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If a man will begin with certainties,

he shall end in doubts;

but if he will be content to begin with doubts,
he shall end in certainties.

FRANCIS BACON,

Advancement of Learning
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Abstract

This work introduces the concept of deterministic annealing (DA) as a useful
approach to clustering and other related optimization problems. It is strongly
motivated by analogies to statistical physics, but is formally derived within in-
formation theory and probability theory. This approach enables escaping local
optima that plague traditional techniques, without the extremely slow schedules
typically required by stochastic methods. The clustering solutions obtained by
DA are totally independent of the choice of initial configuration.

A probabilistic framework is constructed, which is based on the principle of
maximum entropy. The association probabilities at a given average distortion
are Gibbs distributions parametrized by the corresponding Lagrange multiplier
B, which is inversely proportional to the temperature in the physical analogy.
By computing marginal probabilities within the framework, an effective cost is
obtained, which is minimized to find the most probable set of cluster representa-
tives at a given temperature. This effective cost is the free energy in statistical
mechanics, which is indeed optimized at isothermal, stochastic equilibrium.

Within the probabilistic framework, annealing is introduced by controlling the
Lagrange multiplier 3. This annealing is interpreted as gradually reducing the
“fuzziness” of the associations. Phase transitions are identified in the process,
which are, in fact, cluster splits. A sequence of phase transitions produces a
hierarchy of fuzzy-clustering solutions. Critical § are computed exactly for the

first phase transition and approximately for the following ones.
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Specific algorithms are derivable from the general approach, to address differ-
ent aspects of clustering in the large variety of application fields. Here, algorithms
are derived, and simulation results are presented for the three major classes,
namely, hard clustering, fuzzy clustering, and hierarchical clustering. From the
experimental results it appears that DA is substantially superior to traditional
techniques.

The last part of the work extends the approach to deal with a larger fam-
ily of optimization problems that can be reformulated as constrained cluster-
ing. A probabilistic framework for constrained clustering is derived based on the
principle of maximum entropy. It is shown that for our annealing purpose, the
constraint can be directly applied to the free energy. Three examples of con-
strained clustering are discussed. Mass-constrained clustering is formulated and
yields an improvement of the clustering procedure. The process is now inde-
pendent of the number of representatives and their multiplicity in the clusters.
Secondly, the travelling salesman problem (TSP) is reformulated as constrained
clustering, yielding the elastic net approach. A second Lagrange multiplier is
identified, which is used to obtain a more powerful annealing method. Finally,
self-organization of neural networks is shown to be closely related to TSP, and a
similar annealing method is suggested. A fuzzy solution is sought to obtain the

optimal net for a given training data set.



vii

Contents

Acknowledgements
Abstract

1 Introduction

1.1 WhatisClustering?. . . . . ... ... .. ... ...,
1.2 Traditional Methods . .. ... ...................
1.3 Stochastic Relaxation . . . ... ...................
1.4 Deterministic Annealing - Motivation . . . ... .. ........
1.5 Contributions of This Thesis . . . . .. .. ... ..........
1.6 Notes. . . . v i it ittt e et e e e e e e e e e e e

2 A Probabilistic Framework for Clustering

2.1 Association Probabilities by Maximum Entropy .. .. ... ...
2.2 The Free Energy as Effective Cost . . . . ... ... ........
23 Local Optimum . . .. .. ... .. ... ...ttt
24 Thewv-thLawDistortion . . .. ...................
2.5 A Note on Maximum Likelihood . . . . . . ... ... ... ....

3 vAnnealing and Phase Transitions
31 Assumptions. . . . . . .. it ittt e e e e e
32 Anmnealing . ... ... ... e e e

iv

O 3 O O N = =

11
11
13
16
17
18



viii

3.3 Hard-Clustering Results . ... ................... 22
3.4 Phase Transitions and Hierarchical Clustering . . ... ... ... 24
3.5 Hierarchical-Clustering Results . . . ................ 31
3.6 A Note on the Applications .. ................... 31
4 Optimization by Constrained Clustering 36
4.1 Constrained Clustering . . . . ... .. ............... 36
4.2 Mass-Constrained Clustering . . . . . ... ............. 39
4.3 The Travelling Salesman Problem . . . ............... 43
44 Self-Organization . . ......................... 49

5 Future Directions 53



List of Figures

3.1
3.2
3.3
4.1
4.2
4.3
4.4

Hard clustering by basic ISODATA vs. deterministic annealing . . 24

Clustering solutions at different phases . . .. ... ........ 32
Phase diagram for the annealing process . . ... ... ...... 34
Nonconstrained vs. mass-constrained clustering . ... ... ... 42
TSP: The ten-cities problem solved by DA . . . .. .. ... ... 48
TSP: The DA result for the (first) fifty-cities problem . . . . . .. 48

Self-organization of a linear network of ten units . . . . ... ... 52






Chapter 1

Introduction

1.1 What is Clustering?

Clustering can be informally stated as partitioning a given set of data points into
subgroups, each of which should be as homogeneous as possible. The problem
of clustering is an important optimization problem in a large variety of fields,
such as pattern recognition, learning, source coding, image and signal process-
ing. The exact definition of the clustering problem differs slightly from field to
field, but in all of them it is a major tool for the analysis or processing of data
without knowledge of a priori distributions. In pattern recognition, clustering
helps the discerning of the underlying structure of the distribution, and identi-
fying natural classes or components of the data [6][20]. In learning, clustering
is usually related to unsupervised learning, where it groups together input data,
producing a smaller number of representatives [25] which may then be dealt with
by a supervised learning scheme [6]. In source coding, clustering is mainly used
for vector quantization, or minimum distortion representation of the data by a
small number of quantization levels [12](13] (for a review of vector quantization
for image coding see [30]). In image and signal processing there are many diverse
applications of clustering, from the obvious image segmentation [19][24][42][23],



to adaptation to nonstationary signals via approximation by piecewise stationary
signals, which requires appropriate partitioning of the signals (for example, [38]).

The clustering-problem statement is usually made mathematically precise by
defining a cost (energy) criterion to be minimized. The actual criterion is chosen
according to the application. An important example, which is by far the most

extensively used, is the sum of squared distances cost,

2> |z -yl

Jj z€Cj
where C; is the j-th cluster, represented by the vector y;. Virtually all cost
functions are not convex, and have several local minima [14]. Thus, clustering is
a nonconvex optimization problem. While exhaustive search will find the global
minimum, it is extremely impractical for all nontrivial and reasonably large data

sets.

1.2 Traditional Methods

As clustering is important in many fields, methods for clustering have been sug-
gested in different disciplines. In the communications or information-theory lit-
erature, an early clustering method was suggested for scalar quantization, which
is known as the Lloyd algorithm [27] or the Max quantizer [28]. This method
was later generalized to vector quantization, and to a large family of distortion
functions [26]. . The resulting algorithm is commonly referred to as the general-
ized Lloyd algorithm (GLA), or the Linde-Buzo-Gray algorithm (LBG). In the
pattern-recognition literature, the ISODATA algorithm [1] was proposed, which
is also known in its sequential version as the k-means algorithm. Later, fuzzy
relatives to these algorithms were derived [7][2].

The main principles in the above methods are identical. Let us describe the
basic nonfuzzy algorithm, using the terminology of LBG. We shall assume at this
point that the number of clusters is given. Let d(z,y) be a distortion measure,



i.e., the distortion introduced by representing the vector z by the vector y. For

example, the squared distance distortion measure is
d(z,y) = |z —y|*.
The total distortion for a given distortion measure is

D=3 ¥ daw). (1)
J =z€Cj
Basic Nonfuzzy Algorithm
1. Select an initial configuration Y° = {y2}, n = 0.

2. Classify each point with the “nearest” representative, i.e.,

zeC; if d(z,y]) < d(z,y5) Vk.

3. Compute new representatives satisfying the “centroid condition”

Y dz,y) < Y d=zy) Wy

z€Cj z€C;
4. Check convergence to stop.
5. Increment n; go to 2.

Convergence to a local minimum can be easily proved. Each iteration consists
of step 2 (the nearest neighbor rule) and step 3 (the centroid rule). Both steps can
only decrease the total distortion (1.1), or not change it at all. If the distortion is
unchanged by the iteration, then the process has converged. Since the distortion
is decreased at each step, and there are a finite number of possible partitions, the
process is convergent in finite time.

However, the resulting local minimum is not necessarily the global minimum.
In fact, the result depends directly on the choice of initial configuration. Many
heuristic additions to the basic algorithm, as suggested in the literature, relate



to this fundamental shortcoming, either directly or indirectly. The distortion at
local minima, where traditional methods get trapped, may be considerably higher
than the distortion at the global minimum, as will be shown in the simulation
results section.

Fuzzy relatives of the previous methods have been suggested [7][2] to overcome
problems of overlapping clusters. The partition of the overlapping region by a
decision boundary distorts the true form of the underlying cluster, and shifts the
representatives away from the true centroid of the distribution. In cluster analysis
applications these are exactly the parameters one wants to estimate.

Fuzzy methods define clusters as fuzzy sets; i.e., each data point has partial

membership in different clusters. The fuzzy distortion is
Dy = Z Eu;jd(z’ Yi)s
3 z
where u; is the partial membership of data point z in cluster C;, and

Zu,j =1.
J

The fuzzy algorithm consists of optimizing over the representatives and the par-
tial membership distributions. If the parameter g took the value 1, then Dy could
be interpreted as an average distortion, where the contribution of each data point
is weighted according to its partial membership in the cluster. However, in this
case the solution will always be nonfuzzy, as it will be advantageous to assign
each point fully to the nearest representative. In order to enforce fuzzy solu-
tions, q takes values greater than one, and is normally viewed as controlling the
“fuzziness” of the solution. Two objections can be made at this point. First, the
distortion function modification is arbitrary and is not directly justified in terms
of the application. Secondly, the cost lost its appealing interpretation as average
distortion, as the weights no longer sum up to one.

Fuzzy clustering methods can also be shown to converge to a local minimum

[2][43], and also suffer from the plague of nonglobal minima.



To summarize, we briefly reviewed some basic traditional clustering techniques
and identified a fundamental shortcoming, namely, the tendency to be trapped
in local minima, and the dependence on the choice of initial configuration. We

next consider more recent methods that offer means to escape local minima.

1.3 Stochastic Relaxation

The observation of annealing processes in physical chemistry motivates the use
of similar concepts to avoid local minima of the distortion. Certain chemical
systems can be driven to their low-energy states by annealing, which is a gradual
reduction of temperature, spending a long time at the vicinity of the phase tran-
sition points. In the corresponding probabilistic framework, a Gibbs distribution
is defined over the set of all possible configurations, and assigns higher proba-
bility to configurations of lower energy. This distribution is parametrized by the
temperature, and as the temperature is lowered, it becomes more discriminating
(concentrates most of the probability in a smaller subset of low-energy configu-
rations). At the limit of low temperature it assigns nonzero probability only to
global-minimum configurations.

A known technique for nonconvex optimization is stochastic relaxation or
simulated annealing [22][47], based on the Metropolis algorithm [29] for atomic
simulations. A sequence of random moves are generated and the decision to
accept a move depends on the probability of the resulting configuration. More
specifically, given a cost (energy) function E(v), define the Gibbs distribution

over the set of states {v;} as

P(v;) = Z_k e—PE(w)"

Obviously, states of lower energy have higher probability, and as B is increased,
more probability is concentrated at a smaller subset of low-energy states. Now,

let v(") denote the state at the n’th iteration. By a random step we generate a



new state w, and let
g= P(w) — o—BAE
P(v(“))

control the probability of accepting w. The decision is random according to
P(v™*Y) = ) = min(g, 1).

Thus, if w is of lower energy, it is accepted, while if it is of higher energy, it is
accepted in probability g. Note that for finite S there is always some positive
probability of escaping a local minimum. Annealing is obtained by gradually
increasing f.

This is a powerful approach, and has been tried with many nonconvex opti-
mization problems, including vector quantization [3][49]. However, one must be
very careful with the annealing schedule, the rate at which the temperature is
lowered, as the system has to be kept close to stochastic equilibrium. In their
work on image restoration, Geman and Geman [11] have shown that in theory,
convergence in probability to the global minimum can be achieved if the schedule
obeys § o logn, where n is the number of the current iteration. Cooling sched-
ules are also analyzed in [18]. Such schedules are not realistic in many (if not

most) applications.

1.4 Deterministic Annealing - Motivation

As its name suggests, deterministic annealing tries to enjoy the best of both
worlds. On the one hand it is deterministic, meaning that we do not want to
be wandering randomly on the energy surface, while making some incremental
progress on the average, as is the case for stochastic relaxation. On the other
hand, it is still an annealing method and aims at the global minimum, instead of
going directly to a near local minimum.

Deterministic annealing can be intuitively understood as follows. Instead of

making noisy moves on the given energy surface, we “incorporate” the noise into



the energy function. We derive a sequence of effective energy functions that are
parametrized by the temperature, the level of the noise. These effective cost
functions will be very smooth at low 3, where even very large barriers can be
easily traversed, and as f is increased they become more ragged and converge to
the original energy at § — oco. In fact, at 8 = 0 the cost function will usually be
convex, so that the global minimum of this function is easily obtained. Thus the
deterministic annealing approach can be viewed as locating the global minimum
at f = 0, and tracking the minimum while gradually increasing B, by using
conventional convex optimization methods at each temperature.

This is an intuitive description of the concept of deterministic annealing. The

mathematical derivation of the approach is an important part of this work.

1.5 Contributions of This Thesis

The concept of deterministic annealing

A primary contribution of this thesis is the introduction of the concept of deter-
ministic annealing as a useful approach to clustering and other related optimiza-
tion problems. This approach enables escaping nonglobal minima without the

extremely slow schedules typically required in stochastic relaxation.

A probabilistic framework

A probabilistic framework is derived, which is based on principles of information
theory. In particular, probability distributions are obtained using the principle
of maximum entropy. These are Gibbs distributions, which are parametrized by
the temperature. By computing marginal probabilities within this framework, we
obtain an effective cost, the free energy. This effective cost is minimized to find

the most probable set of representatives at a given temperature.



Annealing, phase transitions and hierarchical clustering

Within the probabilistic framework, the annealing process is obtained by control-
ling the Lagrange multiplier . Phase transitions are identified in the process,
which in our formulation are interpreted as cluster splits. A sequence of phase
transitions produces a hierarchy of fuzzy clustering solutions. Critical tempera-
tures are computed exactly for the first phase transition, and approximately for

the following transitions.

Specific algorithms derived from the approach

From the general approach, specific algorithms are derivable in a straightforward
manner. Contributions are thus made to virtually all aspects of clustering en-
countered in the different fields of application. In particular, hard clustering,
fuzzy clustering, and hierarchical clustering are explained, and simulation results
are presented. Deterministic annealing is shown to be substantially superior to
traditional techniques, and is totally independent of the choice of initial configu-

ration.

Extension to a larger family of optimization problems

It is shown that a family of association problems can be formulated as constrained
clustering. Such a formulation allows the application of deterministic annealing
to solve them. First, the framework for constrained clustering is derived based
on the principle of maximum entropy. It is then shown that for our annealing
purposes, the constraint can be directly applied to the free energy.

Constrained clustering formulation of three examples

First, the mass-constrained clustering problem is formulated and an improvement

of the clustering procedure is obtained. The annealing process is now independent



of the number of representatives and their multiplicity in clusters. Secondly,
the travelling salesman problem (TSP) is reformulated as constrained clustering
yielding the elastic net (EN) approach. Within our framework a second Lagrange
multiplier is identified, which is also used to control the process, resulting in a
more powerful annealing method. Finally, self-organization of networks is shown
to be closely related to TSP. A similar annealing method is suggested here,b within
the corresponding constrained clustering formulation. A fuzzy solution is sought

to obtain the“optimal” net for a given training set.

1.6 Notes

Fuzzy vs. Probabilistic Framework

In fuzzy-sets theory, the distinction between association probability and partial
membership is emphasized. The confusion may arise because both are normal-
ized distributions that sum up to one. The probabilistic framework implies that
each element belongs fully to a given set as a realization of an appropriate ran-
dom variable, with the given underlying association probability. Fuzzy sets, on
the other hand, consist of elements that belong to them at different degrees of
membership.

In this work, the framework is fundamentally probabilistic. However, fuzzy-
sets terminology will be used frequently. The reasons are that sometimes this
seems to convey more intuition, and more importantly, this makes explicit the
contribution to the field of fuzzy clustering.

To make this terminology mathematically correct, let us specify the meaning
of our “fuzzy” terms and their relation to the probabilistic framework. We shall
have probability distributions for associating each point with different clusters.
These clusters are regular (nonfuzzy) sets whose contents will be the result of the
realizations of all the corresponding random variables. It is, nevertheless, very
convenient to define fuzzy clusters, where each data point’s degree of membership
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in the fuzzy cluster is exactly its probability of belonging to the corresponding
nonfuzzy cluster. These fuzzy clusters are indeed fuzzy sets by definition. At the
nonfuzzy limit, each point belongs fully to a specific cluster. If the associations
become fuzzier, each point is less clearly associated with a specific fuzzy cluster.
This reflects the informal relation between the “degree of fuzziness” and the
degree of uncertainty, which in our probabilistic framework we shall measure by
the entropy.

Hereafter, when a fuzzy term is used with respect to a cluster, it should be

given the above interpretation of the fuzzy cluster.

References for the material covered

All the material presented in this thesis appears in a number of journal papers
(either published or to be published), [32](33][34](35]. They, however, have been
edited here to produce a more fluent style, by taking a more tutorial approach,
and by eliminating overlapping parts that were necessary to make the papers

self-contained.
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Chapter 2

A Probabilistic Framework for
Clustering

2.1 Association Probabilities by Maximum En-

tropy

Our point of departure in defining a probabilistic framework for clustering will
be that each data point will belong to each cluster in probability. This viewpoint
is much in the spirit of fuzzy clustering, where each data point has partial mem-
bership in clusters (see note in the introduction). The traditional framework for
clustering is the marginal special case where all association probabilities are either
zero or one. In the pattern recognition literature this is called “hard” clustering,
as opposed to the more recent (“soft”) fuzzy clustering methods.

Assuming some underlying probability distribution, we may consider the ex-

pected distortion (energy)
E=YY Pz € C;)d(z,;), (2.1)
z

where d(z,y;) is the distortion measure for representing data point z by the

vector y;, and P(z € Cj) is the probability that z belongs to the cluster of
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points represented by y;. Since we have no prior knowledge on the association
probabilities, we apply the principle of maximum entropy to estimate them.

The principle of maximum entropy was suggested by Jaynes [21] as a general
statistical inference procedure. This principle remains controversial to this very
day because of its informal justification (or at best, axiomatic derivation [44]).
This controversy has its roots in the intuitive (or axiomatic) equivalence between
entropy and uncertainty. Nonetheless, it is undisputed that it is successfully ap-
plied in a great variety of fields. We shall regard entropy as the ultimate measure
of uncertainty, and shall simply apply entropy maximization to our problem.

The principle of maximum entropy: Of all the probability distributions
that satisfy a given set of constraints, choose the one that maximizes the entropy.
The informal justification is that while this choice agrees with what is known (the
given constraints), it maintains maximum uncertainty with respect to everything
else. By choosing another distribution satisfying the constraints, we reduce the
uncertainty and therefore implicitly make some extra restrictive assumption.

Hence, to determine the association probabilities at a given expected distor-
tion, we maximize the entropy subject to the constraint (2.1). For the time being
we shall make the assumption that the set of representatives Y = {y;} is fixed.
This assumption is not realistic as we intend to optimize over this set, and it will
be discarded later. For a fixed Y, we make the reasonable assumption that the
association probabilities of different data points are independent. The entropy is
thus

H=-Y 5 Pz€C;)logP(z € C)). (2.2)

As is well known, the probability distributions that maximize the entropy under

an expectation constraint are Gibbs distributions. For the constraint (2.1) we get

e —Bd(z.y;)

P(zeCj)= Z

: (2.3)
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where Z_ is the partition function
Z, = Z e~ Pl w) (2.4)
k

The parameter B is the Lagrange multiplier determined by the given value of E in
(2.1). In our physical analogy f is inversely proportional to the temperature. At
this point we can get a first glimpse of the annealing procedure to be described
later. Note that decreasing the expected distortion is equivalent to increasing
B. This Lagrange multiplier will be conveniently used to control the annealing
process, and to drive the distortion down. Also consider the effect of 8 on the
association probabilities. At 8 = 0, these are uniform distributions; i.e., each
data point is equally associated with all clusters. We have thus extremely fuzzy
associations. By increasing B we reduce the fuzziness, as the distribution becomes
more discriminating. At 8 — oo we get hard classification, and each data point
is assigned to the nearest representative with probability one (or more precisely,
is uniformly associated with the set of equidistant nearest representatives). This
is the condition in which traditional techniques work. It is easy to visualize how
the system in this case cannot “sense” a better optimum farther away, as each
data point exercises local influence only on the nearest representative. On the
other hand, by starting at low B, and slowly increasing it, we start with each data
point equally influencing all representatives, and gradually localize the influence.
This gives us some intuition as to how the system senses and settles into a better

optimum.

2.2 The Free Energy as Effective Cost

Let us now discard our impossible assumption that the representatives set Y
is fixed and given, and extend our derivation to include optimization over Y.
Instead of considering the association probability of a data point, we consider the

probability of an entire instance. An instance of the system is given by a set of
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representatives Y = {y;}, and a partition via the set of associations V = {v,,},

, . .;
vzj={ 1 ifz€C; (2.5)

0 otherwise.

where

With every instance we associate a distortion
D(Y,V) =33 v;d(z,y;), (2.6)
T J

which is the distortion of this specific, hard-clustering solution. To estimate the

instance probability distribution at a given expected distortion

E=(D(Y,V)) = ‘Z‘; P(Y,V)D(Y,V), (2.7)

we apply the principle of entropy maximization subject to the constraint (2.7).
The resulting distribution is
e=BD(YV)

Z e-BD(Y'\V')*
Yy, v

P(Y,V) =

(2.8)

Note that the representatives y; are continuous random variables. We shall avoid
going into the ailments of entropy in the continuous case, and shall state that
for our purpose Y could have been finely discretized and the integral replaced by
summation.

The most probable instance is the one that maximizes the probability in (2.8),
i.e., the instance of smallest distortion. This is the result one would seek if one
wanted the optimal, hard-clustering solution for the training set. However, we
may be more interested in estimating the most probable set of representatives, and
also in generalizing from the given set of training samples. Consider, therefore,

the following marginal probability

PY)= ;P(Y, V), (2.9)
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where the summation is performed over all legal association sets. A legal asso-
ciation set V defines a partition, and is such that each data point is assigned to

ezactly one cluster. By using (2.6) and then (2.4), we obtain the identity
Z e~BDYV) HZ ePdlzw) — H Z.(Y) = Z(Y). (2.10)
\ 4 z k T

Z(Y) will be called here the total partition function for the given representatives
set, and is indeed derivable by the independent associations assumption made in
the previous section.

The marginal probability of (2.9) now becomes
Z(Y)

Yl
This can be rewritten in an explicit Gibbs form
e—BF ()
P(Y)= e FFTD (2.12)
Y'
where
F(Y) = _% log Z(Y). (2.13)

F as defined here is exactly the free energy in our statistical mechanics analogy.
Maximizing the marginal probability P(Y) in (2.12) requires minimizing the free
energy F. This is therefore our effective cost to be minimized a;t a given . Note
that the free energy is exactly what is minimized to obtain isothermal equilibrium
in statistical physics. Thus, on the one hand we have the distortion D, which
is minimized to obtain the optimal, hard-clustering solution for the training set.
On the other hand, at a given 8, we have an effective distortion, the free energy
F, which is minimized to obtain the most probable set of representatives and the
optimal “fuzzy” solution. Moreover, for 8 — oo, both D and F are minimized by
the same Y, which is given probability one. Thisis easily seen by observing that at
the limit, P(Y,V) takes nonzero values only at global minimum configurations.
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The marginal probability P(Y) can obviously take nonzero values only at the
same values of Y. In this perspective, solving the hard-clustering problem for the

training set is a special case of the second problem which is parametrized by £.

2.3 Local Optimum

In the previous section we derived an effective cost to be minimized to find the
most probable representatives set Y. This cost is the free energy (2.13), which
we rewrite here explicitly in terms of a given distortion measure by using (2.4)
and (2.10):

F= -% Y log (; e-"‘(”ﬂ*)) . (2.14)

The set Y of vectors that optimizes the free energy satisfies

0
—F=0, Vj 2.15
9; f] (2.15)

where this is shorthand notation for differentiation with respect to each com-
ponent separately, or a gradient with respect to y;. Differentiating (2.14) we

obtain

S P(e € C)pd(@s) =0, (2.16)

where P(z € Cj) is the association probability as given in (2.3),(2.4). Equiva-
lently, after normalization we get

( 'az—jd(zv Y;) ).‘i =0, (2.17)

where the expectation is over the distribution of training samples in C;. Note
that if we could interchange the expectation and the differentiation operators
in (2.17), we would get that y; minimizes the average cluster distortion, which
is a fuzzy formulation of the “centroid” condition in LBG [26]! However, the
probability distribution over which we perform the expectation depends on y;
in general. There are two special cases where it does not. The first is 8 = 0,
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which yields the uniform association distribution. The second is § — oo, where
the distribution is piecewise constant (a region of 0 and a region of 1); i.e., its

derivative vanishes almost everywhere, so

. OF 0
‘}g{}o% = > d(z,y;)- (2.18)

J z€C;j

The LBG algorithm is indeed a method for solving (2.17) at § — oco. At one
step of the iteration it is assumed that the probabilities are locally constant, and
the “centroid” condition (2.18) is enforced. The other step consists of checking
to see if any of the associations moved from a region of one to a region of zero,
or in other words, reclassifying the data set. This illustrates how our proposed
approach is a generalization of traditional approaches, and how it converges to
them at the limit of 8 — oo. This issue will be further discussed in the next

chapter, within our treatment of annealing.

2.4 The v-th Law Distortion

In this section we apply the general results to the important example of the v-th

law distortion measure
d(z,y) = 3_l=(i) - y()I", (219)

which is the v-th power of the [, norm. The squared distance distortion, v = 2, is
apparently the most extensively used distortion measure, and will be particularly
discussed here.

The necessary condition for minimizing the free energy (2.16) or (2.17) for the

i-th component of the j-th vector becomes

P(z € Cj)|=(2) — y;(i)"" =
{=l=()<u; ()}
P(z € Cj)l=(i) — y5(d)" ™" (2.20)
{==()>45 ()
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This shows that the optimal y; is the cluster’s symmetry (or antisymmetry) point
of the (v — 1)-th moment.
In the case of the squared-distance distortion, (2.20) is rewritten Vi as

2_P(z € Cj)(z—y;) =0, (2.21)

or in the form of

- Ezzp(ze CJ)
¥i= Zzp(zecj) ’

Each representative is interpreted as the center of mass of the fuzzy cluster, or the

(2.22)

average over all data points, where to each data point we assign its relative weight
in the cluster. This is a generalization of the center-of-mass condition in basic
ISODATA [1], which is the centroid condition of LBG for the squared-distance
distortion. Here also, the basic-ISODATA center-of-mass condition is obtained
from (2.22) at 8 — oo

lim y; = 1 > =z, (2.23)

p—oo n; z€Cj

where n; is the population of (number of data points in) the cluster.
It is also worth noting that in the squared-distance distortion case, the asso-

ciation probabilities take the Gaussian form

e-B'z-yj P

P(z €Cj) = 7

(2.24)

2.5 A Note on Maximum Likelihood

The relation between some of the above results and maximum likelihood estima-
tion of parameters in density mixtures should be discussed at this point. Note,
for example, that maximum likelihood estimation of means in normal mixtures
often uses fixed-point iterations based on (2.22) and (2.24) [6][20]. To focus on
the distinction between the approaches, recall that we did not make any assump-
tion on the data distribution. The association probabilities were derived from the
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distortion criterion to be minimized. If the sum of squared distances distortion
is used, these probabilities become Gaussian. If the data happen to be a normal
mixture, it may be intuitively satisfying to learn that we wind up doing maximum
likelihood estimation (with the advantage of using annealing to avoid nonglobal
minima as will be shown in the next chapter). While it may be reasonably ar-
gued for certain clustering problems in pattern recognition, in particular cluster
analysis of mixtures, that selecting a distortion function is equivalent to assuming
(or modelling) the data distribution, it is certainly not so in many other situa-
tions. An important example is vector quantization in source coding. In this case
the distortion is usually related to the application requirements, not to the data
distribution; e.g., the distortion to be minimized in image coding should reflect
what the viewer is sensitive to and not assumptions on the input distribution.
Thus we conclude that the suggested probabilistic framework is more general
than the maximum likelihood approach, and may be equivalent to it in special
circumstances at a given “temperature,” i.e., excluding the important aspect of
annealing. Moreover, we shall see similar relations between our approach and
maximum likelihood estimation with unknown class priors [6] when we introduce

the mass-constrained clustering in a later chapter.
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Chapter 3

Annealing and Phase Transitions

3.1 Assumptions

We restrict the class of allowed distortion (dissimilarity) measures by making the

following assumptions.

d-1. d: R* x R* — [0,00) is continuous.

d-2. d(z,y) is a convex function of y for fixed z.
d-3. d(z,y) — oo at |y| — oo for fixed z.

The first assumption was made implicitly in the previous chapter. These assump-

tions are a subset of the assumptions made in the literature [40] [41].

3.2 Annealing

In the previous chapter we obtained the necessary condition for a local optimum

at a given £ (2.16), which is reproduced here for convenience,

3 Ple € G g-d(a,) =0. 31y
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This local minimum of the free energy can be obtained by using one’s favorite
iterative method (e.g., gradient descent).

At B = 0, the association probabilities are uniform, and (3.1) becomes

)
a—y; ; d(:::, y,-) = 0. (32)

This is the centroid condition for the entire data set viewed as one cluster!
Claim: There is a unique solution to (3.2).

Proof: Consider the function
f(y) = Zd(z, y)'

By assumption (d-2) it is a finite sum of functions that are convex in y.

Hence, f(y) is convex and the claim follows by assumption (d-3). o

Thus, at 8 = 0 our effective cost function is convex, and all representatives
converge to the same point, which is the global minimum. This point is the
centroid of the cluster consisting of the entire data set. At 8 > 0, however,
a set Y of vectors satisfying (3.1) corresponds to a local minimum of the free
energy. In order to avoid arbitrary local minima depending on the initialization
of the iterations, we introduce deterministic annealing. Annealing can be viewed
as starting at the global minimum at # = 0, and tracking the minimum while
gradually increasing 8. .

The basic DA method for hard clustering is as follows. Set the required number
of representatives. Initialize B to zero or to some small positive value. At each
iteration minimize the free energy by solving (3.1), and then increase 8. When 8
reaches a value that makes all associations practically hard - stop. Some questions
concerning the annealing schedule (or the B increase rate) remain unanswered,
such as what is the fastest schedule that still ensures the best minimum obtainable

by the method. More insight in this matter will be gained in a later section.
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Let us consider an algorithm for the special case of the squared-distance dis-
tortion measure. At each 8 we optimize by fixed-point iterations based on (2.22)
and (2.24); i.e.,

(n+1) _ r.zP(z € Cj)
v =S Pee Gy (33)
where
e-ﬁlz-vf-")l’
P(z € Cj) = (3.4)

D e—Blz—y{™P’
Note that for 8 — oo, this becomes exactly the basic ISODATA algorithm, where
each iteration is composed of two steps. First, each data point is assigned to the
nearest representative, i.e., evaluating (3.4) at the limit. Then new representa-
tives are computed as the centers of the resulting clusters, i.e., evaluating (3.3).

The DA algorithm performs fuzzy clustering at various degrees of fuzziness. It
starts by finding an extremely fuzzy solution, and then the fuzziness is gradually
reduced until at the limit it evolves into a known, hard-clustering method. This
annealing process can also be understood as gradual localization of the influence
of data points. Before we further analyze the annealing process, let us present

some simulation results for the hard clustering problem.

3.3 Hard-Clustering Results

This version of the algorithm performs hard clustering, given a fixed number of
representatives. This is a well-posed problem, and it is in this context that many
traditional techniques are proved to converge to a local optimum. Regardless of
the initial configuration, at 8 = 0 all the representatives will be at the center
of mass of the entire data set. According to our annealing process we gradually
increase B and reoptimize by solving (3.1). At the limit of 8 — oo, the assodi-
ations (2.3) become hard, and each sample point is associated with exactly one
representative. At this limit the algorithm becomes exactly the LBG algorithm;

i.e., at each iteration every point is assigned to the “nearest” representative (in
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the sense of minimal distortion), and then a new set of “centroids,” minimizing
the cluster average distortion (3.2), are computed. Since in our simulations the
distortion measure is the squared distance, then at the limit we get exactly the
basic ISODATA algorithm [1].

The simulation example demonstrates the performance of our annealing al-
gorithm as compared to basic ISODATA. The training set was generated from
a normal mixture whose density centers are marked by X in the figures. The
output of basic ISODATA depends on the choice of initial configuration. Figure
3.1(a) shows the ISODATA result for an initialization consisting of placing the
means on a small circle around the center of mass of the distribution. The final
location of the representatives is marked by O, and the distortion is 9024. The
output of the DA algorithm is shown in Figure 3.1(b), and is independent of the
initial configuration. The final distortion here is 7635.

Finally, the ISODATA algorithm has been given an extremely “good” initial
configuration by placing the representatives at the exact centers of the normal
densities from which the data were generated. At this initial configuration the
distortion was 7769. The ISODATA algorithm converged to a better local min-
imum of 7644, which is still slightly higher than the minimum found by the DA
method (which is, of course, independent of the initial configuration). Similar
results were obtained in simulations performed with other data sets. This also
suggests the curious fact that there are many local minima in the vicinity of the
global minimum.

I have not been able to prove that our algorithm will always find the global
minimum. In fact, it is not improbable that there are situations when it will fail
to do so. However, in all the simulations very good minima were obtained, and
experiments such as the last one described above have never shown the existence
of lower minima. This is especially encouraging, and shows that the proposed
method consistently outperforms traditional methods, and leads me to conjecture

that the conditions for finding the global minimum are not very restrictive.
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Figure 3.1: Hard-clustering results. The data are generated from six Gaussian
distributions centered at the location marked by “X.” The calculated cluster
centroids are marked by “0.” The lines are the decision boundaries. (a) Basic
ISODATA clustering. The distortion is 9024. (b) Deterministic annealing. The
distortion is 7635.

3.4 Phase Transitions and Hierarchical Clus-
tering

We have already seen that at 8 = 0 all data points are equally associated with all
representatives. We have further seen that for all distortion measures satisfying
assumptions (d-1,2,3), there is a unique solution, and regardless of the number of
representatives they will all converge to the same point. This point is the global
minimum at 8 = 0.

We shall interpret identical representatives as representing the same cluster
and shall consider the set Y of vectors without repetitions as the set of natural

clusters. Thus, at 8 = 0 we actually have one natural cluster that is representable
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by one representative. Mathematically, the single solution of 8 = 0 will be a solu-
tion of (3.1) for all B, but at some positive 3 it will change from a stable solution
(local minimum) into a nonstable one (a saddle point or a local maximum). At
this moment it becomes advantageous to split into subgroups of representatives.
Each of these subgroups is a newly formed natural cluster. Note that this cluster
split corresponds to a phase transition in our physical analogy.

As long as the number of vectors is not limited a priori, since we avoid repe-
titions, the natural number of clusters will emerge at every given 8. At 8 =0 we
have one natural cluster consisting of the entire data set, but as S is increased,
the system will undergo a sequence of phase transitions, where each phase corre-
sponds to a certain number of natural clusters. This process results in a natural
hierarchy of clustering solutions. The term “natural hierarchy” is used to reflect
the fact that cluster splits happen naturally as we increase . None of the com-
mon heuristics for introducing new representatives and placing them in “good”
initial locations are needed.

Recalling that B is the Lagrange multiplier related to the average distortion,
we realize that what we have is a hierarchy of clustering solutions at decreasing
levels of average distortion. This is reminiscent of the basic philosophy of rate-
distortion theory, but not exactly analogous, as will be discussed later when
we consider the vector quantization application. The obtained hierarchy can
be regarded as “looking at the problem at different scales.” As an example to
illustrate this, suppose we look at a picture and say, “This is a village surrounded
by woods.” We have just used a clustering solution at very low 8. But we
could have said, “Here is a house, here is a house, there is a tree, etc.” This
would be a clustering solution at high 8, with many clusters. Both solutions are
perfectly acceptable, only they correspond to looking at the problem at different
scales. This explains why hierarchical clustering is very useful, especially when
dealing with real-world, complex problems which often tend to have an inherent

multiscale structure.
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Let us return to the analysis of the annealing process. We have identified
phase transitions in the process. In our physical analogy, phase transitions occur
at certain critical temperatures. The rest of this section is devoted to computing
critical B for our phase transitions. We shall derive the first critical B for the v-th
law distortion family, and then consider the special case of the squared-distance
distortion, which gives the solution an interesting interpretation, and yields a
better understanding of the process.

At B = 0 we have one cluster represented by the symmetry point of the
(v — 1)-th moment. Without loss of generality we shall take this point to be the
origin. The phase transition occurs when the Hessian at the origin is no longer

positive-definite; i.e, it evolves from a local minimum into a nonstable solution.
At =0 and y, =0 Vk, (2.20) becomes

> le@Pt= 3 O (3.5)
{zl=(<0} {zl=(>0}

Let us use the following binomial series expansion for each component of the

distortion
ja — b)” = [(a — b)sgn(a — B)I* = sgn*(a — b)la” — va*~'b + O()],

where sgn(a — b) is the signum function, and for b — 0 we replace it by sgn(a).
Using this when differentiating (2.14) and discarding the O(y*()) terms, we get

oF sgn’[z(i)][zV1(¢) — (v — 1)z*~%(2)y; (1)1 4(=, y;)
dy;(2) ”; T b(z,yx) ’ (36)

where

é(z,y) = exp{Bv ;z"'l(m)y(m)sgn"lz(m)]}, 3.7

and where we also cancelled the common factor exp{—8 ¥, |z(m)|*} from the

pumerator and the denominator. For convenience we rewrite the above as

oF - — :(‘)
ay,(t Z (338)
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where A.(i) and B; stand for the numerator and denominator, respectively. Note
that at the origin
B.(Y =0) =n,,

where n, is the number of representatives. Therefore, for computing the Hessian

at the origin,

O*F 9AL(?) + X ; B.
Aol = o0 = Tne % o) w2 A 9
By expanding the exponential function in y;, we get
2o Ax(i) = Tsgn*[z()][z""() — (v = )= (1)w; ()] -
{1+ vB LT,z (m)yj(m)sgn”[z(m)]}. (3.10)

Noting that
zz:sgn"lz(i)]z""(i) = zz:ngﬂl[ﬂt(i)]Iw(i)l"'1 =0

is obtained by (3.5), and discarding terms containing second or higher powers of

y, we get
ZA,(z) = v Lsgn*[z(i)]=*7}()) Zm 27 (m)y;(m)sgn*[z(m)] -
(v— l)Esgn"[z(z)Iz" 2(3)y;(9). (3.11)

This result can be rewritten in matrix-vector notation

where N is the number of data points, A is the diagonal positive-semidefinite

matrix 1
Afiril = 5 T I=6)* 7, (3.13)

and C,, is the covariance matrix of the vectors z defined by

2(i) = sga[z()]|=()" . (3.14)
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Next let us consider the derivative of B, at the origin

0B.
0y;(1)

which implies that at the origin,

zA,(i)g,% = B S (P e (@) gl (Dgnle@]. (315)

(Y = 0) = Bv|z()|" "sgnlz(D),

From (3.9), (3.12) and (3.15) we obtain the sub-Hessian with respect to y; at

the origin, \
NBv
2

Hy; = %ﬁ[(u _DA-puC.+ X, (3.16)

The cross components of the Hessian consist only of the second term in (3.16);
ie.,

NBv? .y
H,'_,' = _nﬂz—c"’ ? # J- (3.17)

r

The Hessian H is the large matrix obtained by placing copies of Hj; on the
diagonal, and copies of H;; elsewhere. We are interested in analyzing the condi-
tions for positive-definite H. Noting that C., is a covariance matrix, and therefore
positive-semidefinite, it is quite straightforward to show that H is positive-definite
if and only if the first term in (3.16) is. We shall use this claim here, and prove
it later.

We thus consider the matrix H; = (v —1)A — fvC;.. Both A and C.. depend
only on the data set, not on B, so that varying B only modifies the balance
between these two fixed matrices. At § = 0, H; is positive-definite since A is
(we ignore here pathologies such as det A = 0). It stays positive definite until it
reaches the point where its determinant vanishes.

The critical value for 8 is thus

v—1

ﬂc—

VAmaz

(3.18)

where Apma: is the largest eigenvalue of A-1C,,. Moreover, bifurcation occurs

along the eigenvector corresponding to the Hessian’s zero eigenvalue. This means
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that the split will be in the direction of the eigenvector of A~!C,, corresponding
to Amaz-

Now that we have derived the critical B for the v-th law family, let us see
its interpretation for the special case of the squared distance distortion measure

(v =2). It is easy to see that in this case

Hy, =(I-2B.C:z), (3.19)
where C_; is the covariance matrix of the training set, and (3.18) reduces to
1
ﬂc - 2Amu’ (3'20)

where A,,.. is now the largest eigenvalue of C.,. We see that in this case the
critical temperature is determined by the variance along the major principal axis
of the distribution. Furthermore, the split will be initiated in the direction of
this principal axis. Finally, as long as we may neglect intercluster influences, this
derivation will hold for the following phase transitions, and every cluster will split
at the critical temperature corresponding to its variance.

We now have an approximate idea of how the annealing process works. As
is increased, whenever it reaches a value corresponding to the variance along a
cluster’s major principal axis, this cluster splits into smaller clusters. These clus-
ters stay intact until B reaches values corresponding to their (smaller) variances,
etc. This also indicates how B relates to the cluster variances in the solution.
Note that this description is approximate after the first phase transition, because
we neglected intercluster influences on the phase transition. It should be a good
approximation when the phase transitions are well spaced.

Just as in the physical analogy, the critical moments in the process are the
phase transitions. Knowing to predict the next critical § may allow us to accel-
erate the process between phase transitions, while being more careful during the
transition.

Before ending this section, let us prove our claim regarding the necessary and

sufficient condition for H; to be positive-definite.
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Claim: Let Q be a positive-semidefinite n x n matrix. Let S be the kn x kn
matrix constructed using n x n submatrices according to

P+Q ifi=y;

Q if 2 # j.

Then S is positive-definite iff P is.

S[i’j] = {

Proof: Consider the decomposition S = S; + S,, where
51 [z,] ] =Q
.. P ifi=3y;
52[1’ .7] = ep o .’
0 ifi#j.
Let v be an kn-tuple which we can view as the concatenation of k£ n-tuples:

(v1v2...vE). Now,
v S = (3 0)TR(v;) 20,
j j
where the result is nonnegative because Q is positive-semidefinite.
=) If P is positive-definite, then so is S,, and
vTSv = vTSv + vTSv > vTSv > 0.

Hence, S is positive-definite.

<) If P is not positive-definite, then 3 nonzero w such that w”Pw < 0.

Construct v using n-tuples of the form v; = ajw, such that
E v; = 0,
J
and therefore vTS;v = 0. Now,
vTSv = vTSv + vTSv = vTSw < 0.

Hence, S is not positive-definite. (]
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3.5 Hierarchical-Clustering Results

The algorithm used here produces a hierarchy of clustering solutions. The goal
will be to find the most probable set of representatives (or optimal fuzzy solution)
at different scales. Thus, each clustering result will show fuzzy clustering with the
underlying Gibbs distribution defining the fuzzy membership in clusters, and the
representatives will be the fuzzy cluster centroids. The results will illustrate the
phase transitions in the process, as well as the fuzzy solutions for intermediate 3.

The clustering hierarchy is shown in Figure 3.2. The training set is generated
from a mixture of six normal distributions, and we see the solutions obtained at
different phases. The process starts with one natural cluster containing all the
training set (shown in Figure 3.2(a)). At the first phase transition it splits into
two clusters (Figure 3.2(b)), and passes through a sequence of phase transitions
until it reaches the “natural” set of six clusters. The next phase transition results
in an “explosion” where all clusters split. This is predictable by our analysis of
phase transitions. Here we have a set of identical isotropic clusters. By (3.19)
we know that the critical temperature will be the same for all these clusters.
Moreover, since their covariance matrices are isotropic (Czx = AI), every vector
is an eigenvector, so that the split may be initiated in all directions. A phase
diagram is given in Figure 3.3. It shows the behavior of the average distortion
throughout the annealing process, and the number of natural clusters at each

phase.

3.6 A Note on the Applications

As stated in the introduction, clustering problems are encountered in a large vari-
ety of fields. The objectives of these applications are not always exactly the same.
Some fields, such as classical quantization, require hard clustering by definition.

Others, such as estimation of parameters in mixtures, require fuzzy solutions
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Figure 3.2: Clustering at different phases corresponding to Fig. 3.3. The lines
are equiprobability contours, p = 1/2 in (b), and p = 1/3 elsewhere. (a) 1 cluster
(8 = 0), (b) 2 clusters (8 = 0.0049), (c) 3 clusters (8 = 0.0056), (d) 4 clusters
(B = 0.0100), (e) 5 clusters (8 = 0.0156), (f) 6 clusters (8 = 0.0347), and (g) 19

clusters (8 = 0.0605).
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Figure 3.3: Phase diagram for the distribution shown in Fig. 3.2. The number
of actual clusters is shown for each phase.

by definition. This is the reason that we have developed the deterministic an-
nealing approach and have shown in the simulation results sections how differing
algorithms are derived from the approach.

For the vector quantization application, we usually want decision boundaries,
and partition the space into regions, each associated with a quantization level
(representative). This is hard clustering. When demonstrating hierarchical clus-
tering solutions we mentioned the relation to rate-distortion theory. However, in
order to obtain hard-clustering solutions, we have to take the fuzzy solution at
each phase and let 8 — oo while fixing the number of representatives. This yields
the minimal distortion at each rate (quantizer size). Moreover, to obtain full
analogy with a rate-distortion function, we need to consider the representatives’

entropy instead of their number. This leads to entropy-constrained clustering [5],
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which is beyond the scope of this work. It is nevertheless an interesting problem
which will be investigated in the future using generalizations of the methods for
constrained clustering, which are discussed in the next chapter.

Having said that vector quantization is essentially a hard-clustering problem,
we now point out that fuzzy-clustering solutions are still of interest in this appli-
cation. To illustrate this issue consider the quantization of image pixel values to
a small number of, say, two levels. Using hard clustering you simply threshold
the picture. The resulting binary picture is seldom pleasing to look at. If you
use fuzzy clustering, and randomly generate binary levels to pixels according to
their association probabilities, you get a much better result. This is, in fact,
the way pictures are printed in newspapers using binary (black/white) pixels.
The common use of dithering in image quantization is directly related to this
approach.

On the other side of the spectrum, for cluster analysis of mixtures, while
fuzzy clustering is essentially required, skepticism still exists in the field. Skeptics
are not convinced that fuzzy clustering offers advantages over the classical and
better understood methods, and point out that without significantly 6verlapping
clusters, it is obviously not needed [20].

We conclude by stating that the DA approach to clustering was developed in
general. It offers a contribution to virtually each of the applications, by deriving

an appropriate algorithm in a stra.ightfdrwa.rd manner.
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Chapter 4

Optimization by Constrained

Clustering

4.1 Constrained Clustering

In our formulation of the DA approach to clustering, no explicit constraint has
been put on the set of representatives. It was only assumed implicitly that there
were at least two representatives at each natural cluster to allow phase transitions.
By adding explicit constraints one can use our annealing mechanism to solve other
optimization problems as well as improve the clustering solution.

There is a large family of optimization problems that may be viewed as look-
ing for the optimal associations between two sets, one set of variables and one
set of fixed data. In clustering, these are the set of representatives and the set of
data points, respectively. In the Travelling Salesman Problem (TSP) we want to
associate an ordered set of variables with a given fixed set of cities, so as to min-
imize the sum of consecutive distances. Image segmentation clearly belongs to
this family as well, as we want to associate pixels optimally with an appropriate
set of meaningful labels. The DA clustering method offers a tool for obtaining
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such associations. Annealing is obtained as the system starts at very fuzzy asso-
ciations (high temperature), and then the fuzziness is gradually reduced as the
temperature is lowered. Thus many association problems may be reformulated
as constrained clustering, where the constraint incorporates the requirements for
the optimal associations. This gives rise to new applications for our DA method
for clustering. It should, however, be noted that similarly to the clustering appli-
cations, these optimization problems are divided into two groups. The objective
of one group is to find the optimal nonfuzzy associations (e.g., TSP). For these
problems DA is merely a tool for avoiding local minima. The second group is
typically concerned with generalizing from a training data set, or is related to
input density parameter estimation, and therefore fuzzy associations are sought.
In this case the free energy not only is a useful approximation for avoiding local
minima, but is apparently the right cost function to minimize to obtain the most
probable solution at a given temperature.

Let us formulate the approach to constrained clustering, based on the general
principle of maximum entropy. As before, an instance of the system (Y, V) is
given by Y, the set of cluster parameters, and V, a hard partition. Over the set
of instances we define a probability distribution that will maximize the entropy
subject to the following two constraints. First we have our familiar average

clustering-distortion constraint,
(D(Y,V)) = E, (4.1)
where D is given as in (2.6),
D(Y,V) = ; ZJ: vz; d(2,9;), (4.2)
and then the extra constraint, which concerns only the cluster parameters

(T(Y)) = L. (4-3)
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The maximum entropy probability distribution is

e—BDY.V)=AT(Y)
P(Y,V)= ) e—BD(Y'\V')=AT(Y")"
Y v

(4.4)

By summing over all possible hard partitions, similarly to the derivation for
clustering (2.8-2.12), we obtain the marginal probability
e—BF(Y:8)=T(Y)

P(Y)= S e-BF(Y'B)-AT(V")’
Y/

(4.5)

where F is given in (2.13).
The most probable Y is the one that minimizes SF + AT. Equivalently, we

could say that it minimizes
A
F+ 'ET,

which, by noting its Lagrangian form, can be conveniently viewed as minimizing
F(Y,B) over Y subject to T(Y) = L', for some appropriate L'. Furthermore, in
many cases, and in all our examples, the actual value of L’ will not be important.
All that will matter is the way it is varied for the annealing process.

In constrained clustering we shall therefore be optimizing the free energy,
subject to the constraint. Let us start again and state that as is often done in

such optimization problems, it is useful to minimize the Lagrangian
F'=F +¢T, (4.6)

where F is given in (2.13), q is a Lagrange multiplier, and T is the constraint.
The Lagrangian is normally optimized as functions of ¢, the Lagrange multiplier,
which is then determined by satisfying the constraint.

Three examples of constrained clustering are given in this chapter. The first
is an improvement of our method for the clustering problem. Although the max-
imal number of natural clusters at a given temperature is independent of the

number of representatives, their actual location does depend on the number of
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representatives and their multiplicity in the clusters. This weakness is eliminated
by reformulating the problem as constrained clustering, or equivalently, taking
into account the mass (or population) of each natural cluster. As a second exam-
ple of constrained clustering we take TSP. It is shown how TSP can be viewed
as constrained clustering at the limit of low temperature, and obtain the EN
method [10,9], which is an important intuitive method that has been shown to
obtain near-optimal solutions for relatively complicated configurations of cities.
Moreover, our constrained-clustering formulation leads us to identify the second
Lagrange multiplier, and to propose a more powerful annealing scheme. The
last example is related to self-organization in unsupervised learning [25]. It is
explained how an appropriate, constrained-clustering formulation leads to a DA

method to search for the optimal solution, given a finite training set.

4.2 Mass-Constrained Clustering

Let us reformulate our clustering method in terms of the natural clusters (or dis-
tinct representatives). Let )\, denote the multiplicity of identical representatives
in the k-th cluster. Equation (2.4) for the partition function is rewritten as

Z, =Y AePilEm); (4.7)
k
the association probability (2.3) is for a natural cluster

AJ. c"‘ﬁ d(z Wy )

P(z € Cj) = ——F—,

(4.8)
and the free energy (2.13) is now
F = —% SlogZ. = —% S log Xk: Age~PdEu) (4.9)

The free energy is to be minimized under the constraint of a fixed total number

of representatives. The Lagrangian to be minimized (4.6) is thus

F’=F+q(zk:,\k-M). (4.10)
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In this formulation we do not require A; to be integers. One should therefore

visualize M as the total mass of representatives, which is divided between the

natural clusters.
The set of representatives {y;} should satisfy

0
—F' =0. 4.11
3v; (4.11)

Since the constraint is independent of y;, this yields again (2.16); i.e.,
7]
>_P(z € Cj)g—d(z,y;) =0, (4.12)
F3 Yj

with the distinction that now the association probabilities are according to (4.8).

On the other hand, the corresponding set {A;} which minimizes F” satisfies

o _, 1 e—Bd(z;)
a/\J_F _-ﬂ; 7 +¢=0, (4.13)
which yields
c-’pd(zvyJ)
Multiplying by the appropriate A\x and summing over all natural clusters we get
e-ﬁd("ﬂi)
D MgB=3 MY (4.15)
k k z z
which, by applying our total mass constraint and using (4.7), yields
N
P = ﬂ'r (4.16)

where N is the total number of data points in the training set. Substituting
(4.16) in (4.14) we see that the optimal set of A\; must satisfy
e-ﬁd("'”:') N

—Z. T (4.17)

z

where the \; are implicit in Z, (4.7). Equation (4.17) is thus the equation we

solve while optimizing over {A}.
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Moreover, by using (4.17) and (4.8), we obtain

y= g

where p = M/N is the mass of one data point. This is intuitively appealing

A =pd(z,y5)
A ~ = Y uP(z € C;), (4.18)

because the optimal representatives partition is, in fact, the training data set
mass partition in the clusters. It also makes explicit the relation between this
formulation at a given f and maximum likelihood estimation of parameters in
mixtures, where the class prior probabilities are unknown (see [6]). Our formula-
tion is more general, and does not necessarily assume a priori knowledge on the
data distribution, as explained in the note on maximum likelihood in Chapter 2.

Note that although g is constant above, it could be made to depend on z to
generalize the method to the case where the given data points are not equally
important. In particular, this could apply to clustering of gray-scale images,
which are low-resolution representations of high-resolution binary sets. In other
words, this enables a direct multiscale implementation of the method.

In the mass-constrained formulation the process is independent of the number
of representatives (as long as it is greater than the number of natural clusters).
In order to see this, let the natural clusters be represented by {y;} and {};},
the solution sets of centroids and masses, respectively. Now, let us raise the
number of representatives and consider the case where the j-th natural cluster
is represented by m; representatives y_s ), while the cluster’s mass is arbitrarily

divided between them; i.e.,

W=y, n=1..,m; (4.19)
mj
AR = (4.20)
n=1

By (4.7), Z. is invariant to any such division. Furthermore, the probability of
association to the natural cluster is unchanged as
AMe=Bdzy) ) .e—Bd(z;)
Y PzecM =y 22 = € =P(zeC)). (421
n Z: Zz

n
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Figure 4.1: The effect of cluster mass (population) at intermediate 8. The data
are sampled from two normal distributions whose centers are marked by X. The
computed representatives are marked by O. (a) Nonconstrained clustering. (b)
Mass-constrained clustering.

It is therefore clear that the same representative locations will satisfy (4.12), and
will thus be obtained by our method regardless of the multiplicity m; or the mass
division {/\‘(,.")}.

It should also be noted that at the limit of low temperature (8 — o), both the
previous method and the mass-constrained method converge to the same process,
namely, LBG [26] (or basic ISODATA [1] for the sum of squares distortion). This
is so because the association probabilities in these annealing methods become
identical at the limit, and associate each data point to the nearest representative
with probability one. The difference between the two is in their behavior at
intermediate 3, where the mass-constrained clustering method takes the cluster
populations into account (Figure 4.1), and therefore yields a better method for

hierarchical clustering, as well as a better chance of avoiding local minima.
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4.3 The Travelling Salesman Problem

In the DA clustering algorithm, if we throw in enough representatives and let
B — oo, then each data point will become a natural cluster. This can be viewed
as a process of data association, where each data point is exclusively associated
with a natural representative. As it stands, there is no preference as to which
representative is associated with which data point. However, by adding a con-
straint we can encourage the process to obtain associations that would satisfy
additional requirements. As an example, the EN approach to TSP [10][9][48][45]
is considered here.

The problem statement is: Given a set of data points (usually called cities),
find the shortest closed path which passes through all of them. In order to derive
the EN method, we shall assume that the sum of squared distances between
consecutive cities on the path is to be minimized, as is, in fact, done in [10]. This
will be loosely referred to as “tour length.” The basic optimization problem to
solve is that of minimizing F, subject to the constraint of a given tour length.
Controlling the mean squared distance from the cities via 8, and also controlling
the required tour length will be the essence of the annealing process. Hence, we
add the appropriate constraint to the free energy to obtain the Lagrangian (4.6)

N
F'=F 4 (z |yk—yk-1|2-L), — (4.22)
k=1 :

Here L is the tour length, and A is the Lagrange multiplier related to it.
As an aside, note that we could start by defining a modified instance distortion
(see [48]),
D'(Y,V)=3] Zk: vzrd(z, i) + A Zk: lye — ye-al?,

instead of D as defined in (2.6). Then, deriving the effective cost similarly to
the derivation of (2.8) to (2.14), we would get F' of (4.22) instead of F of (2.14)
(except for a term that does not depend on the representatives) as the function
to be minimized to obtain the most probable set Y. This approach, however,
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gives ) the interpretation of a coefficient weighing the relative importance of the
second term in the instance distortion. This obscures the annealing role it should
have, which will be explained in the sequel.

The optimal set Y must satisfy the condition

Doy v (4.23)
Oy;

which by substituting (4.22) yields
0
Z P(z € C,-)a—y‘-d(z,yj) + 22 (2y; — Yj-1— y,-.,,l) = 0. (4.24)
z J

If we also choose the squared distance as our clustering distortion measure d (z,¥),

then we obtain an EN formulation for the optimum,
3" P(z € Cj)(y; — =) + M2y; — ¥i-1— Yj+1) = 0. (4-25)

Note that this equation depends on f through the association probabilities (2.3).
As we have seen in the clustering method derivation, 8 controls the mean squared
distance to the cities. By making 8 — oo, we make each representative converge
to a city. The second Lagrange multiplier, ), is related to the tour length.

An important question at this point is whether and how A should be varied
with . In [10] the formulation implies A o< 1/4/B, while in [48] it seems to be
kept constant. It is instructive to first consider the tour length L (instead of A)
as the control parameter. Obviously, for small g, the representatives are close
to the center of mass of the distribution, and the tour length is small. As B is
increased, so is the tour length, normally. If we do not constrain the length, then
we obtain our clustering solution for each 5. By constraining the tour length to
be shorter than the free tour length we maintain some “tension” in the elastic
net. This is particularly important at the vicinity of phase transitions where
separating representatives should be ordered so as to minimize the length.

The procedure suggested here is as follows. i) At a given f, gradually increase

L and optimize, until L reaches some appropriate value below the free tour length.
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ii) Keeping L constant, update 3 and optimize, return to i). Such an approach can
be implemented directly using methods for nonlinear optimization; for example,
one may consider using the Generalized Hopfield Network [46]. It is, however,
more convenient and simpler to control the Lagrange multiplier A rather than the
tour length L directly.

Our problem at given 8 and L is to minimize F(Y) subject to a constraint
that will be conveniently written as A(Y) = L. A necessary condition for an

optimum is that the derivatives of the Lagrangian vanish; i.e.,
- tAg—= Vj. (4.26)

Now let (Y™, 1) be the optimum, and F* be the free energy at the optimum,
F*=F'(Y*,X*) = F(Y™).

It can be shown [31] that for such constrained optimization,

. OF*

AT = ~3L (4.27)
This gives our Lagrange multiplier the interpretation of the rate of decrease of
the minimal free energy with respect to increase in the tour length. Clearly, for
A® = 0 we get the nonconstrained clustering solution, and the free tour length.
Our suggested procedure can thus be controlled as follows. At a given 8, gradu-
ally decrease A and optimize, until a small positive value Amin is reached, which
maintains some “tension” in the net. The next step is to update 8 and simulta-
neously find a new initial value for A so that the tour length at the optimum is

kept constant. Then again ) is gradually decreased to A, etc.
The next step in our derivation is therefore to determine an initial value for
A when updating 8, such that it will keep L constant. For this purpose let us

compute the following partial derivative, given that L is constant:
o 0 OF" o OF"

98 ~ " 9B8'\dL )=—5z( a8 ),

(4.28)
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where use was made of (4.27). Next we note that

oF* BF ayk
*B) = 4.29
Differentiating the constraint we obtain
=0, 4.30
23406 ~ B (4:30)
where 0 is obtained by the constant-L assumption. Adding A*-(4.30) to (4.29),
e et OF* _OF oF 9
" - yk
—=——(Y"8)+ ) (— . 4.31
a8 a5 ¥ +P) ¥(3yk 3yk) (4.31)
By (4.26) the second term equals 0 and so (4.31) reduces to
OF* OF .,
i 8_,6(Y »B). (4-32)
Let us now make the following observation,
0
#5(BF) = LIy~ =[Pz € C) = E. (4:33)
T
50 OF E—F
'5'5 = —ﬁ_’ (4.34)
and by (4.32) we have
OF* E*—F*
o8 B’

which when substituted into (4.28) yields
ox* 1 0E* OF* 1 3E‘

o5 =~ plar ~ar) = Flar ) (+.35)
In practice this allows the use of the following approximation:
B8 ,AE*
AX(B) = -—(— +A%), (4.36)

where AE*/AL may be estimated using the last two iterations in A (before the

moment to update § arrived).
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Figure 4.2 shows our result for the ten-cities problem [9], which according to
Durbin et al. is the optimal solution and slightly better than the one obtained
by them. In this simple example, one can show by exhaustive search that indeed
this path minimizes both the sum of squared distances and the sum of distances.

Figure 4.3 shows our result for the first fifty-cities problem [10]. Here the
resulting path is longer than the one obtained by Durbin and Willshaw, but the
sum of squared distances is smaller, and indeed this is the quantity that is actually
minimized by the method. o

More serious investigation of the annealing schedule is needed, if one wants
to optimize the method. In the simulations B was increased exponentially, as
had been done in [10]. This is very convenient (note that logarithmic schedules
are suggested for stochastic relaxation), but may compromise the results. We
have also experimented with annealing while keeping A constant. For both the
examples it was possible to find values for A empirically, such that the same
results were obtained, only this required the annealing schedule to be extremely
slow. For example, in the fifty-cities problem this required the rate Ag/8 = -
0.0001, as compared to AB/B = .01 used in the proposed annealing method (the
extra computations for the iterations in A were negligible with respect to this).
Moreover, experimentation with various values for constant A were needed to find
the best choice.
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(@)

Figure 4.2: The ten-cities problem solved by deterministic annealing. This is the
optimal tour for both the sum of distances, and the sum of squared distances.

Figure 4.3: The DA result for the (first) fifty-cities problem.
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4.4 Self-Organization

Kohonen [25] suggested a sequential procedure for self-organization of neural nets.
This procedure tends to make the representatives (neurons) “fit” the probability
distribution of the input data, while remaining “ordered.” It is intuitively ob-
vious that these two objectives fall nicely under “clustering” and “constraint,”
respectively. We shall refer to this procedure as Kohonen’s Learning Procedure
(KLP). KLP allows learning nets of low topological dimensions to deal with in-
puts of higher dimensions. It can be viewed as defining the net on an optimal
hypersurface within the multidimensional input space. This is also commonly
called the dimensionality reduction problem.

There exist vector quantization methods that are related to or based on KLP.
They basically degenerate KLP to remove the topological (ordering) constraint.
As a matter of fact, such reduced algorithms have been suggested and discussed
earlier by Grossberg [15](16], and are based on competitive learning [39][17].
Chang and Gray [4] have independently developed a technique called stochas-
tic gradient which is a special case of KLP. Although it performed slightly better
than LBG when parameters were empirically optimized, problems with the step-
size adaptation, which is not well understood, led to their conclusion that LBG
may be practically preferable. In this section we close the circle by suggesting to
extend the DA approach to self-organization via an appropriate constraint.

Instead of searching for the shortest closed path, as we have done for solving
TSP, one may be looking for the shortest open path, i.e., the shortest way to
traverse all cities. It can be shown by reduction that for the sum of squared
distances, this problem is at least as hard as TSP. One can formulate this problem
as constrained clustering in exactly the same way as we formulated TSP, except
that the periodic boundary condition is removed from the constraint. Instead of

(4.22) we now have

N
F'=F+) (Z lyx = yra|® — L) . (4.37)

k=2
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If the data is one-dimensional and the number of representatives equals the num-
ber of data points, then what we get at the limit is a DA method for sorting,
since the shortest open path is simply the ordered sequence of data points. Of
course, DA is not suggested as a practical method for sorting, but its use on the
sorting problem does give a useful intuition for dealing with ordering in higher
dimensions. As a vector equation, (4.37) is dealing with unsupervised learning
of a linear network (linear topology), but can be easily extended to networks of
higher topologies by defining the corresponding neighborhoods, and adding the
appropriate distances to the summation in the constraint.

Since all the derivation of the annealing procedure for TSP in the previous
section (4.26-4.36) was, in fact, for a general constraint (denoted A(Y’)), we can use
the results directly without repeating the underlying mathematics. In particular,
it is obvious that the Lagrange multiplier A has a similar meaning here, and the
same annealing procedure is applicable in this case as well.

Figure 4.4 shows an example of the self-organization of a ten-unit linear net-
work, given the same fifty-cities example we used for TSP. The results show a
behavior similar to that of the stochastic method documented in [25] (the differ-
ences are discussed below). This demonstrates how a linear network tries to cope
with two-dimensional input (dimensionality reduction). The biological plausibil-
ity of a stochastic version of such self-organization in cortical maps is discussed in
[8]. In [48] it is suggested how to obtain unique matching at the rionfuzzy limit by
appropriately modifying the cost function. However, it seems that unsupervised
learning belongs to the category of fuzzy association problems, as the objective is
to generalize from a training set.

The distinctions between KLP and the deterministic annealing method pro-
posed here are mainly as follows. KLP is sequential (stepwise) and thus may
enable adaptation to nonstationary data. It may also be more biologically plausi-
ble. On the other hand, it suffers from the disadvantages of sequential algorithms.

In particular, convergence in nontrivial cases is difficult to analyze, and step-size
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adaptation schemes are typically heuristic. Moreover, the results may depend on
the order of presentation of data points. A major distinction to keep in mind is
that if KLP converges to a local minimum, it is only at the limit (equivalent to
our B — o). Intermediate results are stochastic and therefore should be taken
with a grain of salt. DA, on the other hand, converges to a local minimum of
the Lagrangian at each 3, and thus yields reliable fuzzy solutions at intermediate
B. This is obtained within a well-understood mathematical framework, where
the process virtually always stays at the “statistical equilibrium” of its stochastic
counterpart. I strongly believe that fuzzy solutions are important in these appli-
cations for two reasons, the need to generalize from a given training set, and the
need to estimate cluster parameters correctly.

Given the known advantages of “batch” algorithms (e.g., LBG) over sequential
algorithms (e.g., k-means) in the field of clustering, and the inherent fuzzy nature
of the problem, I conjecture that for self-organization, given a finite training
set, DA should outperform KLP. Extensive experimentation is required to test
this conjecture. Here, however, we were mainly interested in this subject as an
example for constrained-clustering application. I intend to pursue this approach

to unsupervised learning in a future study.
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Chapter 5
Future Directions

In conclusion to the thesis, let us consider future directions for research. These
belong “fuzzily” to two main categories, namely, applications, and generalizations.
The first deals with the application of the ideas presented in this work to various
related problems in different fields within science and engineering. The second
deals with further generalization of the basic approach to cope with an even larger
family of optimization problems.

One application mentioned in this work is entropy-constrained vector quanti-
zation. This is the right problem to solve if quantization values (the representa-
tives) are to be encoded by a variable-length code. One should not be misled into
thinking that it is constrained clustering as defined in Chapter 4. The constraint
" here is the representatives entropy, which is not a direct function of their values
Y, but of their probaBilities. The constraint is thus a function of the partition
(set of associations) V. This therefore requires a more general formulation of
constrained clustering than the one we have used.

Generalization to association or assignment problems that do not easily lend
themselves to constrained-clustering formulation should be considered. An im-
portant class of such problems consists of ﬁroblems where only a small subset of
the fixed data is to be associated with the variables. One example is navigation,
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where the solution consists of the shortest path, which is a small subset of the
terrain data. Another example is tracking in the presence of clutter, where the
estimated target returns to be assigned to the trajectory are a small subset of the
detected data. Some preliminary work on multitarget tracking is summarized in
[36] and [37].

A dramatic generalization would be to nonconvex optimization problems that
are not necessarily association problems. This is maybe possible because the
concept of deterministic annealing in its pure form is indeed general, but some-
what vague. However, this requires abandoning our probabilistic framework and
the powerful annealing tool of fuzzy associations. It seems that instead of hav-
ing a general DA method, appropriate probabilistic frameworks will have to be
constructed for each family of optimization problems.

There are hosts of more or less immediate applications of DA as presented
in this thesis. One application that has been treated here to some extent is
self-organization and unsupervised learning in neural nets. Much more work is
necessary to realize the potential of the DA approach. In particular, better under-
standing and quantification of the importance of fuzzy solutions and their relation
to generalization are required. Other possible applications are in image process-
ing and understanding, particularly image segmentation and image restoration.
There is much interest in these applications in both science and engineering.

In summary, there seem to be many possible ways to continue this work. One
main direction is further development and generalization of the basic approach.
The other directions (many of which are not independent of the first) deal with

a rich variety of applications.

-
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