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Abstract

The ParaScope Editor is a new kind of interactive par-
allel programming tool for developing scientific Fortran
programs. It assists the knowledgeable user by display-
ing the results of sophisticated program analyses and
by providing editing and a set of powerful interactive
transformations. After an edit or parallelism-enhancing
transformation, the ParaScope Editor incrementally up-
dates both the analyses and source quickly. This pa-
per describes the underlying implementation of the
ParaScope Editor, paying particular attention to the
analysis and representation of dependence information
and its reconstruction after changes to the program.

1 Introduction

The ParaScope Editor is a tool designed to help skilled
users interactively transform a sequential Fortran 77
program into a parallel program with explicit paral-
lel constructs, such as those in PCF Fortran [40]. In
a language like PCF Fortran, the principal mechanism
for the introduction of parallelism is the parallel loop,
which specifies that its iterations may be run in parallel
according to any schedule. The fundamental problem
introduced by such languages is the possibility of non-
deterministic execution. This can happen if two differ-
ent iterations of a parallel loop both reference the same
memory location, where at least one of the references
writes to the location. For example, consider converting
the following sequential loop into a parallel loop.

DO i =1, 100
A(i) = A(50) + 1
ENDDO

Because the parallel loop does not order its iterations,
the value of each A(i) will depend on how early it-
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eration 50 executes in the parallel execution schedule.
Hence, the results may differ each time the program is
executed. This kind of anomaly, usually called a data
race, precludes the parallelization of the above loop. In
the literature of compilation for parallel execution, a
potential data race is referred to as a loop-carried de-
pendence [4, 35]. Without explicit synchronization, only
loops with no carried dependences may be safely run in
parallel.

Automatic parallelizers use this principle by con-
structing a dependence graph for the entire program and
then parallelizing every loop that does not carry a de-
pendence. Unfortunately, a parallelizer is often forced
to make conservative assumptions about whether de-
pendences exist because of complex subscripts or the use
of unknown symbolics. As a result, automatic systems
miss many loops that could be parallelized. This weak-
ness has led most researchers to conclude that auto-
matic systems, by themselves, are not powerful enough
to find all of the parallelism in a program.

However, the analysis performed by automatic sys-
tems can be extremely useful to the programmer dur-
ing the parallelization process. The ParaScope Editor
(PED) is based upon this observation. It is designed to
support an interactive parallelization process in which
the user examines a particular loop and its dependences.
To safely parallelize a loop, the user must either deter-
mine that each dependence shown is not valid (because
of some conservative assumption made by the system),
or transform the loop to eliminate valid dependences.
After each transformation, PED reconstructs the depen-
dence graph so that the user may determine the level of
success achieved and apply additional transformations
if desired.

Clearly a tool with this much functionality is bound
to be complex. PED incorporates a complete source ed-
itor and supports dependence analysis, dependence dis-
play, and a large variety of program transformations to
enhance parallelism. Previous work has described the
usage and motivation of the ParaScope Editor (8, 23, 33]
and the ParaScope parallel programming environment
[14). In this paper, we focus on the implementation of
PED’s analysis and transformation features. Particular
attention is paid to the representation of dependences,
the construction of the dependence graph, and how de-
pendences are used and incrementally reconstructed for






each program transformation in an efficient and flexible
manner.

We begin in Section 2 with a brief overview of depen-
dence. Section 3 describes our work model. Section 4
presents PED’s internal representations, and Section 5
examines the analysis strategy and algorithms in PED.
Sections 6 and 7 explain PED’s support for transforma-
tions and details an interesting subset. Section 8 sum-
marizes PED’s editing capabilities. We discuss related
work in Section 9 and conclude.

2 Dependence

At the core of PED is its ability to analyze dependences
in a program. Dependences describe a partial order be-
tween statements that must be maintained to preserve
the meaning of the original sequential program. A de-
pendence between statement S; and Ss, denoted 5,652,
indicates that S;, the source, must be executed before
S, the sink. There are two types of dependence, data
and control dependence, which are described below.

2.1 Data Dependence

A data dependence, S165,, indicates that S; and S3
read or write a common memory location in a way that
requires their execution order to be preserved. There
are four types of data dependence [35]:

True (flow) dependence occurs when S
writes a memory location that S, later reads.

Anti dependence occurs when S; reads a memory
location that S, later writes.

Output dependence occurs when S; writes a
memory location that S, later writes.

Input dependence occurs when S) reads a
memory location that S, later reads.!

2.2 Control Dependence

Intuitively, a control dependence, S16.S2, indicates that
the execution of S) directly determines whether S; will
be executed. The following formal definitions of control
dependence and the postdominance relation are taken
from the literature [22].

Def: z is postdominated by y in Gy, the control flow
graph, if every path from z to sTOP contains y,
where STOP is the exit node of Gy.

Def: Given two statements z, y € Gy, y is control de-
pendent on z if and only if:

1. 3 a non-null path p, from z to y, such that y
postdominates every node between z and y on
p, and

2. y does not postdominate z.

lInput dependences do not restrict statement order.

2.3 Loop-Carried and Loop-Independent
Dependence

Dependences are also characterized as either being loop-
carried or loop-independent [3, 4]. Consider the follow-
ing loop:

DOi=2,n
51 A(i) s ...
52 ... = A(l)
53 ... = A(i-1)
ENDDO

The true dependence 5185, is loop-independent because
it exists regardless of the surrounding loops. Loop-
independent dependences, whether data or control, oc-
cur within a single iteration of the loop and do not in-
hibit a loop from running in parallel. For example, if
S516S, were the only dependence in the loop, this loop
could be run in parallel, because statements executed
on each iteration only affect other statements in the
same iteration and not in any other iterations. How-
ever, loop-independent dependences do affect statement
order within a loop iteration. Interchanging statements
S: and S, violates the loop-independent dependence
and changes the meaning of the program.

By comparison, the true dependence $,6S3 is loop-
carried because the source and sink of the dependence
occur on different iterations of the loop: S3 reads a
memory location that was written to by S; on the previ-
ous iteration. Loop-carried dependences are important
because they inhibit loops from executing in parallel
without synchronization. When there are nested loops,
the level of any carried dependence is the outermost
loop on which it first arises (3, 4].

2.4 Dependence Testing

Determining the existence of data dependence between
array references is more difficult than for scalars, be-
cause the subscript expressions must be considered.
The process of differentiating between two subscripted
references. in a loop nest is called dependence testing. To
illustrate, consider the problem of determining whether
or not there exists a dependence from statement Si to
S. in the following loop nest:

D0 i, =L, U,
DO i3 = Lo, U>
DO i, = Ln,Un
S A(f1(i1,...,‘in),...,fm(il,...,.in)) =...
Sa coo = M91(31, - -y 3n)y -, gm(i, - - - 00))
ENDDO
ENDDO
ENDDO

Let o and 8 be vectors of n integer indices within the
ranges of the upper and lower bounds of the n loops.
There is a dependence from S; to S; if and only if there
exist o and A such that « is lexicographically less than
or equal to B and the following system of dependence
equations is satisfied:

fila) = g(B) Vk, 1<k<m
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Figure 1: PED User Interface

2.5 Distance and Direction Vectors

Distance and direction vectors may be used to char-
acterize data dependences by their access pattern be-
tween loop iterations. If there exists a data dependence
fora = (ay,...,an) and 8 = (By,...,0n), then the dis-
tance vector D = (D,,..., D,) is defined as —a. The
direction vector d = (di,...,d,) of the dependence is
defined by the equation:

< if a; < ﬂ.’
di = = ifa;=p6;
> if a; > B
The elements are always displayed left to right, from

the outermost to the innermost loop in the nest. For
example, consider the following loop nest:

DOi=1,n
DOj=1,m
DOk=1,1
A(i+1, j, k-1) = A(i, j, k) + C
ENDDO
ENDDO
ENDDO

The distance and direction vectors for the true depen-
dence between the definition and use of array A are
(1,0,-1) and (<, =, >), respectively. Since several dif-
ferent values of o and @ may satisfy the dependence
equations, a set of distance and direction vectors may

be needed to completely describe the dependences aris-
ing between a pair of array references.

Direction vectors, introduced by Wolfe [55], are useful
for calculating loop-carried dependences. A dependence
is carried by the outermost loop for which the element

in the direction vector is not an ‘=". Additionally, di-

rection vectors are used to determine the safety and
profitability of loop interchange [4, 55]. Distance vec-
tors, first used by Kuck and Muraoka [38, 43], are more
precise versions of direction vectors that specify the ac-
tual number of loop iterations between two accesses to
the same memory location. They are utilized by trans-
formations to exploit parallelism [9, 39, 54, 56] and the
memory hierarchy [12, 24].

3 Work Model

PED is designed to exploit loop-level parallelism, which
comprises most of the usable parallelism in scientific
codes when synchronization costs are considered [18].
In the work model best supported by PED, the user
first selects a loop for parallelization. PED then dis-
plays all of its carried dependences. The user may sort
or filter the dependences to help discover and delete
dependences that are due to overly conservative depen-
dence analysis. PED also provides a set of intelligent
program transformations that can be used to eliminate
dependences.



PED’s user interface is shown in Figure 1. The pro-
gram pane in the top half of the window displays a
loop from the subroutine newque in SIMPLE; a two
dimensional Lagrangian hydrodynamics program with

. heat diffusion produced by Lawrence Livermore Na-

tional Laboratory. The outer loop is selected, which
causes its header to be italicized. The dependence pane
at the bottom of the window shows dependences carried
by the selected loop. The true dependence on variable
duk is selected, which causes it to be underlined in the
dependence pane. The dependence is also reflected in
the program pane by underlining its source and em-
boldening its sink. Buttons across the top of each pane
invoke various PED features, such as transformations
and program analysis.

4 Internal Representations

This section describes the three major internal represen-
tations used by PED: the abstract syntax tree and its
associated structures, the dependence graph, and loop
information.

4.1 Abstract Syntax Tree

In PED and throughout the ParaScope programming
environment, the program is represented using an ab-
stract syntaz tree (AST). Because the AST is a pub-
lic structure, PED does not change the structure of an
AST node nor use any fields within the AST. How-
ever, PED obviously needs to associate information such
as data and control dependences with elements of the
AST. This is done by attaching to the AST array an
array of the same length, called a side array.

PED uses the side array to hold pointers into a vari-
able sized info array. Elements of the info array hold
pointers to information PED associates with AST nodes
such as level vectors, reference lists, loop information,
and subscript text. They also point to shadow expres-
sions containing the results of symbolic analysis; they
are discussed in Section 5.4. These structures are de-

scribed in full below and illustrated for a sample pro- -

gram in Figure 2.

4.2 Dependence Graph

PED uses a statement dependence graph to represent
control and data dependences in the program. The de-
pendence graph is made up of dependence edges, which
are connected using level vectors and reference lists.
The level vectors provide the means for quickly collect-
ing dependence edges on a statement pertaining to a
specific loop level, and the reference lists provide the
means for finding all the dependences associated with a
particular variable reference.

4.2.1 Dependence Edges

Each data and control dependence in the program
is represented as an explicit edge in the dependence
graph. Dependences between pairs of variable refer-
ences are reference level dependences. Statement level
dependences arise due to input and output statements,
branches out of loops, unanalyzed subroutine calls, and

control dependences. An edge in the dependence graph
is a data structure that describes the following signifi-
cant features of the dependence.

e Type of the dependence: true, anti, output, input,
control, i/o, exit, or call

e Level of the loop carrying the dependence

e AST indices for source/sink statements or refer-
ences

e Pointers to the source/sink level vectors and refer-
ence lists

o Pointer to a hybrid direction/distance vector

o Interchange preventing and interchange sensitive
flags indicating the safety and profitability of loop
interchange

PED uses a hybrid direction/distance vector to store
the results of dependence testing. Each element of the
vector can represent a dependence distance or direction.
Dependence edges are organized for the user interface
using a higher level data abstraction, called the edge list.
The edge list provides the user a configurable method
of filtering, sorting, and selecting dependences (8, 33].

4.2.2 Level Vectors

Dependence edges hold most of the dependence infor-
mation for a program, but level vectors provide the glue
which links them together and to the AST. Every ex-
ecutable statement in a loop nest involved with a de-
pendence has a level vector. A level vector contains en-
tries for each loop nesting level in which the statement
is contained. Every entry points to the list of depen-
dences carried at its level. Level vectors therefore pro-

-vide quick and efficient access to all of the dependences
at a particular loop level for each statement. They are
. used extensively by PED’s loop based transformations

and user interface.

Because of their high frequency and simplicity, PED
treats dependence edges resulting from scalar variables
differently. Dependences between a pair of scalar vari-
able references occur for all commonly nested loops. To
avoid duplicate edges, only a single edge is stored along
with its deepest nesting level. These scalar edges have
a separate entry in the level vector. Queries for depen-
dences carried on level k thus cause two entries in the
level vector to be searched—the entry at level k£ and the
entry for scalar dependences.

4.2.3 Reference Lists

Every variable reference in a loop nest involved in a
dependence has a reference list. A reference list points
to all dependences that have a given reference as the
source or sink. They are useful for transformations such
as scalar expansion and array renaming, as well as for
reference based user queries.
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Figure 2: PED Internal Representations




4.3 Loop Information and Variable Lists

Every loop in the program has a structure known as
loop info that contains the following information.

e AST index for the loop header

[

Level (depth) of the loop in a nest

Pointers to the loop info for the previous
and next loops

[}

Pointers to the shared and private variable lists

Flag for parallelized loops

The shared and private variable lists record the status of
all variables accessed in the loop body. Private variables
are defined and used only within an iteration of the loop.
All other variables are shared.

5 Program Analysis

A major strength of PED is its ability to analyze depen-
dences. PED’s dependence analyzer faces three major
challenges:

Precision Conservative data dependence analysis re-
quires that if a dependence cannot be disproven, it must
be assumed to exist. But if these dependences do not
actually exist, PED may be inhibited from exploiting
the parallelism available in a program. The most im-
portant objective of the dependence analyzer is to min-
imize these false dependences through precise analysis.

Efficiency In order for PED to be truly useful, the
dependence analyzer must provide precise results in a
reasonable amount of time. PED’s dependence analyzer
gains efficiency by utilizing fast algorithms for analyz-
ing common simple cases, holding more powerful but
expensive algorithms in reserve.

Incrementality Historically, dependence analysis
has been performed in batch mode as a single pass
through the entire program. In an interactive tool or
parallelizing compiler, batch reanalysis after each pro-
gram transformation has proven to be unacceptably
slow. PED’s dependence analyzer supports incremen-
tal dependence analysis, a technique to limit reanalysis
which results in significantly faster updates after pro-
gram changes. In general, incremental algorithms must
be both quick and precise. Otherwise, users will prefer
batch analysis. PED achieves efficiency by applying a
tiered set of incremental responses based on the scope of
the program change. PED’s incremental analysis strat-
egy and algorithms are described in Sections 6.1 and
8.1.

5.1 Dependence Analyzer Overview

The architecture of PED’s dependence analyzer is shown
in Figure 3. It consists of four major components: the
dependence driver, scalar dataflow analysis, symbolic
analysis, interprocedural analysis, and dependence test-
ing. The following sections examine each in more detail.

Transformations

(

Dependence Driver

Scalar
Dataflow
Analysis

Interprocedural
Analysis

Dependence
Testing

Symbolic
Analysis

Figure 3: Dependence Analyzer Architecture

5.2 Dependence Analysis Driver

The dependence analysis driver insulates and coordi-
nates the internal phases of the dependence analyzer
from the programming environment. It serves four im-
portant functions: coordination, query management,
change notification, and dependence updates.

First, the driver coordinates each of the internal
phases of the analyzer. This is especially important for
incremental analysis. It also invokes syntax and type
checking after edits to ensure that the input program
is correct before continuing program analysis. Query
management is achieved by hiding the internal repre-
sentation of the dependence graph and enforcing a stan-
dard interface for all queries about dependence informa-
tion. Queries are insulated from the dependence graph
by the driver, allowing lazy dependence updates after a
series of edits.

The driver is also responsible for change notification.
It receives notice of program changes from the editor
and user interface, determines the scope of changes, and
decides on an appropriate update strategy. After up-
dates have been performed, the driver must also notify
other parts of the environment. Finally, the dependence
driver also supports an interface for direct dependence
updates. This interface enables efficient incremental up-
dates of dependence information after structured trans-
formations with known effects.

5.3 Scalar Dataflow Analysis

Scalar dataflow analysis computes dataflow informa-
tion, control dependences, and data dependences for
scalar variables. It also provides a framework for the
later phases of the dependence analyzer. PED first con-
structs the control flow graph and postdominator tree.
It then computes dominance frontiers for each scalar
variable and uses them to build the static single assign-
ment (SSA) graph for each procedure [21]. Edges in the
SSA graph correspond to precise true dependences for
scalar variables.

Next, PED constructs a coarse dependence graph for
array variables in each loop nest by connecting {Defs}
with {Defs U Uses}. These edges are later refined
through dependence testing to construct dependence



edges. The same technique is used to build a set of
coarse anti and output dependences: for scalar variables
in loop nests. More precise anti and output dependences
may be calculated for scalars using techniques similar
to those used in building the SSA graph, but we do not
find it necessary. PED also inserts loop-carried depen-
dences for unanalyzed procedure calls, input and output
- statements, and branches out of loops.

The scalar dataflow analysis phase also calculates in-
formation used to determine whether variables in a loop
may be safely made private. If a scalar variable is not
live outside a specific loop and does not have loop-
carried true dependences, it may be made private to
eliminate loop-carried storage (anti and output) depen-
dences. PED currently assumes that all arrays are live
outside of loops. Transformations such as loop distribu-
tion also need control dependences, which are calculated
from the postdominator tree (see Sections 2.2 and 7.3).

All internal dependence representations and underly-
ing structures are complete in the current implementa-
tion of PED. The only remaining task is to compute
live ranges and dependences for scalars using the SSA
graph.

5.4 Symbolic Analysis

Symbolic analysis is the set of techniques used to de-
termine and compare the values of expressions in pro-
grams. Symbolic analysis improves the precision of in-
terprocedural analysis and dependence testing. When
possible, this phase eliminates or characterizes symbolic
expressions used to determine loop bounds, loop steps,
array subscript expressions, array dimensions, and con-
trol flow.

The SSA graph for scalars, produced by scalar
dataflow analysis, provides the framework for symbolic
analysis. Data flow along SSA edges is analyzed to
deduce constraints and relationships on symbolic ex-
pressions, which may be in turn propagated. Studies
have shown that symbolic analysis is essential for pre-
cise analysis of scientific programs (25, 27, 49]. The
symbolic analyzer performs the following steps.

Constant propagation uses the sparse conditional
constant algorithm to eliminate as many symbolics as
initially feasible [53].

Auxiliary induction variable substitution re-
places auxiliary induction variables by functions of loop
index variables.

Expression folding propagates symbolic expressions
along edges in the SSA graph.

Loop invariant expression detection detects sym-
bolics that may be eliminated by the symbolic expres-
sion simplifier.

Reduction recognition examines the SSA graph to
detect opportunities for using reduction operators.

Unlike automatic parallelization tools, PED does not
make transformations to the program for purposes of
analysis. Accordingly, the results of symbolic analysis
are stored in shadow erpressions, annotations attached

to expressions in the program. If the dependence testing
phase desires the value of a program expression. it uses
a shadow expression if one exists.

Only constant propagation has been implemented in
the current version of PED. We are adding shadow ex-
pressions and other parts of the symbolic analyzer as
part of a larger effort that also encompasses interproce-
dural symbolic analysis.

5.5 Interprocedural Analysis

The presence of procedure calls complicates the pro-
cess of analyzing dependences. Interprocedural anal-
ysis is required so that worst case assumptions need
not be made when calls are encountered. ParaScope
performs conventional interprocedural analysis that dis-
covers constants, aliasing, flow insensitive side effects
such as REF and MoD, and flow sensitive side effects
such as USE and KILL [15, 20]. However, improvements
are limited because arrays are treated as monolithic ob-
jects, making it impossible to determine whether two
references to an array actually access the same memory
location.

To provide more precise analysis, array accesses can
be summarized in terms of regular sections or data ac-
cess descriptors that describe subsections of arrays such
as rows, columns, and rectangles [7, 16, 28]. Local
symbolic analysis and interprocedural constants are re-
quired to build accurate regular sections. Once con-
structed, regular sections may be quickly intersected
during interprocedural analysis and dependence testing
to determine whether dependences exist.

We are integrating existing ParaScope interprocedu-
ral analysis and transformations such as inlining and
cloning into PED [19, 20]. The implementation of regu-
lar sections is also under way.

5.6 Dependence Testing

The dependence testing phase refines the coarse depen-
dence graph for array variables created by scalar anal-
ysis and sharpened by interprocedural analysis. PED
classifies subscripts in a pair of array references accord-
ing to two orthogonal criteria: complezity, which refers
to the number of indices appearing within the subscript;
and separability, which describes whether a given sub-
script interacts with other subscripts for the purpose of
dependence testing.

Using this classification scheme, appropriate depen-
dence tests are selected and applied to each subscript
position in a pair of array references. Dependence edges
are eliminated if dependence between the references can
be disproved. Otherwise, dependence testing character-
izes the dependences with a minimal set of hybrid dis-
tance/direction vectors. This dependence information
is vital for guiding transformations. PED’s dependence
tests are discussed in detail elsewhere [25].

Most dependence tests have been implemented in the
current version of PED; we are in the process of ex-
tending them to handle symbolic expressions, complex
iteration spaces, and regular sections.



5.7 Analysis of Synchronization

In a sophisticated parallel program, the user may wish
to employ complex synchronization. Typically, synchro-
nization constructs are used to ensure that a depen-
dence is satisfied. When synchronization is present, it
is important to eliminate any preserved dependences so
that the user will not need to consider them further.

Establishing that the order specified by certain de-
pendences will always be observed has been shown to
be co-NP-hard, but techniques have been developed
to identify dependences that are satisfied by existing
synchronization under restricted circumstances [17, 52].
The current implementation of PED can determine if
event style synchronization is sufficient to protect a par-
ticular dependence.

5.8 Utilizing External Analysis

To overcome gaps in the current implementation of de-
pendence analysis, PED may import dependence infor-
mation from PFc, the Rice system for automatic vec-
torization and parallelization [4]. PFC’s dependence an-
alyzer is more mature and contains symbolic analysis,
interprocedural regular sections and constants, as well
as control and data dependence analysis. PFC produces
a file of dependence information that PED converts into
its own internal representation. This process is a tem-
porary expedient which will become unnecessary when
dependence analysis in PED is complete.

6 Transformations

PED provides a variety of interactive, structured trans-
formations that enhance or expose parallelism in pro-
grams. These transformations are applied according to
a power steering paradigm: the user specifies the trans-
formation to be made, and the system provides advice
and carries out the mechanical details. Therefore the
user is relieved of the responsibility of making tedious
and error prone program changes.

PED evaluates each transformation invoked according
to three criteria: applicability, safety, and profitability.
A transformation is applicable if it can be mechanically
performed. For example, loop interchange is inapplica-
ble for a single loop. A transformation is safe if it pre-
serves the meaning of the original sequential program.
Some transformations are always safe, others require a
specific dependence pattern. Finally, PED classifies a
transformation as profitable if it can determine that the
transformation directly or indirectly improves the par-
allelism of the resulting program.

To perform a transformation, the user makes a pro-
gram selection and invokes the desired transformation.
If the transformation is inapplicable, PED responds with
a diagnostic message. If the transformation is safe, PED
advises the user as to its profitability. For parameter-
ized transformations, PED may also suggest a parame-
ter value. The user may then apply the transformation.
For example, see loop skewing and unroll and jam in
Sections 7.2 and 7.4.

If the transformation is unsafe or unprofitable, PED

responds with a warning explaining the cause. In these
cases the user may decide to override the system advice
and apply the transformation anyway. For example, if
a user decides to parallelize a loop with loop-carried de-
pendences, PED will warn the user of the dependences
but allow the loop to be made parallel. This override
ability is extremely important in an interactive tool,
since it allows the user to apply knowledge unavailable
to the tool. The program AST and dependence infor-
mation are automatically updated after each transfor-
mation to reflect the transformed source.

PED supports a large set of transformations that have
proven useful for introducing, discovering, and exploit-
ing parallelism. PED also supports transformations for
enhancing the use of the memory hierarchy. These
transformations are described in detail in the literature
[2, 4, 12, 32, 33, 36, 41, 56]. We classify the transfor-
mations in PED as follows.

Reordering Transformations
Loop Distribution Loop Interchange
Loop Skewing Loop Reversal
Statement Interchange Loop Fusion

Dependence Breaking Transformations
Privatization Scalar Expansion
Array Renaming Loop Peeling
Loop Splitting Alignment

Memory Optimizing Transformations
Strip Mining Scalar Replacement
Loop Unrolling Unroll and Jam

Miscellaneous Transformations

Sequential — Parallel  Loop Bounds Adjusting
Statement Addition Statement Deletion

Reordering transformations change the order in which
statements are executed, either within or across loop
iterations. They are safe if all program dependences in
the original program are preserved. Reordering trans-
formations are used to expose or enhance loop-level
parallelism. They are often performed in concert with
other transformations to structure computations in a
way that allows useful parallelism to be introduced.
Dependence breaking transformations are used to
break specific dependences that inhibit parallelism.
They may introduce new storage to eliminate storage-
related anti or output dependences, or convert loop-
carried dependences to loop-independent dependences,
often enabling the safe application of other transfor-
mations. If all the dependences carried on a loop are
eliminated, the loop may then be run in parallel.
Memory optimizing transformations adjust a loop’s
balance between computations and memory accesses to
make better use of the memory hierarchy and functional
pipelines. These transformations have proven to be ex-
tremely effective for both scalar and parallel machines.

6.1 Incremental Analysis

A significant advantage of structured transformations is
that their effects are known in advance. In particular,



few transformations affect global dataflow or symbolic
information. PED can thus perform updates very effi-
ciently. Some transformations may require partial re-
analysis, while others may directly update the existing
dependence graph. Below, we classify safe transforma-
tions based on their PED update algorithms.

None

Statement Interchange, Loop Bounds Adjusting
Move edges

Loop Interchange, Array Renaming
Modify edges

Loop Distribution, Loop Skewing,

Loop Reversal, Alignment, Privatization
Delete edges

Scalar Expansion, Statement Deletion
Add edges

Strip Mining, Scalar Replacement
Redo dependence testing

Loop Peeling, Loop Splitting
Redo dependence analysis for loop nest

Loop Fusion, Loop Unrolling,

Unroll and Jam, Statement Addition

7 Example Transformations

Although many of the algorithms for applying these
transformations have appeared elsewhere, our imple-
mentation gives profitability advice and performs in-
cremental updates of dependence information. Rather
than describe all these phases for each transformation,
we have chosen to examine only a few interesting trans-
formations in detail. We discuss loop interchange, loop
skewing, loop distribution, and unroll and jam. The
purpose, mechanics, and safety of these transformations
are presented, followed by their profitability estimates,
user advice, and incremental dependence update algo-
rithms.

7.1 Loop Interchange

Loop interchange is a key transformation that modifies
the traversal order of the iteration space for the selected
loop nest (4, 55]. It has been used extensively in vector-
izing and parallelizing compilers to adjust the granular-
ity of parallel loops and to expose parallelism [4, 36, 56].
PED interchanges pairs of adjacent loops. Loop permu-
tations may be performed as a series of pairwise in-
terchanges. PED supports interchange of triangular or
skewed loops. It also interchanges hexagonal loops that
result after skewed loops are interchanged.

Safety Loop interchange is safe if it does not reverse
the order of execution of the source and sink of any
dependence. PED determines this by examining the di-
rection vectors for all dependences carried on the outer
loop. If any dependence has a direction vector of the
form (<,>), interchange is unsafe. These dependences
are called interchange preventing. They are precom-
puted and stored as a flag in the dependence edge. Each
dependence edge carried on the outer loop is examined.
If any one of these has the interchange preventing flag
set, PED advises the user that interchange is unsafe.

Profitability PED judges the profitability of loop in-
terchange by calculating which of the loops will be par-
allel after the interchange. A dependence carried on the
outer loop will move inward if it has a direction vector
of the form (<, =). These dependences are called inter-
change sensitive. They are also precomputed and stored
in a flag on each dependence edge. PED examines each
dependence edge on the outer loop to determine where
it will be following interchange. It then checks for de-
pendences carried on the inner loop as well; they move
outward following interchange. Depending on the re-
sult, PED advises the user that neither, one, or both of
the loops will be parallel after interchange.

Update Updates after loop interchange are very
quick. Dependence edges on the interchanged loops are
moved directly to the appropriate loop level based on
their interchange sensitive flags. All the dependences
in the loop nest then have the elements in their di-
rection vector corresponding to the interchanged loops
swapped, e.g., (<,=) becomes (=, <). Finally, the in-
terchange flags are recalculated for dependences in the
loop nest.

7.2 Loop Skewing

Loop skewing is a transformation that changes the
shape of the iteration space to expose parallelism across
a wavefront [31, 39, 43, 56]. It can be applied in con-
junction with loop interchange, strip mining, and loop
reversal to obtain effective loop-level parallelism in a
loop nest [9, 54, 57]. All of these transformations are
supported in PED.

Loop skewing is applied to a pair of perfectly nested
loops that both carry dependences, even after loop in-
terchange. Loop skewing adjusts the iteration space of
these loops by shifting the work per iteration, changing
the shape of the iteration space from a rectangle to a
parallelogram. This is illustrated in Figure 4. Skew-
ing changes dependence distances for the inner loop so
that all dependences are carried on the outer loop af-
ter loop interchange. The inner loop can then be safely
parallelized.

Loop skewing of degree a is performed by adding o
times the outer loop index variable to the upper and
lower bounds of the inner loop, followed by subtracting
the same amount from each occurrence of the inner loop
index variable in the loop body. In the example below,
the second loop nest results when the j loop in the first
loop nest is skewed by degree 1 with respect to loop i.

DO i = 1, 100
DO j = 2, 100
A(i,j) = A(i-1,3) + A(4,j-1)
ENDDO
ENDDO
DO i = 1, 100
DO j = i+2, i+100
A(i,j-i) = A(i-1,j-i) + A(i,j-i-1)
ENDDO
ENDDO
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Figure 4: Effect of Loop Skew on Dependences and Iteration Space

Figure 4 illustrates the iteration space for this example.
For the original loop, dependences with distance vectors
(1,0) and (0,1) prevent either loop from being safely
parallelized. In the skewed loop, the distance vectors for
dependences are transformed to (1, 1) and (0, 1). There
are no longer any dependences within each column of
the iteration space, so parallelism is exposed. However,
to introduce the parallelism on the i loop requires a
loop interchange.

Safety Loop skewing is always safe because it does
not change the order in which array memory locations
are accessed. It only changes the shape of the iteration
space.

Profitability To determine if skewing is profitable,
PED ascertains whether skewing will expose parallelism
that can be made explicit using loop interchange and
suggests the minimum skew amount needed to do so.
This analysis requires that all dependences carried on
the outer loop have precise distance vectors. Skewing is
only profitable if:

1. 3 dependences on the inner loop, and

2. 3 at least one dependence on the outer loop
with a distance vector (d;, d2), where da < 0.

The interchange preventing or interchange sensitive de-
pendences in (2) prevent the application of loop inter-
change to move all dependences to the outer loop. If
they do not exist, at least one loop may already be
safely parallelized, possibly by using loop interchange.
The purpose of loop skewing is to change the distance

vector to (dy,d5), where d5 > 1. In terms of the it- .

eration space, loop skewing is needed to transform de-
pendences that point down or downwards to the left
into dependences that point downwards to the right.
Followed by loop interchange, these dependences will
remain on the outer loop, allowing the inner loop to be
safely parallelized.

To compute the skew degree, we first consider the
effect of loop skewing on each dependence. When skew-
ing the inner loop with respect to the outer loop by an
integer degree a, the original distance vector (d,d2)
becomes (d;,ad; + d3). So for any dependence where
dy < 0, we want a such that ad; + d2 > 1. To find the
minimal skew degree we compute

1 - ds
a—[ d ]

for each dependence, taking the maximum « for all the
dependences; this is suggested as the skew degree.

Update Updates after loop skewing are also very fast.
After skewing by degree a, the incremental update algo-
rithm changes the original distance vectors (di,d2) for
all dependences in the nest to (dy, ad; + d2), and then
updates their interchange flags.

7.3 Loop Distribution

Loop distribution separates independent statements in-
side a single loop into multiple loops with identical
headers [4, 37). It is used to expose partial paral-
lelism by separating statements which may be paral-
lelized from those that must be executed sequentially.
It is a cornerstone of vectorization and parallelization.
In PED the user can specify whether distribution is
for the purpose of vectorization or parallelization. If
the user specifies vectorization, then each statement is
placed in a separate loop when possible. If the user
specifies parallelization, then statements are grouped
together into the fewest loops such that the most state-
ments can be made parallel. The user is presented with
a partition of the statements into new loops, as well as
an indication of which loops are parallelizable. The user
may then apply or reject the distribution partition.

Safety To maintain the meaning of the original loop,
the partition must not put statements that are involved
in recurrences into different loops [32, 37]. Recurrences
are calculated by finding strongly connected regions
in the subgraph composed of loop-independent depen-
dences and dependences carried on the loop to be dis-
tributed. Statements not involved in recurrences may
be placed together or in separate loops, but the order
of the resulting loops must preserve all other data and
control dependences. PED always computes a partition
which meets these criteria.

If there is control flow in the original loop, the par-
tition may cause decisions that occur in one loop to be
used in a later loop. These decisions correspond to loop-
independent control dependences that cross between
partitions. We use Kennedy and M¢Kinley’s method to
insert new arrays, called ezecution variables, that record
these “crossing” decisions [32]. Given a partition, this
algorithm introduces the minimal number of execution
variables necessary to effect the partition, even for loops
with arbitrary control flow.



Profitability Currently PED does not change the or-
der of statements in the loop during partitioning. This
simplification improves the recognizability of the result-
ing program, but may reduce the parallelism uncov-
ered. In particular, statements that fall lexically be-
tween statements in a recurrence will be put into the
. same partition as the recurrence. In addition, when the
source of a dependence lexically follows the sink, these
statements will be placed in the same partition. A more
flexible partitioning algorithm is planned.

When distributing for vectorization, statements not
involved in recurrences are placed in separate loops.
When distributing for parallelization, they are parti-
tioned as follows. A statement is added to the preced-
ing partition only if it does not cause that partition to
be sequentialized. Otherwise it begins a new partition.
Consider distributing the following loop for paralleliza-
tion.

DOi=2,n DOi=2,n
S1 A(L) = ... 51 AQQ) =
So = A(i-1) ENDDO
ENDDO DOi=2,n
S, ... = A(i-1)
ENDDO

This loop contains only the loop-carried true depen-
dence S18S,. Since there are no recurrences, S; and
S» begin in separate partitions. S; is placed in a par-
allel partition, then S, is considered. The addition of
S, to the partition would instantiate the loop-carried
true dependence, causing the partition to be sequential.
Therefore, S, is placed in a separate loop and both loops
may be made parallel.

Update Updates can be performed quickly on the ex-
isting dependence graph after loop distribution. For
each new loop PED also creates new loop info struc-
tures and attaches them to the AST. Data and control
dependences between statements in the same partition
remain unchanged. Data dependences carried on the
distributed loop between statements placed in separate
partitions are converted into loop-independent depen-
dences (as in the above example).

Loop-independent control dependences that cross
partitions are deleted and replaced as follows. First,
loop-independent data dependences are introduced be-
tween the definitions and uses of execution variables
representing the crossing decision. A control depen-
dence is then inserted from the test on the execution
variable to the sink of the original control dependence.
The update algorithm is explained more thoroughly
elsewhere [32].

7.4 Unroll and Jam

Unroll and jam is a transformation that unrolls an outer
loop in a loop nest, then jams (or fuses) the result-
ing inner loops [2, 13]. Unroll and jam can be used
to convert dependences carried by the outer loop into
loop independent dependences or dependences carried
by some inner loop. It brings two accesses to the same
memory location closer together and can significantly

improve performance by enabling reuse of either regis-
ters or cache. When applied in conjunction with scalar
replacement on scientific codes, unroll and jam has re-
sulted in integer factor speedups, even for single pro-
cessors [12]. Unroll and jam may also be applied to
imperfectly nested loops or loops with complex itera-
tion spaces. Figure 5 shows an example iteration space
before and after unroll and jam of degree 1.

Before performing unroll and jam of degree « on a
loop with step o, we may need to use loop splitting to
make the total number of iterations divisible by o + 1
by separating the first few iterations of the loop into a
preloop. We then create « additional copies of the loop
body. All occurrences of the loop index variable in the
i** new loop body must be incremented by oi. The step
of the loop is then increased to o(a + 1).

In the following matrix multiply example, loop i is
unrolled and jammed by one to bring together references
to B(k, j), resulting in the second loop nest. Unroll and
jam may also be performed on loop j to bring together
references to A(i,k).

DO i=1, 100

DO j = 1, 100
€(i,j) = 0.00
DO k = 1, 100
c(i,j) = c(i,j) + A(i,k) = B(k,j)
ENDDO
ENDDO
ENDDO

DO i =1, 100, 2
DO j = 1, 100
c(i,j) =0
C(i+1,j) = 0.
DO k = 1, 100
c(i,j) =
C(i+1,j) =
ENDDO
ENDDO

ENDDO

c(i,j) + A(i,k) =* B(k,j)
c(i+1,j) + A(i+1,k) * B(k,j)

Safety To determine safety, an alternative formula-
tion of unroll and jam is used. Unroll and jam is equiv-
alent to strip mining the outer loop by the unroll degree,
interchanging the strip mined loop to the innermost po-
sition, and then completely unrolling the strip mined
loop. Since strip mining and loop unrolling are always
safe, we only need to determine whether we can safely
interchange the strip mined loop to the innermost posi-
tion.

PED determines this by searching for interchange pre-
venting dependences on the outer loop. Unroll and jam
is unsafe if any dependence carried by the outer loop
has a direction vector of the form (<,>). Even if such
a dependence is found, unroll and jam is still safe if the
unroll degree is less than the distance of the dependence
on the outer loop, since this dependence would remain
carried by the outer loop. PED will either warn the user
that unroll and jam is unsafe, or provide a range of safe
unroll degrees.

.
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Figure 5: Effect of Unroll and Jam on Iteration Space

Unroll and jam of imperfectly nested loops changes

the execution order of the imperfectly nested statements
with respect to the rest of the loop body. Dependences
carried on the unrolled loop with distance less than
or equal to the unroll degree are converted into loop-
independent dependences. If any of these dependences
cross between the imperfectly nested statements and
the statements in the inner loop, they inhibit unroll and
jam. Specifically, the intervening statements cannot be
moved and prevent fusion of the inner loops.
Profitability Balance describes the ratio between
computation and memory access rates [13]. Unroll and
jam is profitable if it brings the balance of a loop closer
to the balance of the underlying machine. PED auto-
matically calculates the optimal unroll and jam degree
for a loop nest, including loops with complex iteration
spaces [12].
Update An algorithm for the incremental update of
the dependence graph after unroll and jam is described
elsewhere [12]. However, we chose a different strat-
egy. Since no global dataflow or symbolic information is
changed by unroll and jam, PED rebuilds the scalar de-
pendence graph for the loop nest and refines it with de-
pendence tests. This update strategy proved much sim-
pler to implement, and does not take noticeably longer
to execute.

7.5 Implementation Status

All of the structured program transformations in this
paper have been implemented in PED, including their
corresponding incremental update algorithms. We are,
as always, in the process of further extending PED’s
transformation capabilities. A major effort is under-
way to incorporate automatic parallelization strategies
within PED in order to provide users with further assis-
tance in the parallelization process [42].

8 Edits

Editing is fundamental for any program development
tool because it is the most flexible means of making pro-
gram changes. The ParaScope Editor therefore provides
advanced editing features. When editing, the user has
complete access to the functionality of the hybrid text
and structure editor underlying PED, including simple

text entry, template-based editing, search and replace
functions, intelligent and customizable view filters, and
automatic syntax and type checking.

Rather than reanalyze immediately after each edit,
PED waits for a reanalyze command from the user.
This avoids analyzing intermediate stages of the pro-
gram that may be illegal or simply uninteresting to the
user. Both transformations and the dependence display
are disabled during an editing session, because they rely
on dependence information that may be invalidated by
the edits. Once the user prompts PED, the dependence
driver invokes syntax and type checking. If errors are
detected, the user is warned. Otherwise reanalysis pro-
ceeds.

8.1 Incremental Analysis

Unfortunately, incremental dependence analysis after
edits is a very difficult problem. As we have already
seen, precise dependence analysis requires utilization of
several different kinds of information. In order to cal-
culate precise dependence information, PED may need
to incrementally update the control flow, control depen-
dence, SSA, and call graphs, as well as recalculate live
range, constant, symbolic, interprocedural, and depen-
dence testing information.

Several algorithms for incremental analysis can be
found in the literature; e.g., dataflow analysis [47, 58],
interprocedural analysis [10, 46], interprocedural recom-
pilation analysis [11], as well as dependence analysis
[45]. However, few of these algorithms have been im-
plemented and evaluated in an interactive environment.
Rather than tackle all these problems at once, we chose
a simple yet practical strategy for the current implemen-
tation of PED. First, the scope of each program change
is evaluated. Incremental analysis is applied only when
it may be profitable, otherwise batch dependence anal-
ysis is invoked. PED will apply incremental dependence
analysis when the following situations are detected:

No update needed Many program edits fall into
this category. It is trivial to determine that changes
to comments or whitespace do not require reanalysis.
Other cases include changes to arithmetic expressions
that do not disturb control flow or symbolic analysis.
For instance, changing the assignment a(i)=b(i) to



a(i)=b(i)+1 does not affect dependence information
one whit.

Delete dependence edges Removal of an array ref-
erence may be handled simply by deleting all edges in-
volving that reference.

~ Add dependence edges Addition of an array refer-
ence may be handled by scanning the loop nest for oc-
currences of the same variable, performing dependence
tests between the new reference and any other refer-
ences, and adding the necessary dependence edges.

Redo dependence testing Changes to loop bounds
or array subscript expressions require dependence test-
ing to be performed on all affected array variables.

Redo local symbolic analysis Some types of pro-
gram changes do not affect the scalar dependence graph,
but may require symbolic analysis to be reapplied.
For instance, changing the assignment j=j+1 to j=j+2,
where j is an auxiliary induction variable, requires re-
doing symbolic analysis and dependence testing.

Redo local dependence analysis Changes such as
the modification of control flow or variables involved in
symbolic analysis require significant updates best han-
dled by redoing dependence analysis. However, the na-
ture of the change may allow the reanalysis to be limited
to the current loop nest or procedure. In these cases,
the entire program does not need to be reanalyzed.

8.2 Implementation Status

Editing is fully supported in PED, but difficulties with
the underlying editor currently require batch depen-
dence analysis to be performed at the end of an edit-
ing session. However, the incremental framework is in
place.

9 Related Work

Several other research groups are also developing ad-
vanced parallel programming tools. PED’s analysis and
transformation capabilities compare favorably to auto-
matic parallelization systems such as Parafrase, PTRAN,
and of course PFc. Our work on interactive paralleliza-
tion bears similarities to SIGMACS, PAT, and SUPERB.

PED has been greatly influenced by the Rice Par-
allel Fortran Converter (Prc), which has focused on
the problem of automatically vectorizing and paralleliz-
ing sequential Fortran [4]. PFc has a mature depen-
dence analyzer which performs data dependence anal-
ysis, control dependence analysis, interprocedural con-
stant propagation [15], interprocedural side effect anal-
ysis of scalars [20], and interprocedural array section
analysis (16, 28]. PED expands on PFC’s analysis and
transformation capabilities and makes them available to
the user in an interactive environment.

Parafrase was the first automatic vectorizing and par-
allelizing compiler [36]. It supports program analysis
and performs a large number of program transforma-
tions to improve parallelism. In Parafrase, program
transformations are structured in phases and are always
applied where applicable. Batch analysis is performed

after each transformation phase to update the depen-
dence information for the entire program. Parafrase-
2 adds scheduling and improved program analysis and
transformations [44]. More advanced interprocedural
and symbolic analysis is planned [27]. Parafrase-2 uses
FAUST as a front end to provide interactive paralleliza-
tion and graphical displays [26].

PTRAN is also an automatic parallelizer with exten-
sive program analysis. It computes the SSA and pro-
gram dependence graphs, and performs constant propa-
gation and interprocedural analysis [22]. PTRAN intro-
duces both task and loop parallelism, but currently the
only other program transformations are variable priva-
tization and loop distribution (1].

SIGMACS, a programmable interactive parallelizer in
the FAUST programming environment, computes and
displays call graphs, process graphs, and a statement
dependence graph [26, 48]. In a process graph each node
represents a task or a process, which is a separate entity
running in parallel. The call and process graphs may
be animated dynamically at run time. SiGMacs also
performs several interactive program transformations,
and is working on automatic updating of dependence
information.

PaT is also an interactive parallelization tool [50]. Its
dependence analysis is restricted to Fortran programs
where only one write occurs to each variable in a loop.
In addition, PAT uses simple dependence tests that do
not calculate distance or direction vectors. Hence, it is
incapable of applying loop level transformations such as
loop interchange and skewing. However, PAT does sup-
port replication and alignment, insertion and deletion of
assignment statements, and loop parallelization. It can
also insert synchronization to protect specific depen-
dences. PaT divides analysis into scalar and dependence
phases, but does not perform symbolic or interprocedu-
ral analysis. The incremental dependence update that
follows transformations is simplified due to its austere
analysis [51].

SUPERB interactively converts sequential programs
into data parallel SPMD programs that can be exe-
cuted on the SUPRENUM distributed memory multipro-
cessor [59]. SUPERB provides a set of interactive pro-
gram transformations, including transformations that
exploit data parallelism. The user specifies a data par-
titioning, then node programs with the necessary send
and receive operations are automatically generated. Al-
gorithms are also described for incremental update of
use-def and def-use chains following structured program
transformations [34].

10 Conclusions

Our experience with the ParaScope Editor has shown
that dependence analysis can be used in an interactive
tool with acceptable efficiency. This efficiency is due
to fast yet precise dependence analysis algorithms, and
a dependence representation that makes it easy to find
dependences and to reconstruct them after a change.
To our knowledge, PED is the first tool to offer gen-



eral editing with dependence reconstruction along with
a substantial collection of useful program transforma-
tions.

PED’s ability to analyze and display dependence in-
formation has made it into a powerful tool for the expe-
rienced parallel programmer. By reviewing the depen-
dences carried by a particular parallel loop, the pro-
grammer can avoid the kinds of simple mistakes that
may later take months to find and correct. In this pa-
per we have shown how to keep the cost of providing
this information low enough to make PED a practical
interactive tool.

The analysis and representation of dependence in the
ParaScope Editor have also proven very useful in the
development of several other advanced tools, including
a compiler [29] and data decomposition tools [5, 6] for
distributed-memory machines, and an on-the-fly access
anomaly detection system for shared-memory machines
(30].
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