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Abstract

We study an acoustic model of the inverse problem of reflection seismology. A
straightforward best-fit formulation of this problem has been used by several investiga-
tors as the basis for numerical solution of this problem, but typically fails when coupled
with local optimization algorithms. We give an explanation for this failure, and suggest
a relaxation of the best-fit formulation which may be more amenable to quasi-Newton
optimization. Our analysis relies on linearization and on a high-frequency (Fourier
Integral) approximation to the scattered field.

1 Introduction

The constant-density linear acoustic model of small amplitude wave motion in a fluid con-
nects the pressure field p(z,t), the sound velocity field v(z), and a body force divergence
(“source”) f(z,t) through the wave equation
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with appropriate side conditions. Regarding the source term f as known, we study the
dependence of p on v, with the aim of understanding the inverse problem, i.e. the inference
of v from a sampling of p at receiver locations. When both sources (i.e. the support of f)
and receivers are separated from the target heterogeneities in v by a hyperplane, it’s natural
to call this inference the reflection inverse problem.

The study of such problems originated in exploration geophysics, and much insight can
be gleaned form the literature of that subject.

It is natural to approach this inverse problem by developing an objective function, the
minimization of which gives an estimate of the unknown coefficient v. In this paper we
study two choices of objective function. The first, a straightforward mean-square data error
measure, has been the most common choice for numerical work, but leads to intractable
computations: the objective function is essentially non-smooth, and non-convex. We explain
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this pathology, and show how enlargement of the model space and addition of suitable con-
straints may lead to a smooth optimization problem, with qualitatively better-conditioned
quadratic approximations and at least local convergence near consistent minima.

The arguments in this paper are for the most part formal, and based on some drastic
approximations. Detailed mathematical treatment and extensive numerical experiments for
the special case of plane-wave source and layered medium (i.e. v depending only on one
coordinate) appear in Santosa and Symes [12], Symes [13], [16] and Symes and Carazzone
[17], [18]. Some further discussion on point sources and general media, as discussed here,
appears in Symes [14] [15]. These latter references include numerical experiments with the
(second) objective functional introduced below.

2 The Model

For the purposes of this paper, the data of the inverse problem is the trace of p on the
hypersurface {z, = 0}, multiplied by a smooth function of compact support. The source
f is of point support in the space variables, and we allow it to move in the plane {z =
(2',Tp) : Tn = 25}t

f(z,t) = F(t)é(z — z,) Tyn = 25 .

Thus p depends on z, as well. We assume that the source is quasi-impulsive, i.e. F(t) =
6(t)+ asmooth perturbation. Finally, we assume that v is constant, v = 0, in the half-space
{z:2, < 2},0< 2z, < 2.

These assumptions violate a number of limitations of sampling and bandwidth important
in the treatment of real-world data, e.g. in reflection seismology, but in our judgement leave
the mathematical heart of the problem intact.

Thus finally
) S[‘D] =P |-‘L’n=0
is the data of the inverse problem. Since our study is modeled on reflection seismology, we
call S the seismogram.

The properties of the map v — S are at present only poorly understood, so we study
instead an approximation, obtained by splitting v = vy + v, into a smooth background
velocity vy and a rough or oscillatory perturbation v.. Using regular first-order perturbation
theory we write

Sng+Sr

where Sy, is the background seismogram, i.e. the trace p |z,=0 With v = v, and S, is the
perturbation due to v,. A great deal of numerical evidence indicates that this approximation
is quite accurate so long as v, is oscillatory. For a theoretical study in the one-dimensional
case see Lewis [7]. If v, is sufficiently smooth, which we assume, then Sj consists of the
direct wave, plus possibly refractions. We limit our attention to reflections here; so we
assume that S, has been subtracted out (a nontrivial step in practice!) and identify S with
Sr.
S, is thus the sampling at the receiver locations of the pressure field perturbation ép,
which solves
1 8%p
v ot
plus appropriate side conditions. Note the appearance of the reflectivity r = v,/vp; in the
sequal we shall use it rather than v, to represent the rough part of the model.
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As is well-known (Cohen and Bleistein (3], Beylkin [1], Rakesh [11]) § can be approxi-
mated rather effectively as an oscillatory integral (Fourier Integral Operator) of the form

S[”b]r(zs; Zr, t)
¥ fx / dEA[v,)(2s, 1, €)'l t0) ()
The notation is chosen to emphasize the following points:

(1) The seismogram is a function of the source parameter z,, the receiver coordinate z,,
and time t;

(2) The amplitude or symbol A and the phase ¢ also depend on a wave vector £ of the same
dimensionality as the space coordinates.

(3) A and ¢ depend further on a point source coordinate z and are convolved in z and ¢
against the source distribution f(z,t,z,).

(4) The seismogram S, the symbol A, and the phase function ¢ depend functionally on vs.
(5) The seismogram S depends linearly on the reflectivity r.

For space dimension n, the symbol A behaves for large |£]| like

Ao(z, E/1€D)IEIT

for a suitable smooth function Ag which is non-zero over a sector in £/|£| determined by the
bicharacteristic geometry (hence by v). The phase function ¢ is positively homogeneous of
degree 1 in £.

3 Least Squares Inversion

With the conventions established so far, we can state a simple version of the least-squares
inversion problem:

Find vy, to minimize

1
JLs [ve, 75 Sdata] = 5///d:c,dm,dt |S[vs] -+ — Sda.ta|2

Here we understand the integral sign to mean integral or sum, as appropriate.

In a typical reflection seismic model in 2D, v, might be represented by a few tens of
parameters, while 7 requires perhaps 105 — 106 parameters for a useful degree of resolution.
Thus the least-squares problem is computationally very large, and efficient minimization
algorithms are required. By far the most efficient numerical optimization techniques are
the descent methods related to Newton’s method — when they work. These iterations take
steps predicted by the linearized model/data relation so rely for their effectiveness on a
close relation between the cost function and its quadratic approximation. Accordingly, we
now examine (somewhat formally) the response of S to perturbations in v and .






From the oscillatory integral expression above the perturbation of S due to a change
dvp in vy is
60,5 = / dE(ibp- A+ 6A)eF

This is an oscillatory integral of the same form as that approximating S, with a different
symbol. In fact 6¢ is also homogeneous of order 1, exactly as is ¢. Therefore the symbol in
the above integral.grows as |£ |""'2 as || — o0, i.e. at a more rapid rate than A. It follows
that for at least some oscillatory r, smooth év;

164, 5] >> |S] .
Taking this reasoning one step further, one sees immediately that
163,51 >> 184,51 ,

that is, that S is very nonlinear in vs.
To appreciate the consequences for the behaviour of the cost function Jrs, we introduce
the factorization

6,5 = SQ1

which follows from the calculus of Fourier integral operators (e.g. Duistermaat [4]). Here
Q1[vs, 6] is a pseudodifferential operator, i.e. an oscillatory integral of the form

Q16(z) = / dee=qy (2, )HE) .

The symbol q; = g¢;[vs,6vs] is of order 1 (i.e. grows like |£| for large |£]|) and depends
smoothly on v, linearly on 6v,. Moreover, @ is essentially skew-adjoint: there is another
pseudodiffereential operator Qo of order zero (i.e. whose symbol go is bounded as || — o)
so that

Q1+ Qf =Qo
where the superscript “T” denotes the transpose, or formal adjoint.

Note in general that for a pseudodifferential operator B with symbol b depending
smoothly on a parameter a:

alu(z) = [ deb(z, €, @) a(E)

the perturbation of B with respect to a is a pseudodifferential operator of the same order,
i.e., whose symbol has the same order of growth as |£| — 0 as does b:

faBlafu(z) = [ debob(z,, ) =alE)

This feature of pseudodifferential operators is due to the fixed nature of the phase: it is
always £ -z, independent of the parameters on which the symbol depends. Note the contrast
with the behaviour of oscillatory integrals such as S, i.e. Fourier integral operators with
phases depending nontrivially on parameters (v in the case of 5).

With the standard notations

W8 = [
el = (¥,9)






(the integration being over appropriate variables), we can write
1 2
Jis (0,7, Sqatal = ) |STws]r = Sqatal

SuJrs = (6u,S[vslr, S[wslr — Sqata)
(S[vb]Ql[vb’ 6%]7‘, S['Ub]r - Sdata>
= (r Q{ST [ - Sdata]) .

(We have dropped arguments as convenient to make the structure of the expressions
clearer). Similarly, the perturbation of Jig with respect to r is given by

8- Jus = (67, ST [Sr = S4atal) -

Differentiating once more, we find the following expressions for the blocks of the Hessian
operator:

82, wJLs =

(r,65,Q7 ST[ST — Sqatal + QT(QTSTS + STSQ1)r)
&2 +JLs =

(6"" Q{STST + STSQIT - Q{STSda,ta,)
82, Js =

(67, 8TS6r) = ||Sé7|) .

Recall that @, is of order 1, hence enhances high-frequency content. Again according to
the calculus of oscillatory integrals, QTQ7 is of order 2, hence enhances high-frequency
components even more strongly. Thus one might well expect that

2
6r,rJLS|

and this is indeed the case for oscillatory r,6r of the same magnitude and smooth vy, évs.
Thus the Hessian is extremely ill-conditioned.

Moreover, the growth rate of Jps as one moves v, away from the minimizer is many
times the overall size of Jrg itself. Therefore the growth cannot be sustained over a large
change in vy, and Jps saturates. Consequently Jrs tends to be very non-convex, with a
very small region of convexity near the global optimum model. See Symes and Carazzone
[17], Figure 4 for an actual picture of Jpg illustrating these features.

The highly non-quadratic nature of Jps explains the great difficulty of recovery of v,
by least-squares inversion reported frequently in the literature (Gauthier et al. [5], Kolb
et al. [9], Mora [8], for example — see also Santosa and Symes [12]). One can say with
confidence that extraction of v, by means of least-squares inversion and local, Newton-type
optimization is impossible, unless the initial estimate if v, is so accurate as to render further
refinement almost pointless.

Random or systematic search has been suggested as an alternative technique (e.g. Cao
et al.. [2]). Such methods may work well when the background velocity may be represented
by a few parameters in a known way. In general, severely parsimonious parameterization
is likely to introduce unjustified bias, and to fail to sample the model space sufficiently to
well-approximate the optimal v,. On the other hand, refined parameterization generates
impossibly large search tasks.

In sum, estimation of v, via the least-squares principle is unlikely to yield useful results
in general, or reliable inversion methods.

VbyVb
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4 The Coherency Method

Our resolution of the difficulty outlined in the preceding paragraphs begins with two obser-
vations:

(i) For fized vy, Jrs is perfectly convex — in fact, quadratic!

(ii) If the set of shot parameter values {z,} reduces to a singleton, e.g. only one point
source record is used, the minimum value of Jr s is essentially independent of v,.

That is, the inversion of a single shot record is feasible, and constrains only r, not v,.
Since this task is practical, it suggests the expedient of viewing r as a function of the shot
parameter z,

r=r(z,z,).

Of course, if §4,¢, is noise free,
Sdata = S['U;]T.

then r(z,z,) = r*(z) is amongst the minimizers of

//dzrdt |S[031r(:,25) = Sqagal-s2s)I’

and has the addition property of coherence, or independence of z,, which we can express as

or _
32:,:0'

Only coherent reflectivity estimates have any ultimate meaning, since there is only one
earth!

The above two conditions can be combined into a single cost functional, for instance:
IS[wslr = Sqatall® + o*l10r/ 9z,

where 7 is now allowed to depend explicitly on z, — with such dependence penalized by
the second term, weighted by a parameter o2.

This functional is quadratic in r, so the minimization with respect to r presents no
difficulties, in principle. On the other hand, as a functional of both v, and r, it is still
quite non-convex, for the same reasons as before. Together these two observations suggest

elimination of r: that is, we define a functional of v, only by
2}

It is a remarkable fact that this functional is smooth — in fact, nearly quadratic — in
its dependence on vy, despite its rather close relation with the least squares functional! We
also conjecture that it is strongly convex for near-consistent data Sj,¢, and proper choice
of 2, over a large subset of background velocity models. We are able to give a proof in the
plane/wave layered medium case [13].

Joum [vs; Sgatal =

1
min 3 {15100+ - Squall +

or
Oz,







Minimization of Joar over a smooth class of background velocities v, is the coherency
optimization problem. Note that for noise-free data, Jops attains the value 0 for vy = vy,
which is clearly its global minimum, and that this minimum is reached by setting r = r*
on the right-hand side. That is, the global minimum is achieved at the correct velocity —
and, implicitly, at the correct reflectivity.

In the remainder of this section, we will outline the reasons for the smoothness of Jcas,
and our reasons for thinking that Joas might be minimized quite efficiently. We give only
the formal skeletons of arguments here; precise statements and proofs will be presented
elsewhere.

Before starting we take care of a few technical details. The first is that the normal
operator

sTs

is a pseudodifferential operator of order n—1 if the source is impulsive, f(z,t) = §(z-z,)é(t),
under some ray-geometric restrictions (no caustics in the incident wavefront). This is an-
other immediate consequence of the FIO calculus (Duistermaat) [4]), and is mentioned
explicitly in Beylkin [1], Rakesh [11] for example. As shown in Percell’s thesis [10], this
conclusion is false when caustics are present in the incident wave-front — a generic occur-
rence in heterogeneous media. It is possible to recover the pseudodifferential nature of ST.§
by modifying the definition of S. Without going into details, we assume that this has been
done. This operator is elliptic, i.e. acts as an invertible Fourier multiplier at high spatial
frequencies, over a conic sector of wave vectors (the “reflection aperture”) determined by the
relative positions of sources and receivers and the ray geometry of the background velocity
field. Outside of the reflection aperture, which varies with location in the subsurface, ST S
suppresses high-frequency components (these correspond to “off-cable” reflections). There-
fore the high-frequency components of r outside the inversion aperture must be constrained
a priori in solving equations involving STS.

To accomplish this goal in a well-scaled way, we first modify the definition of S: we
assume that the source has point-support, and in its time dependence is a low frequency
perturbation of the (25%)-th derivative of §(t): thus

- é(z - z,)t_% , n=2
f(z,t) = const. { 5z — z,)&?t) ' n=3

+ fO(z’t)

(the distribution t;* is defined in Gel’fand and Shilov [6], for example), where f; is a
smooth function. This amounts to assuming that f, while bandlimited below, behaves

as t;% (n = 2) or é(t) (n = 3) across the upper part of the passband of the seismic
signals. Practically, this assumption is realized by preprocessing the data to re-scale it in
the frequency domain.

With this modification, ST S is a pseudodifferential operator of order 2: specifically,

STS r(zy, ) = / dE b(zs, 2, €)= (z,, )

where b ~ bo(z,, z,£/|€])|€)? within the reflection aperture, ~ 0 outside of it, as |£| — oc.
Thus STS is a family of pseudodifferential operators in z, parameterized by z,, of order
2. It is a slight technical headache that such a family of operators is not a pseudodifferen-
tial operator in z and z,; however this is not an essential complication (e.g., Taylor [19],
Appendix) and we shall ignore it here.






We chose a regularizing operator R, pseudodifferential of order 2 in z and depending

parametrically on z,, so that
‘ STS + 3R

is elliptic for each z, as long as A2 > 0. A simple choice is
R=I-V?%,.

This choice is suboptimal, as it also affects the components within the reflection aperture,
but for small A? this is probably of little consequence. It will be important in the sequel to
write R = CTC, with C a pseudodifferential operator of order 1. This is certainly possible
for the simple choice just given with C = (I — V2)3.
Having disposed of these preliminaries we recall that the coherency method functional
Jom is defined by minimizing over r the (regularized) quadratic
}

Our goal (and an important step in the proof that Jops is smooth) is to show that the
derivative 6 Jopr of Jopr with respect to v is of the same size (roughly) as Joys itself. Note
the contrast with the behaviour of the least-squares functional Jrg described in the last
section.

A minimizer of the above quadratic is a solution of the normal equations

or
Oz,

1

Nr = [STS + AR - ¢? 62/31'3]" = STSda.ta :

The operator N is (essentially) an elliptic pseudodifferential operator of order 2 in z, z,.
Standard techniques show that N is invertible, under reasonable restrictions on 7, and that
r depends stably on S, in suitable norms.

Since § = S[vs], the solution of the normal equations also depends on vy: = r[vp, Sqatal
also. The dependence of r on v; is quite erratic — this is another consequence of our analysis
of the least-squares problem in the last section.

With these conventions we can calculate the derivative of Jops with respect to vy:

6Jem = (885-t+8-6r,57— Syata)
+ \%(6r, Rr) + ”2<aiz, or, —a—a.; r)
= (65-7,857— S4ata)
+ (6r, (s’-’s + AR - 025—;) r— ST S4ata)
= (65-7,87 - S4ata) ’
+ (6r, N7 = 578 4,1a) -
Here ér is the (implicit) derivative of r = r[vy, §4,¢,] With respect to v,. This could be

computed by differentiating the normal equations, but fortunately this effort is unnecessary:
because of the normal equations the second term drops out. Thus

6JCM = (651‘, Sr— Sdata) .






Recalling the factorizations
§§=5Q, and R=CTC
we calculate

(6Sr,Sr— Sda,ta) =
) (Q1r, ST(S" - Sda,ta,))
= (Qi7,(\’R — 0% 8%/0zY)r)
(normal equations again!)
= (Q1r,N2CTC + 0%(8/02,)T(8/z,)r)
= \{CQ,r,Cr)+ 0*(8/0z, Q1r, 8/0z,r)
= A{Q.\Cr,Cr) + 0*(Q, Or/0z,, dr/0dz,)
+ A [C,Q1]r,Cr) + 0%([0/0z4, Qi]r,07/0z,) .

Here we have used the (standard) notation for the commutator of two operators:
[A,B]= AB - BA.

The calculus of pseudodifferential operators shows that the commutator of a pair of opera-
tors of orders p and q is an operator of order p + ¢ — 1. That is, both

[C, Q1] and [0/0z,, Q]

are of order 1. On the other hand, recall that @, is essentially skew-adjoint: using the
notations of the last section

(QlCr, C’I‘)

2 (@1 +@D)Cr,Cr)
= ‘;‘ (QoCr,Cr)
where Qg is a pseudodifferential operator order zero. Similarly,
(Qq 0r/dz,,0r/0z,) = % (Qo 0r/0z,,0r/0z,) .
The upshot is the formula
blom = (r, (CTIC, @il + 3C7QuC)
— 6%(0/92,10/0z., Q] + 50/02, Qo 8/02,) )

and the operator in brackets on the right-hand side is of order 2. On the other hand, Joem
itself can be written as

. 1
Jem = 3(n [STS + AR — o® 8*/0a.]r — 257 Sqata) + 5115 Sdatall”
s 1
= §<T,Nr) — (1,57 S gata) + §||STSda.ta||2

the quadratic part of which also involves an operator of order 2. Therefore §Jcm should be
of roughly the same size as Jou, as claimed.






Note the difference with the least-square functional: because the r appearing in the
definition of Joas solves the normal equations, we were able to reduce the order in frequency
of the symbols appearing in §Joas, via symmetry considerations.

Further analysis along these lines shows that the formal Hessian §2Jc s is also given by
a quadratic form in 7 defined by a symmetric pseudodifferential operator of order 2. This
is not, of course, a proof that §2Jc)s is a well-conditioned quadratic form in évs, but it is

certainly a step in that direction.

More discussion, including an outline of the proof that Jopas is smooth and a practical
calculation of its gradient, may be found in Symes [14], which also contains some numerical
investigations of Joas. Examples of the gradient calculation, and an initial attempt at
velocity inversion by optimization of Jca, appear in Symes [15].
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