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Abstract

This paper introduces a data dependence decision algorithm called the Power Test; the Power Test is
a combination of the extended GCD algorithm and the Fourier-Motzkin method to eliminate variables
in a system of inequalities. This is the first test that can generate the information needed for some
advanced transformations, and that can handle complex simultaneous loop limits. This paper briefly
reviews previous work in data dependence decision algorithms, and describes the Power Test. Some
examples which motivated the development of this test are examined, including those which demonstrate
the additional power of the Power Test. Although it may be too expensive for use as a general purpose
dependence test in a compiler, the Power Test has proven useful in an interactive program restructuring
environment.

1 Introduction

Vectorizing and parallelizing compilers are common in the commercial supercomputer and mini-supercomputer
market. These compilers inspect the patterns of data usage in programs, especially array usage in loops,

often representing these patterns as a data dependence graph. With this information, compilers can often

automatically detect parallelism in loops, or report to the user specific reasons why a particular loop cannot

be executed in parallel. Additional performance improvement is attained by using certain program transfor-

mations to take advantage of architectural features, such as improving memory locality to take advantage

of cache memories. In order to determine what restructuring transformations are legal, data dependence

tests are devised to detect those programs or loops whose semantics will be violated by the transformation.

General literature on this subject is widely available [2, 4, 7, 8, 9, 15, 24, 35, 36].

In order to allow the most freedom in applying restructuring transformations, a compiler needs a precise
data dependence test. Much of the theory behind data dependence testing for array references in loops can
be reduced to solving simultaneous diophantine equations. The data dependence problem for array references
can be represented by a set of nested loops surrounding two statements (not necessarily distinct), where each
statement contains a reference to an array:
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Ly: for I, = l; to u; do

La: for I, = ls to us do
Lg: for Iz = lg to ug do
Si: A(fl(h,...,Id),...,f,(Il,...,Id))
Sa: A(gl(Il,...,Id),...,g,(Il,...,Id))
endfor
endfor
endfor

The dependence test should determine whether there are values of the loop indices that lie within their
limits such that the subscript expressions are simultaneously equal; i.e., determine whether there exist integer
values

ilsi2"-'1id and jlvj%”-’jd

such that
I <ip <ug, Ik < je < uk, Yk, and fim(7) = gm(7), Vm

Additional information may be desired if there is a solution, such as the dependence distance in each
dimension (the value of ji —ix for 1 < k < d, if that is constant), or a dependence direction in each dimension
(the sign of the dependence distance). In the general case, there may be d loops in all, but only ¢ of them
enclose both statements; there may be loops L.41 through L; that enclose only statement S; and loops Lj+1
through L4 that enclose only statement S2. In that case, the first ¢ loops are called the common loops, and
the dependence distance or direction information is valid only for the common loops.

A great deal of research has gone into the development of various data dependence decision algorithms,
which vary in generality, precision and complexity. Most decision algorithms (including the Power Test)
require the subscript expressions to be linear combinations of the loop index variables with known constant
coefficients. For most common purposes, a simple test will suffice, applied on one dimension at a time, such
as Banerjee’s Inequalities [8]. For more advanced restructuring transformations, however, more precision is
necessary; the Power Test addresses this need.

The Power Test is a combination of Fourier-Motzkin variable elimination with an extension of Euclid’s
GCD algorithm. Its name is derived from the power and precision of the method, and from the fact that in
the worst case it takes exponential time (in the number of loop index variables). The Power Test finds only
integer solutions, accommodating loop limits that represent triangular, trapezoidal and other convex loop
limits; as we shall see, it is imprecise in some cases when the loop limits or other conditions cannot be handled
exactly. The extended GCD algorithm finds whether a set of linear equations with integer coefficients has
any integer solutions, and gives a way to enumerate all those solutions [20, 7]. Since it is derived from the
extended GCD algorithm, the Power Test solves the dependence equations for all dimensions simultaneously.
It suffers from an worst-case exponential time, so it may not be practical for use as a general dependence
test, but it has advantages in particular cases that arise for advanced loop restructuring transformations, as
explained in the following section.

Any data dependence problem may be formulated as an integer programming problem; this is discussed






briefly in the comparison section. Other uses of Fourier-Motzkin elimination for dependence testing are
described by Kuhn [22] and Triolet et al [29]. The Power Test shares some characteristics of those methods,

and a comparison is also given later.

2 Motivation

The main motivation for the Power Test came during the construction of an interactive program restructuring
. research tool, called TINY. One of the main loop restructuring transformations was loop interchanging, which
is usually defined only for tightly-nested loops (where the outer loop encloses the inner loop, but no additional
statements) [33, 3]. We planned to add the ability to directly interchange non-tightly-nested loops [35]. In
particular, we wanted to be able to generate all 6 versions of the LU decomposition program (factorization
of a general real matrix into the product of lower and upper triangular matrices) through loop restructuring;
the basic KIJ form of LU decomposition is:
for K = 1 to N do
for I = K+1 to N do
Syt A(IK) = ACI,K) / A(X,K)
endfor
for I = K+1 to N do
for J = K+1 to N do
Sa: A(I,3) = A(I,J) - A(K,J)*A(I,K)
endfor
endfor
endfor
To generate the JKI form requires interchanging the I and J loops, then interchanging the non-tightly-nested
K and J loops to get:
for J =1 to N do
for K =1 to J-1 do
for I = K+1 to N do

Ss: A(I,J) = A(I,3) - A(K,J)*A(I,K)
endfor
endfor
for I = J+1 to N do
S ACI,J) = A(I,3) / AQJ,D)
endfor
endfor

Notice where S; must be placed in relation to the inner loop. As explained in earlier work [34, 35], the
data dependence test for interchanging non-tightly-nested loops (unlike simple loop interchanging) is not a
direction vector test. What is needed is a data dependence test which would (1) tell when a data dependence
relation would be violated by interchanging non-tightly-nested loops and (2) tell what the direction vectors (or
distance vectors) would be after interchanging. Commonly used decision algorithms can generate distance
or direction vector information, which determine relative values of the same index variable involved in a

dependence relation. The Power Test can also determine the relative values of different index variables, and






so allows our tool to successfully obtain this form of the program.
An additional motivation was the result of the ability to interchange loops with trapezoidal limits, as in:
for I = 2 to N-1 do
for J = I+2 to I+N-1 do

the interchanged limits of the inner loop involve maxima and minima:
for J = 4 to 2%N-2 do
for I = max(2,J-N+1) to min(N-1,J-2) do

In order to compute dependence relations in the modified loop as precisely as possible, a dependence test
must take advantage of the extra knowledge of the simultaneous constraints of the multiple lower and upper
loop limits. Current dependence tests handle only a single lower and upper limit expression for each loop
index.

For these examples, existing data dependence decision algorithms fall short. While many algorithms
have been extended to produce dependence distance or direction vector information, none will generate the
information necessary for interchanging non-tightly-nested loops, and all consider only a single lower and

upper limit on each loop.

3 Definitions and Terminology

For the purposes of this paper, we are concerned about data dependence between array references in loops;
we assume imperative language loop semantics (as in Fortran, C or Pascal). For instance, in the loop:
for I = 2 to N-2 do

S A(I) = B(I)

Sa: C(I) = A(I-1)

Ss: D(I) = c(I+2)
endfor

the array element assigned to A(i) in iteration I=i of statement S; is fetched by statement S in the next
iteration of the loop. On the other hand, array element C(i+2) fetched by statement Sz is reassigned by
statement S in the second subsequent iteration of the loop. The first case is called a def-use ordering, or a
flow-dependence; for shorthand, we use the normal terminology S; 8 S2. The second case is a use-def ordering,
called anti-dependence, written Sz & S,. There can also be def-deforderings, called output-dependence, which
uses the symbol §° .

In this paper, all loops have an increment (step) of one, to simplify the presentation. Other increments
can be handled in several ways, either by normalizing the loop [4, 10] or by including the increment in
the dependence system. In the same way, all linear induction variables for a loop can be expressed as
linear functions of a single loop index variable. As with most work on dependence testing, we assume this
substitution has been done.

Saying statement S, depends on both statements S; and S3 means that some iteration of Sz depends
on some iteration of S; and some iteration of S3. For loop vectorization, this may be enough information
[4]. For other program transformations, more precise information is useful. We use the notation S2[2] to
mean the instance of S, when the loop variable I = 2. If instance S;[j] depends on instance Si[i], then the






dependence distance is defined to be j —i. In our example above, the dependence distance for S; 6 S- is one,
while the dependence distance is two for S3 § Sp. These definitions would have to be modified if the loop
increment were something other than +1.
In multiple loops, there is an independent distance in each loop. Take the program:
for I, = 1 to N do
for I, = 2 to N-1 do

Si: A(L, L) = B(11,12)
Sq: C(I,I,) = ACL — 1,15)
endfor
endfor

Here there is one data dependence relation, Sy 6 Sz. The distance for the I; loop is one, while the distance
for the I, loop is zero. These distances are usually written as a distance vector; here the distance vector
would be (1,0). Often the dependence relation is subscripted with the distance vector, as in Sy é(1,0) S2-
Frequently the dependence distance is not constant; rather than finding all possible dependence distances,
it may be sufficient to find the signs of all possible distances. In the program:
for I; = 1 to N do

Si: X(I) = A(Ly)
for In =1 to I; —1 do
Sa: c(ly,I3) = X(I2)
endfor
endfor

the value assigned to X (1) in Si[i1] is used in Sa[j1, j2] for every j; such that 7, < ji. Note that there is no
dependence from S;[i;] to S2[j1,j2] when i1 = ji or when #; > j;. Thus, though the dependence distance
varies in magnitude, it is always strictly greater than zero. The sign of the distance is also saved as a vector;
in this case, the dependence relation would be written Sy §(<) Sz, meaning that there is a dependence relation
from some Sj [i1] to some Sy[j1, j2] where iy < j;. When the direction vector consists of all = directions, the
dependence relation is called a loop-independent dependence [4]; otherwise, the dependence relation is said
to be carried by the outermost loop with a positive distance.

In the following sections, bold lower case letters refer to row vectors and bold upper case letters refer to

matrices; all vector and matrix entries are integers. We assume that:
1. There are d loops, with loop index variables numbered from I through I.

2. The array has s dimensions, and the subscript expressions are linear combinations of the loop index
variables with constant integer coefficients, so that the subscript expressions are as below, for 1 < m <

S:

fm(li, ..o Ja) = fmo+ fmahh + fmela+ -+ fm,dla
gm(I1,. .., 1d)

gmo+ Im1li + gma2lo+ -+ gm,ala

For simplicity, when any fm z OF gm, s is not defined by the subscript expressions, we treat that coeffi-

cient as equal to zero (as when ¢ # d, where c is the number of common loops). A subsequent section






will discuss how to deal with unknown variables in the subscript expressions. Thus, each dimension

will generate one dependence equation:
fm1i1 — gm,1j1 + fm,212 — gm2d2 + -+ - + fm,dld — gm,dJd = gm0 — fm,0
or, after renaming (and eliminating terms with zero coefficients):
am1h1 + amaha+ -+ amnhn = cm

where n < 2d is the total number of index variables involved, and where h is a renaming of the index

variables, from outer loop to inner loop.

3. The lower and upper loop limits are also linear combinations of outer loop index variables, with constant
coefficients, so that:
hi lk,o+ leihy + e 2ho + -+ -+ L k—1hi-1
hr < uko+urrhy + ug2ho+ -4 ukk-1hr-1

v

The set of dependence equations with the inequalities induced by the lower and upper limits together comprise

the dependence system.

4 Review of the Extended GCD Algorithm

In Knuth [20], the ideas behind Euclid’s GCD algorithm are extended to find a general integer solution to a
set of linear equations with integer coefficients; Banerjee (7] describes a matrix formulation of this algorithm
to attack the data dependence problem. Since the Power Test begins with the extended GCD algorithm, it
is briefly reviewed here. The extended GCD algorithm starts by filling an n x s coefficient matrix A with
the coefficients of the subscript expressions. If there are linearly dependent dependence equations, the GCD
algorithm will find and eliminate the redundant equations.

a1 az
a2 G232
A = a3 az3
a1,4 Q24

The goal is to discover whether there is an integer vector h that solves all dependence equations simul-
taneously, or, in matrix form, that solves the matrix equation hA = c, (where ¢ has s elements, one for
each dimension). The algorithm initializes an n x s matrix D with the elements of A, and an n x n matrix
U with the identity matrix. These two matrices are stored in one combined n x (n + s) matrix (U | D).
By a series of elementary integer row operations (essentially equivalent to Gaussian Elimination adapted for
integers) the D matrix is reduced to upper triangular form. This means that column k of D will have zero
elements in rows k + 1 through n (for 1 < k < n):

diy di2 digs
D - 0 dz2 da3
=1 0o 0 dsa

0 0 0






During this phase, if a diagonal element is found to be identically zero, then that column (equation) must be a
linear combination of previous columns (equations), and is eliminated from further consideration (effectively
reducing s by one). Applying the same elementary integer row operations to the identity matrix produces a
matrix U which is unimodular (det(U) = £1) and that satisfies the equation UA = D.

If there is an integer solution t such that tD = c,then h=tUisa solution to the dependence equations
hA = c (as shown in [7]). After finding D and U, the test finds values for t; through ¢, by solving tD =c
using a simple back-substitution algorithm.

Ezample. Take the program:

for I, = 1 to 3 do
for I = 1 to 3 do
X(N++1,1+1) = ...
...= X(I1+I5, 1)
endfor

endfor
The dependence equations to be solved are:

W4ia+1l = j1i+j2 ~ G1—ji+i2—j2 = -1
ip+1 ]

J2 ~ i2—j2 = -1

The dependence matrix hA = c is:

1 0
e . . -1 0
i1, 71, 12, = (-1,-1
(41, 41, %2, J2) 11 ( )
-1 -1

The extended GCD algorithm augments A with the identity matrix to get (U | D):

1000/ 1 0
0100|-1 0

(U|D) =
0010 1 1
000 1[-1 -1

(U comprises the first four columns, D the final two.) The algorithm performs elementary row operations
to reduce D to an upper triangular matrix:

000 1|-1 -1
010 -1| 0 1
(U|D) =
110 0f 0 0
001 1| 0 0

The reader can verify that UA = D. Now solve tD =c,

-1 -1
0 1
t1,t2,13,1t = (-1,-1
(t1,t2,t3,14) 0 0 ( )
0 0



-



Because D is an upper triangular matrix, t3 and ¢4 do not figure into the computation. The first equation
is —t; = —1 or t; = 1. The second equation is —t; +ta = —1 or t = 0. Since there is a feasible solution,

the extended GCD algorithm stops here and assumes dependence.

5 TUses of the Extended GCD Solution

The extended GCD algorithm, like the single-dimension GCD test, tells whether there are any integer
solutions to the dependence equations, ignoring loop limits. It also gives formulae that can be used to
specify the index variables hy, ha, ..., hy In terms of the “free” variables t,41, ts4+2, ..., tn, derived from
the matrix product h = tU. The first use that we make of the extended GCD solution is to find constant
dependence distances by subtracting corresponding equations. That is, the dependence distance for loop
level k£ (1 < k < ¢) is found by subtracting the equations for iz and ji. Suppose that ix = hox-1, and
Jr = hag; the two equations are subtracted by looking at:

tU, 2k—1 — tUs 2k

(where U,z is column z of the matrix U). If the dependence distance is fixed, this will have non-zero
coefficients only for ¢, through t,, which were previously solved. If there are non-zero coefficients for any
other t,, where v > s, the dependence distance is not constant; equivalently, if Us41:n,2k—1 — Usg1:n 2k 18
the zero vector, the dependence distance is constant, and is found from t1:5(Urs,2k-1 — Urs,28)-

This sometimes allows a dependence distance vector to be constructed from the U matrix and the
solutions to ti,...,t,. The dependence direction vector can be constructed from the signs of the distance
vector. Of course, if the dependence distance for any loop exceeds the maximum trip count (number of
iterations) of that loop, the references are independent [4]. Using the extended GCD algorithm is more
precise than linearizing the array references and using a single-equation GCD test [8, 9].

Ezample. We continue the example from the previous section. After solving for ¢; and t2, the original
dependence matrix equation was hA = c; the extended GCD algorithm found that there are integer solutions
t such that tD = c. Since UA = D, we have tUA = ¢, which means that tU = h. We use this to find
equations for the index variables that solve the dependence matrix equation in terms of the free variables by

multiplying tU:
000 1
010 -1
hi,ha, ha, hs) = (i1,71,92,32) = (t1,%2,13,¢
(h1, ha, h3, hs) (31,41, %2, J2) (t1,t2,13,14) 110 0
001 1

This gives the equations:

i, = 13

1 = ta+ts

i = 14

j2 = ti—ta+is

The dependence distance vector is computed as (j1 = 41, j2 — i2), which in this case is: (t2,t1 — t2). Since

these are already solved quantities, the dependence distance can be computed to be (0,1).






6 The Power Test

The method from the previous section will find constant dependence distances, but does not consider all the
constraints on the dependence system, such as loop limits. The Power Test continues from this point. Loop
limits, direction vector information or non-direction vector relations comprise a set of linear inequalities or
constraints on the set of free variables. Fourier-Motzkin variable elimination [11, 12], modified to find integer
solutions, is used to test for an empty solution space.

The Power Test constructs a list of upper and lower bounds on each free variable ¢,41 through ¢,. For a
free variable t;, each lower and upper bound will be a linear combination of ts41, ts+2, .-y tk—1. These give
the boundaries to the solution space of the dependence equation; if the solution space is non-empty, then
the dependence equation has solutions that satisfy all the conditions. For instance, each lower bound for t;
will be of the form:

Wbpte > lbg 4+ bgprtsy + -+ lbpoatr— (1)

with Ib; > 0. Since we want only the integer solutions, we can take the ceiling of lower bounds (or the floor

of upper bounds), as suggested by Kuhn [22]:

te > [(Ibo + lbypatsqs + - - - + Ibg_1tr—1)/1be]

These bounds are derived from the constraints on the index variables, such as the loop limits. Each index
variable h,, is defined by the extended GCD algorithm as some linear combination of the free variables. In
addition, the upper and lower limits of each index variable are themselves linear combinations of outer loop
index variables. Thus, the constraint h,, > I can be algebraically reduced to an inequality constraint on
one of the free variables, of the form of (1). For instance, if the lower limit on index variable A, is 1, we have
the inequality A, > 1. From this we replace hm by its equivalent in terms of the free variables: tU,,m > 1.
This inequality generates a bound for the highest numbered free variable which has a non-zero coefficient.
It will correspond to a lower bound if that non-zero coefficient is positive, or a upper bound if the coefficient
is negative.

The ceiling or floor operators are a source of precision if they are used to advantage; in the lower bound
above, if Ib; divides all of 1b,4; through lbx_; exactly, then the bound is simplified to:

t > [lbo'l Ibs 41 Ibg_y

T + T):"‘ts+1 + .-+ Wtk-l

where all the divisions, including [Ibo/lbx] are computed by the compiler. This gives a precise integer bound.
If the divisions are not exact, then the ceiling or floor operators will be a source of imprecision, since the
Power Test will ignore them to remain in the realm of integer computation. The method used to handle
inexact division, equivalent to LP-relaxation, essentially solves the linear programming problem rather than
the integer programming problem by enlarging the solution space to potentially include some points near
the boundaries. In particular, this method may include some points in an otherwise empty solution space.
A slightly more general method to find a more precise bound would be to find the GCD of lbs41, lbs42, .- -,
Ibi—, and lb, (let g be the name of this GCD); then make the following substitutions:

Iy = [lbo/g]
. = Ib/g, Vs+1<r<k-1
W, = lb/g






Ezample. Take the program:
for I; = 1 to 100 do
for I, = I;+1 to 100 do
X(h,I) = ...
v = X, Ih)
endfor

endfor
The dependence matrix equation hA = c is:

1 0
C 0 -1
(217.]1)12)]2) 0 1 = (010)
-1 0

The extended GCD algorithm finishes with the matrix:

10001 O
01 0 0j0 -1
(U|D) =
100 110 O
01100 O
Solving tD = c we get t; = 0,t2 = 0. From these solutions and h = tU we get:

i, = 13
hi = 14

iz = t4

j2 = i3

The dependence distance is not constant, since (j — i1, j2 — i2) is a function of the remaining free variables.

From the lower limit for I;, we have the inequality i; > 1; since #; = t3, we derive t3 > 1. Likewise,
from j; > 1 we derivets4 > 1. From the lower limit for I, we have iz > 4, +1 and j2 > ji +1 from which we
derivet4 > ts+1and ts > t4+ 1. Note that we will adjust this last inequality to create an upper bound
for t4: t4 < ts— 1. After adding the inequalities for the upper limit expressions, we have the following
lower and upper bounds for each free variable:

1 i3 100

1 <ty < 100
ta+1 t3—1

Given a list of lower and upper bounds for each free variable, the Power Test visits each free variable

IA
IA

(from t,, down to ¢,41) comparing each lower bound to each upper bound. Each comparison will be of the
form:
(Ibo + Ibyty + -+ -+ Ibp_1tx—1) /e < te < (ubo+ubity +-- -+ ubk—_1te—1)/ubs

from which we derive:

(Ibgubo — ubilbo) + (Ibyuby — ubglby)ty + - -+ (Ibpube_1 — ubklbr_1)tx—1 2 0

10



-



We assume that the floor and ceiling operators have already been handled as discussed above, if possible
reducing the magnitude of lby and ubi to one. If Ibr and uby are both one, there is no loss of precision
here; if either is greater than one, there is a potential loss of precision, which may result in finding a false
solution. If any of the coefficients are non-zero, this will derive another lower or upper limit on another

lower-numbered free variable. If all the coefficients are zero, then we have the simple inequality:
1bubg — ubglbg > 0

If this inequality is not satisfied (if the left hand side is in fact negative), then there is no solution to the
dependence system, and thus no dependence.
Ezample. In the previous example, when we compare each lower bound to each upper bound for 4, we
eventually compare
ta3+1 <ty < t3-—1

from which we derive the inequality: ¢34+ 1 < t3—1, or 1 < —1, which is clearly inconsistent; thus, this

dependence system has no solution, and the two references are independent.

6.1 Direction Vectors

The Power Test will also test for particular direction vectors. Each direction vector element being tested
corresponds simply to another inequality which derives a lower or upper bound on one of the free variables.
Suppose for instance we are testing for a (<) in position k of the direction vector, and that iy = har_,
and jr = har. The (<) direction means we want to test for dependence when i < ji, or hag—1 < hog, or
hor — har—1 > 1. We then replace the index variables by their formula in terms of the free variables:

tU 2k —tUs0k-1 21

This will again derive either a lower or upper bound on one of the free variables, or will produce a simple
constant inequality which is tested for consistency.
Ezample. In the following program:
for I; = 1 to N do
for I = I;+1 to N do
ACL) = A(IR)

endfor
endfor
The dependence equation is #; — j» = 0, so the dependence matrix equation hA = c is:
1
C . 0
(11’.71’ 12,]2) 0 = (0)
-1
The extended GCD algorithm produces:
1 00 0]1
100 1}0
(UID) =
01 00]0
0 01 040



"



Solving tD = c gives t; = 0, so that multiplying out h = tU gives:

11 = 19
h = t3
ip, = 4
2 = t2

From the loop limits we derive the lower and upper bounds on the free variables. For instance, from i3 > #3+1
we get t4 > t2 + 1, while j2 > ji + 1 derives t2 > {3+ 1, or equivalently, t3 < t — 1. In this way we find the

following bounds on the free variables:

1 < ta £ N
-1
1 < t3 <
N
ta+1 < tg < N

With just the constraints implied by the loop limits, the system is still consistent. Now suppose we want to
test for a particular dependence direction, such as the (<) direction in the first loop. From i; < j1 we derive
the additional bound:

th+1 < t3

This is inconsistent with one of the previous bounds, so there is no dependence with a (<) direction in
the first loop. Likewise, if we test for a (<) direction in the second loop, meaning i < ja, we derive the
additional bound:

tg < tg-—1

which again is inconsistent with the lower bounds for 4. Continuing in this way, we find that the only
consistent direction vector is (>,>), which means that i; > j; and i3 > jz. This corresponds to a (<, <)
direction for the negated dependence equation, which corresponds to an anti-dependence [35]. Thus, the
Power Test correctly identifies the anti-dependence with the precise direction vector.

7 The Power of the Power Test

This section shows by example how the Power Test handles several interesting cases of dependence. More

examples can be found in the technical report [37].

7.1 Non-Direction-Vector Constraints

One goal of the TINY project was to be able to generate all six versions of LU decomposition by simple
loop restructuring. In the motivation section, we started with the normal KIJ form, then interchanged
the tightly nested I and J loops, using classical loop interchanging techniques. The dependence test for
loop interchanging is that there must be no dependence relations with (<,>) direction vectors in the loops
being interchanged [33, 3]; this condition is satisfied here, so interchanging is legal. The next step involves
interchanging the J and K loops. Note that these loops are not tightly nested, and distribution of the K
loop is not legal. A new transformation was designed to interchange non-tightly-nested loops directly [34].

12






Let us first reindex the loops as:
for I; = 1 to N do
for I, = I;+1 to N do
Sy: AL, 5)) = A(L, L) / ACL L L)
endfor
for I3 = I1+1 to N do
for I = I;+1 to N do
So: A(I4,I3) = A(ly,I3) - A(Ly,I3)*A(14,11)
endfor
endfor

endfor
One condition that must be satisfied for legal interchanging is that there must be no dependence relation

from iteration (i1, 43,44) of Sz to iteration (ji,j2) of Sy such that 3 < j; and i3 > j; [35]. Let us inspect
the dependence from Sy : A(ly, I3) to Sy : A(l2,I1). The dependence matrix equation hA = c is:

0 0)
0 -1
(t1,71,d2,%3,34) | =1 0 | = (0,0)
0 1
1 0/
The extended GCD algorithm ends with:
001 00|-1 O
01000 0 -1
(UID)=(10000| 0 0
01010} 0 O
0 010 1y 0 O

The solution of tD = ¢ finds ¢; = 0 and ¢t = 0, so the index variables are defined as:

i1 = t3
= 1
b = ts
i3 = 14
iy = ts

The loop limits bound the free variables as follows:

1 < tg < N
1
< t4 <N
ta+1
t 1
2Tl <t < N
t4+1

It is easy to see that testing for ¢y > j; would add the constraint t4 < t3, which is inconsistent. Thus, 7; must
be less than j;; this corresponds to the dependence Sz (<) Si. Also, adding the constraint i3 > j; gives
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the inconsistency t4 > t4, so this dependence does not prevent interchanging. Moreover, after interchanging,
the loops around Sz will be reordered to (i3, i1,14); thus after interchanging, the direction vector should be
the sign of the difference j; — ¢3. It is easy to realize that this is t4 — t4 = 0. Thus, the Power Test easily

performs non-direction-vector tests, which other current dependence tests cannot handle.

7.2 Multiple Loop Limits

As mentioned earlier, some program transformations generate multiple lower or upper limits. As a case in
point, the Gaussian Elimination above can be reindexed automatically to the following loop structure:
for I; = 1 to N do
for I = 2 to N do
for Is = 1 to min(l;-1,I2-1) do

Sq: A(L, L) = ACL,I)-A(I3,11)*A(12, I3)
endfor
endfor
for I4 = I1+1 to N do
Si: ACLs, 1)) = A(lg, I1)/ACL L)
endfor
endfor

In this case, to test for dependence between S; : A(Is,I1) and Sz : A(I2,I3), the algorithm has to deal with
the upper limit of the I3 loop, which is the minimum of two simple expressions. The Power Test handles
this case effectively by enforcing multiple limits on the free variables, one for each loop limit. The extended
GCD algorithm for this dependence system returns the definitions:

i, = 13
h = 1l
iy = g
2 = ts
B = 13

Enforcing the upper-limit for j3 gives js < ji — 1 or t3 < t4—1, and j3z < j2 — 1 or t3 < t5 — 1; adding these
to the other limits gives the solution space:

1 < tg £ n
t3+1
3+}5t45n

1
t3+1
3+2}5t55n

When testing for a (>) direction in the I; loop, for instance, the Power Test adds the inequality iy > ji+1
which derives t4 < t3 — 1 which generates the inconsistency t3+1 < t4 < t3—1.
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7.3 Handling Unknown Variables

Unknown variables frequently occur in subscript expressions or in loop limits, and thus in dependence
systems. The Power Test handles many of these cases naturally by treating the unknown variables as
additional index variables which have no limits. To compute dependence in the program:
for I =1 to N do
ACT) = ...
...= ACI+N)

endfor
the variable N used in the loop limit and the second subscript equation must be handled. Rather than

assuming dependence or treating this as a special case, the Power Test treats the unknown variable N as
an additional index variable and builds the dependence system with three index variables. The dependence
equation in matrix form is:
-1
(N, i1, 1) 1 =0
-1

The extended GCD algorithm ends up with the definitions:

N = tz
1, = ta+13
i = 13

Since the value of N is unknown, there is no bound on t2; the loop limits for #; produce 1 —t; < 3 <0,
while the limits for j, produce 1 < t3 < ta, which are clearly inconsistent. Thus the two references are
independent, as we already know; the Power Test handles this without resorting to special case analysis.
Another important case arises when some unknown variable other than a loop limit appears in a subscript
expression:
for I =1 to N do
ACT) = ...
...= A(I+INC)

endfor
Depending on the sign of INC, this could correspond to a flow or an anti-dependence. Some parallelizing

compilers now accept assertions about the sign of INC, such as
assert relation ( INC > 0 )

The Power Test, by treating INC as another index variable and adding the assertion to the system of
inequalities, will naturally handle this case, adding the assertion as another constraint on the dependence
system.

Not all unknown variables are handled by this method; when an index variable is multiplied by some
unknown value, treating the unknown value as another index variable will make the subscript expression
appear nonlinear, as in the case of manually linearized arrays:
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for I = 2 to N do
for J =1 to M do
A(I+I*N) = ...
...= A(I+J*N-1)
endfor

endfor
This is also true when the loop increment value is unknown; in fact, if the loop limits and increment are all

unknown values, then the compiler can’t even tell if the loop counts up or down (for some languages), so

any dependence test (including the Power Test) is severely limited.

8 Comparison with Other Methods

There exists a large body of work in the field of dependence tests. Here we compare the Power Test with

existing single and multi-dimension dependence tests.

8.1 Integer and Linear Programming

Since testing linear subscript expressions for dependence is equivalent to finding simultaneous integer solu-
tions within loop limits, one approach is to employ integer programming methods based either on the simplex
method [13] or Fourier-Motzkin elimination (31, 32]. Linear programming techniques such as Shostak’s loop
residue method [27] are also applicable, though integer solutions are not guaranteed. Unfortunately, while
integer programming techniques are suitable for solving large systems of equations, their high initialization
costs and implementation complexity make them less desirable for dependence testing. In addition, though
integer programming can be extended for complex loop limits and direction vector constraints, they cannot

be used to calculate distance vectors.

8.2 Single Dimension Tests

There also exists several single dimension dependence tests. The GCD and Banerjee tests (6] will determine
the existence of unconstrained integer and constrained real solutions, respectively. Banerjee’s inequalities
have also been extended for direction vectors [33], dependence levels [4], and triangular loop limits (7, 18].
Researchers have also shown that Banerjee’s inequalities are exact in many common cases [5, 19, 23]. The
I-test [21] combines the GCD and Banerjee tests, and can usually prove integer solutions. If only one

index variable appears in each subscript reference, the Single-Index-Exact test [6, 33] may be applied. In
comparison, the Power Test subsumes the Single-Index-Exact test, and will always be at least as precise as

any combination of the GCD or Banerjee tests.

8.3 Multi-Dimension Tests

Testing dependences for multi-dimensional arrays is difficult because simultaneous solutions must be discov-
ered for all array dimensions. Early approaches include intersecting direction vectors from each dimension
[33] and linearization [9], but are not precise in many cases. In the following sections we will compare the

Power Test with several precise multi-dimensional dependence tests.
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8.3.1 Fourier-Motzkin Elimination

Previous researchers have also utilized Fourier-Motzkin elimination. Kuhn [22] represents array accesses
in a canonical convex hull using dependence arc sets. Dependences are calculated by intersecting these
convex sets using Fourier-Motzkin elimination. Nonempty sets can be checked for integer solutions by
enumerating possible solutions; this is impractical for loops with unknown symbolic limits. Kuhn suggests
compile-time array bounds checking, dataflow anomaly detection, and calculating array kills as other possible
applications. Triolet [29] uses convex sets called regions to summarize array accesses in compound statements
(e.g., procedure calls). Dependences are calculated by intersecting regions using Fourier-Motzkin elimination.
This determines whether calls may be executed in parallel. Both techniques support complex loop limits
and direction vectors.

The main differences between these methods and the Power Test is that they apply Fourier-Motzkin
elimination on the constraints of the original system (e.g., loop limits, dependence directions, subscript
expressions). The number of variables and constraints in the system of inequalities in these two methods is
larger than in the Power test, due to the way the systems are built. Equality of the subscript equations is
handled by adding the constraints f,(7) < g,(7) and g,(3) < f.(%), for each subscript s, which is not always
precise. In comparison, the Power Test applies Fourier-Motzkin elimination on the dense linear system
derived from the extended GCD algorithm. As a result, the Power Test is more precise in detecting the lack
of simultaneous constrained integer solutions.

8.3.2 Constraint-Matrix Test

The Constraint-Matrix test [30] is a simplex algorithm modified for integer programming. It introduces
slack variables for each constraint in the system, then iteratively applies the reduction row pivot method
until the test either converges or detects the lack of solutions. Since cycling may result for degenerate
cases, the Constraint-Matrix test halts after an arbitrary number of iterations and conservatively assumes
dependence. Gaussian elimination must be performed first to eliminate linearly dependent constraints.
Although not stated in [30], the Constraint-Matrix test may be extended to compute full direction vectors
and accommodate complex loop limits, though it does not compute distance vectors.

The Constraint-Matrix test can detect the lack of simultaneous real-valued solutions. However, compar-
ison with the Power Test is difficult since it stops after an arbitrary number of iterations to avoid cycling. It
is especially hard to analyze the ability of the Constraint-Matrix test to detect the lack of simultaneous inte-
ger solutions. Since the Constraint-Matrix is based on the simplex algorithm, it has worst-case exponential
complexity. For most linear programming problems, simplex algorithms take only linear time and cycling
is rare. However, Schrijver [26] states that for combinatorial problems where coefficients tend to be 1, 0, or

—1, the simplex algorithm is slow and will cycle for certain pivot rules.

8.3.3 JA\-Test

The A-test [23,24] is equivalent to a multi-dimensional version of Banerjee’s inequalities, since it checks
for simultaneous constrained real-valued solutions. As with the Constraint-Matrix test, the A-test requires
Gaussian elimination be first performed to eliminate redundant subscript expressions. The A-test can also

test direction vectors and handle triangular loops, but not multiple loop limits or distance vectors.
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The A-test is applied to coupled dimensions, groups of subscript positions sharing one or more index
variables. The test forms linear combinations of subscript expressions that eliminate one or more instances
of index variables, then tests the result. Simultaneous real-valued solutions exist if and only if Banerjee’s
inequalities finds solutions in all the linear combinations generated.

We can enhance the precision of the A-test by also applying the GCD or Single-Index-Exact tests to the
linear combinations generated. Unfortunately, there is no obvious method to extend the A-test to prove the
existence of simultaneous integer solutions. Li [23] proves that for two coupled dimensions, the A-test is exact
if unconstrained integer solutions exist and the coefficients of index variables are all 1, 0 or —1. However,
even with these restrictions the A-test is not exact for three or more coupled dimensions. The precision of
the A-test for complex loop limits or direction vectors has not been discussed in the literature.

We now show that the Power Test is more precise than the A-test. First of all, the Power Test is just
as precise in detecting simultaneous real-valued solutions, since it solves the linear programming problem
exactly. The following example will show that Power Test can detect the lack of simultaneous constrained
integer solutions where the A-test cannot:

for I; = 1 to 100 do
for I, = 1 to 100 do
A3+ + 2%Iy, 2+I3) = A(Ly - I + 6, I} + Ip)
endfor

endfor
The dependence equations are:

EQl: 3% — j; + 2 + jo, = 6
EQ2: —J1+ 22 —j2 = 0
The linear combinations (set of canonical solutions) generated by the A-test are as follows:
Combination equation eliminates dependence equation GCD Banerjee’s inequalities
Ci EQ2 i —Jj1+2i2—ja=0 1 -198 < 0 < 198
Cs EQ1 - EQ2 J1,i2 3i1 +2j2=6 1 5 < 6 < 500
Cs EQ1l + EQ2 J2 3ip —2j; +4i,=6 1 -193 < 6 < 698

In all cases the GCD test fails to detect independence since the GCD of the coefficients is one. In addition,
Banerjee’s inequalities show that constrained real-valued solutions exist for all three combinations. Since the
GCD test and Banerjee’s inequalities fail for all three combinations, the A-test would assume dependence
exists. In comparison, when we apply the Power Test, we get the dependence matrix equation hA = c:

3 0
-1 -1
1, J1, %2, = (6,0
(1,1, 82, J2) o o (6,0)
1 -1
The extended GCD algorithm returns the matrices:
0 00 11 -1
. 110 -2(0 1
(U|D) =
2 30 -3|0 O
021 0|0 O
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From the equation tD = c we solve for t; = t; = 6; the index variables are then defined as:

iy, = 23 + 6

Ji = 3tz + 284 + 6
i = 14

Jjo = 3t3 — 6

Examining just the lower limits for each of the four index variables derives the following limits on the free

variables:
h>1 = 23+6 > 1 = t3 > [-5/2]
j1 21 = 33+24+6 > 1 = tqg > [(-3t3—-5)/2]
ip 21 = tqy 21 = t4 21
j2 21 = =3tz3—6 >1 = t3 < |-7/3]

Combining the upper and lower limits for t3, we see that
[-5/2] < ts < |-7/3]

which derives the inconsistent condition —2 < t3 < -3, proving that no simultaneous integer solutions
exist. In fact, the Power Test would have detected independence even if the loop upper limits were unknown
or symbolic expressions, since they were not used in the test.

8.3.4 Delta Test

The Delta test [16] is a new multi-dimension dependence test designed for a restricted class of subscript
expressions. It works by converting single-index-variable subscript expressions into constraints that can be
intersected or propagated into other array dimensions. The Delta test is very efficient at calculating exact

distance and direction vectors for common subscript expressions, but the Power Test is much more general.

9 Conclusions

The Power Test is useful in advanced program restructuring techniques. It is based on the extended GCD
algorithm, and is close to the holy grail of solving simultaneous subscript equations only for integer solutions
within the loop limits. It loses precision when it ignores pertinent ceiling and floor operators. This precision
loss is equivalent to enlarging the solution space somewhat; in other words, it may return a false positive
if there is a solution near the limits of the loop, or near the bounds imposed by other constraints such as
direction vector relations. Experimental evidence is necessary to see whether this is a serious limitation.
The Power Test is also extensible beyond most other dependence decision algorithms, allowing non-direction
vector tests and simultaneous multiple upper and lower loop limits. This becomes important when performing
advanced restructuring transformations, as in the research tool TINY.

An obvious consideration when implementing the Power Test is its execution cost. The worst case cost of
the search procedure of the Fourier-Motzkin elimination can be exponential in the number of free variables.
Triolet [29] found that using Fourier-Motzkin elimination for dependence testing takes from 22 to 28 times

longer than conventional dependence tests. By comparison, although the A-test is an worst-case exponential
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cost algorithm, it proves to be quite efficient in practice. Empirical studies [24] show that the A-test usually
increases the cost of dependence testing by a factor of two or less. At this point, more studies are required
to characterize the behavior of the dependence tests we have examined. Since the actual number of both
loops and dimensions are likely to be small, only experimental results will indicate which tests are efficient
enough for practical use. The TINY tool uses the Power Test as the default dependence test, but since TINY
was designed for only small programs, it is not a reasonable test vehicle. Even if the cost of the Power Test
is too high for inclusion in a critical component such as a compiler, it has been shown to be appropriate in

a special environments like TINY. Other dependence tests do not handle the complex dependence systems
that have arisen in our research.
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