Order Sufficiency Holds), then
Solve VA(z.)AA = —(B.sc + Vl(ze, Ae)) for AN,
Else
AX. =0
End if
End if

5. Get f+ = f(l'+) and h+ = h(:t.,.).
6. Calculate the Predicted Reduction:
pred, = =V I.Ts. — -;-scTBcsc - ﬁg’(hc + VhTs.)

+0e (1hell? = llhe + VAT scl?) -



7. Update the Penalty Constant:

Given a small fixed constant 3 > 0;

If (pred. > Lp.(J|h]|? = ||he + YA Ts]|?)),then

a

Pc = Pe

Else

) VolTs.+1s.TB.s. + AAT (k. + VA.Ts,) iy
Pe == [Rel2 = ke + VA5,

pred. = -V.1.7s, - %SCTBCSC - /_\’\/\Z‘(hc + Vh,_.Ts,_.)
+e (I1Rell* = [|he + VAT s|I?)
End if
8. Calculate the Actual Reduction:
ared. = l. = (4, Xe) = AXTh(z+) + b (Ilhell? = [1A(z,)I]).
9. Evaluate the Step and Update the Trust Region:

(2) Given constants 0 < a; < 1,a3 > l,andO<nm < <1,
(b) If (%% < p,), then

prede
Do not accept the step:
Ty =2z,
Ay = A
Reduce the trust region radius:
At = aqlls||
End if
(c) If (m < #2%= < 7,), then
Accept the step.
Reduce the trust region radius:
At = oglfs]|
End if
(d) If (75 < 22222), then

pred.
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Accept the step.
Possibly increase the trust region radius:
Ay = min{ Ayax, max{ A, asls:| }}
End if
(e) If (Step Not Accepted), then

P+ = Pc
fe+=fa ke =h, Vfi= Vfey Vhy = Vhe, and B, = B.
Go To 2.
Else
P+ = pe
If (p+ > parax), p+ = po
End if

10. Get Vfy =V f(z4+) and VAL = VAi(z,)
11. Update the Lagrange Multipliers:

(2) Solve VhyAA = =V fy = Vhy (Ae + AX,) for A
(b) Ay = Ac+ Are + A,

—
N

. Test for Convergence:

If ([Val(z4, A )l + [[R(z4)]| < €), then
Solution found, Stop.
Else

Get B+ = B(I+, /\+).
Go To 2.
End if

7.6 Implementation Details

We have given the constants that we need to evaluate the step, update the trust
region, and determine the penalty constant, and we will now give the initialization
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procedures and the stopping criteria that we use in the preliminary implementation

of the algorithm. Given a starting point z,, we use the least squares solution to
Vh(zo)A = =V f(zo)

for the initial multipliers Aq.

As discussed in Section 7.i. we choose the initial trust region radius to be the
length of the Cauchy step for the Gauss-Newton model of the constraints. Since the
Cauchy step from z, could be zero, we use

o = max{”scpH, 1.5}.

We would prefer a choice of Ay that comes from the problem instead of some absolute
constant like 1.5, and in the future, we will perhaps consider some fraction of the
length of the initial SQP step.
Finally, we consider (z4,A}) to be an acceptable solution based on the stopping
criteria
IVA(ze, A+ lA(z4 )] S €

where ¢ = 1 x 107°. In addition. we consider the algorithm to have failed if it does
not converge to a solution in 500 iterations or if the trust region radius falls below
1 x 10-'2, This part of our preliminary implementation, the stopping criteria, the
trust region constants, and the restarting of the penalty constant, for example, have
been rather arbitrarily set and will need further work in the future.

7.7 Numerical Results

In this section we report the numerical results for the preliminary implementation
of our trust region algorithm NLPTR in order to evaluate its effectiveness. For com-
parison, we give results for two SQP approaches: NPSOL by Gill, Murray, Saunders,
and Wright [1986], and DNCONG by Schittkowski [1986], which is available in the IMSL
MATH/LIBRARY. Both NPSOL Version 4.02 and DNCONG were tested using the default
stopping criteria and analytic gradient information for both the objective function and
the constraints. The maximum number of iterations allowed was 500, and all tests
were performed in double precision on a Sun 4.

The problems we tested are from Hock and Schittkowski [1981] and will be ref-
erenced by the number given there. These problems are given in an appendix along

3
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with possible constrained local minimizers and the function value at these points. The
first starting point listed is the standard starting point from Hock and Schittkowski
[1981].

In order to study the robustness of the algorithm, we tested each problem from
several starting points. The results are reported in Tables 7.6, 7.7 and 7.3 with
a summary at the end of Table 7.8. The numbers in the columns labeled NPSOL.
DNCONG and NLPTR indicate the number of iterations that each algorithm required
for convergence when convergence was achieved, and the letter F indicates that the
algorithm failed to converge. The numbers in parenthesis indicates the number of
function evaluations required, i. e.,the number of objective function evaluations or the
number of constraint evaluations. The number of iterations provides some insight into
the difficulty of the problem. Also, the difference between the number of iterations
and the number of function evaluations indicates how difficult it was for the algorithm
to find acceptable steps for that problem. The gradient evaluations that both NLPTR
and DNCONG required is equivalent to the number of iterations, while NPSOL required
one gradient evaluation for each function evaluation.

The number of iterations required for convergence does not provide an accurate
comparison of the efficiency of each of the algorithms for a variety of reasons. One
of the most significant of these is that NLPTR uses exact Hessian information while
NPSOL and DNCONG do not. In addition, our algorithm is still in the preliminary
implementation stage, and it has not been refined for efficiency.

The quality we are really interested in is robustness, and these results show that
our algorithm is significantly more robust than DNCONG and NPSOL. We point out
that DNCONG failed on a number of problems because the line search could not find an
acceptable step with the allowed number of function calls. The default for the function
evaluations allowed during the line search is 5, and the IMSL routine will not let the
user override this default. Finally, each of the algorithms did not always converge to
the same solution, and we have tabulated the solutions which each algorithm found
in Table 7.9.



Table 7.6 Convergence Results

Problem | Starting Point | # Iterations (# Func Evaluations)
. . ___| NPSOL | DNCOXNG [ NLPTR
6 121 [ 13(20) 9(10) 14(26)

-12°10 8(11) 12(12) 8(10)
-10 10 9(12) 16(24) 7(9)
-100 11(30) 12(14) 14(21)
20 20 11(14) 11(12) 12(19)
7 22 11(17) 10(11) 7(8)
20 20 22(34) Ft 18(22)
-156 31(39) 16(19) 17(21)
23 -10 24(39) 22(28) 17(20)
-35 -40 26(41) 28(37) 26(31)
8 21 6(10) 5(3) 5(7)
20 10 6(8) 6(6) 6(7)
-50 -50 F F F
9 00 3(9) 6(6) 4(35)
-10 10 3(9) 8(9) 6(7)
26 2622 40(40) 20(22) 17(18)
000 42(49) 10(14) 18(20)
-1-1-1 41(44) 19(20) 19(20)
1-11 57(78) 17(19) 19(21)
5-55 77(105) | 31(32) 27(31)
-26 20 20 46(56) 30(30) 25(26)
50 -50 50 95(150) 62(71) 28(29)
30 35 40 51(70) 30(32) 20(21)
450 -370 645 104(150) F* 34(33)
.-0.3 2.1-2.1 43(51) 22(24) 21(25)
27 222 18(29) 21(27) 16(26)
142 22(33) 23(30) 9(13)
134 21(29) 20(22) 23(31)
144 27(44) 25(30) 20(29)
-4 -2-1 22(28) 37(61) 13(17)
111 25(35) 21(28) 11(15)
-10-10 -10 64(85) 65(108) 28(37)
20 20 20 20(33) | 441(1254) 105(143)
5-10 8 28(48) 24(25) 28(42)
15-93 47(74) 273(740) 53(82)
-26-11 29(51) 28(36) 12(17)
1057 18(31) | 110(266) 54(82)
23 -19 38 27(45) 70(101) 98(125)

F Failed to converge.

t Too many function calls in Line Search.

t Reached maximum number of Iterations.



Table 7.7 Convergence Results

Problem | Starting Point | # Iterations (# Func Evaluations)
NPSOL | DNCONG | NLPTR
39 2222 [ 12(16) | 12(14) | 15(17)
0200 2(4) 3(3) 3(6)
-10-10 10 10 37(63) 37(44) 16(21)
20 20 20 20 20(25) 20(22) 38(54)
3237 29(52) 16(17) 10(14)
-118-29 25(36) 49(81) 13(15)
-3-579 32(54) 44(67) 15(20)
-2-462 94(233) 31(39) 14(21)
20 49 63 -9 21(26) 26(33) 36(49)
4-5936 25(44) 24(33) 41(51)
4024 -5 119(320) 23(28) 78(113)
0000 2(4) 3(3) 11(18)
40 .8.8.8.8 6(10) 6(6) 3(4)
-1-1-1-1 46(135) 36(59) 9(13)
2-4-4-2 30(56) 16(23) 14(20)
10-10 12(15) 26(33) 7(10)
-2-462 27(38) 24(29) F*
0-0510 F Ft 8(10)
8888 23(33) 40(64) 12(19)
3247 28(48) 30(49) 8(9)
3029 -393 26(40) Fmaz 116(172)
53 -100 -10 51(120) 38(60) 77(120)
42 1111 7(12) 9(11) 3(4)
10 10 10 10 12(18) 10(11) 7(8)
25-30-109 15(26) 17(18) 9(10)
100 -100 30 -70 18(28) 23(25) 12(16)
-50 -75 40 100 16(23) 29(36) 11(12)
60 222 8(12) 10(11) 7(8)
111213 22(29) 18(23) 11(12)
000 20(42) 20(29) 11(17)
10 10 10 18(32) 19(23) 11(12)
20 20 20 21(31) 17(20) 13(14)
27 29 38 22(30) 23(24) 15(16)
-20 -20 -20 24(36) 20(22) 13(14)
111 8(14) 8(9) 6(8)
-10409 66(124) 42(59) 15(17)
-45 11 87 25(34) 49(60) 18(19)
100 100 -100 29(39) F 18(19)
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F Failed to converge.
t Too many function calls in Line Search.

? Reached maximum number of Iterations.

[ U I



Table 7.8 Convergence Results

Problem | Starting Point | # Iterations (# Func Evaluations)
NPSOL | DNCONG | NLPTR
G 22222 14(21) 15(16) 9(11)
11111 13(20) 13(17) 6(9)
10 10 10 10 10 F 61(73) 23(25)
20 20 20 20 20 F 120(178) 24(26)
-3-3390 F 26(27) 10(11)
18330 15(23) 20(25) 8(9)
437-5-3 F 39(40) F
121314157 F 70(94) 20(23)
2-2-2-2-2 F 41(33) 108(143)
5-5-5-5-5 F Ff 50(80)
32719 F 56(72) F
-12506 192(366) F? 19(27)
00000 24(44) 31(47) 9(16)
78 2152-1-1 10(13) 8(8) 4(5)
-20 1520 -10 -10 39(53) 38(60) 13(19)
50 50 50 50 50 108(273) Fmaz 24(41)
-11.52-1-2 14(23) 11(13) 5(6)
-10 10 10 -10 -10 13(18) 13(13) 8(9)
00111 F Fmaz 6(10)
79 22222 10(13) 9(10) 4(5)
11111 9(11) 8(8) 4(5)
10 10 10 10 10 21(32) 19(21) 10(11)
2-2-2-2-2 20(39) 25(37) 10(13)
35555 17(24) 15(18) 9(10)
326-79 22(39) 32(33) 19(24)
40-30 50 -80 20 | 77(115) 44(48) 20(29)
Totals 2768(4710) | 3092(5186) | 2007(2667)
Averages 30.4(51.8) | 33.6(56.4) 20.5(27.2)
Failures 11F 10F 4F

F Failed to converge.

t Too many function calls in Line Search.

$ Reached maximum number of Iterations.

maz Converged to a maximum.
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Table 7.9 Solutions Found

Problem | Starting Point Solution Found
NPSOL | DNCONG | NLPTR
3 15 60 i w | i
9 -10 10 i i ii
26 -1-1-1 i i i
3-33 i i ii
50 -50 50 i ii i
450 -370 645 i F i
-0.3 2.1 -2.1 ii ii i
40 -1-1-1-1 1 i i
-2 -4 -4-2 ii i il
10-10 ii i i
-2-462 iv iii F
0-0510 F F ii
8888 i iii i
3247 i i i
30 29 -39 3 i F ii
53-100 -10 i ii ii
60 -20 -20 -20 i i i
100 100 -100 ii F ii
T 10 10 10 10 10 F i i
20 20 20 20 20 F iii ii
-3-3390 F ii ii
-18330 ii ii il
437-5-3 F i F
121314157 F i i
-2-2-2-2-2 F iii iii
-5-5-5-5-5 F F i
32719 F i F
-12506 i F i
78 -20 15 20 -10 -10 iii i 11
50 50 50 50 50 i F i
00111 F F ii
79 -2-2-2-2-2 1 i iii
-326-79 v i il
40 -30 50 -80 20 ii iii iv

F Failed to converge.
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Chapter 8

Concluding Remarks

In summary, we have developed a trust region algorithm to solve the equality con-
strained optimization problem. Our goal was to develop a robust algorithm which
can handle lack of second-order sufficiency away from the solution, and our numerical
results show that we have achieved this goal. We gave an algorithm for solving the
quadratic programming problem which handles rank degeneracy in the gradient of
the constraints in a natural way and provides a direction of zero or negative cur-
vature inside the null space of VA(z)T when the solution to the quadratic program
does not exist because second-order sufficiency does not hold. Our trust region algo-
rithm is based on the restriction of the original CDT trust subproblem to a relevant
two-dimensional subspace, and we give an algorithm for solving our trust region sub-
problem. As part of the solution of our trust region subproblem, we had to develop a
method to determine all of the global solutions, and the non-global solution, if it ex-
ists, to the standard unconstrained trust region subproblem in two dimensions. Our
analysis of this problem led to analytical expressions for the solutions in a number of
degenerate cases, and an algorithm to find the solutions in the non-degenerate case.
In the non-degenerate case, we derived necessary and sufficient conditions for the exis-
tence of a non-global solution to the unconstrained trust region subproblem. Finally,

we investigated the role of the Lagrange multipliers when second-order sufficiency did
not hold.’
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Appendix A

Test Problems

The following test problems can be found in Hock and Schittkowski (1981]. Second-
order sufficiency holds at the points z. given below unless otherwise noted.

e Hock and Schittkowski 6
minimize (1 — z;)?
subject to  10(z; —z3) =0

z.=(1.0,1.0)7; f(z.) =0.0

e Hock and Schittkowski 7
minimize  In(1 + z?) -z,
subject to  (1+z¥)2+z2-4=0

z. = (0.0, V3.0)T; f(z.) = =v30

e Hock and Schittkowski 8

minimize  —1.0
subject to  zZ+z2-250=0
1T — 9.0=0

i. z. = (4.60159,1.95584)T; f(z.) = —1.0

i1, z. = (1.95584,4.60159)T; f(z.) = -1.0
1. r. = (—4.60159,—-1.95584)T; f(z.) = —1.0
. z. = (—1.95584, —4.60159)7; f(z.) = —1.0

e Hock and Schittkowski 9

minimize  sin(Ilz,/12) cos(II z;/16)

subject to 4z, -3z, =0



i 2. = (=3.0.-4.0)7; f(z.) = —=0.5
ii. 2. = (9.0.12.0)T; f(z.) = 0.5
ii. r. = (=15.0. =20.0)T; f(z.) = —0.5

Hock and Schittkowski 26

minimize  (z; — z3)% + (z, — z3)*

subject to  (zi + 1)z, +z3-3=0
i. z.=(1.0,1.0. 1.0)T; f(z.) = 0.0
ii. z. = (-1.809.-1.809, —-1.810)T; f(z.) =0.0

e Hock and Schittkowski 27

minimize  0.01(z; — 1)% + (z; — z3)?

subjectto z;+zZ4+1=0
r. = (-1.0.1.0.0.0)7; f(z.) = 0.04

Hock and Schittkowski 39

minimize -z,
bi 3 2 _
subject to T —z]—2z5=0

-z, -22=0
z. = (1.0,1.0,0.0,0.0)T; f(z.) = =1.0

Hock and Schittkowski 40

minimize —T1T2T3T4
subject to zi+z3-1=0
zfz,, —z3=0

2—z,=0
i. z. = (0.7937,0.7071,0.5297,0.8409)7; f(z.) = —0.25

ii. z. = (0.7937,0.7071, —0.5207, —0.8409)T; f(z.) = —0.25
i, z. = (0,1.0,0,1.0)7; f(z.) = 0.0; (Reduced Hessian is zero).
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w. z. = (0,1.0,0.-1.0)T; f(z.) = 0.0; (Reduced Hessian is zero).
o Hock and Schittkowski 42
minimize  (z; — 1)® + (22 = 2)% + (23 — 3)% + (24 — 4)?

subjectto ;-2 =

2} +22-2=0
r.=(2.2,0.848328.1.13137)T: f(z.) = 13.8579
o Hock and Schittkowski 60

minimize  (z; — 1)% + (z; — 24)% + (22 — z3)*
subject to  zy(l+z2)+z3 -4 -3V/2=0

i. z. = (1.105,1.197,1.535)T; f(z.) = 0.0326

. z. = (0.0986.-0.895,—1.6519)T; f(z.) = 2.189

e Hock and Schittkowski 77

minimize (21 — 1)® + (21 — 22)? + (23 = 1)2 + (z4 — 1)* + (z5 — 1)°
subject to  ziry +sin(z4—z5)—2vV2=0
T+ 2322 -8-v2=0
t. z. = (1.166,1.182,1.380, 1.506,0.6109)7; f(z.) = 0.2415
1. T = (—1‘.029, -1.017,1.355,1.760,0.4531)T; f(zr.) = 4.603
iii. z. = (1.089,1.178, —1.281,1.748, 0.8912)T; f(z.) = 5.533
w. z. = (—0.9896, —0.9142, —1.3028, 1.8932, 0.4975)T; f(z.) = 9.909

e Hock and Schittkowski 78

minimize T1T2T3T4Ts
subject to ¥+ zi+zi+zi4+21-10=0
T2T3 — 92425 =0

3+z5+1=0

i. z. = (-1.717,1.596,1.827, —0.7636, —0.7636)T; f(z.) = —2.920



110

it. z. = (—1.717,1.596,1.827,0.7636,0.7636)7; f(z.) = —2.920
117, £. = (—0.6991. —0.8700. —2.790. —0.6967, —0.6967)T: f(z.) = —0.8236

e Hock and Schittkowski 79

minimize (21 =12+ (2, —22)% + (22— 23)* + (23— z4)* + (24— 15)*
subject to I, +ri+13-2-3vV2=0
1'-2—.r§+1:4+‘2—‘2\/:=0

2133—2—0

= (1.191.1.362.1.473,1.635,1.679)T; f(z.) = 0.0788

(—0.7662.2.667, —0.4682, —1.619, —2.610)7; f(z.) = 27.45
(—2.702, —2.990.0.1719, 3.848. —0.7401)T; f(z
= (
(-

it. T

iii. . = L) = 649.1
iv. z. = (2.718,2.033. —0.848, —0.486,0.736)T; f(z.) = 13.96
v. 7. = 7.2.422,1.175, —=0.2132, =1.604)T; f(z.) = 27.52
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