Compiler Support for Unstructured
Scientific Computations

Charles Koelbel
Piyush Mehrorta

CRPC-TR90105
December, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Compiler Support for Unstructured Scientific
Computations

Charles Koelbel
Center for Research in Parallel Computation
Rice University
Houston, TX 77251-1892

Piyush Mehrotra
Institute for Computer Applications in Science and Engineering
Mail Stop 132C
NASA Langley Research Center
Hampton, VA 23665

1 Introduction

Many recent advances in numerical methods have involved irregular data structures
and dynamically varying computation. In many cases these new methods permit
large amounts of data parallelism to be exploited, at least in principle. Actually
achieving substantial parallelism on distributed-memory multiprocessors such as the
Intel iPSC/860 has been difficult, however. Three major impediments to efficient
implementations of unstructured scientific computations on these machines can be
identified.

1. The problem of determining the distribution of program data structures among
Processor memories.

2. The problem of specifying such a data distribution once it is chosen.

3. The problem of specifying the communications required to implement the pro-
gram.

This paper attacks the second two problems by allowing the programmer to make the
specifications at a higher level than is currently possible. To understand how this is
done, however, some background is needed.

The most common methodology for programming distributed-memory machines
is to distribute a portion of the data to each processor. Each processor is then respon-
sible for computing and storing its portion of the data. If a processor does not store

1

all of the data needed for one of its computations, then it must receive the nonlocal
data using communication operations. Clearly, the distribution chosen for the data
will determine the communication needed in this scheme. Since communication is ex-
pensive on these machines, this will then have a great impact on the efficiency of the
program. For irregular algorithms, the pattern of the computation often depends on
run-time data. This implies that the data distribution must be computed at run-time
to achieve good performance; methods of doing this are the focus of active research.
Solving this problem is beyond the scope of this paper. Instead, we will concentrate
on implementing a distribution once it is given. .

Current languages for distributed-memory machines provide very little support for
the programmer to specify or implement a specific data distribution. These message-
passing languages reflect the underlying architecture closely. Each processor executes
a program written in terms of a private address space. These separate address spaces
run directly counter to the idea of a single data structure. Instead of using a global
indexing arrangement for accessing a distributed data structure, a message-passing
program must perform two calculations: finding the processor storing the data and
computing the index relative to that processor’s local address space. Both of these cal-
culations can be nontrivial for run-time data distributions. Forcing the programmer
to perform them explicitly for every reference to a large data structure is intolerable.
Such low-level details should be absorbed into the compiler wherever possible; we will
show how this can be done below.

Because processors have separate address spaces, data cannot be shared directly.
Instead, a processor must receive any nonlocal data it needs by receiving explicit
messages. Similarly, if a processor stores data needed by others it must explicitly
send messages to them. Managing this communication requires low-level, error-prone
code. Additionally, the exact sequence of sends and receives is very sensitive to
the distribution of data. A seemingly minor change to the data distribution can
mean revising every communication statement in the program. These disadvantages
are inherent in message-passing languages because of the explicit communications.
Other classes of languages can avoid these problems, however. Several researchers
[6, 7, 12, 19] have shown that the compiler can often generate the communication
statements automatically. These are another example of a low-level detail that should
be handled by the computer rather than the programmer. We will show how this can
be done below.

The remainder of this paper presents a syntax for specifying data distributions
and shows how the compiler can implement both the distributions and the induced
communications. Section 2 presents the syntax and its semantics. The syntax pre-
sented there can represent distributions of arrays with one or more dimensions and
allows distributions that depend on run-time data. Section 3 shows how the dis-
tributions can be implemented. The implementation given here uses distribution
descriptors similar to the array descriptors used in implementing many programming
languages. Section 4 then explains how communications induced by the distribu-
tion can be generated. This part of the implementation uses the inspector-executor

processors procs : array[0.P—1] with P in l..max_procs;

var block_size : integer;
home : array[0..N—1] of integer dist by [block] on procs;

dist mapl = [i] on procs| (i/blocksize) % P];
' map2 = [i] on procs| homefi] ;

var al, bl : array[0..N—1] of real dist by [mapl];
a2, b2 : array[0..N—1] of real dist by [map2];
¢ : array[0..N—1, 0..M—-1] of real dist by [map1l,¥);
d : array[0..N—1, 0..M-1] of real dist by [*,map2];

distribute al, b1, a2, b2, ¢;
distribute and copy al;

foralli in 0.N—1 do

alfi] := a2(i];
end;

Figure 1: Syntax for distributions and forall statements

paradigm of [6, 4, 10]. Finally, Section 5 gives conclusions, relations to other work,
and directions for future research.

2 Syntax

Figure 1 shows the syntax for data distributions used in this paper. This syntax
is based on the Kali programming language [8], but can easily be adapted to any
imperative language.

The processors declaration on the first line declares the set of processors which
will execute the program. In this case, the processors are logically arranged in a one-
dimensional array; a simple extension to the syntax can declare multi-dimensional
arrays. We assume that any two processors can communicate via messages (although
the communication times may not be the same for all processor pairs). The with
clause selects the actual number of processors to run the program at load time. Once
it is chosen, the number of processors remains constant for the duration of the pro-
gram. This allows a simple parameterization of the program by number of processors.
Choosing this number at load time provides flexibility by allowing the program to
run on different sized machines.

The first var section declares two variables that are used in the distributions.
The scalar block_size is replicated on all processors; this allows it to be used by any
processor without inducing communication. The home array, on the other hand, is

distributed by a block pattern. This means that the array is divided into equal-sized
sections, which are then distributed among the processors in the natural way. Block
partitioning is a static distribution in that it does not depend on run-time data. Al-
though the techniques of Section 3 can be used to implement such distributions, their
simple nature can be exploited in their implementation. We will not consider static
data distributions in detail below. Instead, we will focus on run-time distributions
like those shown in the dist section of Figure 1.

Fundamentally, all data distributions specify a mapping from array elements to
the processors that store them. Our syntax represents this by a function-like notation.
The declaration of mapl, for example, states that element i of an array is stored on
processor |zo—-] mod P. Note that although this distribution depends on run-
time data (block-size), it does not depend on distributed data. This is not the case
with distribution map2, which assigns array element i to processor home[s]. The
distributed array home allows arbitrary mappings to be specified at the price of
possibly inducing some communication in evaluating the mapping. Note that both
distributions are designed in terms of the global array. This is a general property of
our distributions which helps preserve the appearance of a global address space. The
method of declaring distributions shown here only specifies half of the mapping of
the global address space onto a distributed-memory machine. It only specifies which
processor will store each array element; the compiler must generate the translation
of the global indices into offsets into the local section of the array. Additional syntax
can be added to allow the user to specify this translation, but we will not consider
that possibility here.

The next var section shows how distributions can be used. Arrays al and bl are
distributed according to the mapl definition. Similarly, a2 and b2 are distributed
according to map2. The declarations of c and d show one way these distributions can
be extended to multi-dimensional arrays. In those arrays, only a single dimension is
divided among the processors; the other dimension is treated as a unit for purposes of
distribution. Thus, the rows of ¢ are distributed according to mapl. This means that
all elements of row 0 of ¢ will be stored on processor 0, all elements of row block_size
will be stored on processor 1, and so on. Similarly, the columns of array d are
distributed by map2. If one-dimensional distributions are not sufficient, distributions
with two or more dimensions can be declared in the dist section by using a slightly
extended syntax.

Because distribution mapl and map2 depend on variables, they are not well-
defined until those variables have had values assigned. In addition, it is often useful
to change distributions between phases of a program by reassigning those variables.
Unconstrained redistributions, however, would be very difficult to implement effi-
ciently. For these reasons we introduce the distribute statement. An array with a
run-time distribution can only be accessed after it has been named in a distribute
statement. (Static distributions like block do not need a distribute statement.) All
information about the distribution is fixed at that time; later changes to the variables
in the distribution do not affect the distributed arrays. A later distribute state-

ment recomputes the distribution information, thus allowing dynamic behavior. Two
forms of the distribute statement are available: the simple form and the copying
form. The first statement in Figure 1 shows the simple form, in which the contents of
the array are not preserved. This is useful for initializing distributions and changing
the distribution of temporary arrays. The copying form, shown on the next line,
copies the old contents of the array into their new positions. This ensures that live
data are not lost during a redistribution phase.

The final three lines of Figure 1 show the forall loop, the basic parallel con-
struct considered in this paper. Semantically, this is identical to a for loop with no
_ inter-iteration data dependencies. Because there are no data dependencies, the loop
iterations may be performed in any order. For the same reason, all data used in the
loop are available when the loop begins executing. The first fact allows the loop to
be executed in parallel, giving each processor the iterations that assign to its local
array elements. The second fact allows all communication to be performed when the
forall begins execution. The implementation in Section 4 will exploit both of these
observations.

3 Implementation of Distributions

The fundamental idea in the implementation of data distributions is the distribution
descriptor. This descriptor is an extension of the array descriptors used to implement
many imperative languages. While traditional descriptors contain information related
to allocating and addressing an array, the descriptor for distribution A must provide
four functions:

1. Determining where element i of an array is stored. This function will be referred
to as proca(z).

9. Determining whether element i is stored locally. This function will be called
localy(2).

3. If an element is local, determining that element’s offset in the local section of
the array. This function will be called of fsets(2).

4. Iterating through the local elements of an array. This operation will be referred
to as foralls(i), where i is the index variable for the iteration.

In addition, the descriptor will be able to provide the size of the local section of the

array for memory allocation.
To accomplish these tasks, a descriptor will contain the following data:

1. The upper and lower bounds of the array being distributed.
2. A count of the number of arrays referencing this descriptor.

3. Copies of any undistributed variables referenced in the dist declaration.

5

4. A hash table containing offsets for each local array element.
5. A pointer to a thread through the hash table.

6. A block-distributed array of the same size as the distributed array. This array
will store the values of proc(i) for all values of 3.

The size of the descriptor will be of the same order as the array being distributed. For
this reason, we allocate one descriptor for each distinct distribution rather than one
for every array. In most scientific codes, there will be many arrays sharing a single
distribution; these arrays can share a single descriptor, thus amortizing the memory
cost. This sharing can become complex if not all arrays are redistributed at the same
time; we will refer back to this point later. Similarly, a N x M array distributed
by rows uses a descriptor of size O(N) rather than one of size O(NM). Also, the
block-distributed array can be eliminated if no distributed variables are referenced in
the dist declaration. Figure 2 shows C representations for the descriptors for the two
distributions of Figure 1.

Given the above descriptors, we can describe how each of the operations defined
above is computed for single-dimensional arrays. For distributions like mapl that do
not reference distributed variables, procmap1 (i) can be computed almost directly from
the expression in the dist declaration. Because of the semantics of the distribute
statement, the values of all undistributed variables must be taken from the descriptor
fields rather than from the program variables. The function localnmap:(2) is then the
result of comparing procmap(2) with the current processor number. Distributions like
map2 which refer to distributed data compute procmap2(i) by referencing the appro-
priate element of the proc array in their descriptors. This may require a message to be
sent with the appropriate value. Fortunately, these communications can be handled
efficiently by the inspector-executor strategy of Section 4. Localmqpz(i) can always
be computed without communication by checking the hash table for an entry for 1.
Either of fsetmap1(i) OF 0f fSetmapa(i) can be computed by searching the appropriate
hash table. The integer offset from that table can then be added to the base address
of the local array section. Similarly, the algorithms for forallnmap(¢) and forallyapa(?)
are identical: follow the nezt pointers through the hash tables. C macros for these
operations! are given in Figure 3. All of the macros take a distribution descriptor as
a parameter, since there will often be more than one active descriptor.

The extensions of these distributions to two-dimensional arrays are straightfor-
ward. Subscripts of undistributed dimensions are ignored in computing the equiva-
lents of proc(i) and local(i). Instead of using of fset(i) directly, its value is used in
place of the appropriate subscript in the usual row-major (or column-major) subscript
calculation. Finally, iterations over a distributed dimension are handled exactly as
for one-dimensional arrays.

Distribution descriptors are initialized when a distribute statement is executed.
Figure 4 shows the C code to initialize a descriptor for mapl. First, the array bounds

1The code for procmgp2 is omitted because of the complexity of message-passing.

/* HASH.TABLE is an implementation of hash tables */
| * struct hash_entry is a single entry in that table */

" struct hash_entry {

int element;

int offset;

struct hash_entry *chain;
struct hash_entry *next;

b

struct desc_mapl {
int low;
int high;
int ref_count;
int block_size;
HASH_TABLE offset;
struct hash_entry *list;

b

struct desc_map2 {
int low;
int high;
int ref_count;
HASH_TABLE offset;
struct hash_entry *list;

/ * global indez for this entry */
/ * local offset for element */

/ * chain for collisions */

| * list of local array elements */

/ * lower bound */

/ * upper bound */

| * descriptor reference count */
| * copy of block_size variable */
| * hash table of offsets */

| * thread through hash table */

/ * lower bound */

/ * upper bound */

| * descriptor reference count */
/ * hash table of offsets */

| * thread through hash table */

struct desc_block desc_proc; /* descriptor for proc array */

H * .
int *proc;

b

| * processor function tabulated */

Figure 2: Distribution descriptors for Figure 1

#define proc_mapl(desc,i) (((Q) / (desc).block_size) % P)

#define local_map1(desc,i) (proc.mapl((desc),(i)) == MY_PROC)
#define offset_map1(desc,i) (hash_search((desc).offset,(i)) —> offset)
#define forall_ mapl(desc,i) \
{ \
struct hash_entry *p; \
for (p = (desc)list; p != NULL; p = p—>next) { \

i = p—>element;
#define end_forall_ map1l(desc) \

} \
}
#define local_map2(desc,i) (hash_search((desc).offset,(i)) = NULL)
#define offset_map2(desc,i) (hash.sea.rch((desc).oﬂ'set,(i)) —> offset)
#define forall_map2(desc,i) \
\
struct hash_entry *p; \
for (p = (desc)ist; p != NULL; p = p—>next) { \

i = p—>element;
#define end_forall_ map2(desc) \

}

Figure 3: Basic distribution descriptor operations

and any undistributed variables used by the distribution are saved. Then the lists
of elements on each processor are computed in two stages. Each processor takes
responsibility for computing the new home addresses of one block of the array; the
computations are done by brute force calculation using the expression in the dist
declaration. This gives each processor p a bucket-sorted array containing, for every
processor, a list of the elements from p’s block stored there. Thus, the list of all
elements stored on processor p is the concatenation of the lists for p on all processors.
A global communication phase performs these concatenations and routes the lists
to the correct processors. This can be done by Fox’s Crystal router (3] in O(log P)
stages on a hypercube; similar algorithms can be developed for other interconnection
networks. Once a processor has its complete list of elements, it is a simple matter
to traverse the list to build the hash table. Offsets are assigned as the elements are
inserted in the table, starting with 0. The algorithm for initializing map2’s descriptor
is similar, except that the addresses of elements (calculated as home[é] rather than
(i/block _size) mod P) are stored in the proc array field as well as in the element lists.
More complex distribution declarations may require nonlocal elements of distributed
arrays to be fetched from other processors during the computation of the element lists.
These calculations can be optimized using the inspector-executor strategy described
in Section 4.

Once the new descriptors have been calculated, the distribute statement assigns
a pointer to each array to point to its distribution descriptor. Space for the array is
allocated based on the number of entries in the hash table. If the copying form of
distribute is used, values are copied from the old array area to the new one. Note that
this may involve communication, which is again handled by the inspector-executor
strategy. Finally, the reference counts on the distribution descriptors are adjusted,
and unreferenced descriptors can be deallocated. The time for executing the entire
distribute statement is O(max,(n,)) computation steps, where n, is the number of
array elements distributed to processor p. There are also O(log P) communication
steps, as explained above.

4 Implementation of Communication

Section 3 showed the mechanics of defining data distributions and accessing them.
In this section we show how communication statements can be generated for forall
loops. With regular distributions and subscripts of a simple form, the compiler can
completely generate the message traflic for this situation 6,7, 12, 19]. With run-time
distributions, however, the information needed to do this does not exist at compile
time, even when the subscripts are simple. Instead, a run-time strategy must be used.
We present such a strategy here based on the inspector-executor paradigm of [4, 10].
This strategy evaluates a forall loop in two phases. The inspector phase generates
a description of the communication necessary for the loop. For each processor, this
information consists of two lists: a receive list of array elements that must be received
in messages and a send list of elements that must be sent to other processors. The

int i; / * loop indez */

int low, hi; / * block parameters */

int countMAX_PROCS]; / * number of elements found for each proc */
int *elementMAX_PROCS]; | * elements for each proc */

int my_count; / * number of elements for this proc */

int *my_subs; / * elements for this proc */

| * save block_size and bounds for future use */
desc_mapl.blocksize = blocksize;
desc_mapl.low = 0;

desc_mapl.high = N—1;

/ ¥ compute one section of the table (defined by block dist) */
bzero(count, sizeof(int) * max_procs);
bzero(subs, sizeof(int *) * max_procs);
low = MY_PROC*(N/P); | * bounds of local section of blocked array */
hi = low + block — 1;
for (i =low;i <= hiji++) {
/ * insert i into element list for appropriate processor */
element list_add(i, (i/block_size)%P, count, size, subs);

}

/ * global communication to distribute element lists */
global_exchange(count, subs, &my_count, &my_subs);

/ * fill hash table from received addresses */
desc_mapl.offset = allocate_hash(N / P);
desc_mapl.list = NULL;
for (i = 0;i < my_count; i++) {
/* add element to hash table */
hash_add(my.subs[i], desc_mapl.offset);
/ * set head of element list if necessary */
if (desc_mapl.list == NULL)
desc_mapl.list = hash_search(my_subs]i], desc_mapl.offset);

Figure 4: Initializing the distribution descriptor for mapl

10

executor uses this information to perform the communication and in the execution of
the loop body.

Figure 5 shows the inspector generated for the forall loop in Figure 1. In this
example, a2[i] is the only reference that may refer to a nonlocal array element. Pro-
cessor p therefore generates all of the references to a2 that it might make during the
loop. Each reference is checked for locality using localnmapz(2). Note that these checks
can be made without communication. Because the actual location of the referenced
elements cannot be found directly, the elements are recorded on a receive list. A
global operation then inverts this list so that every processor knows which other pro-
cessors need addresses that it stores; the inverted list will be used as a send list. Once
this send list is formed, it is used to send records of element locations to the proces-
sors requesting them, and the original receive list is used to control receipt of those
messages. This is the basic paradigm of inspector and executor operations: form a re-
ceive list, inverting it into a send list, and use the two lists to control message-passing
operations. Once the element location records have been received, they are used to
create another receive list, which is inverted into a new send list. These lists have
precisely the information needed to control sending and receiving the actual data to
execute the forall.

In the case of complex subscripts, the above strategy may not suffice. In particular,
if a subscript contains a distributed variable then the loop may require communication
to form the list of references. In these cases, however, the inspector can be applied
recursively starting with the innermost subscripts to produce the correct results. An
important optimization of the inspector is also possible, based on the observation that
communication patterns are often reused. In these cases, the cost of the inspector
can be amortized by only executing it once and saving the send and receive lists for
later use. This is shown in Figure 5 by the conditional surrounding the inspector.

Figure 6 shows the executor for the same forall. The structure here is very
straightforward. First the communication is performed using the send and receive lists
from the inspector, then the computation is done using both local and communicated
values. The conditional is necessary in the computation phase because nonlocal values
are stored in a temporary array rather than as part of the original array. Storing the
~ values adjacent to the array could eliminate the test, but it is not clear how such a
strategy could be generalized to multi-dimensional arrays. Other optimizations, such
as overlapping communication and computation, are considered in [6]-

5 Conclusions and Future Work

We have shown a simple syntax and implementation for run-time data distributions.
The techniques shown here are handle the irregular and dynamic distributions needed
for unstructured scientific computations, as well as many other applications. Imple-
menting the distributions in the compiler simplifies the task for the programmer by
removing unnecessary details from the user level. It also promotes portable programs,
since the application can be reimplemented in the compiler for a new machine without

11

/¥ SEARCH.TABLE is some data structure supporting search operations */

int i; / * loop indez */

int n; / ¥ number of elements in buffer */

struct { int elem, proc; } bufferfMAX_MSGS]; / * replies from phase 1 */

SEARCH_TABLE recvlist1; / * elements to recv from other procs */
* SEARCH_TABLE recv.list2; / * elements to recv from other procs */

SEARCH_TABLE send_list; /| * elements to send to other procs */

if (need_inspector()) {

/ * phase 1: find nonlocal references and their processors */
create_comm list(recv.listl);
forall_.map1(desc.mapl,i)

/ * put nonlocal references to a2 in recv_listl */

if (local_. map2(desc_map2,i)) {

comm list_add(i, proc_block(desc_map2.desc_proc, i),
recvlistl);
}

end_forall_ mapl(desc_mapl);

/ * global communication to identify elements to send */
global_transpose(recvlistl, &send_list);

/ * send and receive messages with element locations */
send_scatter_procs(send_list, desc_map2.desc_proc, desc_map2.proc);
recv.gather(recv.listl, buffer, &n);

/ * phase 2: set up actual communication channels */

create_comm list(recv_list2);

for (i =0;i < n;i++) {
| * take processor entries from buffer and add to recv_list2 */
comm list_add(buffer(i].elem, buffer(i].proc, recvlist2);

}* global communication to generate send list */

global_transpose(recv.list2, &send.list);

Figure 5: Inspector for forall loop in Figure 1

12

float tmp; / * temporary */
int n2; / * number of elements in buffer */
float buffer2]MAX_MSGS]; / * buffer for received messages */

/ * phase 1: communication */
send.scatter_values(send_.list, desc_map2, a2);
recv_gather(recv.list2, buffer, &n);

/ * phase 2: computation */
forall_ map1(descmapl, i) {
if (local_map2(i))
tmp := a2[offset_map2(i) J;
else
tmp := buffer2[comm _search(recv.list2,i) |;
al[offset_map1(i) | = al[offset_mapl(i)] * tmp;

}

Figure 6: Executor for forall loop in Figure 1

effort from the user. The ability to specify data distribution at a high level will also
encourage research into new data distribution patterns, since it will make programs
more independent of their distributions. All of this will have a very positive effect
on the implementation of state-of-the-art scientific codes on scalable multiprocessing
systems.

Although data partitioning is an area of active research (3, 11, 18, 20], relatively
little research has been done on specifying the resulting distributions. Saltz and his
coworkers [17, 16] have produced a prototype compiler which can specify irregular
distributions. Williams and Glowinski’s DIME programming environment [21] pro-
vides tools for partitioning of irregular meshes. Both groups use strategies similar to
the inspector-executor shown here for generating communication, but the methods of
specifying the distributions differ considerably from each other and from our work.
" A detailed comparison of our work with these two projects would be interesting.
Techniques for automatically implementing regular partitions can be can be found in
(1,2, 4,7, 13, 14, 19, 22]. Of these, only Koelbel and Mehrotra [4], Li and Chen (7],
and Pingali and Rogers [13] explicitly consider run-time generation of messages. The
inspector-executor strategy was introduced independently by Saltz and his coworkers
[9, 15, 10] and Koelbel and Mehrotra [4, 5] in various contexts. Saltz’s hashed-cache
scheme [10, 16] is particularly similar to the methods presented here, but incorpo-
rates the data structures from the inspector directly into the hash table rather than
separating conderns as we do.

Much work remains to be done on run-time distributions. The choice of hash
function to be used was not addressed in Section 3; we are currently evaluating several
possibilities. Likewise, there are several possibilities for the search structure for the

13

send and receive lists. The code generated for the inspector and executor is much
more complex than that produced by more traditional program transformations, and
it is not clear how this complexity will affect code generation. Finally, two extensions
to the scope of this work stand out: distribution of non-numeric data structures
such as trees, and the interaction of data distributions with more complex parallel
constructs such as doacross loops.

Bibliography

References

[1] F. André, J.-L. Pazat, and H. Thomas. PANDORE: A system to manage data
distribution. In International Conference on Supercomputing, pages 380-388,
June 1990.

[2] D. Callahan and K. Kennedy. Compiling programs for distributed-memory mul-
tiprocessors. Journal of Supercomputing, 2:151-169, 1988.

[3] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving
Problems on Concurrent Processors, volume 1. Prentice-Hall, Englewood Cliffs,

NJ, 1986.

[4] C. Koelbel, P. Mehrotra, J. Saltz, and S. Berryman. Parallel loops on distributed
machines. In Proceedings of the 5th Distributed Memory Computing Conference,
page to appear, Charleston, SC, April 9-12 1990.

[5] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data struc-
tures on distributed memory machines. In Proceedings of the 2nd ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, pages
177-186, Seattle, WA, March 14-16 1990.

[6] Charles Koelbel. Compiling Programs for Nonshared Memory Machines. PhD
thesis, Purdue University, West Lafayette, IN, August 1990.

[7] J. Li and M. Chen. Synthesis of explicit communication from shared-memory
program references. Technical Report YALEU/DCS/TR-755, Yale University,

New Haven, CT, May 1990.

[8] P.Mehrotra and J. Van Rosendale. Compiling high level constructs to distributed
memory architectures. In Proceedings of the Fourth Conference on Hypercube
Concurrent Computers and Applications, March 1989.

[9] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and K. Crowley. Princi-
ples of runtime support for parallel processors. In Proceedings of the 1988 ACM
International Conference on Supercomputing, pages 140-152, St. Malo, France,
1988.

14

[10] S. Mirchandaney, J. Saltz, P. Mehrotra, and H. Berryman. A scheme for sup-
porting automatic data migration on multicomputers. ICASE Report 90-33,
Institute for Computer Applications in Science and Engineering, Hampton, VA,
May 1990. to appear in Proceedings of the 5th Distributed Memory Computing
Conference.

[11] D. Reed, L. Adams, and M. Patrick. Stencils and problem partitioning: Their
influence on performance of multiprocessor systems. IEEE Transactions on Com-
puters, C-36(7):845-858, July 1987.

[12] A. Rogers. Compiling for Locality of Reference. PhD thesis, Cornell University,
Ithaca, NY, August 1990.

[13] A. Rogers and K. Pingali. Process decomposition through locality of reference. In
Proceedings of the SIGPLAN ’89 Conference on Programming Language Design
and Implementation, pages 69-80, June 21-23 1989.

[14] M. Rosing, R. W. Schnabel, and R. P. Weaver. The DINO parallel programming
language. Technical Report CU-CS-457-90, University of Colorado, Boulder, CO,
April 1990.

[15] J. Saltz and M. Chen. Automated problem mapping: The crystal runtime sys-
tem. In Proceedings of the Hypercube Microprocessors Conference, Knoxville,
TN, 1986.

[16] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling
and execution of loops on message passing machines. Journal of Parallel and
Distributed Computing, 8:303-312, 1990.

[17] Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessors and runtime com-
pilation. ICASE report 90-59, Institute for Computer Applications in Science
and Engineering, Hampton, VA, 1990.

[18] L. Snyder and D. G. Socha. An algorithm producing balanced partitionings of
data arrays. In Proceedings of the 5th Distributed Memory Computing Confer-
ence, page to appear, Charleston, SC, April 9-12 1990.

[19] P. S. Tseng. A Parallelizing Compiler for Distributed Memory Parallel Comput-
ers. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 1989.

[20] D. Vrsalovic, E. F. Gehrinnger, Z. Z. Segall, and D. P. Siewiorek. The influence of
parallel decomposition strategies on the performance of multiprocessor systems.
In Proceedings of the 12th International Symposium on Computer Architecture,
pages 396-405. ACM SIGARCH, June 1985.

[21] R. D. Williams and R. Glowinski. Distributed irregular finite elements. Technical
Report C3P 715, Caltech Concurrent Computation Program, Pasadena, CA,
February 1989.

15

[22] H. Zima, H. Bast, and M. Gerndt. Parallel Computing, volume 6, chapter Superb:
A Tool for Semi-Automatic MIMD/SIMD Parallelization, pages 1-18. North-
Holland, Amsterdam, 1988.

16

