On the Superlinear Convergence
of Interior Point Algorithms for a
General Class of Problems

Y. Zhang
R. A. Tapia
F. Porta

CRPC-TR90111
March, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892






On the Superlinear Convergence of Interior Point

Algorithms for a General Class of Problems *

Yin Zhang ! Richard Tapia *and Florian Potra §

March, 1990

Abstract

In this paper, we extend the Q-superlinear convergence theory recently devel-
oped by Zhang, Tapia and Dennis for a class of interior point linear programming
algorithms to similar interior point algorithms for quadratic programming and for
linear complementarity problems. Our unified approach consists of viewing all these
algorithms as the damped Newton method applied to perturbations of a general
problem. We show that under appropriate assumptions, Q-superlinear convergence
can be achieved by asymptotically taking the step to the boundary of the positive
orthant and letting the barrier (or path-following) parameter approach zero at a

specific rate.

Keywords: Interior point algorithms, Linear programming, Quadratic program-
ming, Linear complementarity problems, perturbed and damped Newton’s method, Q-

superlinear convergence.

*Research supported in part by NSF Coop. Agr. No. CCR-8809615, AFOSR 89-0363, DOE DEFGO05-
86ER25017 and ARO 9DAAL03-90-G-0093.

tDepartment of Mathematical Sciences, Rice University, Houston, Texas, 77251-1892

{Department of Mathematical Sciences, Rice University, Houston, Texas, 77251-1892

$Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242 .

1



Abbreviated Title: Superlinear convergence for interior point algorithms

1 Introduction

Consider the general nonlinear system

Mz + Ny—nh

F(z,y) = ( Xy

) =0, (z,9)20, (1.1)

where z,y,h,e € R, M,N € R"*" X = diag(z), Y = diag(y) and e has all components
equal to one.

We call the following set the feasibility set of problem (1.1):
= {(z,y): 2,y € R", Mz + Ny = h,(z,y) > 0}.

A feasible pair (z,y) € Q is said to be strictly feasible if it is positive. In this work we
tacitly assume that the relative interior of Q is nonempty, i.e., strictly feasible points
exist.

Problem (1.1) is sufficiently general to include linear complementarity problems,
quadratic programming problems and linear programming problems. We will now demon-
strate this fact. To begin with observe that if N = —1I, then this problem is the standard
linear complementarity problem (LCP). Moreover, the assumption that M is positive
semi-definite will be sufficient to guarantee that the algorithms under investigation pro-
duce well-defined iterates (Corollary 2.1).

Now consider the quadratic programming problem (QP)

minimize 'z + 1z7Qz
subject to Az =b, (1.2
z2>0,
where c,z € R*, b € R™, A € R™*"*(m < n) and has full row rank, and Q € R™*"
is symmetric. In Corollary 2.1, we will demonstrate that iterates produced by the algo-
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rithms under-investigation are well-defined if Q is positive semi-definite on the null space
of A.

The role that the positive semi-definiteness of Q on the null space of A plays within the
context of the quadratic program (1.2) is often misrepresented or confused. It therefore
merits further discussion. A well-known argument from convexity theory can be used
to show that, as long as (1.2) has at least one étrictly feasible point, then QP (1.2) is
also a convex program if and only if Q is positive semi-definite on the null space of A.
Hence, it seems reasonable to refer to this situation as convex quadratic programming.
However, recently, some researchers in this area have chosen to use this terminology to
describe the more restrictive situation where @Q is positive semi-definite on the entire
space. Consequently, in this work, we will not use the term convex quadratic program
and will always delineate the assumptions that have been made on Q.

Recall that when the QP (1.2) is also a convex program, i.e., Q is positive semi-
definite on the null space of A, the first order conditions are both necessary and sufficient
for optimality. The first-order conditions for (1.2) can be transformed into the form of
(1.1). To see this, let B € R(®™)*" be any matrix such that the columns of BT form a
basis for the null space of A. The first-order conditions for the quadratic program (1.2)
are (see Dantzig [2])

. Az -b .
ATA=Qz+y—-c | =0, (z,9) 20, (1.3)
XYe
where A and y are the dual variables. To eliminate the dual variables A from the above

system, we pre-multiply the second equation by the nonsingular matrix [AT BT)7. Notic-

ing that BAT = 0, we obtain

Ty _ -
A](ATA_Qz+y_c)=(AAA AQz y+c)).
B —BQz + By — Bc

0=

Since AAT is nonsingular, ) is uniquely determined once z and y are known. Removing
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the equation for A, we arrive at the following 2n-dimensional nonlinear system with

non-negativity constraints for (z,y)

Az -b
-BQz+ By—-Bc | =0, (z,y)>0. (1.4)
XYe ’

Clearly, (1.4) is in the form of (1.1) with

[re] v [a] =[]
M= , N= and k= . (1.5)
-BQ B Bc

When Q = 0, the quadratic programming problem (1.2) reduces to the linear pro-
gramming problem (LP)
minimize Tz
subject to Ar = b, (1.6)
z20.
Hence (1.2) also includes the linear program. However, because of the importance of
linear programming in optimization, we will state results for linear programming sepa-
rately; fully aware that they are special cases of quadratic programming. We have shown
that the framework of problem (1.1) is quite general.
It is well known (see [1] or [3, p.250]) that for the inequality constrained QP, i.e., in
(1.2) we have Az > b instead of Az = b, the first-order conditions for the QP can be

- formulated as a linear complementarity problem of dimension n +mwith N = -1,
and
—-AT
M = Q .
A 0

As was mentioned above, the positive semi-definiteness of M is sufficient to guarantee that
the algorithms under investigation produce well-defined iterates (Corollary 2.1). Observe

that M is positive semi-definite if and only if Q is positive semi-definite. Under the



assumption that Q is positive semi-definite, Megiddo [13] used the linear complementarity
problem formulation to show that central paths exist for the inequality constrained QP.

Our formulation (1.4) is for the equality constrained QP (1.2). We stress that no
comparison should be made between assumptions on Q for inequality constrained QP
and those for equality constrained QP. However, it is worth noting that we only need to
require Q to be positive semi-definite on the null space of A to have well-defined iterates
(see Corollary 2.1). This is in contrast to the assumption that Q is positive semi-definite
on the entire space as was assumed by a number of authors in their studies of similar
interior point algorithms for equality constrained quadratic programming (1.2) (see [17],
for example). In addition, it is not difficult to see that under the assumption that Q is
positive semi-definite on the null space of A, since F'(z, y) is nonsingular for all (z,y)>0
as shown in Corollary 2.1, there exists a central path for the quadratic program (1.2),

defined by
0

€

F(z,y):u( ),(:c,y)>0a.ndp>0.

The objective of this work is to analyze the asymptotic behavior of a general in-
terior point algorithm for solving problem (1.1). More specifically, we will study the
Q-convergence rate of this general algorithm. The issues of global convergence and com-
plexity are not of concern here.

Recently, Zhang, Tapia and Dennis (22, see Theorem 3.1] established a Q-superlinear
convergence theory for a class of primal-dual interior point algorithm for linear program-
ming. In this paper, we extend their result to the general problem (1.1) and therefore
extend the result to quadratic programming and linear complementarity problems. In
spite of its close connection to [22], we have made this paper self-contained.

We will use the notation:

min(v) = mip [o]: and max(v) = max[ol

for v € R, where [v]; denotes the i-th component of v.
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The paper is organized as follows. In Section 2, we describe a general interior point al-
gorithmic framework for (1.1). Then in Section 3, we present our superlinear convergence

rate result. Concluding remarks are given in Section 4.

2 Algorithm

It is now fairly well understood how a class of interior point algorithms can be viewed
as damped Newton methods and that the inclusion of the logarithmic barrier term (so-
called centering) can be viewed as perturbing the right-hand side of the Newton system.
Indeed, Zhang, Tapia and Dennis [22] focused on issues concerning how fast the damped
Newton method could approach the Newton method (i.e., step-length approach one), and
how fast the perturbation term (barrier parameter) should be phased out so that the fast
convergence of Newton’s method would not be compromised. Their work covered linear
programming applications. As previously mentioned, the objective of the present work
is to extend a particular nice part of their superlinear convergence theory to quadratic -
programming and linear complementarity problems. Qur vehicle for accomplishing this
objective is the use of the general problem (1.1). We assume that the reader is familiar
with the above algorithmic considerations and therefore present our algorithmic frame-
work with no further motivation or explanation.

Recall that F(z,y) is given by (1.1).
Algorithm 1 Given a pair (zo,y0) > 0. For k=0,1,2,..., do
(1) Choose o € [0,1) and 7 € (0,1). Set i = orzTys/n.

(2) Solve the following system for (Azy, Ayi):

F'(zk,yx) ( iz ) = —F(zr,ys) + ( #0 ) . (2.1)
k€



(8) Compute the step-length:

ap=min |1 T T ) (2.2)
*TN min(X; Az min(Y T A )| '

(4) Update: zi4y = zk + axAzi and Yes1 = Y + arAyk.

Notice that in Algorithm 1, we do not require that the starting point (zo,yo) be
feasible. Also notice that without the perturbation term uxe in the right-hand side of
(2.1), the search direction (Azi, Ayx) is the Newton step. We should expect that only in
rare cases would the full Newton step lead to a strictly positive iterate; hence we should
expect in most cases to have a; < 1 where a; is given by (2.2). The choice 7, = 1
corresponds to allowing steps to the boundary of the positive orthant and a loss of strict
feasibility. Therefore, it is natural to view Algorithm 1 as a perturbed and damped
Newton’s method. We see that if (2o, o) is in Q, then the iteration sequence {(zx,yx)}
will be strictly feasible. In the case of linear programming, there are no linear equations
in F(z,y) that involve both z and y. If (zk,yx) € §, then different step-lengths can be
used to update zx and yi and still retain strictly feasible (zx41,yk+1). This strategy has
been shown to be more efficient in practice (see Lustig, Marsten and Shanno [12], for
example). However, it will not affect our results since our analysis will show that as long
as 7 — 1 both step-lengths will converge to one.

Algorithm 1 covers or is closely related to a wide range of existing interior point
algorithms for linear programming, quadratic programming and linear complementarity
problems. In particular, it covers most of the existing primal-dual interior point al-
gorithms for linear programming as well as quadratic programming, including Kojima,
Mizuno and Yoshise [10], Todd and Ye [19], Monteiro and Adler [16, 17], Lustig [11], Gon-
zaga and Todd (4], Mizuno, Todd and Ye [14, 15]. Algorithms for linear complenientarity
problems that are covered by Algorithm 1 include Kojima, Mizuno and Yoshise [9, 8],
Kojima, Megiddo and Noma [5], Kojima, Megiddo and Ye [6], Kojima, Mizuno and
Noma [7].
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Although these algorithms have been motivated and presented in various ways in-
cluding path-following (homotopy or continuation), potential reduction or affine scaling
algorithms, most of them fit into the framework of the perturbed and damped Newton’s
method applied to the general problem (1.1). Due to the extensive activity in this area,
our list of references is not complete. For a more complete list of references, especially in
the cases of quadratic programming and linear complementarity problems, we refer the
reader to two recent survey papers by Ye [20, 21].

The following proposition gives a condition which guarantees that the iterates pro-

duced by Algorithm 1 are well-defined.

Proposition 2.1 The iterates produced by Algorithm 1 are well-defined if for any positive

diagonal matriz D € R™*", the matriz N — MD is nonsingular.

Proof: Notice that

F'(z,y) = [];l z : (2.3)

Since (zo, yo) is positive, the matrix

is nonsingular.’ Thus, the nonsingularity of F'(zo,yo) is equivalent to that of

0 N-MY'X,
Yo Xo

GF’(zo, yo) =

This latter matrix is nonsingular if and only if N — MYy !X, is nonsingular. By our

assumption, (z1,y1) is well-defined. An induction argument completes the proof. o

Corollary 2.1 The iterates produced by Algorithm 1 are well-defined for

1. the linear complementarity problem (N = —I) with M positive semi-definite,



2. - the-quadratic programming problem (1.2) with Q positive semi-definite on the null
space of A,

8. the linear programming problem (1.6).

Proof: We will verify that the condition in Proposition (2.1) is satisfied in the three
cases. Let D be any positive diagonal matrix.

For LCP, N = —I leads to N — MD = —(D~' + M)D. If M is positive semi-definite,
then N — M D is clearly nonsingular because D! + M is positive definite.

For QP, from (1.5)
—AD

B(I + QD)
Since N — M D is nonsingular if and only if (N — MD)D~! = ND~! — M is nonsingular,

we will prove the nonsingularity of

N-MD=

—A
B(D™!' + Q)

ND™'—- M=

Suppose (ND~! — M)u = 0 for some u € R*. Au = 0 implies u = BTv for some
v € R"™. Therefore, B(D™! + Q)u = B(D™* + Q)BTv = 0. If Q is positive semi-
definite in the null space of A, then B(D~! + Q)BT is positive definite. This leads to
v = 0 and consequently u = BTv = 0. So N — M D is nonsingular.

For LP, the conclusion follows immediately from the fact that Q = 0 is positive
semi-definite. w]

We should mention that we have stated Algorithm 1 in the current form purely for the
purposes of obtaining a unified theory and notational convenience. By directly applying
the perturbed and damped Newton method to the first order conditions for the quadratic
program (1.2), it is not difficult to see that an identical iteration sequence {(zx,ys)} will

be generated without eliminating the dual variable A and introducing the matrix B.



3 Superlinear Convergence

The literature contains numerous studies directed at investigating the convergence prop-
erties of interior point algorithms covered by or closely related to Algorithm 1. How-
ever, most of these. studies were concerned only with the issues of global convergence
and complexity. The issue of convergence rate, which is certainly important, has not
been thoroughly studied for many interior point algorithms. One of the few papers that
studied asymptotic behavior (local convergence) of interior point algorithms is Kojima,
Megiddo and Noma [5]. In their paper, Kojima, Megiddo and Noma proved that for
a class of complementarity problems, Q-linear, superlinear and quadratic convergence
can be achieved by interior point algorithms of the form of Algorithm 1. However, all
their convergence rate results were obtained under the restrictive assumption that the
Jacobian matrix F’(z,y) was nonsingular at the solution. In this section, we establish
a superlinear convergence theory for Algorithm 1 applied to the general problem (1.1).
Moreover, our theory does not require the nonsingularity of F'(z,y) at solutions.

It is satisfying that we are able to obtain a superlinear convergence rate without
the assumption of nonsingularity of the Jacobian matrix at the solution. In the case
of linear programming, this allows us to avoid restrictive nondegeneracy assumptions.
The motivation for this theory came from numerical experiments that demonstrated
superlinear convergence even for highly degenerate linear programs.

At the k-th iteration of Algorithm 1, let

_ _Tiyk/n
T = min(XiYe)

Since zfyk/ n is the average value of the elements of XiYie, it is clear that g > 1.

Theorem 3.1 Let {(zk,yx)} be generated by Algorithm 1 and (Zk, Yk) = (24, y.). Sup-

pose the following assumptions hold:
(i) strict complementarity,
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(ii) the sequence {ni} is bounded,
(iii) 7« —= 1 and o — 0,
(iv) there ezists p € [0,1) such that for k sufficiently large

Ac{ Ay 2 ~S(AL (X7 YD) Azk + A (XY Aws).

Then (z.,y.) solves problem (1.1) and the sequence {F(z,yx)} component-wise con-
verges to zero Q-superlinearly. Furthermore, the sequence {F(zi,yi)} is Q-superlinearly

convergent, i.e., for any norm

"F(ﬂ—'kﬂ, yk+1)” =0
| F(zx, yie)ll

Before we prove Theorem 3.1, we would like to comment on the assumptions of

lim sup
k—oco

Theorem 3.1. First, Assumption (iv) is not particularly restrictive since we will see later
that in the context of linear programming, quadratic programming with Q positive semi-
definite on the null space of A and linear complementarity problems with M positive
semi-definite, we have the stronger result that AzTAyr > 0 for (zx,yx) € Q. On the
other hand, the compatibility of Assumptions (ii) and (iii) may be a cause for concern.
It seems as if letting 7+ — 1 and o — 0 might force % — oo. However, our numerical
experience has shown this not to be the case for linear programming. In our numerical
studies with Netlib problems for linear programming, we let 7, — 1 and o — 0 and
always observed strict complementarity and bounded {7:}. While on occasion we saw
some rather large values for 7;’s, they eventually leveled off or actually started to decrease
as the iterates approached a solution. We did not observe continued growth in the values
of mi as our algorithm converged. Moreover, the observed convergence was clearly Q-
superlinear and a;y — 1. Of course, the behavior of {n:} varies with severai factors
including how fast {7} converges to one and {ox} to zero. We do not mean to imply
that unbounded {7} cannot occur. Instead, we feel that it appears to be more the

exception than the rule in linear programming. It still remains to be seen whether or
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not this same phenomenon exists in quadratic programming and linear complementarity
problems. There is no doubt that this topic merits further study.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.1 Under the assumptions of Theorem 3.1,

khjg ar = 1. (3.1)
Proof: Define at each iteration
pr = X;'Azi, and g, = Y, Ay (3.2)

At iteration k, from (2.1) and (2.3) we have
YiAzi + XiAyr = — Xy Yie + ppe,
or equivalently, recalling that ux = oxzfys/n (see Step (1) of Algorithm 1)
Pr+ @k = —e+ pi(XiYi) e = —e + 04 The, (3.3)
where T}, = (z{yx/n)(X:Yi)™1. Since n; = ITkellco, Assumptions (ii) and (iii) imply
Jim (p1 + i) = —e. (3.4)

Multiply both sides of (3.3) by (X;,Y;,)* and consider the square of the £,-norm. We
have the following equality

T T -1
I(XeYa)dpell? + 1(XiYe) 2 qull2 + 2A2T Ays = 2Ty (1 — 204 + o} m’; Yi € (Xk:'k) e) .
Note that
IXaYe)tmell} = Asf (X' Yi)Azk and [[(XeYe)daulld = AT (XaYi) Agi.

By Assumption (iv),

T T X.Y.)!
(1= KR pulf + I CGK5 ) < o (1~ 20+ o3 00 AN °).
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Dividing the-above inequality by z7y/n, we obtain

- - TT,
(1 = D)UIT ol + 1T qull?) < (1 = 204 + o224

). (3.5)

Assumption (ii) implies that {||T%||} is bounded above and {||T, }||} is bounded away
from zero. Therefore, from (3.5) both {p¢} and {qx} are bounded. It now follows from
(2.2) that {ax} is bounded away from zero.

Now assume [z.); > 0. Obviously,

_ e el ‘
1= klllg W = kll.fglo(l + ak[Pk]n).

This implies [pi); — 0, because {a)} is bounded away from zero. From (3.4) we have

[gk]i = —1. On the other hand, if [z.); = 0, then [y.}; > 0 by strict complementarity.

The same argument, interchanging the roles of p; and g, gives [gi]; — 0 and [pe)i = 1.

Therefore, the components of p; and g converge to either 0 or —1. Consequently, from

(3.2), (2.2) and 7 — 1 it follows that @z — 1. This completes the proof. m)
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let
Fi(z,y) =Mz + Ny—h and Fj(z,y) = XYe.

We will prove that both {Fi(zk,y:)} and {F;(zk,ys)}.component-wise converge to
zero Q-superlinearly. This will imply that {F(z,yx)} component-wise converges to zero
Q-superlinearly. It is not difficult to see that component-wise Q-superlinear convergence
of a vector sequence implies its Q-superlinear convergence.

First we show that {Fj(z«,yx)} component-wise converges to zero Q-superlinearly.
If Fi(2o,y0) = 0 (i.e., (Zo,y0) is a feasible starting point), then it is easy to see that
Fi(zk,yx) = 0 for all k. Therefore, we need only consider the case where Fy(zo,y0) # 0.
Note that Newton’s method solves linear equations in one step. If for some integer p > 0,

ap = 1, then we have F(zx,yx) = 0 for all k > p. Therefore, we need only consider the
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‘case where aj < 1 for all k. It is easy to see from Steps (2) and (4) of Algorithm 1 that
Fy(Zks1, Y1) = (Mzi + Nyi — h) + ax(M Az, + NAyi) = (1 — ai) Fi(zx, y2).

Since ax — 1, we have that { F1(z, yx)} component-wise converges to zero Q-superlinearly.
Next, we show that {Fy(z,y:)} component-wise converges to zero Q-superlinearly.

From Step (4) of Algorithm 1,
X'z = e+ aipr and Yy 'yiqn = e + aige.
Adding the above two equations, we have
X' Tear + Y gk = 26 + an(pr + ax)-
It follows from (3.4) and a; — 1 that
,}i{g(xl:lzkﬂ + Y ) =e. (3.6)

If [z.): = 0, then by strict complementarity, [y.}; > 0 and [yg41]i/[ys)i = 1. It follows
from (3.6) that [z44.1]i/[z]i — 0. Therefore, [z;]); — 0 Q-superlinearly. By the symmetry
of the relation (3.6), we have [yx]; — 0 Q-superlinearly if [y.]; = 0. Thus, all variables

that converge to zero do so Q-superlinearly. That is, for each index i either

tim Bk g ang i Bl

k=co [zi k= [ya]i
or
lim ——[zk“]i =1 and lim ——[yk"'l]" = 0.
k—oo  [z4]; k=oo [yili
In either case, for every index i,
lim [Zre1]ilyrr)i lim [Xut1Yirreli _ 0. @6

k=oo [zililye)i k= [XiYiels
We have proved that {[X,Yie];} converges to zero Q-superlinearly for every index :.
As was mentioned above, the component-wise Q-superlinear convergence of {F(z4,y:)}

implies its Q-superlinear convergence. This completes the proof. o
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A key idea in the proof of Theorem 3.1 can be traced back to a work by Tapia in
1980 [18] In that paper, Tapia pointed out [18, Theorem 3] that an algorithm which
at each iteration satisfies the Taylor linearization of the complementarity equation has
the property that the variables that converge to zero do so Q-superlinearly. This result

assumed strict complementarity and step-length one. Observe that (3.6) is equivalent to
XiYee + Yi(zi+1 — zk) + Xi(yrs1 — y&) — 0.

We see that the Taylor linearization of complementarity is satisfied asymptotically in our
situation.

The following theorem deals with the Q-superlinear convergence of Algorithm 1 ap-
plied to linear complementarity problems, quadratic programming and linear program-

ming.

Theorem 3.2 Let {(z,yx)} be generated by Algorithm 1 and (zx,ys) = (2.,.). Under
Assumptions (i)-(iii) of Theorem 3.1, if (z,,y,) € Q for some p, then (z.,y.) sovies prob-
lem (1.1) and the sequence {F(zi,yx)} component-wise converges to zero Q-superlinearly

for the following three cases:
1. the linear complementarity problem (N = —1) with M positive semi-definite,

2. the quadratic programming problem (1.2) with Q positive semi-definite on the null
space of A,

3. the linear programming problem (1.6),

Proof: We need to prove that Assumption (iv) of Theorem 3.1 is satisfied for each of the

above three cases. Observe that for all £ > p we have (zx,yx) € 2 and MAz,+NAy, =0

(see (2.1)). It suffices to prove that uTv > 0 for all u,v € R" satisfying Mu + Nv = 0.
In the first case (N = —I), Mu + Nv = 0 is equivalent to v = Mu. Hence uTv =

uTMu > 0 because M is positive semi-definite.
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In the second case (see (1.5)), Mu+ Nv = 0 is equivalent to Au = 0 and BQu = Bv.
Using the representations u = BTu, and v = ATv, + BTy,, where v; € R™ and Uz, v €
R"™™, and noticing that AT L BT, we have uTv = ul BBTv,. Moreover, BQu = By is
equivalent to BQBTu; = BBTv,. Hence, if Q is positive semi-definite in the null space
of A, then

uTv = uI BB Ty, = ug(BQBT)ug > 0.

The third case follows immediately from the fact that @ = 0 is positive semi-definite.
a

4 Concluding Remarks

The generality of problem (1.1) and the perturbed and damped Newton’s method view-
point have enabled us to analyze a class of interior point algorithms for linear pro-
gramming, quadratic programming and linear complementarity problems in a unified
approach.

We developed a Q-superlinear convergence theory that does not assume any infor-
mation on the Jacobian matrix at the solution. This theory was used to establish Q-
superlinear convergence for a class of interior point algorithms for linear programming,
quadratic programming (with Q positive semi-definite on the null space of A) and positive

semi-definite linear complementarity problems.
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