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Abstract

Precise and efficient dependence tests are essential to
the effectiveness of a parallelizing compiler. This paper
proposes a dependence testing scheme based on classi-
fying pairs of subscripted variable references. Exact yet
fast dependence tests are presented for certain classes
of array references, as well as empirical results showing
that these references dominate scientific Fortran codes.
These dependence tests are being implemented at Rice
University in both PFC, a parallelizing compiler, and
ParaScope, a parallel programming environment.

1 Introduction

In the past decade, high performance computing has
become vital for scientists and engineers alike. Much
progress has been made in developing large-scale paral-
lel architectures composed of powerful commodity mi-
croprocessors. To exploit parallelism and the memory
hierarchy effectively for these machines, compilers must
be able to analyze data dependences precisely for array
references in loop nests. Even for a single micropro-
cessor, optimizations utilizing dependence information
can result in integer factor speedups for scientific codes
[11]. However, because of its expense, few if any scalar
compilers perform dependence analysis.

Parallelizing compilers have traditionally relied on
two dependence tests to detect data dependences be-
tween pairs of array references: Banerjee’s inequalities
and the GCD test [8, 55]. However, these tests are usu-
ally more general than necessary. Thxs paper presents
empirical results showing that most array references in
scientific Fortran programs are fairly simple. For these
simple references, we demonstrate a suite of highly ex-
act yet efficient dependence tests. We feel that these
tests will significantly reduce the cost of performing
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dependence analysis, making it more practical for all
compilers. We begin with some definitions.

1.1 Data Dependence

The theory of data dependence, originally developed for
automatic vectorizers, has proved applicable to a wide
range of optimization problems. We say that a data
dependence exists between two statements S; and S-»
if there is a path from S; to S2 and both statements
access the same location in memory. There are four
types of data dependence [32, 33]:

True (flow) dependence occurs when S
writes a memory location that S» later reads.

Anti dependence occurs when S; reads a
memory location that S, later writes.

Output dependence occurs when S; writes a
memory location that S; later writes.

Input dependence occurs when S; reads a
memory location that S, later reads.

Dependence analysis is the process of computing all
such dependences in a program.

1.2 Dependence Testing

Calculating data dependence for arrays is complicated
by the fact that two array references may not always
access the same memory location. Dependence testing
is the method used to determine whether dependences
exist between two subscripted references to the same
array in a loop nest. For the purposes of this explica-
tion, we will ignore any control flow except for the loops
themselves. Suppose that we wish to test whether or
not there exists a dependence from statement S; to S2
in the following model loop nest:

Do, =L, U,
DO 22—-L2,U2

DO 1,; = Ln,Un

51 A(f1(11,.. -In),....,fm(il,...,.i,;))=....
Sa e.. = A(gl(u,...,z,,),...,gm(zl,...,z,,))
ENDDO
ENDDO
ENDDO

Let & and B be vectors of n integer indices within the
ranges of the upper and lower bounds of the n loops
in the example. There is a dependence from 51 to 52
if and only if there exist @ and 3 such that « is lexi-






cographically less than or equal to 8 and the following
system of dependence equations is satisfied:

fila) = gi(B) Vi, 1<i<m
Otherwise the two references are independent.
1.3 Distance and Direction Vectors

Data dependences may be characterized by their access
pattern between loop iterations using distance and di-
rection vectors. Suppose that there exists a data de-
pendence for a = (a1,...,an) and B = (B1,...,5n).
Then the distance vector D = (Dy,...,Dy) is defined
as B — a. The direction vector d = (dy,...,dy) of the
dependence is defined by the equation:

< ifa; < f;
d = = ifai=4
> ifa; > 6

The elements are always displayed in order left to right,
from the outermost to the innermost loop in the nest.
For example, consider the following loop nest:

DO 10 i
DO 10 j
DO 10 k

10 A(i+1, j, k-1) = A(d, j, k) + C
The distance and direction vectors for the dependence
between the definition and use of array A are (1,0, —1)
and (<, =, >), respectively. Since several different val-
ues of a and @ may satisfy the dependence equations,
a set of distance and direction vectors may be needed
to completely describe the dependence.

Direction vectors, first introduced by Wolfe {53], are
useful for calculating the level of loop-carried depen-
dences (1, 4, 25]. A dependence is carried by the outer-
most loop for which the direction in the direction vector
is not ‘=". For instance, the direction vector (<, =,>)
for the dependence above shows the dependence is car-
ried on the i loop.

Carried dependences are important because they de-
termine which loops cannot be executed in parallel
without synchronization. Direction vectors are also
useful in determining whether loop interchange is le-
gal and profitable [4, 25, 53].

Distance vectors, first used by Kuck and Muraoka
[34, 42], are more precise versions of direction vectors
that specify the actual distance in loop iterations be-
tween two accesses to the same memory location. They
may be used to guide optimizations to exploit par-
allelism [23, 27, 36, 51, 54] or the memory hierarchy
[11, 19, 43].

Dependence testing thus has two goals. First, it tries
to disprove dependence between pairs of subscripted
references to the same array variable. If dependences
may exist, it tries to characterize them in some man-
ner, usually as a minimal complete set of distance and
direction vectors. Dependence testing must also be
conservative and assume the existence of any depen-
dence it cannot disprove. Otherwise the validity of any
optimizations based on dependence information is not
guaranteed.

1.4 Exact Tests

When array subscripts are linear expressions of the loop
index variables, dependence testing is equivalent to the
problem of finding integer solutions to systems of lin-
ear Diophantine equations, an NP-complete problem
(15, 17]. In practice most dependence tests, such as
Banerjee’s inequalities [8], seek efficient approximate
solutions. Ezact tests, on the other hand, are depen-
dence tests that will detect dependences if and only if
they exist.

1.5 Indices and Subscripts

In this paper we will use the term indez to mean the
index variable for some loop surrounding both of the
references. We assume that all auziliary induction var:-
ables have been detected and replaced by linear func-
tions of the loop indices (2, 3, 5, 52].

In addition, we will use the term subscript to refer
to one of the subscripted positions in a pair of array
references; i.e., the pair of subscripts in some dimension
of the two array references. Dependence tests always
consider a pair of array references, but for brevity we
refer to a subscript pair simply as a subscript. For
example, in the pair of references to array A in the
following loop nest,

DO 10 i
DO 10 j
DO 10 k
10 AGi, j) = A(i, k) + C

we say that index ¢ occurs in the first subscript and
indices j and k occur in the second subscript.

2 Classification

In this section we present two orthogonal criteria for
classifying subscripts in a pair of array references. The
first criterion, complezity, refers to the number of in-
dices appearing within the subscript. The second crite-
rion, separability, describes whether a given subscript
interacts with other subscripts for the purpose of de-
pendence testing.

2.1 Complexity

When testing for dependence, we classify subscript po-
sitions by the total number of distinct loop indices they
contain. A subscript is said to be ZIV (zero index vari-
able) if the subscript position contains no index in ei-
ther reference. A subscript is said to be SIV (single in-
dex variable) if only one index occurs in that position.
Any subscript with more than one index is said to be
MIV (multiple index variable). For instance, consider
the following loop:

DO 10 i
DO 10 j
DO 10 k
10 A5, i+1, j) = A(N, i, k) + C

When testing for a true dependence between the two
references to A in the code below, the first subscript is



ZIV, the second is SIV, and the third is MIV. For the
sake of simplicity, we will ignore output dependences
in this and all future examples.

2.2 Separability

When testing multidimensional arrays, we say that a
subscript position is separable if its indices do not oc-
" cur in the other subscripts [1, 10]. If two different sub-
scripts contain the same index, we say they are coupled
(38]. For example, in the loop below,
DO 10 i
DO 10 j
DO 10 k

10 A(d, j, j) = A4, j, k) + C
the first subscript is separable, but the second and third
are coupled because they both contain the index j. ZIV
subscripts are vacuously separable because they con-
tain no indices.

Separability is important because multidimensional
array references can cause imprecision in dependence
testing. One suggested approach, called subscript-by-
subscript testing, is to test each subscript separately
and intersect the resulting sets of direction vectors [53].
However, this method provides a conservative approxi-
mation to the set of directions within a coupled group—
it may yield direction vectors that do not exist. For
instance, consider the following loop:

DO 10 i

10 A(i+1, i+2) = A(di, i) + C
A subscript-by-subscript test would yield the single di-
rection vector (<). But a careful examination of the
statement reveals that this direction vector is invalid
since no dependence exists!

On the other hand, if all subscripts are separable, we
may compute the direction vector for each subscript
independently, and merge the direction vectors on a
positional basis with full precision. For example, in
the loop nest below,

DO 10 i
DO 10 j
DO 10 k

10 A(i+1, j, k-1) = A4, j, X) + C
the leftmost direction in the direction vector is deter-
mined by testing the first subscript, the middle direc-
tion by testing the second subscript and the rightmost
direction by testing the third subscript. The resulting
direction vector, (<,=,>), is precise. The same ap-
proach applied to distances allow us to calculate the
exact distance vector (1,0, -1).

We know from linear algebra that systems of equa-
tions with distinct variables may be solved indepen-
dently, and their solutions merged to form an exact
solution set. Previous tests have used this property
for array references consisting of only separable SIV
subscripts [1, 23, 34, 36, 42]. More recently, Li et al.
formalized and applied this method in the A-test to
array references also containing MIV or coupled sub-
scripts [38]. Our treatment of constraint propagation
in Section 5.3 was inspired by their work.

3 Dependence Testing

The goal of dependence testing in this paper is to con-
struct the complete set of distance and direction vec-
tors representing potential dependences between an ar-
bitrary pair of subscripted references to the same array
variable. Since distance vectors may be treated as pre-
cise direction vectors, we will simply refer to direction
vectors for the rest of the paper. For the sake of sim-
plicity we will also assume that all loops have a step
of 1. Non-unit step values may be normalized on the
fly as needed.

3.1 Partition-Based Algorithm

The classifications presented in the previous section
may be used naturally in a partition-based dependence
testing algorithm as follows:

1. Partition the subscripts into separable and mini-
mal coupled groups.

2. Label each subscript as ZIV, SIV or MIV.

3. For each separable subscript, apply the appro--i-
ate single subscript test (ZIV, SIV, MIV) basec n
the complexity of the subscript. This will procuce
independence or direction vectors for the indices
occurring in that subscript.

4. For each coupled group, apply a multiple subscript
test to produce a set of direction vectors for the in-
dices occurring within that group.

5. If any test yields independence, no dependences
exist.

6. Otherwise merge all the direction vectors com-
puted in the previous steps into a single set of
direction vectors for the two references.

This algorithm is implemented in both PFC, an au-
tomatic vectorizing and parallelizing compiler (3, 4],
and ParaScope, a parallel programming environment
(12, 27, 28].

Our dependence testing algorithm takes advantage
of separability by classifying all subscripts in a pair of
array references as separable or part of some minimal
coupled group. A coupled group is minimal if it can-
not be partitioned into two non-empty subgroups with
distinct sets of indices. Once a partition is achieved,
each separable subscript and each coupled group have
completely disjoint sets of indices. Each partition may
then be tested in isolation and the resulting distance or
direction vectors merged without any loss of precision.

Subscripts may be partitioned using the algorithm
in Figure 1. An alternative algorithm based on
UNION /FIND is implemented in PFC. The dependence
testing algorithm may halt and return independence as
soon as the test for any separable subscript or coupled
group yields independence, since no simultaneous solu-
tions are possible once we prove no solutions exist for
some subset of the entire system.



INPUT: A pair of m-dimensional array references
containing subscripts Sy ...Sn,
enclosed in n loops with indices I} ...I,

OuTPUT: A set of partitions P, ... P/, n’ < n, each
containing a separable or minimal coupled group

foreach i, 1 <i<ndo
P; — {S:}
endfor
for each index [;, 1 < i< ndo
k — (none)
for each remaining partition P; do
if 3 S € P; such that S; contains I; then
if k = (none) then
ke—j
else
P, — P U P,
discard P;
endif
endif
endfor
endfor

Figure 1: Subscript Partition Algorithm

3.1.1 Merge

The merge operation described in the test algorithm
merits more explanation. Since each separable and
coupled subscript group contains a unique subset of in-
dices, merge may be thought of as Cartesian product.
In this loop nest,

DO 10 i
DO 10 j
10 A(i+1, j) = A(d, j) + C

the first position yields the direction vector (<) for the
i loop. The second position yields the direction vector
(=) for the j loop. The resulting Cartesian product is
the single vector (<,=). A more complex example is
shown below:

DO 10 i
DO 10 j
10 A(i+1, 5) = A(i, N) + C

The first subscript yields the direction vector (<) for
the i loop. Since j does not appear in any subscript,
we must assume the full set of direction vectors

{(<,(=h0)}

for the j loop. The merge thus yields the following set
of direction vectors:

{ (<’ <): (<1 =)v (<r >) }

Dependence test results for ZIV subscripts are treated
specially. If a ZIV subscript proves independence, the
dependence test algorithm halts immediately. If inde-
pendence is not proved, the ZIV test does not produce
direction vectors, so no merge is necessary.

4 Single Subscript Tests

We first consider dependence tests for single separable
subscripts. All tests presented in this paper assume
that the subscript being tested contains expressions
that are linear in the loop index variables. A subscript
expression is linear if it has the form:

a1ty + a2tz + ...+ aniy, + €

where i, is the index for the loop at nesting level k;
all ag, 1 < k < n, are integer constants; and e is an
expression possibly containing loop-invariant symbolic
expressions. We assume in PFC that all direction vec-
tors are possible for nonlinear subscripts.

4.1 ZIV Test

The ZIV test is a dependence test that takes two loop-
invariant expressions. If the system determines that
the two expressions cannot be equal, it has proved inde-
pendence. Otherwise the subscript does not contribute
any direction vectors and may be ignored. The ZIV
test can be easily extended for symbolic expressions.
Simply form the expression representing the difference
between the two subscript expressions. If the differ-
ence simplifies to a non-zero constant, we have proved
independence.

4:2 SIV Tests

A number of authors, notably Banerjee, Cohagan, and
Wolfe (8, 14, 55], have published a Single-Index exact
test for linear SIV subscripts based on finding all solu-
tions to a simple Diophantine equation in two variables.
Here we present a new exact test based on the idea of
treating the most commonly occurring SIV subscripts
as special cases. It provides greater efficiency and is
easily extended to handle symbolics and coupled sub-
scripts. We begin by separating SIV subscripts into
two categories: strong SIV and weak SIV subscripts.

4.2.1 Strong SIV Subscripts
An SIV subscript for index i is said to be strong if it

‘has the form (ai + ¢i, ai’ + ¢3); i.e., if it is linear and

the coefficients of the two occurrences of the index 7 are
constant and equal [1, 10]. For strong SIV subscripts,
we define the dependence distance as:

Ci1 —C2

a

Then a dependence exists if and only if d is an integer
and |d| < U — L, where U and L are the loop upper
and lower bounds. For dependences that do exist, the
dependence direction is given by:

d=1-i=

< ifd>0
direction = = ifd=0
> ifd<0

The strong SIV test is thus an exact test that can be
implemented very efficiently in a few operations. Since
we calculate distance vectors in any case, we get the
test for almost no additional cost.

Another advantage of the strong SIV test is that it can
be easily extended to handle loop-invariant symbolic



DO 10 i = 1,4
10 A(i)=A(i-1)

DO 10 i = 1,4
10 A(1)=A(1) 10
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Figure 2: Geometric View of SIV Tests

expressions. The trick is to first evaluate the depen-
dence distance, d, symbolically. If the result is a con-
stant, then the test may be performed as above. Other-
wise calculate the difference between the loop bounds
and compare the result with d symbolically. For in-
stance, consider the following loop:

Do 10i=1, ¥
10 A(i+2N) = A(i+N) + C

The strong SIV test can evaluate the dependence dis-
tance, d, as 2N — N, which simplifies to N. This is
compared with the loop bounds symbolically, proving
independence since N > N — 1.

4.2.2 Weak SIV Subscripts

A weak SIV subscript has the form (a;i+c1,a2i' + c2),
where the coefficients of the two occurrences of index
i have different constant values. As stated previously,
weak SIV subscripts may be solved using the Single-
Index exact test. However, we also find it helpful to
view the problem geometrically, where the dependence
equation:
a1i+ ¢ = azi’ +c2

describes a line in the two dimensional plane with i
and ' as the axes [10]. The weak SIV test can then
be formulated as determining whether the line derived
from the dependence equation intersects with any in-
teger points in the space bounded by the loop upper
and lower bounds, as shown in Figure 2. In particular,
we find it advantageous to identify the following two
special cases.

Weak-zero SIV Subscripts. We call the case where
a; = 0 or az = 0 a weak-zero SIV subscript. If ap is
equal to zero, the dependence equation reduces to:
. _C2—0C1
==

We simply need to check that the resulting value for
i is an integer and within the loop bounds. A similar
check applies when a; is zero.

The weak-zero SIV test finds dependences caused by
a particular iteration i. In scientific codes, i is usually
the first or last iteration of the loop, eliminating one
possible direction vector for the dependence. More im-
portantly, weak-zero dependences caused by the first or
last loop iteration may be eliminated by applying the
loop peeling transformation [28]. For instance, consider
the following simplified loop in the program tomcatv
from the SPEC benchmark suite [49)]:

DO10i=1, X
10 Y(i, ¥) = Y(1, N) + Y(¥, N)

The weak-zero SIV test can determine that the use of
Y (1, N) causes a loop-carried true dependence from the
first iteration to all other iterations. Similarly, with
aid from symbolic analysis the weak-zero SIV test can
discover that the use of Y (N, N) causes a loop-carried
anti dependence from all iterations to the last iteration.
By identifying the first and last iterations as the only
cause of dependences, the weak-zero SIV test advises
the user or compiler to peel the first and last iterations
of the loop, resulting in the following parallel loop:

Y(1, ¥) = Y(1, N) + Y(N, W)
DO 10 i = 2, N-1

10  Y(i, ¥) = Y(1, N) + Y(¥, N)
Y(N, N) = Y(1, ¥) + Y(¥, ¥)

Weak-crossing SIV Subscripts. We label as weak-
crossing SIV all subscripts where az = —ay; these sub-
scripts typically occur as part of Cholesky decompo-
sition. In these cases we set i = i and derive the
dependence equation:
. _ ca—C1
- 201



This corresponds to the intersection of the dependence
equation with the line i = /. To determine whether
dependences exist, we simply need to check that the
resulting value 7 is within the loop bounds, and is either
an integer or has a non-integer part equal to 1/2.
Weak-crossing SIV subscripts cause crossing depen-
dences, loop-carried dependences whose endpoints all
cross iteration ¢ [1, 4]. These dependences may be elim-
inated using the loop splitting transformation [28]. For
instance, consider the following loop from the Callahan-
Dongarra-Levine vector test suite [13]:

DO 10 i =1, N
10 A(i) = A(N-i+1) + C

The weak-crossing SIV test determines that depen-
dences exist between the definition and use of A4, and
that they all cross iteration (N + 1)/2. Splitting the
loop at that iteration results in two parallel loops:

DO 10 i = 1,(N+1)/2
10  A(i) = A(N-i+1) + C
DO 20 i = (N+1)/2 + 1, N
20 A(i) = A(N-i+1) + C

Both forms of weak SIV tests are also useful for testing
coupled subscripts, described in Section 5. We rely on
the Single-Index exact test to handle the general case.

4.3 Complex Iteration Spaces

SIV tests can be extended to handle complex itera-
tion spaces, where loop bounds may be functions of
other loop indices; for example, triangular or trape-
zoidal loops. We need to compute the minimum and
maximum loop bounds for each loop index. Starting
at the outermost loop nest and working inwards, we
replace each index in a loop upper bound with its max-
imum value (or minimal value if it is a negative term).
We do the opposite in the lower bound, replacing each
index with its minimal value (or maximal if it is a neg-
ative term). We evaluate the resulting expressions to
calculate the minimal and maximal values for the loop
index, then repeat for the next inner loop. This al-
gorithm returns the maximal range for each index, all
that is needed for SIV tests.

4.4 MIV Tests

The Banerjee-GCD test [4, 8, 25, 55] may be employed
to construct all legal direction vectors for linear sub-
scripts containing multiple indices. In most cases the
test can also determine the minimal dependence dis-
tance for the carrier loop. Since the literature in this
area is extensive, we will not discuss it further here.
PFC employs a special version of the Banerjee-GCD
test enhanced for triangular loop nests [8, 26].

We note a special case of MIV subscripts called
RDIV (Restricted Double Index Variable) subscripts
that have form (ayi + ¢1,a3j + c3). They are similar
to SIV subscripts, except that ¢ and j are distinct in-
dices. By observing different loop bounds for ¢ and j,
SIV tests may also be extended to exactly test RDIV
subscripts [53].

4.5 Symbolic Tests

As we have pointed out in the text, we can perform de-
pendence testing in a natural way for subscripts with
loop-invariant symbolic additive constants. The basic
idea is that ¢, —c;, the difference between the constant
terms of each subscript expression, may be formed sym-
bolically and simplified. The result may then be used
like a constant.

In this section we describe a special test for indepen-
dence between references to a subscripted variable that
are contained in two different loops at the nesting level
of the SIV index. In the pair of loops below,

DO10i=1, N
10 A(a1i + ¢;) = ...
DO 20 j = 1, N,

20 ... = A(a2j + ¢32)

we can use -the following general test. Assume for the

*. sake of simplicity that a; is greater or equal to zero. A

dependence exists if the following dependence equation
is satisfied: . .
@12 —az) =cz2—C;

for some value of i, 1 <i< Nj and j, 1 < j < Na.

There are two cases to consider. First, a; and a; may
have the same sign. In this case, a1 — asj assumes its
maximum value for i = N; and j = 1 and its minimum
value for i = 1 and j = N> (remember, a; and a- are
non-negative). Hence, there is a dependence only if:

a1 —az;Nza Lca—c; La1Ny —ay

If either inequality is violated, the dependence cannot
exist.

In the second case, a; and a; have different signs. In
this case, @)i — a2j assumes its maximum for i = N,
and j = N, so there is a dependence only if:

a1 —az2 < c2—c; La1Ny —azN;

If either inequality is violated, the dependence cannot
exist.

It should be noted that these inequalities are just
special cases of the Banerjee inequality. However, when
they are stated in this form, it is obvious that they can
be formulated for symbolic values of ¢;, ¢2, Ny and N,.
Furthermore, this test may also be used to test for de-
pendence in the same loop, with N; = Ns.

Our empirical study in Section 6 shows that sym-
bolic testing techniques significantly enhance the effec-
tiveness of dependence tests in PFC. Any symbolic
expressions that remain at the end of dependence test-
ing may also be used as a user query in an interactive
system, or as a condition to break the dependence at
run-time.

5 Delta Test

The tests used for separable subscripts can also be used
on each subscript of a coupled group—if any test proves
independence, then no dependence exists. However, we
have already seen that subscript-by-subscript testing in



INPUT: coupled SIV and/or MIV subscripts

OuTpruT: hybrid distance/direction vector,
constrained MIV subscripts

initialize elements of constraint vector C to (none)
_ while 3 untested SIV subscripts do
apply SIV test to all untested SIV subscripts,
return independence or
derive new constraint vector C’
C'—CnC
if ' = 0 then
return independence
else if C # C' then
C—C
propagate constraint C into MIV subscripts,
possibly creating new ZIV or SIV subscripts
apply ZIV test to untested ZIV subscripts,
return independence or continue
endif
endwhile
while 3 untested RDIV subscripts do
test and propagate RDIV constraints
endwhile
test remaining MIV subscripts, then
intersect resulting direction vectors with C
return distance/direction vectors from C

Figure 3: Delta Test Algorithm

a coupled group may yield false dependences. Some re-
cent research has focused on overcoming this deficiency
(38, 50, 56]. In this section we present the Delta test, a
multiple subscript test designed to be exact yet efficient
for common coupled subscripts. Figure 3 presents an
overview of the Delta test algorithm.

The main insight behind the Delta test is that con-
straints derived from SIV subscripts may be propagated
into other subscripts in the same coupled group effi-
ciently, usually without any loss of precision. Since
most coupled subscripts in scientific Fortran codes are
simple, in practice the Delta test is an exact yet fast
multiple subscript test.

The Delta test can detect independence if any of
its component ZIV or SIV tests determine indepen-
dence. Otherwise it converts all SIV subscripts into
constraints, propagating them into MIV subscripts
where possible. It repeats until no new constraints are
found, then propagates constraints for coupled RDIV
subscripts. Remaining MIV subscripts are tested; the
results are intersected with existing constraints. We
describe the Delta test algorithm in greater detail in
the following sections.

5.1 Constraints

Constraints are assertions on indices derived from sub-
scripts. For instance, the subscript (a;i + c1, a2i’ + ¢2)

generates the constraint ayi: — asi’ = ¢5 — ¢; for index
i. A dependence distance is an example of a simple
constraint. The constraint vector C = (61,62,...,6n)
is a vector with one constraint for each of the n indices
in the coupled subscript group. It is used in the Delta
test to store constraints generated from SIV tests, and
can be easily converted to distance or direction vectors.
A constraint 6 may have the following form:

e dependence line — a line (az + by = ¢) represent-
ing the dependence equation

o dependence distance — the value (d) of the depen-
dence distance; it is equivalent to the dependence
line (z —y = —d)

o dependence point — a point (z, y} representing de-
pendence from iteration z to y

Dependence distances and lines derive directly from the
strong and weak SIV tests. Dependence points result
from intersecting constraints, as described in the next
section.

5.2 Intersecting Constraints

Since dependence equations from all subscripts must
be solved simultaneously for dependences to exist, in-
tersecting constraints from each subscript results in
greater precision. If the result of the intersection is the
empty set, no dependence is possible. Constraint inter-
section has been employed for both direction vectors
(53] and coupled SIV subscripts {1, 10]. The version
employed by the Delta test is equivalent to an exact
multiple subscript SIV test.

Dependence distances are the easiest to intersect;
a simple comparison suffices. If all distances are not
equal, then no dependences exist. For example, recon-
sider the following loop nest from Section 2.2:

DO 10 i
10 A(i+1, i+2) = A(i, i) + C

Applying the strong SIV test to the first subscript de-
rives a dependence distance of 1. Doing the same for
the second subscript derives a distance of 2. To inter-
sect the two constraints we perform a comparison. This
results in the empty set, proving independence.

It turns out that even complex constraints from SIV
subscripts may be intersected exactly. Recall that each
dependence equation from a SIV subscript may be
viewed as a line in a two-dimensional plane. Inter-
secting constraints from multiple SIV subscripts then
corresponds to calculating the point(s) of intersection
for lines in a plane. No dependence exists if the lines
do not intersect at a common point within the loop
bounds, or if the coordinates of this point do not have
integer values. If all dependence equations intersect at
a single dependence point, its coordinates are the only
two iterations that actually cause dependence.

DO 10 i
10  A(i, i) = A(4, i-1) + C



INPUT: constraints 6, 6> and loop bounds U, L

OuTPUT:

new constraint § or 0

{*either 6, or §; = (none) *}
if §; = (none) then
return 6,

else if 6,

= (none) then

return 6

{* both 8, and &, are dependence distances *}
= (d1) and é2 = (d») then

else if §,

if d; = d; then
return (d;)

else

return 0

endif

{* both §; and §, are dependence points *}

else if §; = (z,,y) and §; = (z2,y2) then

if z; = z; and y; = y» then
return (z,y;)

else
return 0
endif
{* both 4, and 62 are dependence lines/distances *}
else if §; = (a1z + b1y = ¢;) and
6y = (agz + bay = c?,) then

{* lines are parallel if slopes are equal *}
if a; /by = a2/b2 then
if ¢; /by = c2/b2 then
return (a,z + b1y = ¢1)

else

return 0
endif
{* lines must intersect if not parallel *}

else

(z1,y1) ~ intersection of §; and &,

if L < z; < U and z, is an integer and

else

L < y1 < U and y; is an integer then
return (z,y1)

return 0
endif

endif

{* either &, is a dependence line/distance
{* and §, is a dependence point, or vice versa *}
{* without loss of generality, assume the former x}

else 6; = (a1z + b1y =c1) and 8; = (z,, 1)

if a1z, + b1y1 = ¢; then
return (z;,y:)

else

return @

endif
endif

Figure 4: Constraint Intersection

*}

For instance, in this example loop testing the first and
second subscripts in the pair of references to .4 derjves
the dependence lines (i = 1) and (i = #/ — 1), respec-
tively. These dependence lines intersect at the depen-
dence point (1,2), indicating that the only dependence
is from the first to the second iteration. Since calculat-
ing the intersection of lines in a plane can be performed
precisely, constraint intersection is exact.

The full constraint intersection algorithm is shown in
Figure 4. Note that for simplicity dependence distances
are also treated as lines at places in the algorithm.

5.3 Propagating Constraints
5.3.1 SIV Constraints

A major contribution of the Delta test is its ability
to propagate constraints derived from SIV subscripts
into coupled MIV subscripts, usually without loss of
precision. The resulting constrained subscript can then
be tested with greater efficiency and precision. Figure 5
shows the constraint propagation algorithm. Its goal
is to utilize SIV constraints for each index to eliminate
instances of that index in the target MIV subscript. We
demonstrate the algorithm in the following example:

DO 10 i
DO 10 j
10 A(i+1, i+j) = A(i, i+j)

Applying the strong SIV test to the first subscript of
array A derives a dependence distance of (1) for index
i. We can propagate this constraint into the second
subscript to eliminate both occurrences of i, resulting
in the constrained SIV subscript (j — 1,j). We then
apply the strong SIV test to derive a distance of —1 on
loop j. All subscripts have been tested, so the Delta
test is finished. We merge the elements of the con-
straint vector to determine that a dependence exists
with distance vector (1,-1).

Constraint propagation in this example is ezact be-
cause we were able to eliminate both instances of index
i in the constrained subscript. Our empirical study in
Section 6 shows that this is frequently the case for scien-
tific codes. In general the algorithm may only eliminate
one occurrence of an index. This results in improved
precision when testing coupled groups, but is not exact.
If desired, additional precision may be gained by utiliz-
ing the constraint to reduce the range of the remaining
index, as in Fourier-Motzkin Elimination [44].

The constraint propagation algorithm is an incre-
mental adaptation of the A-test heuristic for selecting
linear combinations of subscript expressions. It has also
been extended to efficiently handle constraints from
SIV tests and linearly dependent subscripts [38]. Below
we present some more examples of the Delta test.

Multiple Passes The Delta test algorithm iterates
if MIV subscripts are reduced to SIV subscripts, since
they may produce new constraints. The following loop
nest demonstrates this:



INPUT: MIV subscript with form’
(a1iy + ...+ anin +e, i} +... + ali, + €'y,
and constraint vector C = (61, 62,...,6n)

OUTPUT: constrained ZIV, SIV, or MIV subscript

for each index i with nonzero a or @) do
if 8 = dependence distance (d) then
e—e—apd; ag —0; a, —a, —ax
else if 6, = dependence line (az + By = c) then
if « = 0 then
e—e—ajc/B; ap —0
else if 3 = 0 then
e—e+arc/a; ar —0
else if a = § then
e —e+arc/a; ar —0; ay —aj;+ak
else
{* multiply terms of subscript by a to =}
{* retain integer coeficients in result *}

for each 7 € {a1,...,aq,4a},...,a,,¢,¢'} do
T e—ar
endfor
e—e+arc; ap —0; a}, —ay +arf8
endif

else if §; = dependence point (z,y) then
e —e+arr—ayy
ar —0; a, —0

endif

endfor
Figure 5: Constraint Propagation

DO 10 i
DO 10 j
DO 10 k

10 A(j-i, i+1, j+x) = A(j-i, i, j+k)
In the first pass of the Delta test, the second subscript
is tested, producing a dependence distance of (1) on
the i loop. This constraint can be propagated into the
first subscript, resulting in the subseript (j + 1, j).

Since a new SIV subscript has been created, the algo-
rithm repeats. On the second pass, the new subscript
is tested to produce a distance of (1) on the j loop.
This constraint is then propagated into the third sub-
script to derive the subscript (k — 1,k). The new SIV
subscript causes another pass that discovers a distance
of —1 on the k loop. Since all SIV subscripts have been
tested, the Delta test halts at this point, returning the
distance vector (1,1, —1).

Improved Precision The Delta test may also im-
prove the precision of other dependence tests on any
remaining constrained MIV subscripts.
DO 10 i = 1,100
DO 10 j = 1,100
10 A(i-1, 2i) = A(d, i+j+110)
When applied to each subscript in this example loop,
Banerjee’s inequalities show possible dependence for

both subscripts. The Delta test can improve this
by converting the first subscript into a dependence
distance of (1) and propagating it into the second
subscript to produce the constrained MIV subscript
(2,7 — i+ 110). Banerjee’s inequalities can now detect
independence for the constrained subscript.

DO 10 i
DO 10 j
10 AL, 2j+i) = A(Q, 2j-i+5)

Similarly, in this example loop the GCD test shows in-
teger solutions for both subscripts. However, propagat-
ing the distance constraint (0) for ¢ from the first sub-
script into the second subscript yields the constrained
MIV subscript (2j,2j—2i+5). The GCD test can now
detect independence since the GCD of the coefficients
of all the indices is 2, which does not divide evenly into
the constant term 5.

Distance Vectors The Delta test is particularly use-
ful for analyzing dependences in skewed loops (27, 36,
54], including upper triangular loops skewed by loop
normalization 3, 53]. Consider the following simplified
kernel from the Livermore Loops [41]:

DO 10i=1, N
DO 10 j =1, N
10 A(i,j) = A(i-1,3) + A(4,j-1)
+ A(i+1,3) + A4, j+1)

Since all subscripts are separable, the strong SIV test
can be applied to calculate distance vectors of (1,0)
and (0,1) for the dependences in the loop nest. This
dependence information can be used to skew the inner
loop to expose parallelism, resulting in the following
loop nest:

DO10i=1, N
DO 10 j = 1+i, N+i
10 A(i,j-1i) = A(i-1,j-i) + A(4,j-i-1)

+ A(i+1,j-i) + A(4,j-i+1)
At this point, most dependence tests are unable to cal-
culate distance vectors due to the presence of MIV
subscripts. However, the Delta test can easily prop-
agate distance constraints for i from the first subscript
into the second subscript to derive the distance vectors
(1,1) and (0,1). This dependence information may
then be used to guide further optimizations such as

loop interchange, loop blocking, or scalar replacement
[11, 51, 55].

5.3.2 Restricted DIV Constraints

In the previous section we showed how SIV constraints
may be propagated. Propagating MIV constraints is
expensive in the general case. However, we present a
method to handle an important special case consisting
of coupled RDIV subscripts (discussed in Section 4.4).
For simplicity, we consider array references with the
following form:

DO 10 i

DO 10 j
10 AGiy +c1,d2 +c2) = A(i3 +c3,14 + C4)



When 1,,1, are instances of index i, and i3, 4 are in-
stances of index j, a constraint between i and j is de-
rived from the first subscript that may be propagated
into the second subscript employing the algorithms for
SIV subscripts discussed previously. The only addi-
tional consideration is that bounds for i and j may
differ.

More commonly, 7,14 are instances of index i, and
i2, 13 are instances of index j. This yields the following
set of dependence equations:

i+cy =7 +c¢cs
JHca=1+cy

Each dependence equation may be tested separately
without loss of precision when checking for dependence.
However, both equations must be considered simulta-
neously when determining which distance or direction
vectors are possible.

We can propagate constraints for these coupled
RDIV subscripts by considering instances of index ¢ in
the second reference as i + A;, where A; is the depen-
dence distance between the two occurrences of i. We
do the same for index j to produce the following set of
dependence equations:

i+cyr=j+A4;+c3
Jtea=i+Ai+cy

It is clear that these the first two equations may be
combined to result in the equation:

Ai+Aj=C1+Cz-63—C4

We can then check this dependence equation when test-
ing for a specific distance or direction vector.

Array Transpose We show how RDIV constraints
may be used in this array transpose example:

DO 10 i
DO 10 j
10 A(i, j) = A(§, i) +¢C

Propagating RDIV constraints results in the depen-
dence equation A; + Aj = 0. As a result, distance
vectors must have the form (d, —d), and the only valid
direction vectors are (<,>) and (=, =). The direction
vector (>, <) may be ignored since it is equivalent to
a reversed dependence with direction vector (<, >) [9].
All dependences are thus carried on the outer loop; the
inner loop may be executed in parallel.

5.4 Precision and Complexity

The precision of the Delta test depends on the nature
of the coupled subscripts being tested. The SIV tests
applied in the first phase are exact. The constraint
intersection algorithm is also exact, since we can calcu-
late the intersection of any number of lines in a plane
precisely. The Delta test is thus exact for any number
of coupled SIV subscripts.

In the constraint propagation phase, weak-zero SIV
constraints and dependence points may always be ap-
plied exactly, since they assign values to occurrences of

an index in a subscript. Dependence distances (from
strong SIV subscripts) may also be propagated into
MIV subscripts without loss of precision when the co-
efficients of the corresponding index are equal. Fortu-
nately, this is frequently the case in scientific codes.

When constraints can be propagated exactly and all
subscripts uncoupled by eliminating shared indices, the
Delta test prevents loss of precision due to multiple sub-
scripts. At its conclusion, if the Delta test has tested
all subscripts using ZIV and SIV tests, the answer is ex-
act. If only separable MIV subscripts remain, the Delta
test is limited by the precision of the single subscript
tests applied to each subscript. Research has shown
that the Banerjee-GCD test is usually exact for single
subscripts [6, 30, 37], so the Delta test is also likely to
be exact for these cases.

There are three sources of imprecision for the Delta
test. First, constraint propagation of dependence lines
and distances may be imprecise if an index cannot be
completely eliminated from both references in the tar-
get subscripts. Second, complex iteration spaces such
as triangular loops may impose constraints between
subscripts not utilized by the Delta test.

Finally, the Delta test does not propagate constraints
from general MIV subscripts. As a result, coupled MIV
subscripts may remain at the end of the Delta test.
More general but expensive multiple subscript depen-
dence tests such as the A or Power tests may be used
in these cases [38, 56].

Since each subscript in the coupled group is tested
at most once, the complexity of the Delta test is linear
in the number of subscripts. However, constraints may
be propagated into subscripts multiple times.

6 Empirical Results

In this section we present empirical results to demon-
strate that our dependence tests are applicable for sci-
entific Fortran codes. PFC currently performs the fol-
lowing dependence tests:

o subscript classification and partitioning
o ZIV test (symbolic)

o strong SIV test (symbolic)

o weak SIV test (including special cases)

e MIV tests (GCD, triangular Banerjee)

e Delta test (constraint intersection,
propagation of distance constraints only)

For this study we measured the number times each
dependence test was applied by PFC when processing
four groups of Fortran programs: RiCEPS (Rice Com-
piler Evaluation Program Suite), the Perfect and SPEC
benchmark suites [16, 49], and two math libraries, eis-
pack and linpack.

Explanation Table 1 provides the number of lines
and subroutines for each program, a histogram of the
number of array dimensions for each pair of array ref-
erences tested, as well as the number of separable, cou-
pled, and nonlinear subscripts pairs found.



array pairs tested subscript pairs nonlin
program type lines subrs| 1D 2D 3D 4D | total sep coup | total | subs
RiCEPS
baro Shallow Water Atmosphere 1002 7 34 360 0 0 394 754 0 754 0
euler 1D Unsteady Euler 1200 14 106 294 0 0 400 694 0 694 21
heat2d Heat Conduction System 336 2 352 251 0 0 603 822 32 854 149
linpackd Linear Algebra Benchmark 797 11 52 36 o o 88 T4 50 124 29
mhd2d 2D MHD Equations 927 14 280 196 21 0 497 711 24 735 232
onedim Eigenfunction/Eigenenergies 1016 16 | 297 209 0 0] 506 567 148 715 47
shear 3D Turbulence 915 15 787 0 828 O 1615 2415 856 3271 368
simple 2D Hydrodynamics 1892 18 174 163 (0] 0 337 500 0 500 1
sphot Particle Transport 1143 6 282 77 0 0 359 436 0 436 21
vortex Vortex Simulation 709 20 174 42 0 0 216 258 0 258 0
Perfect
adm Pseudospectral Air Pollution 6105 97 647 160 521 O 1328 2506 24 2530 19
arc2d 2D Fluid Flow Solver 3965 39 168 405 4396 O 4969 | 13172 994 14166 9
bdna Molecular Dynamics of DNA 3980 43 | 1787 269 0 0 2056 2085 240 2325 562
dyfesm Structural Dynamics 7608 78 268 866 7 T 1148 1897 152 2049 0
flo52 Transonic Inviscid Flow 1986 28 54 256 1624 O 1934 5284 154 5438 0
mdg Molecular Dynamics of Water 1238 16 928 5 0 0 933 934 4 938 296
mg3d Depth Migration 2812 28 749 52 133 40 974 1412 0 1412 494
ocean 2D Ocean Simulation 4343 36 439 29 0 0 468 497 0 497 303
qed Quantum Chromodynamics 2327 34 | 7774 171 3 0 7948 | 8115 10 8125 0
spec77 Weather Simulation 3885 65 | 1187 477 54 O 1718 | 2255 48 2303 122
spice Circuit Simulation 18521 128 | 470 51 0 o] 521 546 26 572 50
track Missile Tracking 3735 34 242" 115 0 0 357 464 8 472 7
trfd 2 Electron Integral Transform 485 7 39 64 0 0 103 135 32 167 6
SPEC
doduc Thermohydraulical Modelization | 5334 41 656 895 0 (o] 1551 | 2446 0 2446 11
fpppp 2 Electron Integral Derivative 2718 38 997 108 0 0 1105 | 1213 0 1213 3
matrix300 Matrix Multiplications 439 6 0 8 0 0 8 14 2 16 0
nasa? NASA Ames Fortran Kernels 1105 17 155 106 329 347 | 937 2267 475 2742 24
tomcatv Mesh Generation 195 1 0 207 0 0 207 272 142 414 0
Math Libraries ]
eispack Eigensystems Library 11519 75 | 2995 10295 O (o} 13290 | 10823 12762 | 23585 | 2052
linpack Linear Algebra Library 7427 51 3224 869 0 0 4093 4228 734 4962 290
Table 1: Program Characteristics
yA\% SIV MIV Delta symbolics
strong weak-zero | weak-cross| other used
program A S/ A S I A S I|J]A S I| A S I|] A s I|A s 1 P S 1
baro 386 78 294 294 O [0} 0 0 0O 0 O 0 0 0of O 0o o0 0 0 0 0 17 17
euler 267 162 240 236 3 0O o0 o 4 0 O 0 0 ol 0 0 O (] 0 0o o 114 2
heat2d 450 127 127 127 O 43 43 O 0O 0 0] 0O 0 Of 20 16 O 11 3 0o S5 1 0
linpackd 13 0 57 57 O 0 0o O 0 0 O 0O 0 o 2 2 0 23 16 O 2 10 0
mhd2d 55 28 384 384 1 12 12 O 4 0 O 0 0 0 O O O 12 0 0o O 4 1
onedim 39 11 448 448 O 29 29 4 4 4 0|62 0 032 31 25| A1 5 2 14 97 34
shear 179 72 1327 1327 151 | 346 346 168 4 O 0] 40 O 0|100 32 32233 76 40 O 4 0
simple 112 44 358 357 O 5 5 0 0O 0 O 0 0 0o 2 2 0 o 0 0 0| 373 44
sphot 280 191 134 134 O 0 0 O 0O 0 O 1 0 of 0 0 O 0 V] 0o o 11 0
vortex 42 24 216 216 O 0 0 O 0 0 O 0 0 0l O O O 0 0 0 O 18 O
adm 632 210 | 1341 1327 142 | 17 17 0 |111 22 12| 52 52 Of 13 12 12| O 0 0 O 142 21
arc2d 9501 3628 | 2821 2807 O 111 111 12{ 0 O 0| 38 0 0 O O O [107 38 38 O | 3024 454
bdna 85 21 1393 1249 14 69 69 0 0 0 0 0O O 0| 7 33 0119 28 12 1 454 14
dyfesm 1073 629 514 514 O 19 19 O 0 0 0|3 0 0| 268 14 1 69 32 27 6 50 0o
flo52 2372 1043 | 2599 2599 6 87 87 O 2 2 0|36 8 0/ O 0 0|77 14 14 O 47 10
mdg 464 415 177 177 O 0o 0 O 0 0 O 0 0 0] 0O 0 O 2 2 o o0 20 O
mg3d 362 20 456 456 54 2 2 0 0O O 0| 36 36 0| O 0o 0 o 0 0 0 5 1
ocean 20 2 108 107 8 1 1 0 4 0 O 8 4 0|/ 34 34 O 0 0 0o o 24 1
qcd 7945 6725 | 149 107 O 15 15 O 0 0 O 7 0 o0 1 1 0 5 5 5 O 27 1
spec77 385 62 1650 1631 273 | 24 24 0 |12 12 12| 27 0 0| 27 9 0|24 7 7 O 286 201
spice 258 102 229 210 8 1 1 O 0 0 0|10 O Of 8 8 1 9 9 1 3 46 8
track 230 95 181 181 5 3 3 00 0O 0 0 0 1 0o o0 4 2 2 0 15 O
trfd 6 0 71 71 O 18 18 O 0 0 O 6 0 0| 44 28 O 16 0 [ 12 0
doduc 795 424 | 1638 1627 O 2 2 0 0 0 0 0 0 o 0o O O 0 0 0 0 58 O
fpppp 902 11 232 232 110 0 O O 1 0O 0 O 0|15 15 O 0 0 0 o0 4 0
matrix300f 3 0 12 12 0 0o 0 O 0o 0O 0 0 0f 0O O O 1 1 1 0 0 [s]
nasa? 832 410 947 947 O 184 184 O 6 1 0|12 1 0| 28 26 13|101 11 1 3 503 12
tomcatv 32 13 204 204 O 78 78 1 |26 26 O 0 0 0 0O 0 O} 71 O 0 0 0 0
eispack | 4215 471 | 6732 6228 2 726 726 92 |293 225 0 |1842 O 0]1671 915 407|5698 2645 1179 314 6116 1191
linpack | 2754 227 | 1348 1271 88 15 15 0 /45 6 0| 55 0 o0/118 118 2 |337 99 8 28| 537 95

Table 2: Dependence Test Application/Success/Independence Frequencies




Z1v SIV MIV | Delta [symbolics
category strong | weak-zero| weak-cross| other used
summed over all programs
% of all tests applied 46.32 | 35.29 2.41 0.69 3.03 2.98 | 9.28
% of all successful tests 32.24 | 54.00 3.82 1.18 0.21 2.77 | 6.33 25.42
% of all proven independences 83.58 4.74 1.52 0.13 0 2.70 7.33 11.55
% of applications that were successful 43.95 | 96.64 100.00 57.75 4.45 58.67 | 43.06
% of applications that proved independence | 43.95 3.27 15.33 4.65 0 22.05 | 19.24
averaged over all programs
% of all tests applied 38.24 | 49.40 2.81 0.64 1.43 3.03 | 4.45
% of all successful tests 21.91 67.54 3.87 0.84 0.43 3.31 2.50 14.94
% of all proven independences 70.34 | 16.65 2.06 0.24 0 3.30 | 7.42 14.96
% of applications that were successful 34.74 | 97.70 100.00 40.51 17.53 | 74.61 | 41.75
% of applications that proved independence | 34.74 4.02 3.96 8.52 0 15.49 | 22.04

Table 3: Comparison of Dependence Tests

Table 2 describes the usage and success frequencies
of the dependence tests for each program. For each
test, the table shows the number of times the test was
(A) applied, (S) succeeded in eliminating at least one
direction vector, and (I) proved independence. Note
that the S and I columns are combined for the ZIV test
because they are always identical.

The A, S, and I columns for the Delta test reflect fre-
quencies measured for constraint intersection only. A
separate column (P) indicates the number of times dis-
tance constraints were propagated into MIV subscripts.
Results for dependence tests applied on the constrained
subscripts are credited to the test invoked. The last two
columns in Table 2 show the number of times symbolic
additive constants were manipulated in tests that (S)
succeeded in eliminating direction vectors or (I) proved
independence.

Table 3 summarizes the effectiveness of each depen-
dence test relative to other tests by presenting the per-
centage contribution of each test to the total number of
applications, successes, and independences. Also dis-
played is the absolute effectiveness of each test; i.e.,
the percentage of applications of each test that proved
independence or was successful in eliminating one or
more direction vectors.

In order to limit bias toward either large or small pro-
grams, two groups of results are presented. In the first
group, percentages are calculated after summing results
over all programs. In the second group, percentages are
calculating for each program and then averaged.

Analysis PFC applied dependence tests 74889 times
(88% of all subscript pairs). Subscript pairs were not
tested if they were nonlinear (6%), or if tests on other
subscripts in the same multidimensional array have al-
ready proven independence. Over all array reference
pairs tested, most subscript pairs were ZIV (59%) or
strong SIV (37%). Few of the subscripts tested were
MIV (3%). The ZIV and strong SIV tests combined
for most of the successful tests (86%). The ZIV test
accounted for almost all reference pairs proven inde-
pendent (94%).

Most subscripts were separable. Coupled subscripts
(20% overall) were concentrated in a few programs, no-
tably eispack (75% of all coupled subscripts). Most of

the 8449 coupled groups found were of size two; 19 cou-
pled groups of size three were encountered in nasa?.

The Delta test constraint intersection algorithm
tested 6950 coupled groups exactly (82%). Propagation
of distance constraints was applied in 376 cases (4.4%),
converting MIV subscripts into SIV form in all but 28
cases. The Delta test thus managed to test 7298 cou-
pled groups exactly (86%), using only constraint inter-
section and propagation of dependence distances. We
expect this percentage to improve once we implement
full constraint propagation, including propagation of
RDIV constraints.

Our results show that the SIV and Delta tests pre-
sented in this paper tested most subscripts exactly.
MIV tests such as the Banerjee-GCD test are only
needed for a small fraction of all subscripts (3%),
though they are important for certain programs. Many
of the successful tests required PFC’s ability to manipu-
late symbolic additive constants (23%). This indicates
the importance of symbolic analysis and dependence
testing.

7 Related Work

In this section, we discuss the large body of work in the
field of dependence testing. The suite of tests presented
in this paper are distinguished by the fact that they
combine high precision and efficiency by targeting a
simple yet common subset of all possible subscripts.

7.1 Ini’eger and Linear Programming

Since testing linear subscript functions for dependence
is equivalent to finding simultaneous integer solutions
within loop limits, one approach is to employ integer
programming methods (18, 44]. Linear programming
techniques such as Shostak’s loop residue [46] or Kar-
markar’s method [24] are also applicable, though inte-
ger solutions are not guaranteed. Unfortunately, while
integer and linear programming techniques are suitable
for solving large systems of equations, their high ini-
tialization costs and implementation complexity make
them less desirable for dependence testing.

7.2 Single Subscript Tests

The earliest work on dependence tests concentrated on
deriving distance vectors from strong SIV subscripts



(34, 36, 42]. Cohagan [14] described a test that an-
alyzes general SIV subscripts symbolically. Banerjee
and Wolfe [7, 53] developed the current form of the
Single-Index exact test.

For MIV subscripts, the GCD test may be used to
check unconstrained integer solutions [6, 25]. Baner-
jee’s inequalities provide a useful general-purpose sin-
gle subscript test for constrained real solutions [7]. It
has also been adapted to provide many different types
of dependence information [4, 8, 9, 25, 26, 53]. Re-
search has shown that Banerjee’s inequalities are exact
in many common cases [6, 30, 37], though results have
not yet been extended for direction vectors or complex
iteration spaces.

The I-test developed by Kong et al. integrates the
GCD and Banerjee tests and can usually prove integer
solutions [31]. Gross and Steenkiste propose an efficient
interval analysis method for calculating dependences
for arrays [21]. Unfortunately their method does not
handle coupled subscripts, and is unsuitable for most
loop transformations since distance and direction vec-
tors are not calculated. Lichnewsky and Thomasset
describe symbolic dependence testing in the VATIL vec-
torizer [39]. Haghighat and Polychronopoulos propose
a flow analysis framework to aid symbolic tests [22].

Execution conditions may also be used to refine de-
pendence tests. Wolfe’s All-Equals test checks for loop-
independent dependences invalidated by control flow
within the loop [53]. Lu and Chen'’s subdomain test in-
corporates information about indices from conditionals
within the loop body [40]. Klappholz and Kong have
extended Banerjee’s inequalities to do the same [29].

7.3 Multiple Subscript Tests

Early approaches to impose simultaneity in testing
multidimensional arrays include intersecting direction
vectors from each dimension [53] and linearization
[9, 20]; they proved inaccurate in many cases. True
multiple subscript tests provide precision at the ex-
pense of efficiency by considering all subscripts simul-
taneously. In comparison, the Delta test propagates
constraints incrementally as needed.

Fourier-Motzkin Elimination Many of the earliest
multiple subscript tests utilized Fourier-Motzkin eljm-
ination, a linear programming method based on pair-
wise comparison of linear inequalities. Kuhn [35] and
Triolet et al. [48] represent array accesses in convex
regions that may be intersected using Fourier-Motzkin
elimination. Regions may also be used to summarize
memory accesses for entire segments of the program.
These techniques are flexible but expensive. Triolet
found that using Fourier-Motzkin elimination for de-
pendence testing takes from 22 to 28 times longer than
conventional dependence tests [47].

Constraint-Matrix The Constraint-Matrix test de-
veloped by Wallace is a simplex algorithm modified for
integer programming [50]. Its precision and expense
are difficult to ascertain since it halts after an arbi-
trary number of iterations to avoid cycling. The sim-

plex algorithm has worst case exponential complexity,
but takes only linear time for most linear programming
problems. However, Schrijver states that in combinato-
rial problems where coefficients tend to be 1, 0, or -1,
the simplex algorithm is slow and will cycle for certain
pivot rules [44].

A-test Liet al. present the A-test, a multidimensional
version of Banerjee’s inequalities that checks for simul-
taneous constrained real-valued solutions [38]. The A-
test forms linear combinations of subscripts that elim-
inate one or more instances of indices, then tests the
result using Banerjee’s inequalities. Simultaneous real-
valued solutions exist if and only if Banerjee’s inequal-
ities finds solutions in all the linear combinations gen-
erated.

The A-test can test direction vectors and triangular
loops. Its precision may be enhanced by also applying
the GCD or Single-Index exact tests to the pseudosub-
scripts generated. However, there is no obvious method
to extend the A-test to prove the existence of simulta-
neous integer solutions. The A-test is exact for two
dimensions if unconstrained integer solutions exist and
the coefficients of index variables are all 1, 0 or —1 [37).
However, even with these restrictions it is not exact for
three or more coupled dimensions.

The Delta test may be viewed as a restricted form of
the A-test that trades generality for greater efficiency
and precision.

Multidimensional GCD Banerjee’s multidimen-
sional GCD test checks for simultaneous unconstrained
integer solutions in multidimensional arrays (8]. It ap-
plies Gaussian elimination modified for integers to cre-
ate a compact system where all integer points provide
integer solutions to the original dependence system. It
can also be extended to provide an exact test for dis-
tance vectors [56].

Power Test Wolfe and Tseng’s Power test gains
great precision by applying loop bounds using Fourier-
Motzkin elimination to the dense system resulting from
the multidimensional GCD test [56]. The Power test is
expensive, but is also flexible and well-suited for pro-
viding precise dependence information such as direction
vectors in imperfectly nested loops, loops with complex
bounds, and non-direction vector constraints.

Both the Constraint-Matrix and A-tests require that
a pretest be used to eliminate linearly dependent sub-
scripts. In comparison, the Power and Delta tests
can detect and discard linearly dependent subscripts
as part of their basic algorithm.

7.4 Empirical Studies

Li et al. showed that for coupled subscripts, multiple
subscript tests may detect independence in up to 36%
more cases than subscript-by-subscript tests in libraries
such as eispack [38]. Our results for eispack demon-
strate that the Delta test is as effective in testing cou-
pled subscripts. A comprehensive empirical study of
array subscripts and conventional dependence tests was
performed by Shen et al. [45]. Our study focuses on the



complexity of subscripted references and the effective-
ness of our partition-based dependence tests. We also
provide some data on the efficacy of symbolic depen-
dence tests.

8 Conclusions

This paper presents a strategy for dependence testing
based on the thesis that array references in real codes
have simple subscripts. Our empirical results show that
in practice the dependence tests described in this paper
are extremely precise, fast, and applicable to the vast
majority of all subscripts in scientific codes.

In the few cases where our tests are inapplicable, we
can afford applying more expensive tests since their
cost may be effectively amortized. Experience has
shown that dependence analysis can be highly useful for
both scalar and parallel compilers [2, 11, 33]. We feel
that the dependence tests described in this paper make
dependence analysis more efficient and hence practical
for every compiler.
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