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Abstract

This paper presents a convergence rate analysis for interior point primal-dual lin-
ear programming algorithms. Conditions that guarantee Q-superlinear convergence are
identified in two distinct theories. Both state that, under appropriate assumptions, Q-
superlinear convergence is achieved by asymptotically taking the step to the boundary
of the positive orthant and letting the barrier parameter approach zero at a rate that
is superlinearly faster than the convergence of the duality gap to zero. The first theory
makes no nondegeneracy assumption and explains why in recent numerical experimen-

tation @Q-superlinear convergence was always observed. The second theory requires the
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restrictive assumption of primal nondegeneracy. However, it gives the surprising result
that Q-superlinear convergence can still be attained even if centering is not phased
out, provided the iterates asymptotically approach the central path. The latter theory
is extended to produce a satisfactory Q-quadratic convergence theory. It requires that
the step approach the boundary as fast as the duality gap approaches zero and the
barrier parameter approach zero as fast as the square of the duality gap approaches

zZero.

Keywords: Linear programming, Primal-dual interior point algorithms, Duality-gap-
reducing and centering, Newton's method, @-superlinear and @-quadratic convergence.

Abbreviated Title: Superlinear and quadratic convergence of primal-dual algorithms

1 Introduction

This paper considers linear programs in the standard form:

T

minimize Tz
subject to Az = b, (1.1)
z >0,

where ¢,z € R"*, b ¢ R™ A € R™"(m < n) and A has full rank m. The dual linear
program of (1.1) can be expressed in the following symmetric form
minimize d7y
subject to By = Be, (1.2)
y 20,

where y € R™ is the vector of dual slack variables, d = AT(AAT)~1p, B € R(*~m)xn p6
full row rank and ABT = 0 (i.e., the columns of BT form a basis for the null space of A).
This form of the dual was introduced by Todd and Ye in [20]. A pair (z,y) is called strictly
feasible if z and y are feasible for (1.1) and (1.2), respectively, and are positive as well.
The weak duality theorem says that the duality gap z7y is non-negative for any feasii

pair (z,y). We will assume that the primal feasibility set contains strictly feasible points anu
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that the set of optirnal solutions for the primal linear program is nonempty and bounded.
For any optimal feasible pair (z.,y.), the duality gap is closed, i.e., zZy. = 0.

Primal-dual interior point algorithms attempt to solve the primal and dual linear pro-
grams simultaneously by generating a sequence of strictly feasible pairs {(z«,yx)} (and often
another dual variable vector - the Lagrange multipliers associated with the primal con-
straints Az = b) that converges to an optimal feasible pair (r.,y.). The objective of such
algorithms is to drive the duality gap zTyi to zero. Primal-dual approachs of this form were
first introduced by Megiddo [13] using a logarithmic barrier function method. Megiddo’s idea
was developed by Kojima, Mizuno and Yoshise [8] into a full algorithm with a polynomial
complexity bound. A conceptually different approach was proposed by Todd and Ye [20]
based on reducing a primal-dual potenfial'-fuhction which is analogous to the Karmarkar
primal potential function [7]. Other works on primal-dual interior point algorithms include
Monteiro and Adler [16], Lustig (10, 9], Gonzaga and Todd (3], Huang and Kortanek [6],
Choi, Monma and Shanno [2], McShane, Monma and Shanno [12], and Lustig, Marsten and
Shanno [11].

The above works can be classified roughly into two groups. Papers in the first group
([8, 20], for example) focused on designing algorithms with polynomial complexity bounds.
Papers in the second group ([2, 11, 12], for example) were more concerned with computational
and implementational issues. Unfortunately, there is a discrepancy between the two groups.
That is, the algorithms that were described in the second group and were shown to have
good practical performance are not those that were studied in the first group and were
shown to possess polynomial complexity bounds. This discrepancy is understandably due
to the limitation of the worst case analysis used in deriving polynomial complexity bounds.
Recently, there have been works aimed at narrowing this discrepancy from a probabilistic
point of view, see Mizuno, Todd and Ye [14, 15]. In the current work, we try to shed
light on another fundamental aspect of continuous optimization algorithms; namely, the
blending of two often conflicting objectives: global convergence and fast local convergence.

A convergence rate analysis for algorithms that belong to a very general class of primal-



dual interior point methods is presented. This theory shows how superlinear and quadratic
convergence can be attained from primal-dual interior point algorithms.

It is well understood, in the continuous optimization community, that fast loca] conver-
gence is an important factor in evaluating the efficiency of an iterative method. Moreover.
while interior-point algorithms for linear programming are certainly iterative methods, lo-
cal convergence properties have not received much attention. A plausible explanation for
this lack of attention is the common belief that interior-point algorithms essentially possess
finite termination. That is, once one gets close enough to the optimal solution set, the
interior-point method can be terminated and available information (mainly the zero-nonzero
structure of an optimal solution) can be used to obtain an optimal solution through some
finite procedure. In :he context of this guessing strategy, it is natural to question the value
of fast local convergence in linear progré.mrning applications. However, our computational
experience has taught us that although a correct early guess, on occasion, is certainly possi-
ble, especially in the case of a nondegenerate optimal vertex, in general one needs to be very
close to the solution set in order to guarantee a correct guess. In addition, fast convergence
usually occurs much earlier than the standard Newton’s method theory predicts: a property
often referred to in nonlinear applications as the semi-local behavior of Newton’s method.
Therefore, the construction of algorithms with fast local convergence can be an important
and beneficial activity even in linear programming applications. However, in the interest of
conciseness we have decided to present only theory in the present study. A comprehensive
numerical investigation is the subject of a current study.

The concept of the central path (trajectory) plays an important role in designing and
analyzing interior point algorithms. It was first studied in linear programming by Sonn-
evend (17] and by Bayer and Lagarias (1], see also Megiddo [13]. The central path can be
expressed in several ways. Perhaps the simplest is that a strictly feasible pair (z,y) is on

the central path if and only if it satisfies

[zhiyh = [zhlyl: = ... = [z]a[y]a



where [z]; ([y]:) is the i-th element of z (y), or equivalently,

[zlilyli =zTy/n, ,i=1,2,... 0. (1.3)

This paper is organized as follows. In Section 2, we describe a general primal-dual interior
point algorithmic framework. Then in Section 3, we present our superlinear convergence rate
analysis and in Section 4, we present our quadratic convergence rate analysis. Concluding

remarks are given in Section 3.

2 A Primal-Dual Algorithmic Framework

In this section, we describe a general primal-dual interior point algorithmic framework. This
general framework can also be derived from the point of view of barrier function methods
or potential function reduction methods, as was done, for example, in [8] and [20]. We hope
that our somewhat different approach adds new insight to these algorithms.

If the primal variables and the dual slack variables are updated at a given strictly feasible

pair (z,y) by the formulas
z4 = X(e+ap) and y. =Y(e + ag), (2.1)

where X = diag(z), Y = diag(y), e € R™ has all components equal to one, p,q € R" and

a > 0 is the steplength, then in order for z, and y. to be strictly feasible, p, ¢ and a must

satisfy
AXp=0 and e+ap>0, (2.2)
BYqg=0 and e+ag>0. (2.3)

We will consider projected-gradient type methods. Namely, the feasible directions p and
g are obtained by projecting the negative gradients of relevant functions into the null spaces
of AX and BY, respectively. Therefore, we first need to construct two n x n projection
matrices H, and H, such that AXH, = 0 and BY H, = 0. If A and B were not scaled by X
and Y, respectively, then it would be sufficient to define H; = P4 and H, = I — P4, where
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Py = AT(4A4T)=1 4, This definition would give AH, =0 and BH, = 0 because 4T | BT,
Obviously, in this case both H, and H, would be orthogonal projections and therefore would
be symmetric and positive semi-definite. The symmetry and positive semi-definiteness of H,
(H,) is important because for any function ¢ : R® — R, the projected negative gradient
-H,Vo (-H,V¢) will be not only a primal (dual) feasible direction but also a descent
direction for ¢ as long as H,Vo #0 (H,Vo #0). Furthermore, it is worth noting that one
would only need to compute either H, or H, because H, + H, = I.

Even though the matrices A and B are scaled by X and Y, respectively, it is still possible
to construct two projection matrices H, and H, based on just one orthogonal projection
matrix (though H, and H, themselves will not be orthogonal projections) and obtain the
desirable property that both H, and H, are symmetric, positive semi-definite. Consider the

following matrices that we will call scaled projections:
Hy=D(I-P)D and H,=DPD.

Here Dis a positive-definite diagonal matrix aﬁd Pisan orthogonal projection matrix, both
contained in R™*". The equations A(XH,) =0 and B(YH,) = 0 and the fact AT . BT
imply that H,XY H, = 0, which in turn requires that P(DXYD)(I — P) = 0. The last
equation will hold for any orthogonal projection matrix P if DXY D = I. This leads to the
following choice for D,
D =(XY)-i.

It now follows from AXH, = 0 that (AX%'Y‘%)(I — P) = 0. Hence we need to define
the orthogonal projection matrix P as the orthogonal projection into the range space of
X%Y'%AT, namely,

P=Xty-1AT(AXY ' AT) ' axby-t, (2.4)
This definition of P gives not only AXH, = 0, but also BY H, = 0. Therefore, we finally

conclude that the choices for the two scaled projection matrices H, and H, should be

H, = (XY)"i(I - P)(XY)-}, (2.5)
H, = (XY)"1P(XY)"}, (2.6)
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where P is defined by (2.4). The proof of the following proposition is now straightforward.
Proposition 2.1 If H, and H, are defined by (2.5) and (2.6), respectively, then

1. Both H, and H, are symmetric, positive semi-definite;

[85)

AXH,=0and BYH, =0:

L

. H,XYH, =0;
4. H, + H, = (XY)".

Obviously, the scaled projection H, (H;) will project the negative gradient into a primal
(dual) feasible direction which is also a descent direction (provided that the projection is
nonzero). It is worth noting that in order to construct the two scaled projections we only
need to calculate one orthogonal projection matrix P.

To derive the directions p and ¢ in (2.1), we first define a function
d(u,v) = (e + u)T XY (e + v). (2.7)

Obviously, if . = X(e + u) and y+ = Y(e + v) are primal and dual feasible, respectively,

then @(u,v) = zTy, > 0 represents the duality gap at the updated pair (z4,y+). It is easy

to see that
V.$(0,0) = V,4(0,0) = XYe. (2.8)

Now define
ps = —HyV.$(0,0) = —((XY)~¥(I - P)(XY) }]|XYe, (2.9)
g6 = —H,V,$(0,0) = —[(XY)"TP(XY) #]XYe. (2.10)

From 1 and 2 of Proposition 2.1, the above defined (ps,qs) is clearly a feasible descent
direction for ¢(u,v) at the current point (0,0). We call (pg,qs) the duality-gap-reducing

direction.



Using the formulas (2.1), we define the barrier function at the given strictly feasible pair
(z.y) as
P(u,v) = = In([X(e + u)|i[Y (e + v)]s), (2.11)
=1

where [a]; denotes the i-th element of the vector a. The gradient of ¥(u,v) at the current

point (u,v) = (0,0) satisfies

V.¥(0,0) = V,5(0.0) = —e. (2.12)

The scaled projections of the components of the negative gradient direction of ¥ into the

primal and dual feasible spaces are, respectively,

Py = —H,V,u(0,0) = [(XY)"(] = P)(XY) #]e, (2.13)
9 = —H,V,1(0.0) = [(XY) 5 P(XY) }e. (2.14)

The direction (py, qy) defined above is a descent direction for the barrier function ¢ (u, v) at
the current point (0,0); thus it pulls the next iterate towards the interior of the primal and
dual feasible sets. We will call (py, qy) the centering direction.

In almost every primal-dual interior point algorithm. the step direction in the primal or
dual space is a linear combination of the duality-gap-reducing direction and the centering

direction. More specifically, for some o € [0, 1),

T T

P = ps+ afn—ypw = —Hy(XYe - azn—ye), (2.15)
T T

¢ = g+ ar—nng = —H,(XYe~- a"—nﬂe), (2.16)

In the sequel, we will use the notation:

min(u) = mi

15'.51'1”['“]:'1 min(u,v) = 1?.-21,;(["]" [v]:)

for u,v € R"; the corresponding quantities for the maximums are similarly defined.
The following proposition can be easily.verified using Proposition 2.1 and direct substi-

tution.
Proposition 2.2 Ifp and q are defined by (2.15) and (2.16), respectively, then
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1. AXp=0and BY¢=0;

o

. pfXYq=0;

o

.p+qg=—c+ U%E(XY)‘le;
{. (e+ap)TXY(e+ aq) =zTy[l — a(l = 0)].

We define the steplength a in (2.1) by the formula

-7
a=———, T€(0,1). 2.17
min(p, q) ) (2.17)
These choices of p, ¢ and a guarantee that the new primal and dual variables z, and y,
obtained from formulas (2.1) will remain strictly feasible.

We now state an algorithmic framework for interior point primal-dual algorithms.

Algorithm 1 Given a strictly feasible pair (zo,y0). For k=0,1,2,..., let
Tier = Xi(e + arpr) and yr+1 = Yi(e + arqr), C(2.18)

where pi, qx and ai are defined by (2.15), (2.16) and (2.17), respectively, and all the quan-

tities involved (including o and 7) are indezed by k.

This algorithm generates strictly feasible sequences {zx} and {yi}. It is a descent algo-
rithm for the duality gap which is reduced at iteration k by a factor 1 — a(l —ox) < 1.
Almost all the existing primal-dual algorithms that use only one projection per iteration fit
into the above algorithnﬁ.é fra.rnework with different cﬁoices for the parameters o, and 7.

- For example, in the primal-dual algorithm of Kojima, Mizuno and Yoshise [8], at each
iteration a constant oy is chosen from (0, 1) and, depending on this value of o, restrictions
are put on the parameter 7 to ensure a polynomial complexity bound. In similar primal-dual
algorithms implemented by Choi et. al. [2], McShane et. al. [12] and Lustig et. al. [11],
very small values of o, were used and long steps were taken. Impressive numerical results
have been obtained for these implementations though a polynomial complexity bound is no

longer known.



Other examples include Todd and Ye's primal-dual potential reduction algorithm [20] and
Monteiro and Adler's path-following primal-dual algorithms {16]. Todd and Ye's primal-dual

potential function is
®,(z,y) = (n + p) In(trace[ XY]) — In(det[XY]).

This choice was motivated by the Karmarkar primal potential function [7]. At a given strictly
feasible pair (z,y), if we define @p(u,v) =®,(X(e+u),Y(e+v)), then we can see, though
this was not the way the authors derived their algorithm, that the scaled projected negative
gradient direction of ép(u, v) at (0,0), gives the updating directions for (z,y) proposed by
Todd and Ye and they are of the form of (2.13) and (2.16). Todd and Ye used p =vynin
their algorithm where v is a positive constant. This choice of p leads, at each iteration. to

the choice

v
v+

in (2.15) and (2.16). In Monteiro and Adler’s path-following primal-dual algorithms [16]

.
4

O =

one can show that
)

0’/¢=1——

/n

where § is chosen to be a number in (0, /n) subject to a certain restriction. The restriction
is such that § is bounded above as n — oo (Monteiro and Adler actually chose § = 0.35 in

their analysis).

3 Superlinear Convergence

We first introduce two quantities defined at each iteration of Algorithm 1. At the k-th

iteration, let

T T

TLYk/n Ty Yk/n
P A— d P —_— |
O max(XiYie) and. min(X;Yxe)

Since zfyi/n is the average value of the elements of X,Yie, it is clear that 6, < 1 and
Tk 2 1. Moreover, it follows from (1.3) that the pair (Zk,y&) is on the central path if and

only if 9 =1 or equivalently 7, = 1.
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In this section, we present two distinct Q-superlinear convergence theories, namely, The-
orem 3.1 and Theorem 3.3. Our first Q-superlinear convergence theory is quite general and

makes no nondegeneracy assumption. Some relevant comments will follow its proof.

Theorem 3.1 Let {zx} and {y.} be generated by Algorithm 1, z, — z. and y, — y..
Assume (i) strict complementarity, (ii) the sequence {nx} is bounded, and (iii) 7, — 1 and

or — 0. Then the duality gap sequence {zfyr} converges to zero Q-superlinearly. That is,

the Q1-factor

T
. Tht1Yk+1
Q.= kliglo sup k—;%yk—." = 0. (3.1)

Proof: From 4 of Proposition 2.2, we have
@1 =1- lim inf ax(l — ok).
k=—oo

Since ox — 0, @, = 0 if and only if liminfy—.. ax = 1. We will prove that a; — 1.
Multiply both sides of the equation in 3 of Proposition 2.2 by (XiY:)? and consider the

square of the ¢;-norm of both sides. From 2 of Proposition 2.2 we have

T T XY)-!
I pel + (XY baull = =Tun(1 — 20, + o2 XX ) e
or equivalently,
-3 - eTTke
1T pul2 + 1T aull2 = n(1 - 200 + 0252, (3)

where Tk = (zfyx/n)(XY)~!. Assumption (ii) implies that {T}} is bounded above and
{T, %} is bounded away from zero. Therefore, from (3.2) both {px} and {qi} are bounded.
It follows from (2.17) that {ax} is bounded away from zero.

Now assume [z.]; > 0. Obviously,

o [mReadi ,
=l T T e

This implies [pi]; — 0, because {ax} is bounded away from zero. Since ox — 0, from 3 of
Proposition 2.2 we have (px + qx) — —e. Hence, [gk]; = —1. On the other hand, if [z.]; = 0,

then [y.]; > 0 by strict complementarity. The same argument, interchanging the roles of px

11



and gy, gives [qi]; — 0 and [px]i = —1. Therefore, the components of p; and g converge to
either 0 or —1. Consequently, from (2.17) ax — 1 since Tk — 1. This completes the proof.
a

In Theorem 3.1, a source of concern has been the compatibility of Assumptions (i1) and
(iii). On the surface, it seems as if letting 7 — 1 and o, — 0 might force 7, — oc.
However, our numerical experience has shown this not to be the case. Indeed, Theorem 3.1
was the direct consequence of a rather extensive numerical experimentation. The superlinear
convergence theory presented in the first draft of this paper consisted of only Theorem 3.3
and required the assumption that {n+} be bounded. This assumption has been removed in
the present version. In subsequent numerical studies with highly degenerate Netlib problems.
we let 7. — 1 and o — 0 and always observed strict complementarity, {n:} bounded, a; — 1
and @-superlinear convergence. This phenomenon motivated us to search for a theory that
could explain this occurrence and consequently led to the discovery of Theorem 3.1. We feel
that Theorem 3.1 offers a satisfactory explanation of what we observed in practice. (In a
more recent study, Zhang and Tapia [21] have proved that it is possible to choose o — 0
and 7. — 1 while maintaining global convergence and the boundedness of {7;}. Thus, the
compatibility of the assumptions in Theorem 3.1 has been demonstrated.)

In numerical computation, the boundedness of {n«} requires some qualification because
an algorithm is always stopped in a finite nu.mber of iterations. In our numerical experiments,
we did not observe the trend of continued growth in the values of 7, as our algorithm was
about to stop; while the observed convergence was clearly Q-superlinear and o — 1. Of
course, the behavior of {n:} varies with several factors including how fast {7} converges to
one and {4} to zero. We do not imply that unbounded {7} can never occur. Instead, we
feel that it appears to be more an exception than the rule. This topic undoubtedly merits
further study.

In the following development, we show that if we assume nondegeneracy, then we can
obtain Q-superlinear convergence without assuming the boundedness of {7;}. The following

theorem concerns the Q, factor of the duality gap sequence.
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Theorem 3.2 Let {zi} and {yx} be generated by Algorithm I, zx — z. and yx — y..
Assume (i) strict complementarity and (i) z. 15 a nondegenerate vertez. Then the duality

gap sequence {z¥yx} converges to zero and the Qi-factor is

T
ERRT ThprYk+l _ 1 o s Tlc(l—a'k)
Q= limeup =p = =1 i T, (33)

To prove Theorem 3.2, we need the following two lemmas. The first lemma has been
proved in [19] under slightly different assumptions. For the sake of completeness, we include

its proof here.

Lemma 3.1 Let P, be defined by (2.4) with X and Y indezed by k. Without loss of gen-
erality, assume that the first m elements of z. are positive. Then under the assumptions of

Theorem 3.2,

. [0
lim B, = . (3.4)
koo 0 0
Proof: Let
de = X}Y Te and Dy = diag(dy).
Then

P. = DL AT(AD}AT) ' AD,.
By our assumptions, we have
ye}i = 0, 1 =1,2,...,m

and

[zx)i—= 0, i=m+1,m+2,...,n.
It then follows from the definition of di that
[dk],- — +00,1=1,2,...,m

and

[dk].-->0, ti=m+1lm+2,...,n.

- 13



Now let 4, be the m by m submatrix of A consisting of its first m columns and Ao be the
_m by n — m submatrix of A consisting of its last n — m columns. Clearly, A4, is nonsingular.
Similarly, let D and D) be the diagonal matrices of dimensions m and n — m, respectively,
with the first m and the last n — m elements of di on their diagonals, respectively. Evidently.
DP? is nonsingular for all & and {D?} converges to zero.

Substituting 4Dy = [A, D Ao DY) for AX,E.Y,:% in (2.4), we obtain
B, =[4,D> Ao D] [A1(DP)? AT + Ao(D2)2 4TI~ (4, D AoDY)

Note that A, is nonsingular and let

Ry = (D) T AT 4,08, (3.3)
We have
R Im + R RT)™1 Im + R RF)"'R
P, = ( k k) ( «Ry) k . (3.6)
RI(In + RcRT)™1 RI(Im + RcRT)-R,.
Since D} — 0 and (D)~! — 0, so does Ry. Now it is evident that
L. I, 0
lim P, = )
koo 0 0
which completes the proof. c

As mentioned above, our next lemma will be used not only in the proof of Theorem 3.2,

but also in our quadratic convergence theory.

Lemma 3.2 Let P, p and gk be defined by (2.4), (2.15) and (2.16), respectively, with X
and Y indezed by k. Under the assumptions of Lemma 3.1,

(0 ) ([ o0 )

0 0
Dk = ] + ok zTyu/n + O(I{yk),

XxYielmer

\-1) s )

14



and .
zi ye/n
—1 XxYiely \

_1 :Tyk/"
gk = +op | Ka¥eem 1 O(z{yk),

0 \ 0

where the number of zeros is m in pg, and n — m in q.

Proof: Since R, — 0,

(Im + ReRE)™' = Im + O(|| Re|l?).
Hence, from (3.6)

+ Eln

P, =
[ 0 0

where

O(IRel®) R+ O(lIRel®)
RE +O(IRell®)  O(lIR«l?)
It follows from the definition of px and gx (see (2.15) and (2.16)),

(0 ) [ 0 )

Er=

0 0
Pk = + ok

zZyx/n
-1 [XeYeelmet

\-1) gl )

where
7 Yk
rp = (XeYo) T TEW(XiYe)TH (XaYie + 0x==e).
By strict complementarity, [X,Yie]i = O([z«);) when [z.); = 0 and [XiYieli = O([yx)s)
when [z.; > 0. Also note that z{yr = || XiYie|:. From the definition of D, we have

15



DY =O0(/zTys) 'and (D)~ = O(y/zTys). Thus. R, = O(zfye). It is easy to see that the
diagonal blocks of (X,Yi)~% Ey(.X4Yi) T are O(zTy:). Therefore

0 R

1 xl{yk ’ 1 T
RZ' 0 ((.YkYk)Ze+0’kT(‘¥k}k)_7€)-{'-O(l‘ky,'c).

i = (XY)F [

A straightforward matrix-vector multiplication shows that

T :

[r2); = ﬁ ?=m+1[A1.l-’10}i.j-m([xk]j - Uk—‘,ty—kﬁ) + O(J:Z.yk)» 1<i1<m
| Bt :T . .

ﬁ.’ZT=1[‘43.‘41_T]i-m.j([yk]j - ak{:j_k[::],) + O(-”"Zyk), m<i:<n

Since
) i >0, 1<i<m, ) 0, 1<i<m,
lim [z,]; = and lim [y); =

k—co 0, m<i<n, k—oo [vi >0, m<i<n,

it is evident that rf = O(z7y,). This proves the first equality for px. Similarly, we can prove
the second equality for gj. i
Now we are ready to prove Theorem 3.2.
Proof of Theorem 3.2: Without loss of generality, we assume that the first m components
of z. are positive and consequently the remaining n — m components are zero.
It follows from Lemma 3.1, Lemma 3.2 and (2.17) that

— Tk Tk

Qfp = T - = — T . (37)
-1 +0/¢E;%+O(I£yk) 1l = o0k + O(zf yi)
From 4 of Proposition 2.2,
T
Ti+1Yk+1 (1 — o)
—— =1—a(l - =1- .
=T Yk (1= o) 1 = oxb + O(zf yk)
Now (3.3) follows immediately. This completes the proof. c
Observe that 7, € (0,1), o4 € [0,1) and 6, € (0, 1]. Therefore, for all &
(1l — o)
_— <1
1- Gkak
Thus from (3.3), @, = 0 if and only if
lim 7 Sl = 1. (3.8)

k—co "1 — gkdk

By examining (3.8), we have the following corollary. Its proof should be straightforward.
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Corollary 3.1 Under the assumptions of Theorem 3.2:
L. Iflimg—o 7 < 1, then @, > 0.

2. Iflimg—o T = 1, then Q; = 0 if and only if

lim 1-o =1
k= 1 — Oror

In particular, the above limit is 1 if a"k —0orf, —1.

To emphasize the significance of Corollary 3.1, we formally state its interpretation as the
following theorem. It is important to remember that {ox} and {r} are directly under our

control, but {#;} is not.

Theorem 3.3 Under the assumptions of Theorem 3.2, the duality gap sequence {zfy.}
generated by Algorithm 1 converges to zero Q-superlinearly if the sequence {7} converges to

1 and either of the following two conditions holds:

1. The centering step is phased out asymptotically, i.e., limg—o ox = 0.

2. The convergence of the primal-dual sequence {(zk,yx)} to (z.,y.) is along the central

path, t.e., limg_o Ok = 1.
The convergence of {zfys} is no better than Q-linear if limg—co 7% < 1.

It is interesting to compare Theorem 3.1 and Theorem 3.3. The assumptions for the two
theorems are different. In the proofs of the two theorems, we used different approaches and
obtained distinct results.

Theorem 3.3 states that it is not necessary to have ox — 0 in order to attain superlinear
convergence. Admittedly, the case where the iterates converge asymptotically along the
central path is a very special and perhaps unlikely case.

Observe that limg—., 7« = 1 means that our step asymptotically approaches the bound-
ary of the positive orthant. Another interesting observation from (3.3) is that assuming
liMgmoo 7 = 1,

=@ < k]_l'rgo sup k. (3.9)



Therefore, even in the case of linear convergence, in general the smaller Ok is. the faster
the convergence will be. This may in part explain why good numerical performance was
obtained from the implementations of primal-dual algorithms by Choi et. a/ (2], McShane
et. al. [12] and Lustig et. ql. [11] where very small values of & (0 =1/nor 1/\/n) were used.

If the Todd and Ye potential function method [20] is used to generate updating directions

with the choice p = n + vy/n, then as previously mentioned

NG
v+

Evidently, o approaches 1 rapidly as n increases. Since the left-hand side of (3.9) tends to

g =

las ¢ — 1, unless , — 1. the @-linear convergence rate for this choice of ¢ wil] generally
deteriorate towards 1 with the increase of n. Here we see clearly an inverse relationship
between a good polynomial complexity bound (Todd and Ye proved that their algorithm
converges in O(y/nL) iterations) and a good Q-convergence rate. Such a relationship also

exists in Monteiro and Adler's O(y/nL)-iteration path-following algorithms [16] where
)

c=1-—

vn
and 4 is bounded. Clearly, their path-following algorithms also show a deterioration of Q-
convergence rate as the problem size increases. However, it is quite possible that the above
mentioned two algorithms can still have reasonable R-behavior.
Now we prove a stronger convergence result for those primal and dual variables that

converge to zero.

Theorem 3.4 Let {z,} and {yk} be generated by Algorithm 1, Tk — z. and yp — y..
Assume (i) strict complementarity, (ii) 7, — 1 and (11i) oxne — 0 or 6, — 1. Ifzly, — 0 Q-

superlinearly, then the primal and dual variables that converge to zero do so Q-superlinearly.
Proof: From (2.18), we have
X'ty =e+ arpr and Y lyey = e + k.

Hence, by 3 of Proposition 2.2 we have

T
z; -
Xz 4 Y e = (2~ ane + a2 (X5 e, (3.10)
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If oine — 0, the second term in the right-hand side of (3.10) vanishes in the limit (notice

that ne = ||(zTy/n)(XiYe) 'ello). Also, ax — 1. Therefore,
,}i{g(xl:xl‘kﬂ + Y ) = e (3.11)

On the other hand, if 8, — 1, the second term in the right-hand side of (3.10) converges to
arore. Meanwhile, it follows from (3.7) that ax(l — ox) — 1. Hence, (3.11) also holds.

If (z.]; = 0, then by strict complementarity, [y.]; > 0 and [yi41]i/[ye]i — 1. It follows
from (3.11) that [zk41)i/[zk])i — 0. Therefore, [zi]; — 0 Q-superlinearly. By the symmetry
of the relation (3.11), we have [yx]; — 0 Q-superlinearly if [y.]; = 0. a

Note that it is easy to enforce oxni — 0 since we have direct control over o and we can
compute 7, before we set o.

Since z¥yi = || X1 Yiel|1, it is evident that when {z{yx} converges to zero Q-supetlinea.rly
so does the sequence {X;Yie}. We now demonstrate that this superlinear convergence is

actually component-wise.

Corollary 3.2 Under the assumptions of Theorem 3.4, if zfyx — 0 Q-superlinearly,.then

the sequence {XiYie} converges to zero Q-superlinearly component-wise.

Proof: By strict complementarity, either [zx]; — 0 or [yi]i — 0 for each index i:. From

Theorem 3.4, we have either

1im[-’i“i=o and lim el g

k—oo [zg]i - k—oo [y]i

or
lim [zk+1]i =1 and lim [yk+1]i =0.
k—oo [zi)i k—oo [ye]i

In either case,
. [$k+1]i[yk+1]i . [Xk+1Yle+le]i
lim ————— = lim ~————=0.
k—oo  [zk]i[yxli k—oo  [XiYee]i

This completes the proof of the component-wise Q-superlinear convergence of {XiYre}. O
In 1980, Tapia [18] (see Theorem 3) pointed out that an algorithm which at each it-

eration satisfies the Taylor linearization of the complementarity equation has the property
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that the variables that converge to zero do so @-superlinearly. This result assumed strict

complementarity and steplength one. Observe that (3.11) is equivalent to
XieYee + Yi(zig1 — k) + Xe(yrgr — yx) — 0.

We see that the Tayvlor linearization of complementarity is satisfied asymptotically in our
situation.

We close this section by commenting that taking different steplengths in the primal space
and in the dual space may result in a larger reduction in the duality gap locally, i.e., at any
given iteration; however, it seems unlikely that superlinear convergence could be achieved

without both step lengths approaching one asymptotically.

4 Quadratic Convergence

In this section, we show that under the assumptions of Theorem 3.2 quadratic convergence
can be achieved by primal-dual algorithms if we both phase out the centering direction and
let the steps approach the boundary at a sufficiently fast rate. In contrast to the analysis of
superlinear convergence, which is done in a scaled gradient-projection framework, the study
of quadratic convergence will be in the framework of Newton’s method.
We first reformulate Algorithm 1 as a perturbed and damped Newton’s method.
It is well known that at optimality the primal, dual and dual slack variables z, A and y
satisfy
Az - b
ATA+y—c | =0, (4.1)
XYe
z 20 and y > 0. To eliminate the dual variables A from the above system, we pre-multiply

the second equation by the nonsingular matrix (AT BT|T. Noticing that BAT = 0, we obtain

AATA + A(y - ¢

A
0= (ATA+y—-¢) =
B By - Bc



Since AAT is nonsingular, A is uniquely determined once y is known. Removing the equation

for A, we arrive at the following 2n by 2n system consisting of primal feasibility (see (1.1)),

-

dual feasibility (see (1.2)) and complementarity:

Az =)
F(z,y)=| By —Bc | =0, (.2)
XYe

as well as the non-negativity constraints for (z,y).

Similarly, we can show that a strictly feasible pair (z,y) on the central path satisfies

Az - b
F(z,y,u)=| By—-Bc |=0. (4.3)
XYe — pue

for some g > 0. Evidently, F(z,y,u) = 0 is a perturbation of the system F(z,y) = 0 with

the perturbation term —pe added to the nonlinear portion of F(z,y). It is also obvious that

A

F(z,y,0) = F(z,y).
The following proposition relates the search direction (p, ¢) in Algorithm 1 to a perturbed
Newton'’s direction (Az, Ay).

Proposition 4.1 Let (z,y) be a strictly feasible pair and let p and g be defined by (2.15)
and (2.16). Then p and q satisfy

( xp ) - ( Az ) = —(F'(e,1)]"F(z,7,) (4.4)
Yq Ay

for the choice u = 0%1.

Proof: Notice that

F('z.y)(zvyal‘) = Fl(zv y)=

N e
» o o
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consequently, we have

Y X w
A where w = XYe — a%-‘ie. Thus AAz = 0. so Az = BTu, where u € R*™, Similarly,

Ay = ATy, where v € R™. Substituting Az and Ay into the third equation block of the

system and multiplying both sides by AY ~!, we obtain
AXY ' ATy = —AY '

Thus,
Ay = ATy = —AT(AXY ' AT 1 AY o,

It is now straightforward to verify from (2.16) that
Y'Ay = -Hw=gq.
Consequently, by 4 of Proposition 2.2,
XAz = —(XY) lw-Y'Ay = -H,w =p.

This completes the proof. | a

We can therefore view a primal-dual algorithm as a perturbed and damped Newton's
method. At the k-th iteration the iterate is obtained from the perturbed system l:"(x, Yy Bk) =
0. The sequence of the perturbation parameters {u«} converges to zero as z7 y, — 0. We use
the q.ualiﬁer damped because at each iteration the steplength is determined by formula (2.17)
in order to keep the iterates in the interior of the feasibility set. The positivity requirements
for £ and y in general prevent a full Newton step from being taken. It is well known that
taking full steps asymptotically is a critical ingredient for the Q-quadratic convergence of
Newton’s method (see Dennis and Moré [3, Corollary 2.3]).

We now rewrite Algorithm 1 in the following equivalent form of a perturbed and damped

Newton’s method.

[N
(W]



Algorithm 2 Given a strictly feasible pair (Zo,y0). For k =0,1,2,..., let
Tip1 = Tk + axAzk and Yis1 = Y + axlyk, (4.3)

where Az and Ay, are defined by (4.4), and ax by (2.17), and all the quantities involved
(including o and 7) are indezed by k.

To establish Q-quadratic convergence for Algorithm 2, we need to address the following

three issues:

1. Is the Jacobian matrix F'(z,y) nonsingular at optimality?

[V

. How fast must the centering direction - the perturbation controlled by x - be phased

out?

3. Can full Newton steps be taken asymptotically and at a rate that ensures quadratic

convergence?
The following lemma answers the first question.

Lemma 4.1 Let (z.,y.) be an optimal pair for the linear programs (1.1) and (1.2). Under

the assumptions of Theorem 3.2, the 2n x 2n mairiz

A 0
F'(z.,y.)=| 0 B
Y. X.

is nonsingular.

Proof: It can be shown that Assumptions (i) and (ii) of Theorem 3.2 imply that y. is a
nondegenerate vertex of the dual (1.2). Without loss of generality, we assume that the first
m components of z. are positive and consequently the remaining n —m components are zero.

Let
[z.]x [Yalmer
gt = : and yt =

(z]m [Yaln
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By our assumptions, .if‘ >0 and yF > 0.

Let A4, be the m by m submatrix of A consisting of its first m columns and Ao be the m by
n —m submatrix of A consisting of its last n —m columns. Clearly, 4, is nonsingular because
its columns form the optimal basis for the primal linear program (1.1). The same ordering
also leads to B = [By B,] where B, € R(n-m)x(n=m) i nonsingular and its columns form the

optimal basis for the dual linear program (1.2). Using the above introduced notation. we

have -
(A 4 0 0
, 0 0 B B
Fllz..y.) = (4.6)
0 0 Xf o
0 Yr 0 o ]
By examining blocks of this matrix. we can easily see that it is indeed nonsingular. a

Further examination of (4.6) reveals that Lemma 4.1 is sharp in the sense that F'(z.,y.)
will be singular if the number of nonzeros in z. (y-) is not m (n —m).

An answer to the second question is not hard to find. From standard analysis for Newton-
like methods, an O(]|F(z,y)||?) perturbation term does not destroy quadratic convergence.
In our context, this is equivalent to the requirement u; = O((z{ yi)?) since for any feasible
pair (z,y)

2y = ||XYelly = || F(z,y)l.

An answer to the third question requires further analysis. For the ease of notation, let
us denote the pair (z,y) by z € R?™. In a damped Newton method for F(z) = 0, if Az is
the full Newton step at the k-th iteration and ax is the steplength, then

Zkvl = 2k + Az =z + Az — (1 - ak)Azk.
From standard analysis,
lzk41 = 2]l < O(llzk = 2a11?) + 11 — cwell| Azl

Since

lAzxll = O(IF(z6)ll) = O(ll 2 = =),
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it is clear that if
Il — ax| = O(||zx = 2.]|),

then quadratic convergence will be achieved.
From (3.7), we see that the steplength a) depends on 7, o4 and an O(z¥y,) term. Since
zlyk = O(||z& — z.||), in order to ensure |1 — ai| = O(||zx — z.||), we see that it is sufficient

to have 1 — 7 and o4 be O(]|zx — 2.]|). If we take o% = O(zTy.), then we have
or = O(||zx — z.[|) and pi = O(||z¢ — 2.|%).

Moreover, we can easily enforce the requirement 1 — 7, = O(zfyx) = O(||zi — 2.])).
Now we are in a position to prove the following quadratic convergence theorem. Its proof

is basically a rigorous and detailed treatment of the above discussion. As a by-product, we

also obtain a local convergence result.

Theorem 4.1 Let {(zk,yx)} be generated by Algorithm 2. Assume (i) strict complemen-

tarity, (ii) z. is a nondegenerate vertez, and (iii) the choices of ox and 7 satisfy at each

iteration

0 < ok £ min(o,c1z7yx) and max(r,1— i) <m <1 (4.7)

where o € [0,1), 7 € (0,1) and ¢;,¢c; > 0. Then

1. whenever {(zx,yx)} converges to (z.,y.), it does so Q-quadratically, i.e., there ezist a

constant v > 0 such that for k sufficiently large,
l(@ks1, Y1) = (2o, )| < 7ll(Zh 36) = (225 )1 (4.8)

2. there ezists a number § > 0 such that whenever ||(zo, ¥0) — (z.,¥.)|| < 68, then {(zk,yx)}

converges to (z.,y.).

Proof: Again we use the notation z = (z,y). Alsolet é =(0...0 1...1)T € R?" where the
numbers of zeros and ones are both n. As mentioned in Section 2 after (2.17), the sequence

{zx} is always well-defined and remains strictly feasible.
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Following the standard analysis for Newton-like methods (see Dennis and Schnabe] [4].

for example), we have
Tkl T Ze = Zp = zo— a[F(2)] 7 E (2, k)
= [FGEOITHIF(z) = Fze) = F'(z¢)(z. = 2)] + (1 = au) F(zi) + agpaeé).
Therefore,
lzen =2l < NFEITE(22) = Flza) = Flza) (e = 20)]
+ L= ol [F(ze)l| + arpelle]]). (4.9)
Note zx = (z4,yx) is strictly feasible and fye = IE(ze)lly = || F(2k) - F(z.)|l;. There
exists 8; > 0 and ¢3 > 0 such that if llzk — z.]| < 6y, then
=l < callze — =] and | F(z0)] < caff — =, (4.10)

This follows from the fact that F(z) is continuously differentiable. Also note that F(z) is a

quadratic, hence there exists ¢, > 0 such that for any k
IE(z2) = F(z) = F'(2) (2 = z)|| < eqllz = =% (4.11)

In view of the continuity and nonsingularity of F’(z) at z., there exist 6, > 0 and cs >0

such that if ||z — z.|| < &, then
IE I < e (4.12)
In addition, there exist 03 > 0 and ¢s > 0 such that if zy satisfies ||zy — z.|| < 63, then
from (3.7)

(1 —7) — Orow + O(iyx)
1 = 6koi + O(zTyx)
< 2|1 = ) — 8ok + cozT il

[1 —-aix| =

< ep + Okcy + cs)zlyk.

Here we assumed that §; is sufficientiy small so that 1 — 6,0, — cez¥yr > 1/2 and (4.10)
holds. We also used the assumptions ox < ¢;zfyr and 1 — 7, < c2z7 yx. Using (4.10) and
noting 6, < 1, we have

11— ol < erflze — =], (4.13)
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where c7 = 2c3(c2 + ¢; + cs).
It follows from (4.7), (4.9), (4.10), (4.11), (4.12) and (4.13) that if z; satisfies

2k = z.|| < min(4y,$62,63),

then (4.8) holds with

7 = cs(ca + crcg + crcllell/n).
Inequality (4.8) implies that if {zx} converges to z., then it does so Q-quadratically. This
proves the first statement.

Now we only need to prove the second statement - the convergence of {z;}. Let
6 = min(éy, 62, 83,7/7)

| for some r € (0,1). If ||zo — z.]| < 4, then

llz1 = z.|| < llz0 = z.||* < rljz0 = =.||.

So ||z1 = z.]| £ ré < 8. Now we proceed by induction. This establishes the convergence of
{zk} to z.. a

In our numerical experimentation, we found that even for highly degenerate problems
the observed convergence was effectively Q-quadratic until the iterates got too close to a
solution and the singularity of the Jacobian matrix was encountered. This curious but

pleasing phenomenon is the subject of further investigation.

5 Concluding Remarks

The rich structure present in the primal-dual formulation has led us to establish some rather
strong convergence rate results.

No superlinear convergence results have been established so far for either primal or dual
interior point algorithms. In fact, Gonzaga and Todd (5] showed that an algorithm that takes
either primal or dual steps and reduces the Todd-Ye primal-dual potential function can not
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have an R convergence rate greater than one (independent of n). Thus from the viewpoint
of convergence rate, our results suggest that primal-dual algorithms should be preferred to
either primal or dual algorithms. Combined with the favorable numerical results obtained
by a number of authors (Choi et. al. (2], McShane et. al. (12] and Lustig et. al. [11]), this
preference for primal-dual algorithms seems to be well founded.

We have shown that for the class of primal-dual algorithms studied, approximate cen-
tering should be viewed as a globalization strategy for Newton’s method. Like other global-
ization strategies, it may improve the global behavior of the algorithm; but if not properly
implemented, it will destroy fast local convergence. This fact lends credibility to the be-
lief that polynomiality alone does not guarantee that local convergence rate properties have
not been compromised or that the algorithm necessarily is fast. The algorithms of Kojima.
Mizuno and Yoshise [8]), Monteiro and Adler [16] and Todd and Ye [20] possess polynomiality
but can not have fast @-convergence.

Our preliminary numerical experimentation has shown that even withoutlcentering the
damped Newton algorithms that take steps close to the boundary of the positive orthant
still have reasonable global behavior: although centering usually helps. This should not be
totally unexpected since we are applying the damped Newton's method to a mildly nonlinear
problem (see (4.2)).

One of the key components of this research is equation (3.7) which shows that in the
damped Newton’s method one can asymptotically make the steplength approach one at a
rate that guarantees the fast convergence of Newton’s method.

It seems to be difficult and costly, if at all possible, to ensure that the sequence {(zk, %)}
converges to (z.,y.) along the central path. Therefore, it is our belief that at this stage the
only viable strategy for designing a Q-superlinearly or @-quadratically convergent primal-
dual interior point algorithm is to phase out the centering step at the specified speed. The
effect of degeneracy on the quadratic rate of convergence and the development of a quadrat-

ically convergent practical algorithm are the subjects of current research.
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